PROGRAMME OBJECTIVES:
1. To produce employable graduates with the knowledge and competency in Chemical and electrochemical engineering complemented by the appropriate skills and attributes.
2. To produce creative and innovative graduates with design and soft skills to carry out various problem solving tasks.
3. To enable the students to work as teams on multidisciplinary projects with effective communication skills, individual, supportive and leadership qualities with the right attitudes and ethics.
4. To produce graduates who possess interest in research and lifelong learning, as well as continuously striving for the forefront of technology.
5. To enable the students to set up models for an electrochemical system, based on continuity equations and transport equations for relevant variables, and with necessary boundary conditions.

PROGRAMME OUTCOMES:
The graduates of this programme would have
1. Ability to implement equations for production and transport of heat in electrochemical systems, and explain the temperature dependence of electrode potentials, electrode kinetics and mass transport properties.
2. Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
3. Ability implement models for current distribution in porous electrodes.
4. Understanding of professional and ethical responsibility.
5. Recognition of the need and ability to engage in life-long learning.
### ANNA UNIVERSITY, CHENNAI
### AFFILIATED INSTITUTIONS
### R - 2013
### B. TECH. CHEMICAL AND ELECTROCHEMICAL ENGINEERING
### I – VIII SEMESTERS CURRICULUM AND SYLLABUS

#### SEMESTER – I

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>THEORY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS6151</td>
<td>Technical English – I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MA6151</td>
<td>Mathematics – I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PH6151</td>
<td>Engineering Physics – I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CY6151</td>
<td>Engineering Chemistry – I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE6151</td>
<td>Computer Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE6152</td>
<td>Engineering Graphics</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td><strong>PRACTICAL</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE6161</td>
<td>Computer Practices Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>GE6162</td>
<td>Engineering Practices Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>GE6163</td>
<td>Physics and Chemistry Laboratory - I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>17</td>
<td>2</td>
<td>11</td>
<td>26</td>
</tr>
</tbody>
</table>

#### SEMESTER – II

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>THEORY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS6251</td>
<td>Technical English – II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MA6251</td>
<td>Mathematics – II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PH6251</td>
<td>Engineering Physics – II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CY6251</td>
<td>Engineering Chemistry – II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE6252</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>GE6253</td>
<td>Engineering Mechanics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td><strong>PRACTICAL</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE6261</td>
<td>Computer Aided Drafting and Modeling Laboratory</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>GE6262</td>
<td>Physics and Chemistry Laboratory - II</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>GE6263</td>
<td>Computer Programming Laboratory</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>19</td>
<td>5</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>CODE</td>
<td>COURSE TITLE</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td><strong>THEORY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA6351</td>
<td>Transforms and Partial Differential Equations</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>EL6301</td>
<td>Molecular Physical Chemistry</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6302</td>
<td>Organic Chemistry</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CH6359</td>
<td>Inorganic Chemistry</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6303</td>
<td>Chemical Process Calculations</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6404</td>
<td>Fluid Mechanics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td><strong>PRACTICALS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH6312</td>
<td>Physical Chemistry Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CH6367</td>
<td>Inorganic and Organic Chemistry Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>EE6368</td>
<td>Electrical and Electronics Engineering Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>18</td>
<td>1</td>
<td>9</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>THEORY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA6459</td>
<td>Numerical Methods</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>CH6455</td>
<td>Chemical Engineering Thermodynamics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>EL6401</td>
<td>Chemical Reaction Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CH6460</td>
<td>Materials Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6402</td>
<td>Heat Transfer and its Applications</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6403</td>
<td>Principles of Electrochemistry</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td><strong>PRACTICALS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL6411</td>
<td>Fluid Mechanics Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CH6512</td>
<td>Mechanical Operations Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>GE6674</td>
<td>Communication and Soft Skills - Laboratory Based</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>18</td>
<td>2</td>
<td>10</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>THEORY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL6501</td>
<td>Corrosion Science &amp; Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6502</td>
<td>Chemical Process Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CH6557</td>
<td>Mass Transfer I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6505</td>
<td>Instrumental Methods of Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6503</td>
<td>Electrodics and Electrocatalysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6504</td>
<td>Electrochemical Reaction Engineering</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td><strong>PRACTICALS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL6511</td>
<td>Chemical Reaction Engineering Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>PC6612</td>
<td>Heat and Mass Transfer Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>EL6513</td>
<td>Electrochemical Reaction Engineering Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>18</td>
<td>1</td>
<td>9</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>THEORY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>PRACTICALS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>CODE</td>
<td>COURSE TITLE</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td><strong>THEORY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL6601</td>
<td>Electrochemical Materials Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CH6653</td>
<td>Mass Transfer II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6602</td>
<td>Industrial Metal Finishing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6603</td>
<td>Instrumentation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6604</td>
<td>Electrochemical Process Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6605</td>
<td>Process Dynamics and Control</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td><strong>PRACTICALS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL6611</td>
<td>Equipment Design</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>EL6612</td>
<td>Computer Applications in Chemical Engineering</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>EL6613</td>
<td>Corrosion and Metal Finishing Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>18</td>
<td>1</td>
<td>9</td>
<td>25</td>
</tr>
</tbody>
</table>

**SEMESTER – VII**

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>THEORY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH6751</td>
<td>Process Modeling and Simulation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6701</td>
<td>Process Synthesis and Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE6351</td>
<td>Environmental Science and Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6703</td>
<td>Transport Phenomena</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6702</td>
<td>Electrometallurgy and Thermics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Elective I</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td><strong>PRACTICALS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL6711</td>
<td>Batteries and Electrochemical Materials Science</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL6712</td>
<td>Electrochemicals and Electro Metallurgy Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>EL6713</td>
<td>Process Dynamics and Control Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>18</td>
<td>0</td>
<td>9</td>
<td>24</td>
</tr>
</tbody>
</table>

**SEMESTER – VIII**

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>THEORY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL6801</td>
<td>Electrochemical Energy Conversion and Storage</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6802</td>
<td>Surface Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Elective II</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td><strong>PRACTICALS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL6811</td>
<td>Project Work</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>9</td>
<td>0</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

**TOTAL NO OF CREDITS : 193**
## LIST OF ELECTIVES

### B. TECH. CHEMICAL AND ELECTROCHEMICAL ENGINEERING

#### ELECTIVE I

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH6018</td>
<td>Process Plant Utilities</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6001</td>
<td>Optimization of Chemical Processes</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6002</td>
<td>Advanced Electrochemical Reaction Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6003</td>
<td>Total Quality Management and Engineering Economics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE6084</td>
<td>Human Rights</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

#### ELECTIVE II

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL6004</td>
<td>Chlor – Alkali Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6005</td>
<td>Cathodic Protection &amp; Electrophoretic Coatings</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6006</td>
<td>Functional Materials</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EL6007</td>
<td>Organic Electrochemistry</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GE6083</td>
<td>Disaster Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
OBJECTIVES:
- To enable learners of Engineering and Technology develop their basic communication skills in English.
- To emphasize specially the development of speaking skills amongst learners of Engineering and Technology.
- To ensure that learners use the electronic media such as internet and supplement the learning materials used in the classroom.
- To inculcate the habit of reading and writing leading to effective and efficient communication.

UNIT I
Listening - Introducing learners to GIE - Types of listening - Listening to audio (verbal & sounds); Speaking - Speaking about one’s place, important festivals etc. – Introducing oneself, one’s family / friend; Reading - Skimming a reading passage – Scanning for specific information - Note-making; Writing - Free writing on any given topic (My favourite place / Hobbies / School life, etc.) - Sentence completion - Autobiographical writing (writing about one’s leisure time activities, hometown, etc.); Grammar - Prepositions - Reference words - Wh-questions - Tenses (Simple); Vocabulary - Word formation - Word expansion (root words / etymology); E-materials - Interactive exercises for Grammar & Vocabulary - Reading comprehension exercises - Listening to audio files and answering questions.

UNIT II
Listening - Listening and responding to video lectures / talks; Speaking - Describing a simple process (filling a form, etc.) - Asking and answering questions - Telephone skills – Telephone etiquette; Reading – Critical reading - Finding key information in a given text - Sifting facts from opinions; Writing - Biographical writing (place, people) - Process descriptions (general/specific) - Definitions - Recommendations – Instructions; Grammar - Use of imperatives - Subject-verb agreement; Vocabulary - Compound words - Word Association (connotation); E-materials - Interactive exercises for Grammar and Vocabulary - Listening exercises with sample telephone conversations / lectures – Picture-based activities.

UNIT III
Listening - Listening to specific task - focused audio tracks; Speaking - Role-play – Simulation - Group interaction - Speaking in formal situations (teachers, officials, foreigners); Reading - Reading and interpreting visual material; Writing - Jumbled sentences - Coherence and cohesion in writing - Channel conversion (flowchart into process) - Types of paragraph (cause and effect / compare and contrast / narrative / analytical) - Informal writing (letter/email/blogs) - Paraphrasing; Grammar - Tenses (Past) - Use of sequence words - Adjectives; Vocabulary - Different forms and uses of words, Cause and effect words; E-materials - Interactive exercises for Grammar and Vocabulary - Excerpts from films related to the theme and follow up exercises - Pictures of flow charts and tables for interpretations.

UNIT IV
Listening - Watching videos / documentaries and responding to questions based on them; Speaking - Responding to questions - Different forms of interviews - Speaking at different types of interviews; Reading - Making inference from the reading passage - Predicting the content of a reading passage; Writing - Interpreting visual materials (line graphs, pie charts etc.) - Essay writing – Different types of essays; Grammar - Adverbs – Tenses – future time reference; Vocabulary - Single word substitutes - Use of abbreviations and acronyms; E-
UNIT V
Listening - Listening to different accents, Listening to Speeches/Presentations, Listening to broadcast and telecast from Radio and TV; Speaking - Giving impromptu talks, Making presentations on given topics; Reading - Email communication - Reading the attachment files having a poem/joke/proverb - Sending their responses through email; Writing - Creative writing, Poster making; Grammar - Direct and indirect speech; Vocabulary - Lexical items (fixed / semi fixed expressions); E-materials - Interactive exercises for Grammar and Vocabulary - Sending emails with attachment – Audio / video excerpts of different accents - Interpreting posters.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
Learners should be able to
• Speak clearly, confidently, comprehensibly, and communicate with one or many listeners using appropriate communicative strategies.
• Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic.
• Read different genres of texts adopting various reading strategies.
• Listen/view and comprehend different spoken discourses/excerpts in different accents

TEXT BOOKS:

REFERENCES:

EXTENSIVE Reading (Not for Examination)

WEBSITES:

TEACHING METHODS:
• Lectures
• Activities conducted individually, in pairs and in groups like self introduction, peer introduction, group poster making, grammar and vocabulary games, etc.
• Discussions
• Role play activities
• Short presentations
• Listening and viewing activities with follow up activities like discussion, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc.

EVALUATION PATTERN:

Internal assessment: 20%
3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like
  • Project
  • Assignment
  • Reviews
  • Creative writing
  • Poster making, etc.

All the four skills are to be tested with equal weightage given to each.
✓ Speaking assessment: Individual speaking activities, Pair work activities like role play, Interview, Group discussions
✓ Reading assessment: Reading passages with comprehension questions graded from simple to complex, from direct to inferential
✓ Writing assessment: Writing paragraphs, essays etc. Writing should include grammar and vocabulary.
✓ Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content.

End Semester Examination: 80%

MA6151 MATHEMATICS – I

OBJECTIVES:
• To develop the use of matrix algebra techniques this is needed by engineers for practical applications.
• To make the student knowledgeable in the area of infinite series and their convergence so that he/ she will be familiar with limitations of using infinite series approximations for solutions arising in mathematical modeling.
• To familiarize the student with functions of several variables. This is needed in many branches of engineering.
• To introduce the concepts of improper integrals, Gamma, Beta and Error functions which are needed in engineering applications.
• To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.

UNIT I MATRICES

UNIT II          SEQUENCES AND SERIES


UNIT III          APPLICATIONS OF DIFFERENTIAL CALCULUS

Curvature in Cartesian co-ordinates – Centre and radius of curvature – Circle of curvature – Evolutes – Envelopes - Evolute as envelope of normals.

UNIT IV          DIFFERENTIAL CALCULUS OF SEVERAL VARIABLES


UNIT V          MULTIPLE INTEGRALS


TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

- This course equips students to have basic knowledge and understanding in one fields of materials, integral and differential calculus.

TEXT BOOKS:


REFERENCES:


PH6151 ENGINEERING PHYSICS – I

OBJECTIVES:

- To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.
UNIT I  CRYSTAL PHYSICS
Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment) - Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

UNIT II  PROPERTIES OF MATTER AND THERMAL PHYSICS
9
Elasticity- Hooke’s law - Relationship between three moduli of elasticity (qualitative) – stress - strain diagram – Poisson’s ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever –Young’s modulus by uniform bending- I-shaped girders

UNIT III  QUANTUM PHYSICS
9

UNIT IV   ACOUSTICS AND ULTRASONICS
9
Production of ultrasounds by magnetostriction and piezoelectric methods - acoustic grating - Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C –scan displays, Medical applications - Sonogram

UNIT V   PHOTONICS AND FIBRE OPTICS
9
Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors-Endoscope.

