ANNA UNIVERSITY, CHENNAI AFFILIATED INSTITUTIONS B.E. ELECTRONICS AND INSTRUMENTATION ENGINEERING REGULATIONS – 2017 CHOICE BASED CREDIT SYSTEM OPEN ELECTIVES (Offered by Other Branches)

S.No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1.	OCY551	Advanced Engineering Chemistry	OE	3	3	0	0	3
2.	OCE551	Air Pollution and Control Engineering	OE	3	3	0	0	3
3.	OAT551	Automotive Systems	OE	3	3	0	0	3
4.	OIT551	Database Management Systems	OE	3	3	0	0	3
5.	OIT552	Cloud Computing	OE	3	3	0	0	3
6.	OMF551	Product Design and Development	OE	3	3	0	0	3
7.	OME552	Vibration and Noise Control	OE	3	3	0	0	3

V SEMESTER OPEN ELECTIVE I

VII SEMESTER OPEN ELECTIVE II

S.No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	С
1.	OBT751	Analytical Methods and Instrumentation	OE	3	3	0	0	3
2.	OEC752	Communication Networks	OE	3	3	0	0	3
3.	OME751	Design of Experiments	OE	3	3	0	0	3
4.	OME754	Industrial Safety	OE	3	3	0	0	3
5.	OCS752	Introduction to C Programming	OE	3	3	0	0	3
6.	OMF751	Lean Six Sigma	OE	3	3	0	0	3
7.	OCH751	Process Modeling and Simulation	OE	3	3	0	0	3
8.	OEC753	Signals and Systems	OE	4	4	0	0	4
9.	OML751	Testing of Materials	OE	3	3	0	0	3

OCY551 ADVANCED ENGINEERING CHEMISTRY

OBJECTIVES:

- To make the students conversant with basics of polymer chemistry
- Principles of electrochemical reactions, redox reactions in corrosion of materials and methods for corrosion prevention and protection of materials.
- To acquaint the student with concepts of important photophysical and photochemical processes and spectroscopy.
- To make the student acquire sound knowledge of second law of thermodynamics and second law based derivations of importance in engineering applications in all disciplines.
- To acquaint the students with the basics of nano materials, their properties and applications. •

UNIT I POLYMERS AND SPECIALITY POLYMER

Polymers – Types of polymerization – degree of polymerization – plastics and types – mechanism of polymerization (free radical mechanism) properties of polymers - Tg and tacticity - compounding of plastics - fabrication of plastics - Blow and extrusion mouldings. Speciality polymers-conducting polymers: polyacetylene, polyaniline, synthesis, mechanism of conduction - applications of conducting polymers. Bio-degradable polymers: requirements, factors affecting degradation - PLApreparation, properties –applications.

UNIT II **ELECTROCHEMISTRY, CORROSION AND PROTECTIVE COATINGS**

Electrode potential - Nernst equation, numerical problems - Emf series, applications, electrochemical cells, galvanic cells, electrolytic concentration cells – Emf measurement problems. Corrosion: dry & wet corrosion - mechanism, factors affecting corrosion - corrosion control, material selection and design aspects - corrosion protection - sacrificial anode and impressed current methods. Protective coatings: Metallic coatings - electroplating of Cu - electroless plating of Ni. Organic coatings: Paints constituents and function, special paints – water repellant, heat resistant and luminous paints.

UNIT III **PHOTOCHEMISTRY & ANALYTICAL TECHNIQUES**

Photochemistry: Laws of photochemistry - Grothuss-Draper law, Stark-Einstein law and Beer-Lambert's Law. Quantum efficiency - determination - photophysical processes (Jablonski diagram) photosensitization - chemiluminescence and bioluminescence. Analytical techniques: IR, UV principle, Instrumentation and applications. Thermal analysis: TGA & DTA - principle, instrumentation and applications.

Chromatography: Basic principles of column & TLC – principles and applications.

UNIT IV THERMODYNAMICS

Terminology of thermodynamics - Second law: Entropy - entropy change for an ideal gas, reversible and irreversible processes; entropy of phase transitions; Clausius inequality. Free energy and work function- Helmholtz and Gibbs free energy functions (problems); criteria of spontaneity; Gibbs-Helmholtz equation (problems); Clausius-Clapeyron equation; Maxwell relations – Van't Hoff isotherm and isochore (problems).

UNIT V NANOCHEMISTRY

Basics - distinction between molecules, nanoparticles and bulk materials; size-dependent properties (surface to volume ratio, melting point, optical and electrical). nanoparticles, nanocluster, nanorod, nanotube (CNT: SWNT and MWNT) and nanowire, synthesis - precipitation, thermolysis,

9

9

LTPC 3 0 0 3

9

9

hydrothermal, solvothermal, electrodeposition, chemical vapour deposition, laser ablation, sol-gel process and applications (electronic and biomedical). Fullerenes: Types - C₆₀ - preparation, properties and applications.

TOTAL: 45 PERIODS

OUTCOMES

The knowledge gained on polymer chemistry, thermodynamics. spectroscopy, phase rule and • nano materials will provide a strong platform to understand the concepts on these subjects for further learning.

TEXT BOOKS

- 1. Shikha Agarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press, Delhi, 2015.
- 2. S. Vairam, P. Kalyani and Suba Ramesh, "Engineering Chemistry", Wiley India PVT, LTD, New Delhi, 2013
- 3. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company Ltd.,2012.

REFERENCES

- 1. P. C. Jain and Monika Jain, "Engineering Chemistry" Dhanpat Rai Publishing Company (P) LTD, New Delhi, 2015
- 2. S. S. Dara and S. S. Umare, "A Textbook of Engineering Chemistry", S. Chand & Company LTD, New Delhi, 2015
- 3. B. K. Sharma, "Engineering Chemistry", Krishna Prakashan Media (P) Ltd, Meerut, 2012

OCE551 AIR POLLUTION AND CONTROL ENGINEERING LT P C

OBJECTIVE:

 To impart knowledge on the principle and design of control of Indoor/ particulate/ gaseous air pollutant and its emerging trends.