OUTCOMES:
• The students will have knowledge on the basics of physics related to properties of matter, optics, acoustics etc., and they will apply these fundamental principles to solve practical problems related to materials used for engineering applications.

TEXT BOOKS:
1. Arumugam M. Engineering Physics. Anuradha publishers, 2010

REFERENCES:
1. Searls and Zemansky. University Physics, 2009
OBJECTIVES:

- To make the students conversant with basics of polymer chemistry.
- To make the student acquire sound knowledge of second law of thermodynamics and second law based derivations of importance in engineering applications in all disciplines.
- To acquaint the student with concepts of important photophysical and photochemical processes and spectroscopy.
- To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- To acquaint the students with the basics of nano materials, their properties and applications.

UNIT I  POLYMER CHEMISTRY

Introduction: Classification of polymers – Natural and synthetic; Thermoplastic and Thermosetting. Functionality – Degree of polymerization. Types and mechanism of polymerization: Addition (Free Radical, cationic and anionic); condensation and copolymerization. Properties of polymers: Tg, Tacticity, Molecular weight – weight average, number average and polydispersity index. Techniques of polymerization: Bulk, emulsion, solution and suspension. Preparation, properties and uses of Nylon 6,6, and Epoxy resin.

UNIT II  CHEMICAL THERMODYNAMICS

Terminology of thermodynamics - Second law: Entropy - entropy change for an ideal gas, reversible and irreversible processes; entropy of phase transitions; Clausius inequality. Free energy and work function: Helmholtz and Gibbs free energy functions (problems); Criteria of spontaneity; Gibbs-Helmholtz equation (problems); Clausius-Clapeyron equation; Maxwell relations – Van’t Hoff isotherm and isochores (problems).

UNIT III  PHOTOCHEMISTRY AND SPECTROSCOPY


UNIT IV  PHASE RULE AND ALLOYS


UNIT V  NANOCHEMISTRY

Basics - distinction between molecules, nanoparticles and bulk materials; size-dependent properties. Nanoparticles: nano cluster, nano rod, nanotube(CNT) and nanowire. Synthesis: precipitation, thermolysis, hydrothermal, solvothermal, electrode position, chemical vapour
deposition, laser ablation; Properties and applications

OUTCOMES:
- The knowledge gained on polymer chemistry, thermodynamics, spectroscopy, phase rule and nano materials will provide a strong platform to understand the concepts on these subjects for further learning.

TEXT BOOKS:

REFERENCES:

GE6151 COMPUTER PROGRAMMING

OBJECTIVES:
The students should be made to:
- Learn the organization of a digital computer.
- Be exposed to the number systems.
- Learn to think logically and write pseudo code or draw flow charts for problems.
- Be exposed to the syntax of C.
- Be familiar with programming in C.
- Learn to use arrays, strings, functions, pointers, structures and unions in C.

UNIT I INTRODUCTION

UNIT II C PROGRAMMING BASICS

UNIT III ARRAYS AND STRINGS
UNIT IV FUNCTIONS AND POINTERS

UNIT V STRUCTURES AND UNIONS
Introduction – need for structure data type – structure definition – Structure declaration – Structure within a structure - Union - Programs using structures and Unions – Storage classes, Pre-processor directives.

OUTCOMES:
At the end of the course, the student should be able to:
- Design C Programs for problems.
- Write and execute C programs for simple applications.

TEXTBOOKS:

REFERENCES:

GE6152 ENGINEERING GRAPHICS

OBJECTIVES:
- To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products.
- To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREE HAND SKETCHING
Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects – Layout of views- Free hand sketching of multiple views from pictorial views of objects
UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES  5+9
Orthographic projection - principles - Principal planes - First angle projection - projection of points.
Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces
Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS  5+9
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method and auxiliary plane method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES  5+9
Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other - obtaining true shape of section.
Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids, cylinders and cones.
Development of lateral surfaces of solids with cut-outs and holes

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS  6+9
Principles of isometric projection – isometric scale – Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems. Perspective projection of simple solids - Prisms, pyramids and cylinders by ray view method.

COMPUTER AIDED DRAFTING (Demonstration Only)  3
Introduction to drafting packages and demonstration of their use.

TOTAL : 75 PERIODS

OUTCOMES:
On Completion of the course the student will be able to:
- Perform free hand sketching of basic geometrical constructions and multiple views of objects.
- Do orthographic projection of lines and plane surfaces.
- Draw projections and solids and development of surfaces.
- Prepare isometric and perspective sections of simple solids.
- Demonstrate computer aided drafting.

TEXT BOOK:

REFERENCES:
Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
4. The examination will be conducted in appropriate sessions on the same day

GE6161 COMPUTER PRACTICES LABORATORY L T P C 0 0 3 2

OBJECTIVES:
The student should be made to:
- Be familiar with the use of Office software.
- Be exposed to presentation and visualization tools.
- Be exposed to problem solving techniques and flow charts.
- Be familiar with programming in C.
- Learn to use Arrays, strings, functions, structures and unions.

LIST OF EXPERIMENTS:
1. Search, generate, manipulate data using MS office/ Open Office
2. Presentation and Visualization – graphs, charts, 2D, 3D
3. Problem formulation, Problem Solving and Flowcharts
4. C Programming using Simple statements and expressions
5. Scientific problem solving using decision making and looping.
6. Simple programming for one dimensional and two dimensional arrays.
7. Solving problems using String functions
8. Programs with user defined functions – Includes Parameter Passing
9. Program using Recursive Function and conversion from given program to flow chart.
10. Program using structures and unions.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Apply good programming design methods for program development.
- Design and implement C programs for simple applications.
- Develop recursive programs.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
Standalone desktops with C compiler 30 Nos.
(or)
Server with C compiler supporting 30 terminals or more.

GE6162 ENGINEERING PRACTICES LABORATORY L T P C 0 0 3 2
OBJECTIVES:
• To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.
GROUP A (CIVIL & MECHANICAL)

I CIVIL ENGINEERING PRACTICE

Buildings:
(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:
(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
(b) Study of pipe connections requirements for pumps and turbines.
(c) Preparation of plumbing line sketches for water supply and sewage works.
(d) Hands-on-exercise:
  Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.
(e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:
(a) Study of the joints in roofs, doors, windows and furniture.
(b) Hands-on-exercise:
  Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE

Welding:
(a) Preparation of arc welding of butt joints, lap joints and tee joints.
(b) Gas welding practice

Basic Machining:
(a) Simple Turning and Taper turning
(b) Drilling Practice

Sheet Metal Work:
(a) Forming & Bending:
(b) Model making – Trays, funnels, etc.
(c) Different type of joints.

Machine assembly practice:
(a) Study of centrifugal pump
(b) Study of air conditioner

Demonstration on:
(a) Smithy operations, upsetting, swaging, setting down and bending. Example – Exercise – Production of hexagonal headed bolt.
(b) Foundry operations like mould preparation for gear and step cone pulley.
(c) Fitting – Exercises – Preparation of square fitting and vee – fitting models.

GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE

1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
2. Fluorescent lamp wiring.
3. Stair case wiring
5. Measurement of energy using single phase energy meter.
IV  ELECTRONICS ENGINEERING PRACTICE

1. Study of Electronic components and equipments – Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
2. Study of logic gates AND, OR, EOR and NOT.
4. Soldering practice – Components Devices and Circuits – Using general purpose PCB.
5. Measurement of ripple factor of HWR and FWR.

TOTAL: 45 PERIODS

OUTCOMES:
- Ability to fabricate carpentry components and pipe connections including plumbing works.
- Ability to use welding equipments to join the structures.
- Ability to fabricate electrical and electronics circuits.

REFERENCES:

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CIVIL
1. Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. 15 Sets.
2. Carpentry vice (fitted to work bench) 15 Nos.
4. Models of industrial trusses, door joints, furniture joints 5 each
5. Power Tools: (a) Rotary Hammer 2 Nos
   (b) Demolition Hammer 2 Nos
   (c) Circular Saw 2 Nos
   (d) Planer 2 Nos
   (e) Hand Drilling Machine 2 Nos
   (f) Jigsaw 2 Nos

MECHANICAL
1. Arc welding transformer with cables and holders 5 Nos.
2. Welding booth with exhaust facility 5 Nos.
3. Welding accessories like welding shield, chipping hammer, wire brush, etc. 5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos.
5. Centre lathe 2 Nos.
6. Hearth furnace, anvil and smithy tools 2 Sets.
7. Moulding table, foundry tools 2 Sets.
8. Power Tool: Angle Grinder 2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner One each.
ELECTRICAL
1. Assorted electrical components for house wiring 15 Sets
2. Electrical measuring instruments 10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency lamp 1 each
4. Megger (250V/500V) 1 No.
5. Power Tools: (a) Range Finder 2 Nos
   (b) Digital Live-wire detector 2 Nos

ELECTRONICS
1. Soldering guns 10 Nos.
2. Assorted electronic components for making circuits 50 Nos.
3. Small PCBs 10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power supply

GE6163 PHYSICS AND CHEMISTRY LABORATORY – I

PHYSICS LABORATORY – I

OBJECTIVES:
- To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

LIST OF EXPERIMENTS
(Any FIVE Experiments)
1. (a) Determination of Wavelength, and particle size using Laser
   (b) Determination of acceptance angle in an optical fiber.
2. Determination of velocity of sound and compressibility of liquid – Ultrasonic interferometer.
3. Determination of wavelength of mercury spectrum – spectrometer grating
5. Determination of Young’s modulus by Non uniform bending method
6. Determination of specific resistance of a given coil of wire – Carey Foster’s Bridge

OUTCOMES:
- The hands on exercises undergone by the students will help them to apply physics principles of optics and thermal physics to evaluate engineering properties of materials.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
1. Diode laser, lycopodium powder, glass plate, optical fiber.
2. Ultrasonic interferometer
3. Spectrometer, mercury lamp, grating
4. Lee’s Disc experimental set up
5. Traveling microscope, meter scale, knife edge, weights
6. Carey foster’s bridge set up
   (vernier Caliper, Screw gauge, reading lens are required for most of the experiments)
CHEMISTRY LABORATORY- I

OBJECTIVES:
- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by viscometry.

LIST OF EXPERIMENTS
(Any FIVE Experiments)
1. Determination of DO content of water sample by Winkler’s method.
2. Determination of chloride content of water sample by argentometric method.
3. Determination of strength of given hydrochloric acid using pH meter.
4. Determination of strength of acids in a mixture using conductivity meter.
5. Estimation of iron content of the water sample using spectrophotometer.
   (1,10- phenanthroline / thiocyanate method).
7. Conductometric titration of strong acid vs strong base.

TOTAL: 30 PERIODS

OUTCOMES:
- The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters.

REFERENCES:

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
1. Iodine flask - 30 Nos
2. pH meter - 5 Nos
3. Conductivity meter - 5 Nos
4. Spectrophotometer - 5 Nos
5. Ostwald Viscometer - 10 Nos

Common Apparatus : Pipette, Burette, conical flask, percelain tile, dropper (each 30 Nos.)

---

HS6251 TECHNICAL ENGLISH II

OBJECTIVES:
- To make learners acquire listening and speaking skills in both formal and informal contexts.
- To help them develop their reading skills by familiarizing them with different types of reading strategies.
- To equip them with writing skills needed for academic as well as workplace contexts.
- To make them acquire language skills at their own pace by using e-materials and language lab components.
UNIT I
9+3
Listening - Listening to informal conversations and participating; Speaking - Opening a conversation (greetings, comments on topics like weather) - Turn taking - Closing a conversation (excuses, general wish, positive comment, thanks); Reading - Developing analytical skills, Deductive and inductive reasoning - Extensive reading; Writing - Effective use of SMS for sending short notes and messages - Using ‘emoticons’ as symbols in email messages; Grammar - Regular and irregular verbs - Active and passive voice; Vocabulary - Homonyms (e.g. ‘can’) - Homophones (e.g. ‘some’, ‘sum’); E-materials - Interactive exercise on Grammar and vocabulary – blogging; Language Lab - Listening to different types of conversation and answering questions.

UNIT II
9+3
Listening - Listening to situation based dialogues; Speaking - Conversation practice in real life situations, asking for directions (using polite expressions), giving directions (using imperative sentences), Purchasing goods from a shop, Discussing various aspects of a film (they have already seen) or a book (they have already read); Reading - Reading a short story or an article from newspaper, Critical reading, Comprehension skills; Writing - Writing a review / summary of a story / article, Personal letter (Inviting your friend to a function, congratulating someone for his / her success, thanking one’s friends / relatives); Grammar - modal verbs, Purpose expressions; Vocabulary - Phrasal verbs and their meanings, Using phrasal verbs in sentences; E-materials - Interactive exercises on Grammar and vocabulary, Extensive reading activity (reading stories / novels), Posting reviews in blogs - Language Lab - Dialogues (Fill up exercises), Recording students’ dialogues.