UNIT I INTRODUCTION

Structure and composition of Atmosphere - Definition, Scope and Scales of Air Pollution - Sources and classification of air pollutants and their effect on human health, vegetation, animals, property, aesthetic value and visibility- Ambient Air Quality and Emission standards.

UNIT II **METEOROLOGY**

Effects of meteorology on Air Pollution - Fundamentals, Atmospheric stability, Inversion, Wind profiles and stack plume patterns- Atmospheric Diffusion Theories – Dispersion models, Plume rise.

UNIT III CONTROL OF PARTICULATE CONTAMINANTS

Factors affecting Selection of Control Equipment - Gas Particle Interaction - Working principle -Gravity Separators, Centrifugal separators Fabric filters, Particulate Scrubbers, Electrostatic Precipitators.

3

7

3003

6

4

UNIT IV CONTROL OF GASEOUS CONTAMINANTS

Factors affecting Selection of Control Equipment – Working principle - absorption, Adsorption, condensation, Incineration, Bio filters – Process control and Monitoring.

UNIT V INDOOR AIR QUALITY MANAGEMENT

Sources, types and control of indoor air pollutants, sick building syndrome and Building related illness-Sources and Effects of Noise Pollution – Measurement – Standards –Control and Preventive measures. TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have

- an understanding of the nature and characteristics of air pollutants, noise pollution and basic concepts of air quality management
- ability to identify, formulate and solve air and noise pollution problems
- ability to design stacks and particulate air pollution control devices to meet applicable standards.
- Ability to select control equipments.
- Ability to ensure quality, control and preventive measures.

TEXTBOOKS:

- 1. Lawrence K. Wang, Norman C. Pareira, Yung Tse Hung, "Air Pollution Control Engineering", Tokyo, springer science + science media LLC,2004.
- 2. Noel de Nevers, "Air Pollution Control Engineering", Waveland press, Inc 2017.
- 3. Anjaneyulu. Y, "Air Pollution and Control Technologies", Allied Publishers (P) Ltd., India 2002.

REFERENCES:

- 1. David H.F. Liu, Bela G. Liptak, "Air Pollution", Lweis Publishers, 2000.
- 2. Arthur C. Stern, "Air Pollution (Vol.I Vol.VIII)", Academic Press, 2006.
- 3. Wayne T.Davis, "Air Pollution Engineering Manual", John Wiley & Sons, Inc, 2000.
- 4. M.N Rao and HVN Rao, "Air Pollution", Tata Mcgraw Hill Publishing Company limited, 2007.
- 5. C.S.Rao, "Environmental Pollution Control Engineering", New Age International (P) Limited Publishers, 2006.

OAT551

OBJECTIVES:

• To understand the construction and working principle of various parts of an automobile.

AUTOMOTIVE SYSTEMS

• To have the practice for assembling and dismantling of engine parts and transmission system

UNITI AUTOMOTIVE ENGINE AUXILIARY SYSTEMS

Automotive engines- External combustion engines –Internal combustion engines -classification of engines- SI Engines- CI Engines- two stroke engines -four stroke engines- construction and working principles - IC engine components- functions and materials -valve timing –port timing diagram- Injection system -Unit injector system- Rotary distributor type - Electronically controlled injection system for SI engines-CI engines-Ignition system - Electronic ignition system -Transistorized ignition system, capacitive discharge ignition system.

11

10

L T P C 3 0 0 3

UNIT II VEHICLE FRAMES AND STEERING SYSTEM

Vehicle construction and different Chassis layouts –classifications of chassis- types of frames- frameless chassis construction –articulated vehicles- vehicle body - Vehicle aerodynamics-various resistances and its effects - steering system –conventional – sophisticated vehicle- and types of steering gear box-Power Steering- Steering geometry-condition for true rolling motion-Ackermann's- Devi's steering system - types of stub axle – Types of rear axles.

UNIT III TRANSMISSION SYSTEMS

Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, Over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints — Hotchkiss Drive and Torque Tube Drive- rear axle- Differential-wheels and tyres.

UNIT IV SUSPENSION AND BRAKES SYSTEMS

Suspension Systems- conventional Suspension Systems -independent Suspension Systems -leaf spring – coil spring –taper-lite - eligo,s spring Types of brakes -Pneumatic and Hydraulic Braking Systems, Antilock Braking System (ABS), electronic brake force distribution (EBD) and Traction Control. Derive the equation of Forces acting while applying a brakes on plain surface - inclined road-gradient.

UNITV ALTERNATIVE ENERGY SOURCES

Use of Natural Gas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol and Hydrogen in Automobiles- Engine modifications required –Performance, Combustion and Emission Characteristics of SI and CI engines with these alternate fuels - Electric and Hybrid Vehicles, Fuel Cell. Turbo chargers -Engine emission control by three way catalytic converter system.

Note: Practical Training in dismantling and assembling of Engine parts and Transmission Systems should be given to the students.

OUTCOMES:

- Upon completion of this course, the students will be able to identify the different components in automobile engineering.
- Have clear understanding on different auxiliary and transmission systems usual.

TEXT BOOKS:

- 1. Ganesan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.
- 2. Jain K.K. and Asthana .R.B, "Automobile Engineering" Tata McGraw Hill Publishers, New Delhi, 2002.
- 3. Kirpal Singh, "Automobile Engineering", Vol 1 & 2, Seventh Edition, Standard Publishers, New Delhi, 1997.

REFERENCES:

- 1. Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA, 1998.
- 2. Joseph Heitner, "Automotive Mechanics," Second Edition, East-West Press, 1999.
- 3. Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals," The Good heart –Will Cox Company Inc, USA ,1978.
- 4. Newton , Steeds and Garet, "Motor Vehicles", Butterworth Publishers, 1989.

9

9

9

9

TOTAL: 45 PERIODS

OIT551

DATABASE MANAGEMENT SYSTEMS

OBJECTIVES

- To learn the fundamentals of data models
- To learn conceptual modeling using ER diagrams.
- To study SQL queries and database programming
- To learn proper designing of relational database.
- To understand database security concepts
- To understand Information retrieval techniques

UNIT I DBMS AND CONCEPTUAL DATA MODELING

Purpose of Database System – Data independence - Data Models – Database System Architecture – Conceptual Data modeling: ER models - Enhanced-ER Model. Introduction to relational databases – Relational Model – Keys – ER-to-Relational Mapping. Modeling of a library management system.

UNIT II DATABASE QUERYING

Relational Algebra – SQL: fundamentals – DDL – Specifying integrity constraints - DML – Basic retrieval queries in SQL - Complex SQL retrieval queries – nested queries – correlated queries – joins - aggregate functions. Creating a table, populating data, adding integrity constraints, querying tables with simple and complex queries.

UNIT III DATABASE PROGRAMMING

Database programming with function calls, stored procedures - views – triggers. Embedded SQL. ODBC connectivity with front end tools. Implementation using ODBC/JDBC and SQL/PSM, implementing functions, views, and triggers in MySQL / Oracle.

UNIT IV DATABASE DESIGN

Functional Dependencies – Design guidelines – Normal Forms: first, second, third – Boyce/Codd Normal Form – Normalization algorithms. Design of a banking database system / university database system.

UNIT V ADVANCED TOPICS

Database security issues – Discretionary access control – role based access – Encryption and public key infrastructures – challenges. Information Retrieval: IR Concepts, Retrieval Models, Queries in IR systems.

OUTCOMES:

Upon completion of the course, the students will be able to:

- understand relational data model, evolve conceptual model of a given problem, its mapping to relational model and Normalization
- query the relational database and write programs with database connectivity
- understand the concepts of database security and information retrieval systems

TEXT BOOKS:

- 1. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Sixth Edition, Pearson, 2011.
- 2. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Sixth Edition, Tata McGraw Hill, 2011

REFERENCES:

TOTAL: 45 PERIODS

11

9

9

9

- 1. C.J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.
- 2. Raghu Ramakrishnan, —Database Management SystemsII, Fourth Edition, McGraw-Hill College Publications, 2015.

OIT552

CLOUD COMPUTING

OBJECTIVES:

- To learn about the concept of cloud and utility computing.
- To have knowledge on the various issues in cloud computing.
- To be familiar with the lead players in cloud.
- To appreciate the emergence of cloud as the next generation computing paradigm.

UNIT I INTRODUCTION TO CLOUD COMPUTING

Introduction to Cloud Computing – Roots of Cloud Computing – Desired Features of Cloud Computing - Challenges and Risks - Benefits and Disadvantages of Cloud Computing.

UNIT II VIRTUALIZATION

Introduction to Virtualization Technology - Load Balancing and Virtualization - Understanding Hypervisor - Seven Layers of Virtualization - Types of Virtualization - Server, Desktop, Application Virtualization.

UNIT III **CLOUD ARCHITECTURE, SERVICES AND STORAGE**

NIST Cloud Computing Reference Architecture – Public. Private and Hybrid Clouds - laaS – PaaS – SaaS – Architectural Design Challenges – Cloud Storage.

RESOURCE MANAGEMENT AND SECURITY IN CLOUD UNIT IV

Inter Cloud Resource Management - Resource Provisioning Methods - Security Overview - Cloud Security Challenges – Data Security – Application Security – Virtual Machine Security.

UNIT V CASE STUDIES

Google App Engine(GAE) - GAE Architecture - Functional Modules of GAE - Amazon Web Services(AWS) - GAE Applications - Cloud Software Environments - Eucalyptus - Open Nebula -Open Stack.

OUTCOMES:

On Completion of the course, the students should be able to:

- Articulate the main concepts, key technologies, strengths and limitations of cloud computing.
- Learn the key and enabling technologies that help in the development of cloud.
- Develop the ability to understand and use the architecture of compute and storage cloud. service and delivery models.
- Explain the core issues of cloud computing such as resource management and security.
- Be able to install and use current cloud technologies.
- Choose the appropriate technologies, algorithms and approaches for implementation and use of cloud.

9

9

LT PC 3 0 0 3

9

9

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Buyya R., Broberg J., Goscinski A., "Cloud Computing: Principles and Paradigm", First Edition, John Wiley & Sons, 2011.
- 2. Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 3. Rittinghouse, John W., and James F. Ransome, "Cloud Computing: Implementation, Management, And Security", CRC Press, 2017.

REFERENCES:

- 1. Rajkumar Buyya, Christian Vecchiola, S. ThamaraiSelvi, "Mastering Cloud Computing", Tata Mcgraw Hill, 2013.
- 2. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing A Practical Approach", Tata Mcgraw Hill, 2009.
- 3. George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud: Transactional Systems for EC2 and Beyond (Theory in Practice)", O'Reilly, 2009.

OMF551 PRODUCT DESIGN AND DEVELOPMENT L T P C 3 0 0 3

OBJECTIVE:

• The course aims at providing the basic concepts of product design, product features and its architecture so that student can have a basic knowledge in the common features a product has and how to incorporate them suitably in product.

UNIT I INTRODUCTION

Need for IPPD – Strategic importance of Product development – integration of customer, designer, material supplier and process planner, Competitor and customer – Behaviour analysis. Understanding customer – prompting customer understanding – involve customer in development and managing requirements – Organization – process management and improvement – Plan and establish product specifications.