UNIT III
9+3
Listening - Listening to the conversation - Understanding the structure of conversations; Speaking - Conversation skills with a sense of stress, intonation, pronunciation and meaning - Seeking information – expressing feelings (affection, anger, regret, etc.); Reading - Speed reading – reading passages with time limit - Skimming; Writing - Minutes of meeting – format and practice in the preparation of minutes - Writing summary after reading articles from journals - Format for journal articles – elements of technical articles (abstract, introduction, methodology, results, discussion, conclusion, appendices, references) - Writing strategies; Grammar - Conditional clauses - Cause and effect expressions; Vocabulary - Words used as nouns and verbs without any change in the spelling (e.g. ‘rock’, ‘train’, ‘ring’); E-materials - Interactive exercise on Grammar and vocabulary - Speed Reading practice exercises; Language Lab - Intonation practice using EFLU and RIE materials – Attending a meeting and writing minutes.

UNIT IV
9+3
Listening - Listening to a telephone conversation, Viewing model interviews (face-to-face, telephonic and video conferencing); Speaking - Role play practice in telephone skills - listening and responding, -asking questions, -note taking – passing on messages, Role play and mock interview for grasping interview skills; Reading - Reading the job advertisements and the profile of the company concerned – scanning; Writing - Applying for a job – cover letter - résumé preparation – vision, mission and goals of the candidate; Grammar - Numerical expressions - Connectives (discourse markers); Vocabulary - Idioms and their meanings – using idioms in sentences; E-materials - Interactive exercises on Grammar and Vocabulary - Different forms of résumés- Filling up a résumé / cover letter; Language Lab - Telephonic interview – recording the responses - e-résumé writing.

UNIT V
9+3
Listening - Viewing a model group discussion and reviewing the performance of each participant - Identifying the characteristics of a good listener; Speaking - Group discussion
skills – initiating the discussion – exchanging suggestions and proposals – expressing dissent/agreement – assertiveness in expressing opinions – mind mapping technique; Reading - Note making skills – making notes from books, or any form of written materials - Intensive reading; Writing – Checklist - Types of reports – Feasibility / Project report – report format – recommendations / suggestions – interpretation of data (using charts for effective presentation); Grammar - Use of clauses; Vocabulary – Collocation; E-materials - Interactive grammar and vocabulary exercises - Sample GD - Pictures for discussion, Interactive grammar and vocabulary exercises; Language Lab - Different models of group discussion.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
Learners should be able to

- Speak convincingly, express their opinions clearly, initiate a discussion, negotiate, argue using appropriate communicative strategies.
- Write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.
- Read different genres of texts, infer implied meanings and critically analyse and evaluate them for ideas as well as for method of presentation.
- Listen/view and comprehend different spoken excerpts critically and infer unspoken and implied meanings.

TEXT BOOKS:

REFERENCES:

EXTENSIVE Reading (Not for Examination)

Websites
2. http://owl.english.purdue.edu

TEACHING METHODS:
- Lectures
- Activities conducted individually, in pairs and in groups like individual writing and presentations, group discussions, interviews, reporting, etc
- Long presentations using visual aids
- Listening and viewing activities with follow up activities like discussions, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc
- Projects like group reports, mock interviews etc using a combination of two or more of the language skills
EVALUATION PATTERN:
Internal assessment: 20%
3 tests of which two are pen and paper tests and the other is a combination of different
modes of assessment like
• Project
• Assignment
• Report
• Creative writing, etc.

All the four skills are to be tested with equal weightage given to each.
✓ Speaking assessment: Individual presentations, Group discussions
✓ Reading assessment: Reading passages with comprehension questions graded
  following Bloom’s taxonomy
✓ Writing assessment: Writing essays, CVs, reports etc. Writing should include grammar
  and vocabulary.
✓ Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on
  verbal as well as audio/visual content graded following Bloom’s taxonomy.

End Semester Examination: 80%

MA6251 MATHEMATICS – II

OBJECTIVES:
• To make the student acquire sound knowledge of techniques in solving ordinary
differential equations that model engineering problems.
• To acquaint the student with the concepts of vector calculus needed for problems in all
engineering disciplines.
• To develop an understanding of the standard techniques of complex variable theory so as
to enable the student to apply them with confidence, in application areas such as heat
conduction, elasticity, fluid dynamics and flow the of electric current.
• To make the student appreciate the purpose of using transforms to create a new domain
in which it is easier to handle the problem that is being investigated.

UNIT I VECTOR CALCULUS 9+3
Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields
– Vector integration – Green’s theorem in a plane, Gauss divergence theorem and Stokes’
theorem (excluding proofs) – Simple applications involving cubes and rectangular
parallelopipeds.

UNIT II ORDINARY DIFFERENTIAL EQUATIONS 9+3
Higher order linear differential equations with constant coefficients – Method of variation of
parameters – Cauchy’s and Legendre’s linear equations – Simultaneous first order linear
equations with constant coefficients.

UNIT III LAPLACE TRANSFORM 9+3
Laplace transform – Sufficient condition for existence – Transform of elementary functions –
Basic properties – Transforms of derivatives and integrals of functions - Derivatives and
integrals of transforms - Transforms of unit step function and impulse functions – Transform of
periodic functions. Inverse Laplace transform -Statement of Convolution theorem – Initial and
final value theorems – Solution of linear ODE of second order with constant coefficients using
Laplace transformation techniques.
UNIT IV  ANALYTIC FUNCTIONS  9+3
Functions of a complex variable – Analytic functions: Necessary conditions – Cauchy-Riemann equations and sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping: w = z+k, kz, 1/z, z², e^z and bilinear transformation.

UNIT V  COMPLEX INTEGRATION  9+3
Complex integration – Statement and applications of Cauchy’s integral theorem and Cauchy’s integral formula – Taylor’s and Laurent’s series expansions – Singular points – Residues – Cauchy’s residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
- The subject helps the students to develop the fundamentals and basic concepts in vector calculus, ODE, Laplace transform and complex functions. Students will be able to solve problems related to engineering applications by using these techniques.

TEXT BOOKS:

REFERENCES:

PH6251  ENGINEERING PHYSICS – II  L T P C
3 0 0 3

OBJECTIVES:
- To enrich the understanding of various types of materials and their applications in engineering and technology.

UNIT I  CONDUCTING MATERIALS  9

UNIT II  SEMICONDUCTING MATERIALS  9
Intrinsic semiconductor – carrier concentration derivation – Fermi level – Variation of Fermi level with temperature – electrical conductivity – band gap determination – compound
semiconductors -direct and indirect band gap- derivation of carrier concentration in n-type and p-type semiconductor – variation of Fermi level with temperature and impurity concentration – Hall effect – Determination of Hall coefficient – Applications.

UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS
Superconductivity: properties – Type I and Type II superconductors – BCS theory of superconductivity(Qualitative) - High Tc superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

UNIT IV DIELECTRIC MATERIALS

UNIT V ADVANCED ENGINEERING MATERIALS

TOTAL: 45 PERIODS

OUTCOMES:
• The students will have the knowledge on physics of materials and that knowledge will be used by them in different engineering and technology applications.

TEXT BOOKS:

REFERENCES:

CY6251 ENGINEERING CHEMISTRY - II L T P C
3 0 0 3

OBJECTIVES:
• To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
• Principles of electrochemical reactions, redox reactions in corrosion of materials and methods for corrosion prevention and protection of materials.
• Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.
• Preparation, properties and applications of engineering materials.
• Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.
UNIT I          WATER TECHNOLOGY
Introduction to boiler feed water - requirements - formation of deposits in steam boilers and heat exchangers - disadvantages (wastage of fuels, decrease in efficiency, boiler explosion) prevention of scale formation - softening of hard water - external treatment zeolite and demineralization - internal treatment - boiler compounds (phosphate, calgon, carbonate, colloidal) - caustic embrittlement - boiler corrosion - priming and foaming - desalination of brackish water - reverse osmosis.

UNIT II          ELECTROCHEMISTRY AND CORROSION

UNIT III         ENERGY SOURCES
Introduction - nuclear energy - nuclear fission - controlled nuclear fission - nuclear fusion - differences between nuclear fission and fusion - nuclear chain reactions - nuclear reactor power generator - classification of nuclear reactor - light water reactor - breeder reactor - solar energy conversion - solar cells - wind energy. Batteries and fuel cells: Types of batteries - alkaline battery - lead storage battery - nickel-cadmium battery - lithium battery - fuel cell H₂ - O₂ fuel cell applications.

UNIT IV          ENGINEERING MATERIALS
Abravives: definition, classification or types, grinding wheel, abrasive paper and cloth. Refractories: definition, characteristics, classification, properties - refractoriness and RUL, dimensional stability, thermal spalling, thermal expansion, porosity; Manufacture of alumina, magnesite and silicon carbide, Portland cement - manufacture and properties - setting and hardening of cement, special cement - waterproof and white cement - properties and uses. Glass - manufacture, types, properties and uses.

UNIT V          FUELS AND COMBUSTION

OUTCOMES:
• The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:
REFERENCES:

GE6252       BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

OBJECTIVES:
- To explain the basic theorems used in Electrical circuits and the different components and function of electrical machines.
- To explain the fundamentals of semiconductor and applications.
- To explain the principles of digital electronics
- To impart knowledge of communication.

UNIT I       ELECTRICAL CIRCUITS & MEASURMENTS

- Operating Principles of Moving Coil and Moving Iron Instruments (Ammeters and Voltmeters), Dynamometer type Watt meters and Energy meters.

UNIT II      ELECTRICAL MECHANICS


UNIT III     SEMICONDUCTOR DEVICES AND APPLICATIONS


UNIT IV      DIGITAL ELECTRONICS


UNIT V       FUNDAMENTALS OF COMMUNICATION ENGINEERING

- Communication Systems: Radio, TV, Fax, Microwave, Satellite and Optical Fibre (Block Diagram Approach only).

OUTCOMES:
- Ability to identify the electrical components explain the characteristics of electrical machines.
- Ability to identify electronics components and use of them to design circuits.
TEXT BOOKS:

REFERENCES:

GE6253 ENGINEERING MECHANICS  L  T  P  C  3 1 0 4

OBJECTIVES:
• To develop capacity to predict the effect of force and motion in the course of carrying out the design functions of engineering.

UNIT I  BASICS AND STATICS OF PARTICLES  12

UNIT II  EQUILIBRIUM OF RIGID BODIES  12
Free body diagram – Types of supports –Action and reaction forces –stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon’s theorem – Single equivalent force -Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in three dimensions

UNIT III  PROPERTIES OF SURFACES AND SOLIDS  12

UNIT IV  DYNAMICS OF PARTICLES  12
UNIT V  \textbf{FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS} \hfill 12

Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge friction. Rolling resistance - Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere.

\textbf{TOTAL : 60 PERIODS}

\textbf{OUTCOMES:}
\begin{itemize}
  \item Ability to explain the differential principles applies to solve engineering problems dealing with force, displacement, velocity and acceleration.
  \item Ability to analyse the forces in any structures.
  \item Ability to solve rigid body subjected to dynamic forces.
\end{itemize}

\textbf{TEXT BOOKS:}

\textbf{REFERENCES:}

GE6261  \textbf{COMPUTER AIDED DRAFTING AND MODELING LABORATORY}  \hfill  \begin{tabular}{l l l l l l}
L & T & P & C \\
0 & 1 & 2 & 2 \\
\end{tabular}

\textbf{OBJECTIVES:}
\begin{itemize}
  \item To develop skill to use software to create 2D and 3D models.
\end{itemize}

\textbf{List of Exercises using software capable of Drafting and Modeling}
\begin{enumerate}
  \item Study of capabilities of software for Drafting and Modeling – Coordinate systems (absolute, relative, polar, etc.) – Creation of simple figures like polygon and general multi-line figures.
  \item Drawing of a Title Block with necessary text and projection symbol.
  \item Drawing of curves like parabola, spiral, involute using Bspline or cubic spline.
  \item Drawing of front view and top view of simple solids like prism, pyramid, cylinder, cone, etc, and dimensioning.
  \item Drawing front view, top view and side view of objects from the given pictorial views (eg. V-block, Base of a mixie, Simple stool, Objects with hole and curves).
  \item Drawing of a plan of residential building ( Two bed rooms, kitchen, hall, etc.)
  \item Drawing of a simple steel truss.
  \item Drawing sectional views of prism, pyramid, cylinder, cone, etc,
  \item Drawing isometric projection of simple objects.
  \item Creation of 3-D models of simple objects and obtaining 2-D multi-view drawings from 3-D model.
\end{enumerate}
Note: Plotting of drawings must be made for each exercise and attached to the records written by students.