UNIT II CONCEPT GENERATION AND SELECTION

Task – Structured approaches – clarification – search – externally and internally – explore systematically – reflect on the solutions and processes – concept selection – methodology – benefits.

UNIT III PRODUCT ARCHITECTURE

Implications – Product change – variety – component standardization – product performance – manufacturability – product development management – establishing the architecture – creation – clustering – geometric layout development – fundamental and incidental interactions – related system level design issues – secondary systems – architecture of the chunks – creating detailed interface specifications.

UNIT IV INDUSTRIAL DESIGN

Integrate process design – Managing costs – Robust design – Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing processes electronically – Need for industrial design – impact – design process – investigation of for industrial design – impact – design process – investigation – refinement – management of the industrial design process – technology driven products – user – driven products – assessing the quality of industrial design.

9

9

9

UNIT V DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT

Definition – Estimation of Manufacturing cost – reducing the component costs and assembly costs – Minimize system complexity – Prototype basics – principles of prototyping – planning for prototypes – Economic Analysis – Understanding and representing tasks – baseline project planning – accelerating the project – project execution.

TOTAL: 45 PERIODS

9

OUTCOME:

 The student will be able to design some products for the given set of applications; also the knowledge gained through prototyping technology will help the student to make a prototype of a problem and hence product design and development can be achieved.

TEXT BOOK:

1. Kari T.Ulrich and Steven D.Eppinger, "Product Design and Development", McGraw-Hill International Edns. 1999.

REFERENCES:

- 1. Kemnneth Crow, "Concurrent Engg./Integrated Product Development", DRM Associates, 26/3, Via Olivera, Palos Verdes, CA 90274(310) 377-569, Workshop Book.
- 2. Stephen Rosenthal, "Effective Product Design and Development", Business One Orwin, Homewood, 1992, ISBN 1-55623-603-4.
- 3. Staurt Pugh, "Tool Design –Integrated Methods for Successful Product Engineering", Addison Wesley Publishing, New york, NY.

OME552	VIBRATION AND NOISE CONTROL	LTPC
		3003

OBJECTIVES:

The student will be able to understand

- Basic about the noise and its control methods
- the sources of vibration and noise in automobiles and make design modifications to reduce the vibration and noise and improve the life of the components
- About the noise in the automotive sources
- Various control techniques in controlling noise and vibrations.
- Know about the source of noise

UNIT I BASICS OF VIBRATION

Introduction, classification of vibration: free and forced vibration, undamped and damped vibration, linear and non linear vibration, response of damped and undamped systems under harmonic force, analysis of single degree and two degree of freedom systems, torsional vibration, determination of natural frequencies.

UNIT II BASICS OF NOISE

Introduction, amplitude, frequency, wavelength and sound pressure level, addition, subtraction and averaging decibel levels, noise dose level, legislation, measurement and analysis of noise, measurement environment, equipment, frequency analysis, tracking analysis, sound quality analysis.

9

10

AUTOMOTIVE NOISE SOURCES UNIT III

Noise Characteristics of engines, engine overall noise levels, assessment of combustion noise, assessment of mechanical noise, engine radiated noise, intake and exhaust noise, engine necessary contributed noise, transmission noise, aerodynamic noise, tire noise, brake noise.

UNIT IV **CONTROL TECHNIQUES**

Vibration isolation, tuned absorbers, un-tuned viscous dampers, damping treatments, application dynamic forces generated by IC engines, engine isolation, crank shaft damping, modal analysis of the mass elastic model shock absorbers.

UNIT V SOURCE OF NOISE AND CONTROL

Methods for control of engine noise, combustion noise, mechanical noise, predictive analysis, palliative treatments and enclosures, automotive noise control principles, sound in enclosures, sound energy absorption, sound transmission through barriers

OUTCOMES:

- Understand the basic of noise and vibrations.
- Understanding causes, source and types of vibrations in machineries
- · Gaining knowledge in sources and measurement standard of noise
- Ability to design and develop vibrations and noise control systems.
- Ability to know techniques in controlling the noise and vibrations.

TEXT BOOK:

1. Singiresu S.Rao, "Mechanical Vibrations", 5th Edition, Pearson Education, 2010

REFERENCES:

- 1. Benson H. Tongue, "Principles of Vibrations", 2nd Edition, Oxford University, 2007
- 2. David Bies and Colin Hansen, "Engineering Noise Control Theory and Practice",4th Edition, E and FN Spon, Taylore & Francise e-Library, 2009
- 3. William T. Thomson, Marie Dillon Dahleh, Chandramouli Padmanabhan, "Theory of Vibration with Application", 5th Edition Pearson Education, 2011
- 4. Grover. G.T., "Mechanical Vibrations", Nem Chand and Bros., 1996
- 5. Bernard Challen and Rodica Baranescu "Diesel Engine Reference Book", Second Edition, SAE International, 1999.
- 6. Julian Happian-Smith "An Introduction to Modern Vehicle Design"- Butterworth-Heinemann, 2004
- 7. Rao, J.S and Gupta, K., "Introductory course on Theory and Practice of Mechanical Vibration", 2nd Edition, New Age International Publications, 2010
- 8. Shabana. A.A., "Theory of vibrations An introduction", 2nd Edition, Springer, 2010
- 9. Balakumar Balachandran and Edward B. Magrab, "Fundamentals of Vibrations", 1st Editon, Cengage Learning, 2009
- 10. John Fenton, "Handbook of Automotive body Construction and Design Analysis Professional Engineering Publishing, 1998

TOTAL: 45 PERIODS

9

9

OBT751 ANALYTICAL METHODS AND INSTRUMENTATION

UNIT I **SPECTROMETRY**

Properties of electromagnetic radiation- wave properties - components of optical instruments-Sources of radiation - wavelength selectors - sample containers - radiation transducers - Signal process and read outs - signal to noise ratio - sources of noise - Enhancement of signal to noise types of optical instruments – Applications.