TOTAL: 45 PERIODS

OUTCOMES:
• Ability to use the software packers for drafting and modeling
• Ability to create 2D and 3D models of Engineering Components

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Description of Equipment</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pentium IV computer or better hardware, with suitable graphics facility</td>
<td>30 No.</td>
</tr>
<tr>
<td>2.</td>
<td>Licensed software for Drafting and Modeling.</td>
<td>30 Licenses</td>
</tr>
<tr>
<td>3.</td>
<td>Laser Printer or Plotter to print / plot drawings</td>
<td>2 No.</td>
</tr>
</tbody>
</table>

GE6262    PHYSICS AND CHEMISTRY LABORATORY – II

PHYSICS LABORATORY – II

OBJECTIVES:
• To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

LIST OF EXPERIMENTS
(Any FIVE Experiments)
1. Determination of Young’s modulus by uniform bending method
2. Determination of band gap of a semiconductor
3. Determination of Coefficient of viscosity of a liquid – Poiseuille’s method
4. Determination of Dispersive power of a prism - Spectrometer
5. Determination of thickness of a thin wire – Air wedge method
6. Determination of Rigidity modulus – Torsion pendulum

OUTCOMES:
• The students will have the ability to test materials by using their knowledge of applied physics principles in optics and properties of matter.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
1. Traveling microscope, meter scale, Knife edge, weights
2. Band gap experimental set up
3. Burette, Capillary tube, rubber tube, stop clock, beaker and weighing balance
4. spectrometer, prism, sodium vapour lamp.
5. Air-wedge experimental set up.
6. Torsion pendulum set up.
   (vernier Caliper, Screw gauge, reading lens are required for most of the experiments)
CHEMISTRY LABORATORY - II

OBJECTIVES:
- To make the student acquire practical skills in the wet chemical and instrumental methods for quantitative estimation of hardness, alkalinity, metal ion content, corrosion in metals and cement analysis.

LIST OF EXPERIMENTS
(Any FIVE Experiments)
1. Determination of alkalinity in water sample
2. Determination of total, temporary & permanent hardness of water by EDTA method
3. Estimation of copper content of the given solution by EDTA method
4. Estimation of iron content of the given solution using potentiometer
5. Estimation of sodium present in water using flame photometer
6. Corrosion experiment – weight loss method
7. Conductometric precipitation titration using BaCl₂ and Na₂SO₄

TOTAL: 30 PERIODS

OUTCOMES:
- The students will be conversant with hands-on knowledge in the quantitative chemical analysis of water quality related parameters, corrosion measurement and cement analysis.

REFERENCES:

- Laboratory classes on alternate weeks for Physics and Chemistry.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
1. Potentiometer - 5 Nos
2. Flame photo meter - 5 Nos
3. Weighing Balance - 5 Nos
4. Conductivity meter - 5 Nos

Common Apparatus: Pipette, Burette, conical flask, porcelain tile, dropper (30 Nos each)

GE6263 COMPUTER PROGRAMMING LABORATORY

OBJECTIVES:
The Students should be made to
- Be exposed to Unix shell commands
- Be familiar with an editor on Unix
- Learn to program in Shell script
- Learn to write C programme for Unix platform
LIST OF EXPERIMENTS

1. UNIX COMMANDS  
   Study of Unix OS - Basic Shell Commands - Unix Editor  
   15

2. SHELL PROGRAMMING  
   Simple Shell program - Conditional Statements - Testing and Loops  
   15

3. C PROGRAMMING ON UNIX  
   Dynamic Storage Allocation-Pointers-Functions-File Handling  
   15

   TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students should be able to:
   • Use Shell commands
   • Design of Implement Unix shell scripts
   • Write and execute C programs on Unix

HARDWARE / SOFTWARE REQUIREMENTS FOR A BATCH OF 30 STUDENTS

Hardware
   • 1 UNIX Clone Server
   • 3 3 Nodes (thin client or PCs)
   • Printer – 3 Nos.

Software
   • OS – UNIX Clone (33 user license or License free Linux)
   • Compiler - C

MA6351   TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS  
          L T P C  3 1 0 4

OBJECTIVES:
   • To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
   • To acquaint the student with Fourier transform techniques used in wide variety of situations.
   • To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I  PARTIAL DIFFERENTIAL EQUATIONS  
         9 + 3
Formation of partial differential equations – Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange’s linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II  FOURIER SERIES  
       9 + 3

UNIT III  APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS  
        9 + 3
Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges).
UNIT IV  FOURIER TRANSFORMS  

UNIT V  Z-TRANSFORMS AND DIFFERENCE EQUATIONS  

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
- The understanding of the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.

TEXT BOOKS:

REFERENCES:

EL6301  MOLECULAR PHYSICAL CHEMISTRY  
OBJECTIVES:  
To impart knowledge in the field of electrochemistry, solubility behaviour, chemical reaction kinetics, photochemical reactions and colloidal chemistry towards different applications.

UNIT I  QUALITATIVE INTRODUCTION TO QUANTUM THEORY  
UNIT II ATOMIC STRUCTURE AND SPECTRA

UNIT III MOLECULAR STRUCTURE AND QUALITATIVE INTRODUCTION TO MOLECULAR SPECTROSCOPY

UNIT IV INTRODUCTION TO STATISTICAL THERMODYNAMICS

UNIT V APPLICATIONS OF STATISTICAL THERMODYNAMICS
Relationship between macro thermodynamic expressions and partition functions. Applications with respect to heat capacities, equations of state, molecular interaction in liquids. Residual entropies. Equilibrium constants.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course, the student would be able to define and to explain how thermodynamic laws are applied and incorporated to further our understanding of chemical equilibria, phase equilibria, electrochemical equilibria and biochemical reactions equilibria.

TEXT BOOKS:

REFERENCES:

EL6302 ORGANIC CHEMISTRY

OBJECTIVE:
To enable the students to learn the type of components in which organic reactions take place and also to know the preparation of the essential organic compounds.

UNIT I ORGANIC REACTION MECHANISM
Electrophilic reactions-Friedel crafts reaction, Riemer Tiemann reaction, Beckmann rearrangements; nucleophilic reactions- aldol condensation, perkin reaction, benzoin condensation; free radical reaction-halogenation of alkane, addition of HBr on alkene in presence of peroxide; allylic halogenation - using N-Bromo Succinamide (NBS), thermal halogenation of alkene CH₃ – CH = CH₂.
UNIT II  CARBOHYDRATES  9
Introduction – mono and disaccharides – important reactions – polysaccharides – starch and cellulose – derivatives of cellulose – carboxy methyl cellulose and gun cotton – structural aspects of cellulose

UNIT III  POLYNUCLEAR AROMATICS AND HETEROCYCLES  9
Classification of polynuclear aromatics. naphthalene preparation, properties and uses. Classification of heterocyclic compounds. Furan, thiophene, pyridine preparation, properties and uses

UNIT IV  AMINO ACIDS AND PYRROLE  9

UNIT V  DRUGS, PESTICIDES & DYES  9

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course students will have knowledge on various reaction mechanism, preparation of organic compounds and their properties.

TEXT BOOKS:

REFERENCES:

CH6359  INORGANIC CHEMISTRY  L  T  P  C
3  0  0  3

OBJECTIVE:
To introduce certain key aspects of inorganic chemistry, including solid state structures, the chemistry of phosphorus and hydrogen and transition metal chemistry.

UNIT I  STRUCTURE AND BONDING IN INORGANIC CHEMISTRY  9
UNIT II  CHEMISTRY IN AQUEOUS AND NON AQUEOUS SOLUTIONS  9

UNIT III  COORDINATION CHEMISTRY  9

UNIT IV  CHEMISTRY OF TRANSITION METALS  9

UNIT V  ORGANOMETALLIC AND BIOINORGANIC CHEMISTRY  9
Organometallic chemistry. Synthesis and catalysis of metal carbonyls, metal nitrosyls, metalloccenes, aromatic cyclopolyenes, olefin and acetylene complexes. Inorganic chemistry in biological systems. Metalloporphyrins, enzymes, essential and trace elements in biological systems

TOTAL : 45 PERIODS

OUTCOMES:
At the end of this course, the students will able to use these concepts in problem solving, describe and place in context the chemistry of main group elements and transition metals

TEXT BOOKS:

REFERENCE:

EL6303  CHEMICAL PROCESS CALCULATIONS  L  T  P  C
3  0  0  3

OBJECTIVE:
To teach concept of degree of freedom and its application to solution of mass and energy balance equations for single and network of units and introduce to process simulators.

UNIT I  BASIC CONCEPTS  9
Review of basic concepts. Methods of expressing composition of mixtures and solutions. Use of molal units, partial pressure and pure component volume in calculations. Material balance for non reacting systems like distillation, evaporation, drying etc.
UNIT II  MATERIAL BALANCE  9

UNIT III  PSYCHROMETRY & CRYSTALLISATION  9

UNIT IV  ENERGY BALANCE  9

UNIT V  FUELS AND COMBUSTION  9

OUTCOME:
The students would be able to understand chemical engineering calculations, establish mathematical methodologies for the computation of material balances, energy balances.

TEXT BOOKS:

REFERENCES:

EL6404  FLUID MECHANICS  L T P C  3 0 0 3
OBJECTIVE:
To impart to the student knowledge on fluid properties, fluid statics, dynamic characteristics for through pipes and porous medium, flow measurement and fluid machineries

UNIT I  FLUID STATICS AND MACROSCOPIC BALANCES  9
Fluid types, physical properties, viscosity, continuum hypothesis, pressure distribution in a static fluid, hydrostatic forces on submerged plane surfaces; Archimedes principle, streamline, pathlines, streaklines. Reynolds transport theorem macroscopic balances of mass, energy and linear momentum.
UNIT II   DIFFERENTIAL BALANCES, DIMENSIONAL ANALYSIS  9
Losses in expansion, force on a reducing bend, jet ejector. Differential equation of mass
conservation, differential equation of linear momentum, constitutive equations, Navier-Stokes
equations. Applications to Couette flow, flow due to pressure gradient between two fixed
plates, fully developed laminar pipe flow-Hagen-Poiseuille flow, Buckingham Pi theorem,
introduction of dimensionless numbers.

UNIT III   TRANSPORTATION AND METERING OF FLOWS  9
Pipe/Duct flows: Laminar vs turbulent flows, kinetic energy correction factor, momentum flux
correction factor, head loss, friction factor, effect of wall roughness, the Moody chart,
hydraulic diameter for non-circular conduit, minor losses, equivalent length. Flow meters: Pitot
tube, venturi, orifice, rotameter. Flow machinery: Introduction to pumps, efficiency, priming,
cavitation and NPSH, performance curve of a centrifugal pump. Introduction to fans, blowers
and compressors.

UNIT IV   FLOW PAST IMMERSED BODIES, PACKED BEDS, FLUIDIZED BEDS  9
Flow past immersed bodies: Creeping flow-Stokes law, inviscid flow-Bernoulli equation,
introduction to boundary layer, Karman’s momentum integral theory, drag on a flat plate for
laminar flow, drag on immersed bodies-C_D vs Re plotFlow through packed and fluidized beds:
Kozeny-Carman equation, Ergun equation, Fluidization, minimum fluidization velocity. particle
settling.

UNIT V   APPLICATIONS  9
Filtration: Types of filters, cake filtration, constant flow rate and constant pressure drop
operations. Centrifuges and Cyclones: Gravity settling, centrifugal separation, Mixing and
Agitation: Types of impeller, flow number, power consumption, mixing times, scale up.

TOTAL : 45 PERIODS

OUTCOME:
At the end of this course, the students would develop skills in analyzing fluid flows through the
proper use of modeling and the application of the basic fluid-flow principles

TEXT BOOKS:
   Newyork, 2010.

REFERENCES:
1. Robert W. Fox, Philip J. Pritchard, and Alan T. Mcdonald, Introduction to Fluid Mechanics,
2. W.L. McCabe, J.C. Smith and P. Harriot, Unit Operations of Chemical Engineering, 7th

CH6312   PHYSICAL CHEMISTRY LABORATORY  L  T  P  C
0  0  3  2

OBJECTIVE:
To improve the practical knowledge on the properties and characteristics of solvents and
mixtures.

LIST OF EXPERIMENTS
  1. Determination of molecular weight of a polymer by viscosity method.
  2. Determination of partition co-efficient of iodine between two immiscible solvents
3. Determination of partition co-efficient of benzoic acid between two immiscible solvents
4. Determination of Ka of the weak acid
5. Conductometric experiments- Verification of Oswald’s Dilution Law
6. Titration of Strong Acid Vs Strong Base
7. Titration of mixture of Strong Acid Weak Acid Vs Strong Base
8. Titration of Weak Acid Vs Weak Base
9. Determination of Rate Constant (K)
10. Determination of Activation Energy (ΔE)
11. Estimation of Ferrous ion concentration by Potentiometric Titration
12. Determination of standard electrode potential (Zn, Cu, Ag)
13. Adsorption studies
14. To study the adsorption of Acetic acid on charcoal and construct the isotherm.
15. Determination of pH metric titration of Strong Acid Vs Strong Base
16. Enzyme catalytic reaction by varying pH.
17. Application of Phase Rule to Phenol-Water system
18. To study the inversion of cane sugar by polarimeter.
   a. Polarimeter-Inversion of cane sugar
   b. Refractometer

TOTAL : 45 PERIODS

OUTCOMES:
The student would be able to determine the properties and characteristics of solvents and mixtures.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Micro Calorimeter
2. Beckman Thermometers. Glasswares,
3. Thermometers 0 to 110 – 0°. Bottle Shakers .pH meters
5. Viscometers-Ostwald Cannan Ubbelholde. Voltage Stabiliser
6. Stalalmometer
7. Surface Tension Meter .Tape Heaters
8. Mantle Heaters
9. DC Power Supply. Thermostat. Cyrostats

REFERENCE:

CH6367 INORGANIC AND ORGANIC CHEMISTRY LABORATORY

OBJECTIVE:
To improve the practical knowledge on the analysis of inorganic/organic compounds.

LIST OF EXPERIMENTS

INORGANIC CHEMISTRY:
(Any Five experiments)

1. Analysis of alloy
2. Analysis of cement
3. Analysis of lime stone
4. Proximate and ultimate analysis of coal
5. Analysis of sugars
6. Analysis of soap
ORGANIC CHEMISTRY:
(Any Five experiments)

Preparation of organic compounds:
1. Hydrolysis – benzoic acid from benzamide
2. Acetylation – acetyl salicylic acid from salicylic acid
3. Bromination – tribromo aniline from aniline
4. Nitration – meta dinitrobenzene from nitrobenzene
5. Benzoylation – phenyl benzoate from phenol
6. Oxidation – benzoic acid from benzaldehyde

OUTCOME:
The students would be able to prepare organic compounds and analyse the inorganic/organic compounds.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Silica Crucible
2. Heating Mantle
3. Muffle Furnace
4. Hot air oven
5. Desiccator
6. Vacuum pump
7. Condenser

REFERENCE:
1. Laboratory Manual prepared by Faculty

EE6368 ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY

OBJECTIVES:
- To learn for conducting experiments involving electrical machines and Microprocessors and to analyse and interpret the results.

LIST OF EXPERIMENTS
1. Verification of Ohm’s law and Kirchhoff’s laws.
2. Load test on DC series motor.
3. Load test on three-phase induction motor.
4. Study of half wave and full wave rectifiers.
5. RC coupled transistor amplifier.
6. Applications of operational amplifier.
7. Study of logic gates and implementation of Boolean functions.
8. Implementation of binary adder/ subtractor.
9. Study of programming of 8085 microprocessor
10. Interfacing a stepper motor with 8085 microprocessor

OUTCOMES:
- Understanding the relation between electrical voltage, current and resistance.
- Ability to measure the performance of electrical machine like DC and AC motors.
- Visualizing the usage of logic gates and Microprocessor in motor control systems.
REFERENCE:
1. Laboratory Manual prepared by Department of Electrical and Electronics Engineering.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>S.No.</th>
<th>NAME OF THE EQUIPMENT</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D. C. Motor Generator Set</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>D. C. Compound Motor</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Single Phase Transformer</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Three Phase Induction Motor</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Single Phase Induction Motor</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Three Phase Alternator Set</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Ammeter A.C and D.C</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Voltmeters A.C and D.C</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Watt meters LPF and UPF</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>Resistors &amp; Breadboards</td>
<td>1 set</td>
</tr>
<tr>
<td>11</td>
<td>Cathode Ray Oscilloscopes</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Dual Regulated power supplies</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>A.C. Signal Generators</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>Voltmeters D.C.</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>Ammeters D.C.</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>Resistors, Capacitors, Diodes</td>
<td>1 set</td>
</tr>
<tr>
<td>17</td>
<td>Transistors (BJT, JFET), SCR, Logic Gates</td>
<td>1 set</td>
</tr>
<tr>
<td>18</td>
<td>Stepper Motor, Interface Card and Power Supply</td>
<td>1 set</td>
</tr>
<tr>
<td>19</td>
<td>Probes</td>
<td>1 set</td>
</tr>
</tbody>
</table>

MA6459 NUMERICAL METHODS

OBJECTIVES:
- This course aims at providing the necessary basic concepts of a few numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.

UNIT I  SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS  10+3

UNIT II  INTERPOLATION AND APPROXIMATION  8+3
Interpolation with unequal intervals - Lagrange's interpolation – Newton's divided difference interpolation – Cubic Splines - Interpolation with equal intervals - Newton’s forward and backward difference formulae.

UNIT III  NUMERICAL DIFFERENTIATION AND INTEGRATION  9+3
Approximation of derivatives using interpolation polynomials - Numerical integration using Trapezoidal, Simpson’s 1/3 rule – Romberg’s method - Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson’s 1/3 rules.
UNIT IV  INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS  
9+3

UNIT V  BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS  
9+3
Finite difference methods for solving two-point linear boundary value problems - Finite difference techniques for the solution of two dimensional Laplace’s and Poisson’s equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

OUTCOMES:

- The students will have a clear perception of the power of numerical techniques, ideas and would be able to demonstrate the applications of these techniques to problems drawn from industry, management and other engineering fields.

TEXT BOOKS:


REFERENCES:

UNIT III  POWER CYCLES, THERMODYNAMIC POTENTIALS, EQUILIBRIA AND STABILITY  

UNIT IV  PROPERTIES OF PURE COMPONENTS AND MIXTURES  

UNIT V  PHASE EQUILIBRIA AND CHEMICAL REACTION EQUILIBRIA  
Phase Equilibria of Mixtures. Osmotic pressure and Osmotic coefficients. Boiling point elevation and freezing point depression. Chemical Reaction Equilibria. Reaction extent and Independent reactions. Equilibrium criteria and equilibrium constant. Standard enthalpies and Gibbs free energy, temperature and pressure effects on reactions, heterogeneous reaction, multiple chemical reactions

TOTAL (L : 45 +T:15) : 60 PERIODS

OUTCOMES:
The course will help the students to know about engineering thermodynamics and understand the practical implications of thermodynamic law in engineering design.

TEXT BOOKS:

REFERENCES:

EL6401  CHEMICAL REACTION ENGINEERING  L  T  P  C
3  0  0  3

OBJECTIVES:
To impart knowledge on different types of chemical reactors, the design of chemical reactors under isothermal and non-isothermal conditions

UNIT I  KINETICS OF HOMOGENEOUS REACTION AND INTERPRETATION OF BATCH REACTOR RATE  
Classification of reactions. Types of rate expressions, Elementary and non elementary reactions. Temperature dependency of the rate constant based on Arrhenius theory. Differential and integral methods of analysis of rate data. Interpretation of rate data in constant and variable volume systems. Kinetics of irreversible, parallel and series reactions in constant volume batch reactor.
UNIT II DESIGN OF SINGLE IDEAL REACTORS

Introduction to reactor design – ideal batch reactor – space time and space velocity – steady state mixed flow reactor – steady state plug flow reactor – holding time and space time for flow reactors.

UNIT III DESIGN FOR SINGLE REACTION


UNIT IV TEMPERATURE AND PRESSURE EFFECTS AND BASIC CONCEPTS OF NON IDEAL FLOW


UNIT V SOLID CATALYSED REACTION AND KINETICS OF FLUID PARTICLE REACTION


TOTAL: 45 PERIODS

OUTCOMES:

Students would have knowledge on the selection and design of reactor for the required reaction.

TEXT BOOKS:


REFERENCES:


CH6460 MATERIALS TECHNOLOGY

OBJECTIVE:

To provide students with a strong foundation in materials science with emphasis on the fundamental scientific and engineering principles which underlie the knowledge and implementation of material structure, processing, properties, and performance of all classes of materials used in engineering systems.
UNIT I  STRUCTURE OF MATERIALS  
Introduction-classification of materials, selection of materials, properties of materials, x-ray crystallography, Bragg's law, x-ray diffraction, electron diffraction, neutron diffraction, structure of NaCl and diamond, Crystal defects - point, line, surface and volume defects, alloy formation, solid solution types, solidification of castings, structural examination using microscopy.

UNIT II  METALLURGICAL PROPERTIES OF MATERIALS  

UNIT III  TYPES OF MATERIALS  

UNIT IV  PHYSICAL CHARACTERISTICS OF MATERIALS  

UNIT V  NON-METALLIC MATERIALS  

TOTAL: 45 PERIODS

OUTCOMES:
At the end of this course, the students will be able to understand various material and its properties and manufacturing methods.

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
To enable the students to learn heat transfer by conduction, convection and radiation and heat transfer equipments like evaporator and heat exchanger

UNIT I CONDUCTION

UNIT II CONVECTION

UNIT III CONDENSATION & BOILING

UNIT IV HEAT EXCHANGE EQUIPMENTS

UNIT V RADIATION & EVAPORATION

OUTCOME:
Upon completion of this course, the students will have knowledge in various heat transfer methodology in process engineering and to design heat transfer equipments such as furnace, boilers, heat exchangers evaporation

TEXT BOOKS:

REFERENCES:
EL6403  PRINCIPLES OF ELECTROCHEMISTRY  L  T  P  C
3  0  0  3

OBJECTIVE:
To import knowledge on basic principles of electrochemistry and its applications.

UNIT I  ION-SOLVENT & ION-ION INTERACTION  9
Ion-solvent interaction – Expression for $\Delta H$ and $\Delta S$ of ion-solvent interaction, Experimental verification of Born Model, Ion-dipole model of ion-solvent interaction and expression for heat of solvation, Ion-Ion Interaction – True and Potential electrolytes, Debye-Huckel (ion-cloud) theory of ion-ion interactions, Activity coefficients and ion-ion interaction

UNIT II  ION TRANSPORT IN SOLUTION  9
Diffusion & Diffusion coefficient, Einstein-Smoluchowski equation, Conduction, Molar & Equivalent conductivity, Kohlrausch’s Law, Ionic mobility, Stokes-Einstein relation, Nernst-Einstein equation, Transport numbers – determination by Hittorf’s & Moving Boundary methods – Walden’s rule - Debye Huckel-Onsager equation, Non-aqueous solutions

UNIT III  POLARISATION AND OVER POTENTIAL  9
Electrolytic polarization, Dissolution and Decomposition potential, Overvoltage – hydrogen and oxygen overvoltage, applications, Polarography – principles, diffusion layer, limiting current density, polarographic circuit, dropping mercury electrode, merits & demerits, supporting electrolyte, current maxima, polarograms, half wave potential, diffusion current, applications

UNIT IV  COLLOIDAL ELECTROCHEMISTRY  9
Electrochemical properties of colloids – Charge on colloidal particles, Electrical Double Layer, Cogulation of colloidal sols, Electokinetic phenomena - Electro-Osmosis – Determination of zeta potential, Electrophoresis – sedimentation potential (Dorn effect), Determination of colloidal particle size, Surfactant, Emulsion, Emulsifiers, gels - Applications

UNIT V  ELECTROACTIVE LAYERS AND MODIFIED ELECTRODES  9
Chemically modified electrodes, Types and methods of modification – chemisorption, covalent bond formation, polymer film coatings, inorganic materials, Langmuir-Blodgett (LB) methods, properties of the modified electrodes, electrochemistry at monolayer and multilayer modified electrodes, characterisation of modified electrodes

TOTAL : 45 PERIODS

OUTCOME:
Upon completion of this course, the students would have knowledge of electrode potentials & Nerst equation, electrode reactions, voltammetry, amperometry, and electrochemical sensors.

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
To learn experimentally to calibrate flow meters, find pressure loss for fluid flows and determine pump characteristics.

LIST OF EXPERIMENTS

1. Viscosity measurement of non Newtonian fluids
2. Calibration of constant and variable head meters
3. Calibration of weirs and notches
4. Open drum orifice and draining time
5. Flow through straight pipe
6. Flow through annular pipe
7. Flow through helical coil and spiral coil
8. Losses in pipe fittings and valves
9. Characteristic curves of pumps
10. Pressure drop studies in packed column
11. Hydrodynamics of fluidized bed
12. Drag coefficient of solid particle

TOTAL: 45 PERIODS

OUTCOME:
Practical knowledge on the measurement of Fluid Flow and their characteristics at different operating conditions.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS

1. Viscometer
2. Venturi meter
3. Orifice meter
4. Rotameter
5. Weir
6. Open drum with orifice
7. Pipes and fittings
8. Helical and spiral coils
9. Centrifugal pump
10. Packed column
11. Fluidized bed

OBJECTIVE:
To enable the students to develop a sound working knowledge on different types of crushing equipments and separation characteristics of different mechanical operation separators.