UNIT II **MOLECULAR SPECTROSCOPY**

Molecular absorption spectrometry – Measurement of Transmittance and Absorbance – Beer's law – Instrumentation - Applications -Theory of fluorescence and Phosphorescence -Theory of Infrared absorption spectrometry - IR instrumentation - Applications - Theory of Raman spectroscopy -Instrumentation – applications.

UNIT III NMR AND MASS SPECTROMETRY

Theory of NMR — chemical shift- NMR-spectrometers – applications of 1H and 13C NMR- Molecular mass spectra – ion sources.

Mass spectrometer. Applications of molecular mass - Electron paramagnetic resonance- g values instrumentation.

UNIT IV SEPARATION METHODS

General description of chromatography - Band broadening and optimization of column performance-Liquid chromatography – Partition chromatography – Adsorption chromatography – Ion exchange chromatography -size exclusion chromatography- Affinity chromatography- principles of GC and applications - HPLC- Capillary electrophoresis - Applications.

UNIT V ELECTRO ANALYSIS AND SURFACE MICROSCOPY

Electrochemical cells- Electrode potential cell potentials – potentiometry- reference electrode – ion selective and molecular selective electrodes - Instrument for potentiometric studies - Voltametry -Cyclic and pulse voltametry- Applications of voltametry . Study of surfaces - Scanning probe microscopes – AFM and STM.

TEXT BOOKS

- 1. Skoog, D.A. F. James Holler, and Stanky, R.Crouch "Instrumental Methods of Analysis". Cengage Learning, 2007.
- 2. Willard, Hobart, etal., "Instrumental Methods of Analysis". VIIth Edition, CBS, 1986.
- 3. Braun, Robert D. " Introduction to Instrumental Analysis". Pharma Book Syndicate, 1987.
- 4. Ewing, G.W. "Instrumental Methods of Chemical Analysis", Vth Edition, McGraw-Hill, 1985

REFERENCE

- 1. Sharma, B.K. "Instrumental Methods of Chemical Analysis : Analytical Chemistry" GoelPublishing House, 1972.
- 2. Haven, Mary C., etal., "Laboratory Instrumentation". IVth Edition, John Wiley, 1995.

3003

LTPC

9

9

9

TOTAL: 45 PERIODS

9

the Internet", Seventh Edition, Pearson Education, 2016. 2. Nader. F. Mir," Computer and Communication Networks", Pearson Prentice Hall Publishers,

1. James F. Kurose, Keith W. Ross, "Computer Networking - A Top-Down Approach Featuring

COMMUNICATION NETWORKS

OBJECTIVES:

OEC752

The student should be made to:

- Understand the division of network functionalities into layers.
- Be familiar with the components required to build different types of networks •
- Be exposed to the required functionality at each layer
- Learn the flow control and congestion control algorithms •

UNIT I **FUNDAMENTALS & LINK LAYER**

Overview of Data Communications- Networks - Building Network and its types- Overview of Internet -Protocol Layering - OSI Mode - Physical Layer - Overview of Data and Signals - introduction to Data Link Layer - Link layer Addressing- Error Detection and Correction

UNIT II **MEDIA ACCESS & INTERNETWORKING**

Overview of Data link Control and Media access control - Ethernet (802.3) - Wireless LANs -Available Protocols – Bluetooth – Bluetooth Low Energy – WiFi – 6LowPAN–Zigbee - Network layer services – Packet Switching – IPV4 Address – Network layer protocols (IP, ICMP, Mobile IP)

UNIT III ROUTING

Routing - Unicast Routing - Algorithms - Protocols - Multicast Routing and its basics - Overview of Intradomain and interdomain protocols – Overview of IPv6 Addressing – Transition from IPv4 to IPv6

UNIT IV TRANSPORT LAYER

Introduction to Transport layer - Protocols- User Datagram Protocols (UDP) and Transmission Control Protocols (TCP) - Services - Features - TCP Connection - State Transition Diagram - Flow, Error and Congestion Control - Congestion avoidance (DECbit, RED) - QoS - Application requirements

UNIT V **APPLICATION LAYER**

Application Layer Paradigms – Client Server Programming – World Wide Web and HTTP - DNS- -Electronic Mail (SMTP, POP3, IMAP, MIME) - Introduction to Peer to Peer Networks - Need for Cryptography and Network Security – Firewalls.

OUTCOMES:

At the end of the course, the student should be able to:

- Identify the components required to build different types of networks
- Choose the required functionality at each layer for given application •
- Identify solution for each functionality at each laver •
- Trace the flow of information from one node to another node in the network

TEXT BOOK:

1. Behrouz A. Forouzan, "Data communication and Networking", Fifth Edition, Tata McGraw -Hill, 2013

REFERENCES:

9

9

С

3

TOTAL:45 PERIODS

0 0

Ρ

Т

L

3

9

9

2nd Edition, 2014.

- 3. Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", Mc Graw Hill Publisher, 2011.
- 4. Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan Kaufmann Publishers, 2011.

OME751

DESIGN OF EXPERIMENTS

L T P C 3 0 0 3

9

9

9

9

9

OBJECTIVE:

• To impart knowledge on various types of experimental designs conduct of experiments and data analysis techniques.

UNIT I FUNDAMENTALS OF EXPERIMENTAL DESIGNS

Hypothesis testing – single mean, two means, dependant/ correlated samples – confidence intervals, Experimentation – need, Conventional test strategies, Analysis of variance, F-test, terminology, basic principles of design, steps in experimentation – choice of sample size – Normal and half normal probability plot – simple linear and multiple linear regression, testing using Analysis of variance.