LIST OF EXPERIMENTS

1. Sieve analysis
2. Batch filtration studies using a Leaf filter
3. Batch filtration studies using a Plate and Frame Filter press
4. Characteristics of batch Sedimentation
5. Reduction ratio in Jaw Crusher
6. Reduction ratio in Ball mill
7. Separation characteristics of Cyclone separator
8. Reduction ratio of Roll Crusher
9. Separation characteristics of Elutriator
10. Reduction ratio of Drop weight crusher
11. Size separation using Sub-Sieving

TOTAL : 45 PERIODS

OUTCOME:
Students would gain the practical knowledge and hands on various separation techniques like filtration, sedimentation, screening, elutriation, and centrifugation

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Sieve shaker
2. Leaf filter
3. Plate and Frame Filter Press
4. Sedimentation Jar
5. Jaw Crusher
6. Ball Mill
7. Cyclone Separator
8. Roll Crusher
9. Elutriator
10. Drop Weight Crusher
11. Sieves.

GE6674 COMMUNICATION AND SOFT SKILLS- LABORATORY BASED

OBJECTIVES:
To enable learners to,
- Develop their communicative competence in English with specific reference to speaking and listening
- Enhance their ability to communicate effectively in interviews.
- Strengthen their prospects of success in competitive examinations.

UNIT I LISTENING AND SPEAKING SKILLS
Conversational skills (formal and informal)- group discussion- making effective presentations using computers, listening/watching interviews conversations, documentaries. Listening to lectures, discussions from TV/ Radio/ Podcast.

UNIT II READING AND WRITING SKILLS
Reading different genres of tests ranging from newspapers to creative writing. Writing job applications- cover letter- resume- emails- letters- memos- reports. Writing abstracts-summaries- interpreting visual texts.

UNIT III ENGLISH FOR NATIONAL AND INTERNATIONAL EXAMINATIONS AND PLACEMENTS
International English Language Testing System (IELTS) - Test of English as a Foreign Language (TOEFL) - Civil Service(Language related)- Verbal Ability.

UNIT IV INTERVIEW SKILLS
Different types of Interview format- answering questions- offering information- mock interviews-body language( paralinguistic features)- articulation of sounds- intonation.
UNIT V  SOFT SKILLS
Motivation- emotional intelligence-Multiple intelligences- emotional intelligence- managing changes-time management-stress management-leadership straits-team work- career planning - intercultural communication- creative and critical thinking

TOTAL: 60 PERIODS

Teaching Methods:
1. To be totally learner-centric with minimum teacher intervention as the course revolves around practice.
2. Suitable audio/video samples from Podcast/YouTube to be used for illustrative purposes.
3. Portfolio approach for writing to be followed. Learners are to be encouraged to blog, tweet, text and email employing appropriate language.
4. GD/Interview/Role Play/Debate could be conducted off the laboratory (in a regular classroom) but learners are to be exposed to telephonic interview and video conferencing.
5. Learners are to be assigned to read/write/listen/view materials outside the classroom as well for graining proficiency and better participation in the class.

Lab Infrastructure:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Description of Equipment (minimum configuration)</th>
<th>Qty Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Server</td>
<td>1 No.</td>
</tr>
<tr>
<td></td>
<td>• PIV System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 GB RAM / 40 GB HDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OS: Win 2000 server</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Audio card with headphones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• JRE 1.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Client Systems</td>
<td>60 Nos.</td>
</tr>
<tr>
<td></td>
<td>• PIII or above</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 256 or 512 MB RAM / 40 GB HDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OS: Win 2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Audio card with headphones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• JRE 1.3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Handicam</td>
<td>1 No.</td>
</tr>
<tr>
<td>4</td>
<td>Television 46”</td>
<td>1 No.</td>
</tr>
<tr>
<td>5</td>
<td>Collar mike</td>
<td>1 No.</td>
</tr>
<tr>
<td>6</td>
<td>Cordless mike</td>
<td>1 No.</td>
</tr>
<tr>
<td>7</td>
<td>Audio Mixer</td>
<td>1 No.</td>
</tr>
<tr>
<td>8</td>
<td>DVD recorder/player</td>
<td>1 No.</td>
</tr>
<tr>
<td>9</td>
<td>LCD Projector with MP3/CD/DVD provision for Audio/video facility</td>
<td>1 No.</td>
</tr>
</tbody>
</table>

Evaluation:

Internal: 20 marks
Record maintenance: Students should write a report on a regular basis on the activities conducted, focusing on the details such as the description of the activity, ideas emerged, learning outcomes and so on. At the end of the semester records can be evaluated out of 20 marks.

External: 80 marks
- Online Test - 35 marks
- Interview - 15 marks
- Presentation - 15 marks
- Group Discussion - 15 marks
Note on Internal and External Evaluation:
1. Interview – mock interview can be conducted on one-on-one basis.
2. Speaking – example for role play:
   a. Marketing engineer convincing a customer to buy his product.
   b. Telephonic conversation- fixing an official appointment / placing an order / enquiring and so on.
3. Presentation – should be extempore on simple topics.
4. Discussion – topics of different kinds; general topics, and case studies.

OUTCOMES:
At the end of the course, learners should be able to
- Take international examination such as IELTS and TOEFL
- Make presentations and Participate in Group Discussions.
- Successfully answer questions in interviews.

REFERENCES:
2. Graded Examinations in Spoken English and Spoken English for Work downloadable materials from Trinity College, London.
4. Interactive Multimedia Programs on Managing Time and Stress.

Web Sources:
http://www.slideshare.net/rohitjsh/presentation-on-group-discussion
http://www.washington.edu/doit/TeamN/present_tips.html
http://www.oxforddictionaries.com/words/writing-job-applications
http://www.kent.ac.uk/careers/cv/coveringletters.htm
http://www.mindtools.com/pages/article/newCDV_34.htm

EL6501 CORROSION SCIENCE AND ENGINEERING  L  T  P  C
3  0  0  3

OBJECTIVE:
To provide fundamental understanding on aspects of electrochemistry and materials science relevant to corrosion phenomena and Identify practices for the prevention and remediation of corrosion.

UNIT I BASIC ASPECTS OF CORROSION

UNIT II FORMS OF CORROSION
Definition, factors and control methods of various forms of corrosion : uniform, galvanic, pitting, inter granular, crevice, dezincification, stress corrosion, corrosion fatigue, hydrogen embrittlement.
UNIT III  ATOMSPHERIC CORROSION AND PROTECTIVE COATINGS  9

UNIT IV  IMMERSION CORROSION AND ELECTROCHEMICAL PROTECTION  9

UNIT V  CORROSION MONITORING  9
Laboratory corrosion tests, accelerated chemical tests for studying different forms of corrosion. Electrochemical methods of corrosion rate measurements by Gravimetric, Tafel polarization, linear polarization, cyclic polarization, impedance spectroscopy, harmonics and NDT techniques- ultrasonics, radiography eddy current.

TOTAL : 45 PERIODS

OUTCOME:
Upon completion of this course, the student would understand the causes of and the mechanisms of various types of corrosion, including uniform corrosion, galvanic corrosion, crevice corrosion, pitting corrosion, intergranular corrosion, and various modes of environmentally assisted cracking.

TEXT BOOKS:

REFERENCES:

EL6502  CHEMICAL PROCESS TECHNOLOGY  L  T  P  C
3    0    0    3

OBJECTIVE:
To impart knowledge on various aspects of production engineering and make the student understand the practical methods of production in a chemical factory.

UNIT I  SULFUR, SULFURIC ACID AND CEMENT  9
Sulfur, Raw materials Sources, Mining and production of Sulfur – Sulfuric acid, Methods of production of Sulfuric acid – Contact process – Chamber process. Cement – properties of Cement – Methods of production – Overall factors for Cement industry.
UNIT II  FERTILIZER INDUSTRY, FUEL AND INDUSTRIAL GASES


UNIT III  PULP, PAPER, SUGAR AND STARCH INDUSTRIES


UNIT IV  PETROLEUM AND PETRO CHEMICAL INDUSTRIES


UNIT V  RUBBERS, POLYMERS AND SYNTHETIC FIBRE


TOTAL: 45 PERIODS

OUTCOME:
At the end of this course, the student can classify the chemical process industry into industrial categories of base, intermediate end-products and specialty chemicals manufacturers.

TEXT BOOKS:

REFERENCES:
UNIT III  HUMIDIFICATION  9

UNIT IV  CRYSTALLISATION & DRYING  9

UNIT V  ADSORPTION & CHROMATOGRAPHY  9
Production chromatography.

OUTCOMES:
Students would apply the mass transfer concepts in the design of humidification columns, dryers and crystallisers.

TEXT BOOKS:

REFERENCES:

EL6505  INSTRUMENTAL METHODS OF ANALYSIS  L  T  P  C
3  0  0  3

OBJECTIVE:
To make the students understand the working principles of different types of instruments and their applications.

UNIT I  INTRODUCTION TO SPECTRAL METHODS  9

UNIT II  OPTICAL ABSORPTION SPECTROPHOTOMETRY  9
Ultraviolet and visible spectroscopy – sources – optical components and detectors – chemical applications. Infrared spectroscopy sources and detectors – FT techniques – regions of IR spectrum – chemical applications.
UNIT III  CHROMATOGRAPHY & THERMOMETRY 9

UNIT IV  X-RAY ATOMIC ABSORPTION SPECTROSCOPY AND OTHER SPECTROSCOPY TECHNIQUES 9

UNIT V  MICROSCOPY 9

TOTAL : 45 PERIODS

OUTCOME:
Upon completion of this course, the students would have knowledge about the Qualitative and quantitative instrument analysis of different materials.

TEXT BOOKS:

REFERENCES:

EL6503  ELECTRODICS AND ELECTROCATAOSIS 3 0 0 3

OBJECTIVE:
To impart necessary basic knowledge in order to understand, analyze and solve problems related to electrochemical processes.

UNIT I  ELECTRICAL DOUBLE LAYER 9
Thermodynamics of ideally polarizable and non-polarizable interfaces- Lipman equation-determination of interfacial tension, charge density, surface excess and double layer capacitance by electro capillary & bridge methods- Helmholtz, Gouy-Chapman and stern models of the double layer with discussion of potential and charge distribution inside the double layer-contact adsorption and its determination.
UNIT II  ELECTRODE KINETICS  9
Concepts of equilibrium potential, Nernst equation, overpotential and its different types, equilibrium exchange current density-derivation of Butler-Volmer equation –high field and low field approximations – charge transfer resistance and polarizability of the interface – concepts of rate determining step, Stoichiometric number, reaction order – Determination of kinetics parameters \( [i_0, k_s, \beta(\alpha)] \) by Tafel and linear polarization methods.

UNIT III  ELECTROCATALYSIS  9

UNIT IV  ELECTROCHEMICAL TECHNIQUES I  9
Ion selective electrodes – Principles of potentiometry and amperometry- determination of dissolved oxygen. Linear sweep voltammetry and cyclic voltammetry derivation of Randles-Sevciks equation – effect of sweep rate-analysis of cyclic voltammograms.

UNIT V  ELECTROCHEMICAL TECHNIQUES II  9
Potential step method (chronoamperometry) under diffusion control derivation of Cottrell equation for a planar and spherical electrode- significance of spherical diffusion – derivation of Ilkovic equation.- Chronopotentiometry and analysis of chronopotentiograms-derivation of beds equation for constant current input under linear diffusion- concepts of Faradaic impedance –derivation of kinetic parameters from impedance measurements – Nyquist and bode plots for simple redox reactions-principles of scanning probe techniques-STM-AFM and SECM – working principles of electrochemistry.

TOTAL : 45 PERIODS

OUTCOME:
Student will have the knowledge on electrical double layer, Electrocatalysis and different types of Electrochemical techniques.

TEXT BOOKS:

REFERENCES:

EL6504  ELECTROCHEMICAL REACTION ENGINEERING  L T P C
3 1 0 4

OBJECTIVES:
To familiarize in the aspects of current-voltage relationships & estimation of mass transfer coefficient, PFR & CSTR systems model
UNIT I CURRENT-VOLTAGE RELATIONSHIPS & ESTIMATION OF MASS TRANSFER CO-EFFICIENT

A general view of electrolytic processes; current-voltage relationships in electrolytic reactors; the limiting current plateau; mass & energy balance, and efficiency in electrochemical reactors. The estimation of mass transport coefficients at commonly occurring electrodes. The estimation of mass transport coefficients under enhanced convection conditions.