UNIT II SINGLE FACTOR EXPERIMENTS

Completely Randomized Design- effect of coding the observations- model adequacy checkingestimation of model parameters, residuals analysis- treatment comparison methods-Duncan's multiple range test, Newman-Keuel's test, Fisher's LSD test, Tukey's test- testing using contrasts- Randomized Block Design – Latin Square Design- Graeco Latin Square Design – Applications.

UNIT III FACTORIAL DESIGNS

Main and Interaction effects - Two and three factor full factorial designs- Fixed effects and random effects model - Rule for sum of squares and Expected Mean Squares- 2^K Design with two and three factors- Yate's Algorithm- fitting regression model- Randomized Block Factorial Design - Practical applications.

UNIT IV SPECIAL EXPERIMENTAL DESIGN

Blocking and Confounding in 2^K Designs- blocking in replicated design- 2^K Factorial Design in two blocks- Complete and partial confounding- Confounding 2^K Design in four blocks- Two level Fractional Factorial Designs- one-half fraction of 2^K Design, design resolution, Construction of one-half fraction with highest design resolution, one-quarter fraction of 2^K Design

UNIT V TAGUCHI METHODS

Design of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments-Response Graph Method, ANOVA- attribute data analysis- Robust design- noise factors, Signal to noise ratios, Inner/outer OA design.

TOTAL: 45 PERIODS

OUTCOME:

• Able to apply experimental techniques to practical problems to improve quality of

processes / products by optimizing the process / product parameters.

TEXT BOOK:

1. Krishnaiah K, and Shahabudeen P, "Applied Design of Experiments and Taguchi Methods", PHI. India. 2011.

REFERENCES:

- 1. Douglas C. Montgomery, "Design and Analysis of Experiments", John Wiley & sons, 2005
- 2. Phillip J. Ross, "Taguchi Techniques for Quality Engineering", Tata McGraw-Hill, India, 2005.

OME754

INDUSTRIAL SAFETY

OBJECTIVES:

To impart knowledge on safety engineering fundamentals and safety management practices.

UNIT I INTRODUCTION

Evolution of modern safety concepts - Fire prevention - Mechanical hazards - Boilers, Pressure vessels, Electrical Exposure.

UNIT II CHEMICAL HAZARDS

Chemical exposure - Toxic materials - Ionizing Radiation and Non-ionizing Radiation - Industrial Hygiene – Industrial Toxicology.

ENVIRONMENTAL CONTROL UNIT III

Industrial Health Hazards – Environmental Control – Industrial Noise - Noise measuring instruments, Control of Noise, Vibration, - Personal Protection.

HAZARD ANALYSIS **UNIT IV**

System Safety Analysis – Techniques – Fault Tree Analysis (FTA), Failure Modes and Effects Analysis (FMEA), HAZOP analysis and Risk Assessment

UNIT V SAFETY REGULATIONS

Explosions - Disaster management - catastrophe control, hazard control, Safety education and training - Factories Act, Safety regulations Product safety - case studies.

OUTCOMES:

Students must be able to identify and prevent chemical, environmental mechanical, fire hazard • through analysis and apply proper safety techniques on safety engineering and management.

TEXT BOOK:

1. John V.Grimaldi, "Safety Management", AITB S Publishers, 2003.

REFERENCES:

- 1. Safety Manual, "EDEL Engineering Consultancy", 2000.
- 2. David L.Goetsch, "Occupational Safety and Health for Technologists", 5th Edition, Engineers and Managers, Pearson Education Ltd., 2005.

9

TOTAL: 45 PERIODS

9

9

9

LTPC 3003

OCS752

OBJECTIVES

- To develop C Programs using basic programming constructs
- To develop C programs using arrays and strings
- To develop applications in C using functions and structures

UNIT I INTRODUCTION

Structure of C program – Basics: Data Types – Constants –Variables - Keywords – Operators: Precedence and Associativity - Expressions - Input/Output statements, Assignment statements – Decision-making statements - Switch statement - Looping statements – Pre-processor directives - Compilation process – Exercise Programs: Check whether the required amount can be withdrawn based on the available amount – Menu-driven program to find the area of different shapes – Find the sum of even numbers

Text Book: Reema Thareja (Chapters 2,3)

UNIT II ARRAYS

Introduction to Arrays – One dimensional arrays: Declaration – Initialization - Accessing elements – Operations: Traversal, Insertion, Deletion, Searching - Two dimensional arrays: Declaration – Initialization - Accessing elements – Operations: Read – Print – Sum – Transpose – Exercise Programs: Print the number of positive and negative values present in the array – Sort the numbers using bubble sort - Find whether the given is matrix is diagonal or not. Text Book: Reema Thareja (Chapters 5)

UNIT III STRINGS

Introduction to Strings - Reading and writing a string - String operations (without using built-in string functions): Length – Compare – Concatenate – Copy – Reverse – Substring – Insertion – Indexing – Deletion – Replacement – Array of strings – Introduction to Pointers – Pointer operators – Pointer arithmetic - Exercise programs: To find the frequency of a character in a string - To find the number of vowels, consonants and white spaces in a given text - Sorting the names. Text Book: Reema Thareja (Chapters 6 & 7)

UNIT IV FUNCTIONS

Introduction to Functions – Types: User-defined and built-in functions - Function prototype - Function definition - Function call - Parameter passing: Pass by value - Pass by reference - Built-in functions (string functions) – Recursive functions – Exercise programs: Calculate the total amount of power consumed by 'n' devices (passing an array to a function) – Menu-driven program to count the numbers which are divisible by 3, 5 and by both (passing an array to a function) – Replace the punctuations from a given sentence by the space character (passing an array to a function) Text Book: Reema Thareja (Chapters 4)

UNIT V STRUCTURES

Introduction to structures – Declaration – Initialization – Accessing the members – Nested Structures – Array of Structures – Structures and functions – Passing an entire structure – Exercise programs: Compute the age of a person using structure and functions (passing a structure to a function) – Compute the number of days an employee came late to the office by considering his arrival time for 30 days (Use array of structures and functions)

Text Book: Reema Thareja (Chapters 8)

TOTAL:45 PERIODS

9

9

9

OUTCOMES

Upon completion of this course, the students will be able to

- Develop simple applications using basic constructs
- Develop applications using arrays and strings
- Develop applications using functions and structures

TEXT BOOK

1. Reema Thareja, "Programming in C", Oxford University Press, Second Edition, 2016

REFERENCES:

- 1. Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson Education, 2006
- 2. Paul Deitel and Harvey Deitel, "C How to Program", Seventh edition, Pearson Publication
- 3. Juneja, B. L and Anita Seth, "Programming in C", CENGAGE Learning India pvt. Ltd., 2011
- 4. Pradip Dey, Manas Ghosh, "Fundamentals of Computing and Programming in C", First Edition, Oxford University Press, 2009

OMF751

LEAN SIX SIGMA

L T P C 3 00 3

9

9

OBJECTIVE:

• To gain insights about the importance of lean manufacturing and six sigma practices.

UNIT I LEAN & SIX SIGMA BACKGROUND AND FUNDAMENTALS

Historical Overview – Definition of quality – What is six sigma -TQM and Six sigma - lean manufacturing and six sigma- six sigma and process tolerance – Six sigma and cultural changes – six sigma capability – six sigma need assessments - implications of quality levels, Cost of Poor Quality (COPQ), Cost of Doing Nothing – assessment questions

UNIT II THE SCOPE OF TOOLS AND TECHNIQUES

Tools for definition – IPO diagram, SIPOC diagram, Flow diagram, CTQ Tree, Project Charter – Tools for measurement – Check sheets, Histograms, Run Charts, Scatter Diagrams, Cause and effect diagram, Pareto charts, Control charts, Flow process charts, Process Capability Measurement, Tools for analysis – Process Mapping, Regression analysis, RU/CS analysis, SWOT, PESTLE, Five Whys, interrelationship diagram, overall equipment effectiveness, TRIZ innovative problem solving – Tools for improvement – Affinity diagram, Normal group technique, SMED, 5S, mistake proofing, Value stream Mapping, forced field analysis – Tools for control – Gantt chart, Activity network diagram, Radar chart, PDCA cycle, Milestone tracker diagram, Earned value management.

UNIT III SIX SIGMA METHODOLOGIES

Design For Six Sigma (DFSS), Design For Six Sigma Method - Failure Mode Effect Analysis (FMEA), FMEA process - Risk Priority Number (RPN)- Six Sigma and Leadership, committed leadership – Change Acceleration Process (CAP)- Developing communication plan – Stakeholder

UNIT IV SIX SIGMA IMPLEMENTATION AND CHALLENGES

Tools for implementation – Supplier Input Process Output Customer (SIPOC) – Quality Function Deployment or House of Quality (QFD) – alternative approach –implementation – leadership training, close communication system, project selection – project management and team – champion training – customer quality index – challenges – program failure, CPQ vs six sigma, structure the deployment of six sigma – cultural challenge – customer/internal metrics

UNIT V EVALUATION AND CONTINUOUS IMPROVEMENT METHODS

Evaluation strategy – the economics of six sigma quality, Return on six Sigma (ROSS), ROI, poor project estimates – continuous improvement – lean manufacturing – value, customer focus, Perfection, focus on waste, overproduction – waiting, inventory in process (IIP), processing waste, transportation, motion, making defective products, underutilizing people – Kaizen – 5S

OUTCOME:

• The student would be able to relate the tools and techniques of lean sigma to increase productivity

REFERENCES:

- 1. Michael L.George, David Rownalds, Bill Kastle, What is Lean Six Sigma, McGraw Hill 2003
- 2. Thomas Pyzdek, The Six Sigma Handbook, McGraw-Hill, 2000
- 3. Fred Soleimannejed , Six Sigma, Basic Steps and Implementation, AuthorHouse, 2004
- 4. Forrest W. Breyfogle, III, James M. Cupello, Becki Meadows, Managing Six Sigma: A Practical Guide to Understanding, Assessing, and Implementing the Strategy That Yields Bottom-Line Success, John Wiley & Sons, 2000
- 5. James P. Womack, Daniel T.Jones, Lean Thinking, Free Press Business, 2003

OCH751 PROCESS MODELING AND SIMULATION LTPC

OBJECTIVE:

• To give an overview of various methods of process modeling, different computational techniques for simulation.

UNIT I INTRODUCTION

Introduction to modeling and simulation, classification of mathematical models, conservation equations and auxiliary relations.

UNIT II STEADY STATE LUMPED SYSTEMS

Degree of freedom analysis, single and network of process units, systems yielding linear and nonlinear algebraic equations, flow sheeting – sequential modular and equation oriented approach, tearing, partitioning and precedence ordering, solution of linear and non-linear algebraic equations.

UNIT III UNSTEADY STATE LUMPED SYSTEMS

Analysis of liquid level tank, gravity flow tank, jacketed stirred tank heater, reactors, flash and distillation column, solution of ODE initial value problems, matrix differential equations, simulation of closed loop systems.

TOTAL: 45 PERIODS

9

9

7

3003

9

18

UNIT IV STEADY STATE DISTRIBUTED SYSTEM

Analysis of compressible flow, heat exchanger, packed columns, plug flow reactor, solution of ODE boundary value problems.

UNIT V UNSTEADY STATE DISTRIBUTED SYSTEM & OTHER MODELLING APPROACHES

Analysis laminar flow in pipe, sedimentation, boundary layer flow, conduction, heat exchanger, heat transfer in packed bed, diffusion, packed bed adsorption, plug flow reactor. Empirical modeling, parameter estimation, population balance and stochastic modeling.