UNIT II PLUG FLOW & CSTER SYSTEMS MODEL

A general view of plug flow model of electrolytic reactors: plug flow model of electrochemical reactors employing parallel plate reactor; Plug flow model under constant mass flux conditions; PFM analysis with electrolyte recycling PFM and real electrochemical reactors. General view of simple CSTER systems; CSTER in cascades; CSTER analysis of batch electrochemical reactors, CSTER analysis of semi-continuous electrochemical reactors; CSTER analysis of electrolyte recycling; Batch reactor combined with electrolyte recycling.

UNIT III THERMAL BEHAVIOR OF REACTORS

General aspects of thermal behavior in electrochemical reactor. Thermal behavior under CSTER conditions. The estimation of heat losses; the thermal behavior under PFR conditions; Thermal behavior of batch electrochemical reactors.

UNIT IV CONVECTIVE DIFFUSION EQUATION & CURRENT DISTRIBUTION


UNIT V DISPERSION MODELS & OPTIMIZATION OF ELECTROCHEMICAL REACTOR


TOTAL (L:45 + T:15) :60 PERIODS

OUTCOMES:
The students will have a practical ability to analyze electrochemical design models, thermal behavior of reactors and electrochemical reactors.

TEXT BOOK:

REFERENCE:
EL6511 CHEMICAL REACTION ENGINEERING LABORATORY

OBJECTIVES:
To make the students experimentally determine the kinetic constant of a given reaction, parameters of non-ideal flow models, conversion in a batch reactor, tubular reactor and mixed flow reactor and compare with the theoretically predicted conversions.

LIST OF EXPERIMENTS
1. Batch reactor
2. Semi-batch reactor
3. Mixed flow reactor
4. Plug flow reactor
5. Heterogeneous catalytic reactor
6. Batch recirculation reactor
7. Electrochemical reactor
8. Residence time distribution studies in PFR & CSTR by step response
9. Residence time distribution Studies in PFR & CSTR by pulse response
10. Multiple reactors

TOTAL: 45 PERIODS

OUTCOME:
Students would develop sound working knowledge on different types of reactors.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Batch Reactor
2. Plug flow reactor
3. CSTR
4. Sono-chemical reactor
5. Photochemical reactor
6. Packed bed reactor

*Minimum 10 experiments shall be offered.

REFERENCE:
1. Laboratory Manual prepared by Faculty

PC6612 HEAT AND MASS TRANSFER LABORATORY

(Any Ten experiments)

OBJECTIVES:
Enable the students to develop a sound working knowledge on different types of heat transfer equipments and mass transfer equipments.

LIST OF EXPERIMENTS
1. Transient state heat conduction
2. Solvent extraction
3. Batch drying
4. Temperature profile of a rod
5. Natural convection
6. Thermal conductivity of composite wall
7. Emissivity measurement
8. Measurement of diffusion coefficient
9. Simple distillation
10. Leaching
11. Adsorption
12. Double pipe heat exchanger

OUTCOME:
Student would be able to calculate heat transfer by conduction, different types of convection using classical models for these phenomena. Students would demonstrate knowledge on the determination of important data for the design and operation of the process equipment’s like distillation, extraction, diffusivity, drying principles which are having wide applications in various industries.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Data Loger
2. Heat Exchanger
3. Condenser
4. Thermal conductivity measurement apparatus
5. Soxlet Extractor
6. Rotating Disc Contactor
7. Controllers of Temperature
8. Convection Apparatus
9. Emissivity measurement apparatus
10. Distillation Apparatus
11. Double pipe heat exchanger
12. Diffusion Apparatus

REFERENCE:
1. Laboratory Manual prepared by Faculty

EL6513	 ELECTROCHEMICAL REACTION ENGINEERING
LABORATORY

OBJECTIVE:
To make the students to experimentally determine the kinetic constant and conversion of a given electrochemical, reaction in a batch reactor, tubular reactor and mixed flow reactor and compare with the theoretically predicted conversions

LIST OF EXPERIMENTS
1. Electrochemical batch reactor-constant current operation.
2. Factorial design for investigating the current efficiency of copper deposition.
3. Monopolar and bipolar cells.
4. Electrochemical batch reactor – Constant current operations for Copper/Titanium/Stainless steel electrode.
5. Electrochemical batch reactor - constant potential operation.
6. Continuous flow stirred tank electrochemical reactor (CSTER)
7. Axial flow electrochemical reactor (PFER) – Single out let
8. Packed bed reactor-flow through configuration - (Glass beads)
9. Packed bed reactor – Flow through configuration (Copper bed)
10. Axial flow electrochemical Reactor – Three out lets (PFER)

TOTAL: 45 PERIODS
OUTCOMES:
Students would develop a sound working knowledge of electrochemical reaction on different types of reactors

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Electrochemical batch reactor
2. Chemical Bath
3. CSTER
4. PFER
5. Packed bed reactor
6. Axial flow electrochemical Reactor

REFERENCE:
1. Laboratory Manual prepared by Faculty

EL6601 ELECTROCHEMICAL MATERIALS SCIENCE  L T P C
3 0 0 3

OBJECTIVE:
This course will give an introduction to basic electrochemistry, principles of electrochemical devices, electroactive materials used in such devices, and case studies of batteries and sensors.

UNIT I FUNDAMENTALS OF SEMICONDUCTORS
Semiconductors, n-type and p-type semiconductors, conductivity of semiconductors (no derivation of equations only formulae), applications of semiconductors, photoconductivity, photoconducting materials, electronic transitions in photoconductors, trapping and recombination, general mechanism of photoconductivity, life-time of majority carriers, preparation of CdS photoconductors by the sintering technique, ohmic contacts, fabrication of photo conductive cells and their applications.

UNIT II METHODS OF PREPARATION
Thin films of semiconductors, methods of preparation, vacuum evaporation, sputtering, molecular beam epitaxy, hot wall epitaxy, chemical bath deposition, spray pyrolysis, electrodeposition, liquid phase epitaxy, chemical vapour deposition, structural, electrical and optical characterization, mechanical properties of thin films, effect of grain boundaries.

UNIT III BASICS OF PHOTOVOLTAICS
Basics of photovoltaics (no derivation for (i) minority carrier lifetime (ii) continuity equations and (iii) p-n junction equation or dark characteristics of a diode(iv) photovoltaic effect equation (v) total photocurrent generation in pn solar cell), homo and heterojunctions, preparation of single crystal and polycrystalline silicon solar cells, Metal-Insulator-Metal and semiconductors – Insulator – semiconductors solar cells, photovoltaic measurements, I-V characteristics, spectral response and capacitance measurements.

UNIT IV SOLAR CELLS & PHOTO ELECTROCHEMICAL (PEC) CELLS
Preparation of CdS/Cu2S solar cells, amorphous Si solar cells, GaAs solar cells and their characteristics. Semiconductor- electrolyte interface. Photo-electrochemical cells for conversion of light energy to electrical energy. PEC cells based on CdSe, Si and GaAs and their output characteristics. Estimation of flat band potential from Mott-Schottky plots.
UNIT V  BIOMATERIALS


TOTAL : 45 PERIODS

OUTCOME:
At the end of this course, the student would know integration of electrochemical principles and materials science for application in modern electrochemical devices

TEXT BOOKS:

REFERENCES:

CH6653  MASS TRANSFER - II  L  T  P  C

OBJECTIVE:
To provide introduction to physical and thermodynamic principles of mass transfer with an emphasis on how these principles affect the design of equipment and result in specific requirements for quality and capacity.

UNIT I  GAS ABSORPTION

UNIT II  DISTILLATION

UNIT III  CONTINUOUS FRACTIONATION
Continuous fractionation of binary systems. Reflux. Minimum reflux, total reflux and optimum reflux. Number of plates and minimum number of plates. Design calculations based on McCabe – Theile and Ponchon – Savarit methods.

UNIT IV  LEACHING AND EXTRACTION
Leaching and extraction. Solid-liquid extraction. Liquid-liquid extraction. Batch and continuous extraction. Extraction equipments. Design of extractors. Calculation of number of stages in extraction and leaching.
UNIT V  MEMBRANE SEPARATION PROCESSES  9

OUTCOMES:
Students would have learnt to design absorber and stripper, distillation column, extraction and leaching equipments and adsorber.

TEXT BOOKS:

REFERENCES:

EL6602  INDUSTRIAL METAL FINISHING  L T P C
3 0 0 3

OBJECTIVE:
To enable the students
- To differentiate between the electroplating and anodizing process and
- To compare the various engineering aspects and electroplating process.

UNIT I  ELECTROPLATING OF METALS  9
Fundamental principles – Faradays laws, mechanism of deposition, surface preparation for electroplating, electroplating of copper, nickel, chromium, zinc, tin and precious metals (gold and silver)

UNIT II  EVALUATION & TESTING  9

UNIT III  ELECTROPLATING OF ALLOYS AND OTHER PLATING METHODS  9
Principles of alloy deposition, barrel finishing and plating, electroforming of copper and nickel, electroless deposition of copper and nickel, brush plating, continuous plating, PCB plating.

UNIT IV  ENGINEERING ASPECTS  9
Equipment selection, rectifier, pre-treatment equipment-mechanical - chemical, automation, flooring, materials for tanks and linings, ventilation, bus bar, filtration and purification, agitation, heating and cooling arrangement for electrolytes.
UNIT V  ANODIZING

Anodizing of aluminium, principles, pre-treatment, jigging. Sulphuric acid process, operating conditions for decorative and protective anodizing, effect of impurities, analysis for free acid and aluminium content, chromic acid process, operating conditions, effect of impurities, coloring of anodized aluminium with organic dyes. Sealing in hot water and dichromate solution. Testing of anodic film thickness by Eddy current method and stripping method, coating weight – coating ratio.

TOTAL : 45 PERIODS

OUTCOME:
Upon completion of this course, the students will understand the importance and applications of electroplating techniques and anodizing concepts.

TEXT BOOKS:

REFERENCES:

EL6603  INSTRUMENTATION

OBJECTIVE:
To enable the students to get knowledge on how to measure process variables, analytical instrumentation, automatic process controls.

UNIT I  MEASUREMENTS AND MEASUREMENT SYSTEMS

UNIT II  OPERATIONAL AMPLIFIER/SIGNAL CONDITIONING UNIT

UNIT III  INSTRUMENT CONTROL UNIT AND INPUT/OUTPUT UNIT
UNIT IV PROCESS INSTRUMENTATION
Process control principles and system elements - Pressure measurement using bellows and LVDT – Electrical conductivity measurement of solution – pH measurement using glass electrodes – temperature measurement – monitoring and control (RTD, Thermister and Thermocouple only).

UNIT V ELECTROCHEMICAL INSTRUMENTATION
Basic configuration and applications of constant voltage and anodic stripping voltammetry, potentiostat, galvanostat and zero resistance ammeter - computer/microprocessor based instruments, battery life cycle testing – computerized (SCADA) supervisory control systems for anodic / cathodic protection of steel structure.

TOTAL : 45 PERIODS

OUTCOME:
The students would have knowledge on control equipments used to control the production process of a chemical factory and the mechanism of control through automation and computers.

TEXT BOOKS:
4. Ramesh S Gaonkar, “Microprocessor Architecture, programming and applications with 8085” Printice Hall of India, New Delhi, 2002. (Unit III)

REFERENCES:

EL6604 ELECTROCHEMICAL PROCESS TECHNOLOGY

OBJECTIVE:
To provide an adequate mastery in the principles involved in the electrochemical process and its applications.

UNIT I ELECTRODES AND SEPARATORS
Electrodes and separators for the electrolytic production of chemicals – preparation, characteristics and applications of graphite, magnetite, lead dioxide coated anodes, noble metal coated anodes, noble metal oxide coated anodes, spinal anodes, Perovskite platinum and nickel anodes, steel cathodes, coated cathodes, diaphragms and ion exchange membranes.

UNIT II ELECTROLYTIC PRODUCTION OF IN-ORGANIC CHEMICALS
Electrolytic production of sodium hypochlorite, sodium and potassium chlorates, bromates and iodates. Sodium, potassium and ammonium perchlorates, perchloric acid. Potassium, and ammonium persulphates, hydrogen peroxide, potassium permanganate, cuprous oxide and manganese dioxide – Basic principles, reaction mechanisms, effect of operating variables, cell design and operating characteristics of industrial cells.
UNIT III  ELECTRO ORGANIC CHEMISTRY AND ELECTRODIALYSIS  9
Production of hydrogen by water electrolysis. Electrodialysis and its application to desalination of water electrolysis and waste recovery. Basic principles of Electro organic chemistry, constant current electrolysis, controlled potential electrolysis, material yield, current efficiency, selectivity and energy consumption for electro organic synthesis. Paired synthesis with example.

UNIT IV  ELECTROCHEMICAL REDUCTION AND OXIDATION OF FUNCTIONAL GROUPS  9

UNIT V  ELECTRO POLYMERIZATION AND ELECTRO ORGANIC PROCESSES  9

TOTAL : 45 PERIODS

OUTCOME:
Students would have knowledge on basic electrochemical concepts, electrodes and electrodialysis and electropolymerization.