OUTCOME:

TOTAL : 45 PERIODS

• Upon completing the course, the student should have understood the development of process models based on conservation principles and process data and computational techniques to solve the process models.

TEXT BOOKS:

- 1. Ramirez, W.; " Computational Methods in Process Simulation ", 2nd Edn., Butterworths Publishers, New York, 2000.
- 2. Luyben, W.L., " Process Modelling Simulation and Control ",2nd Edn, McGraw-Hill Book Co., 1990

REFERENCES:

- 1. Felder, R. M. and Rousseau, R. W., " Elementary Principles of Chemical Processes ", John Wiley, 2000.
- 2. Franks, R. G. E., "Mathematical Modelling in Chemical Engineering", John Wiley, 1967.
- 3. Amiya K. Jana,"Process Simulation and Control Using ASPEN", 2nd Edn,PHI Learning Ltd (2012).
- 4. Amiya K. Jana,"ChemicalProcess Modelling and Computer Simulation" 2nd Edn,PHI Learning Ltd,(2012).

OEC753

SIGNALS AND SYSTEMS

- To understand the basic properties of signal & systems
- To know the methods of characterization of LTI systems in time domain
- To analyze continuous time signals and system in the Fourier and Laplace domain
- To analyze discrete time signals and system in the Fourier and Z transform domain

UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS

Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and Sinusoids_ Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals - Classification of systems- CT systems and DT systems- – Linear & Nonlinear, Time-variant & Time-invariant, Causal & Noncausal, Stable & Unstable.

13

UNIT II ANALYSIS OF CONTINUOUS TIME SIGNALS

Fourier series for periodic signals - Fourier Transform – properties- Laplace Transforms and properties

UNIT III LINEAR TIME INVARIANT CONTINUOUS TIME SYSTEMS

Impulse response - convolution integrals- Differential Equation- Fourier and Laplace transforms in Analysis of CT systems - Systems connected in series / parallel.

UNIT IV ANALYSIS OF DISCRETE TIME SIGNALS

Baseband signal Sampling – Fourier Transform of discrete time signals (DTFT) – Properties of DTFT - Z Transform & Properties

UNIT V LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS

Impulse response – Difference equations-Convolution sum- Discrete Fourier Transform and Z Transform Analysis of Recursive & Non-Recursive systems-DT systems connected in series and parallel.

TOTAL: (L:45+T:15): 60 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- To be able to determine if a given system is linear/causal/stable
- Capable of determining the frequency components present in a deterministic signal
- Capable of characterizing LTI systems in the time domain and frequency domain
- To be able to compute the output of an LTI system in the time and frequency domains

TEXT BOOK:

1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Systems", Pearson, 2015.

REFERENCES:

- 1. B. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.
- 2. R.E.Zeimer, W.H.Tranter and R.D.Fannin, "Signals & Systems Continuous and Discrete", Pearson, 2007.
- 3. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2007.

OML751

OBJECTIVE:

To understand the various destructive and non destructive testing methods of materials and its industrial applications.

TESTING OF MATERIALS

UNIT I INTRODUCTION TO MATERIALS TESTING

Overview of materials, Classification of material testing, Purpose of testing, Selection of material, Development of testing, Testing organizations and its committee, Testing standards, Result Analysis, Advantages of testing.

12

12

12

L T P C 3 0 0 3

UNIT II MECHANICAL TESTING

Introduction to mechanical testing, Hardness test (Vickers, Brinell, Rockwell), Tensile test, Impact test (Izod, Charpy) - Principles, Techniques, Methods, Advantages and Limitations, Applications. Bend test, Shear test, Creep and Fatigue test - Principles, Techniques, Methods, Advantages and Limitations, Applications.

UNIT III NON DESTRUCTIVE TESTING

Visual inspection, Liquid penetrant test, Magnetic particle test, Thermography test – Principles, Techniques, Advantages and Limitations, Applications. Radiographic test, Eddy current test, Ultrasonic test, Acoustic emission- Principles, Techniques, Methods, Advantages and Limitations, Applications.

UNIT IV MATERIAL CHARACTERIZATION TESTING

Macroscopic and Microscopic observations, Optical and Electron microscopy (SEM and TEM) - Principles, Types, Advantages and Limitations, Applications. Diffraction techniques, Spectroscopic Techniques, Electrical and Magnetic Techniques- Principles, Types, Advantages and Limitations, Applications.

UNIT V OTHER TESTING

Thermal Testing: Differential scanning calorimetry, Differential thermal analysis. Thermo-mechanical and Dynamic mechanical analysis: Principles, Advantages, Applications. Chemical Testing: X-Ray Fluorescence, Elemental Analysis by Inductively Coupled Plasma-Optical Emission Spectroscopy and Plasma-Mass Spectrometry.

TOTAL: 45 PERIODS

OUTCOMES:

- 1. Identify suitable testing technique to inspect industrial component
- 2. Ability to use the different technique and know its applications and limitations

TEXT BOOKS:

- 1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House, 2009.
- 2. Cullity, B. D., "Elements of X-ray diffraction", 3rd Edition, Addison-Wesley Company Inc., New York, 2000.
- 3. P. Field Foster, "The Mechanical Testing of Metals and Alloys" 7th Edition, Cousens Press, 2007.

REFERENCES:

- 1. Metals Handbook: Mechanical testing, (Volume 8) ASM Handbook Committee, 9th Edition, American Society for Metals, 1978.
- 2. ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society_of Metals, Metals Park, Ohio, USA.
- 3. Brandon D.G., "Modern Techniques in Metallography", Von Nostrand Inc. NJ, USA, 1986.

9

9

9