TEXT BOOKS:

REFERENCES:

EL6605  PROCESS DYNAMICS AND CONTROL  L T P C
3 1 0 4

OBJECTIVE:
To introduce open and closed loop systems and its responses, control loop components and stability of control systems along with instrumentation.

UNIT I  INSTRUMENTATION  9
Principles of measurements and classification of process instruments, measurement of temperature, pressure, fluid flow, liquid weight and weight flow rate, viscosity, pH, concentration, electrical and thermal conductivity, humidity of gases.
UNIT II  OPEN LOOP SYSTEMS
Laplace transformation and its application in process control. First order systems and their transient response for standard input functions, first order systems in series, linearization and its application in process control, second order systems and their dynamics; transportation lag.

UNIT III  CLOSED LOOP SYSTEMS
Closed loop control systems, development of block diagram for feed-back control systems, servo and regulatory problems, transfer function for controllers and final control element, principles of pneumatic and electronic controllers, transient response of closed-loop control systems and their stability.

UNIT IV  FREQUENCY RESPONSE
Introduction to frequency response of closed-loop systems, control system design by frequency response techniques, Bode diagram, stability criterion, tuning of controllers Z-N tuning rules, C-C tuning rules.

UNIT V  ADVANCED CONTROL SYSTEMS
Introduction to advanced control systems, cascade control, feed forward control, Smith predictor, control of distillation towers and heat exchangers, introduction to computer control of chemical processes.

TOTAL (L : 45 + T : 15) : 60 PERIODS

OUTCOME:
Upon completion of this course, the students will understand and discuss the importance of process control in process operation and the role of process control engineers. They also understand and design the modern hardware and instrumentation needed to implement process control.

TEXT BOOKS:

REFERENCES:

EL6611  EQUIPMENT DESIGN
(All Tables/Chemical Engineers’ Handbook/Data Books are permitted during the Examination.)

OBJECTIVE:
To develop skill to design and install process equipments used widely in a chemical industry.

UNIT I
Fundamental principles, equations, general design and drawing considerations of cooling towers, evaporators and driers.
UNIT II
Heat exchangers, condensers and reboilers.

UNIT III
Distillation columns- sieve tray, and bubble cap tray columns and packed column.

UNIT IV
Equipments for absorption and adsorption of gases.

UNIT V
Equipments for liquid-liquid extraction and solid-liquid extraction.

OUTCOME:
Students would gain knowledge to develop key concepts and techniques to design the process equipment in a process plant. These key concepts would be utilized to make design and operating decisions.

TEXT BOOKS:

REFERENCES:

EL6612 COMPUTER APPLICATIONS IN CHEMICAL ENGINEERING LABORATORY (Any Ten experiments)

OBJECTIVES:
To train the students in application of computers for chemical engineering processes

LIST OF EXPERIMENTS
1. Introduction to computer applications and introduction to Excel and Matlab
2. Introduction to Aspen
3. Equations of state
4. Vapor-Liquid Equilibrium
5. Chemical reaction Equilibrium
6. Mass balances with recycle streams
7. Simulation of Mass transfer equipment
8. Process simulations
9. Introduction to Comsol
10. Chemical Reactors
11. Transport processes in one dimension
12. Fluid flow in two and three dimensions
13. Convective diffusion equation in two and three dimensions

TOTAL: 45 PERIODS
OUTCOMES:
Upon completion of this programme, the students would be able to apply computer programming for chemical engineering processes.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Mat Lab Software
2. ASPEN software
3. COMSOL software
4. CFD software

TEXT BOOK:
1. B. A. Finlayson, “Introduction to Chemical Engineering Computing”, Wiley India, New Delhi, 2006

REFERENCES:

**EL6613 CORROSION AND METAL FINISHING LABORATORY**

**OBJECTIVE:**
To train the students to understand the techniques to measure the corrosion rate and hands-on experience in metal finishing.

**LIST OF EXPERIMENTS**

**CORROSION**
1. Determination of efficiency of the given inhibitor by gravimetric method
2. Efficiency of cathodic protection by impressed current method
3. Determination of anode efficiency in sacrificial anode system
4. Standard Test Methods for specific gravity of pigments (3 pigments)
5. Determination of corrosion rate by galvanostatic polarization method [Tafel and linear Polarization methods]

**METAL FINISHING**
(Any Five experiments)
1. Anodizing of Aluminium
2. Electroforming of Metal Foil
3. Hull Cell Studies in Electroplating Bath
4. Throwing Power Studies in Electroplating Bath
5. Nickel Plating & Analysis of nickel plating solution
6. Electrophoretic deposition
7. Electroless Plating

**OUTCOMES:**
Students would have knowledge on the determination of corrosion rate and techniques for metal finishing
LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Electroplating Bath
2. Hull Cell Electroplating Bath
3. Sacrificial anode system
4. Rectifier
5. Galvanostatic polarization apparatus

REFERENCE:
1. Laboratory Manual prepared by Faculty.

CH6751 PROCESS MODELING AND SIMULATION

OBJECTIVE:
To give an overview of various methods of process modeling, different computational techniques for simulation.

UNIT I INTRODUCTION
Introduction to modeling and simulation, classification of mathematical models, conservation equations and auxiliary relations.

UNIT II STEADY STATE LUMPED SYSTEMS
Degree of freedom analysis, single and network of process units, systems yielding linear and non-linear algebraic equations, flow sheeting – sequential modular and equation oriented approach, tearing, partitioning and precedence ordering, solution of linear and non-linear algebraic equations.

UNIT III UNSTEADY STATE LUMPED SYSTEMS
Analysis of liquid level tank, gravity flow tank, jacketed stirred tank heater, reactors, flash and distillation column, solution of ODE initial value problems, matrix differential equations, simulation of closed loop systems.

UNIT IV STEADY STATE DISTRIBUTED SYSTEM
Analysis of compressible flow, heat exchanger, packed columns, plug flow reactor, solution of ODE boundary value problems.

UNIT V UNSTEADY STATE DISTRIBUTED SYSTEM & OTHER MODELLING APPROACHES

TOTAL : 45 PERIODS

OUTCOME:
Student should have understood development of process models based on conservation principles and process data.

TEXT BOOKS:
REFERENCES:

EL6701   PROCESS SYNTHESIS AND DESIGN   L  T  P  C

            3  0  0  3

OBJECTIVE:
To enable the students to understand the process creation, heuristics and economics. To give exposure in the process scheduling, optimization and plant wide control.

UNIT I    PROCESS CREATION, HEURISTICS AND ECONOMICS
Introduction to process design and process creation, role of process simulation in design, heuristics for process synthesis, introduction to process intensification, cost accounting and capital cost estimation, annual costs, earning and profitability analysis

UNIT II   HEAT AND POWER INTEGRATION, SEPARATION TRAIN SYNTHESIS
Minimum utility targets, networks for maximum energy recovery, minimum number of heat exchangers, threshold and optimal approach temperature, superstructure for minimization of annual costs, multiple utilities and heat-integrated distillation trains, heat engines and heat pumps, Criteria for selection of separation methods, Sequencying of ordinary distillation columns for separation of nearly ideal and non-ideal fluid mixtures, Separation systems for gas mixtures, Separation sequencing for solid-fluid systems

UNIT III  ALGORITHMIC METHODS
Reactor design and reactor network synthesis, Principles of attainable regions, Locating the separation section with respect to the reactor section, Tradeoffs in processes involving recycle, Optimal reactor conversion, Recycle to extinction, Snowball effect and control of processes involving recycle

UNIT IV   DESIGN, EQUIPMENT SIZING AND OPTIMIZATION
Review of heat exchanger design, heat transfer coefficients and pressure drop, Design of Shell-Tube heat exchanger, Overview of separation tower design Fenske-Underwood-Gilliland Shortcut method for ordinary distillation, Kemser method for absorption and stripping, Plate efficiency and HETP, Tower diameter, Pressure drop and Weeping, Design of pumps, compressors and expanders

UNIT V    PROCESS SCHEDULING, OPTIMIZATION, PLANTWIDE CONTROL
Optimal design and scheduling of batch processes, Design of reactor-Separator Processes, Design of single and multiproduct processing sequence, general formulation and classification of the process optimization problem, Linear and non-linear programming with a single variable, Conditions for Non-linear programming by gradient methods with two or more design variables, Introduction to optimization algorithm, Introduction to plant-wide control.

TOTAL: 45 PERIODS
OUTCOMES:
Students should have learnt the process synthesis, algorithm methods and able to design the chemical process.

TEXT BOOK:
1. W. D. Seider, J. D. Seader and D. R. Lewin, “Product and process design principles”, 3rd edition, Wiley - India, New Delhi, 2005

REFERENCES:

GE6351 ENVIRONMENTAL SCIENCE AND ENGINEERING

OBJECTIVES:
To the study of nature and the facts about environment.
- To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth’s interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY
Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards, Biological hazards in the environment – concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers-Oxygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds
Field study of simple ecosystems – pond, river, hill slopes, etc.
UNIT II  ENVIRONMENTAL POLLUTION  10
Definition – causes, effects and control measures of: (a) Air pollution (Atmospheric chemistry- Chemical composition of the atmosphere; Chemical and photochemical reactions in the atmosphere - formation of smog, PAN, acid rain, oxygen and ozone chemistry; Mitigation procedures- Control of particulate and gaseous emission, Control of SO₂, NOₓ, CO and HC) (b) Water pollution : Physical and chemical properties of terrestrial and marine water and their environmental significance; Water quality parameters – physical, chemical and biological; absorption of heavy metals - Water treatment processes. (c) Soil pollution - soil waste management: causes, effects and control measures of municipal solid wastes – (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards– role of an individual in prevention of pollution – pollution case studies – Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III  NATURAL RESOURCES  10
resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaerobic digestion; case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Introduction to Environmental Biochemistry: Proteins –Biochemical degradation of pollutants, Bioconversion of pollutants. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT IV  SOCIAL ISSUES AND THE ENVIRONMENT  7

UNIT V  HUMAN POPULATION AND THE ENVIRONMENT  6

TOTAL : 45 PERIODS
OUTCOMES:
Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.
- Public awareness of environmental is at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions
- Development and improvement in std. of living has lead to serious environmental disasters

TEXT BOOKS:

REFERENCES:

EL6703 TRANSPORT PHENOMENA

OBJECTIVE:
To impart knowledge on different types of fluids, their flow characteristics and different mathematical models; enable the students to apply to actual situations.

UNIT I MOMENTUM TRANSPORT

UNIT II MOMENTUM TRANSFER
Flow of fluids in thin films, parallel plates, circular tubes and annulus, adjacent flow of two immiscible fluids, couette flow, rotating surface flow and radial flow. Flow near a wall suddenly set in motion.

UNIT III ENERGY TRANSPORT
Basic energy transport equations – derivations using elementary volume concept and conservation theorems in different co-ordinate systems. Dimensional analysis of equations of change. Analysis of energy transport using shell balance technique and basic transport equations – types of boundary conditions.
UNIT IV HEAT TRANSFER
Conductions with energy sources in fixed bed catalytic reactors and in cooling fins. Forced convection in circular tubes – natural convection from a heated plate. Unsteady state conduction of finite slab.

UNIT V MASS TRANSPORT
Continuity equation for a binary mixture and its derivation. Dimensional analysis of equations of change. Analysis of mass transport using shell balance technique and types of boundary conditions. Steady and unsteady state one dimensional diffusion, diffusion in porous catalyst with and without chemical reaction and diffusion in falling liquid film.

TOTAL : 45 PERIODS

OUTCOME:
Upon completion of this course, the students would have knowledge of fundamental connections between the conservation laws in heat, mass, and momentum in terms of vector and tensor fluxes.

TEXT BOOKS:

REFERENCES:

EL6702 ELECTROMETALLURGY AND THERMICS L T P C
3 0 0 3

OBJECTIVE:
This course aims to provide the basics of hydrometallurgy and electrometallurgy techniques that are used in the processing of minerals

UNIT I INTRODUCTION
Metallurgical industries in India with special reference to electrometallurgical industries. Preparation of cell feed for copper, zinc, aluminium, magnesium and electrolytic cells. Principles of solvent extraction/ ion exchange for the recovery of metallic values. Pollution and control measures adopted/recom. mended in electrometallurgical Industries like Al, Cr.

UNIT II ELECTROCHEMICAL PRINCIPLES
Cell voltage and its components- types of anodes and cathodes-necessity of diaphragms. Physicochemical properties of molten & aqueous electrolytes like conductivity, decomposition potential, density etc. Current and energy efficiency- features of aqueous and molten salt electrolysis distinction between electro winning and refining. Anode effect.

UNIT III AQUEOUS SYSTEM
UNIT IV  
MOLTEN SALT ELECTROLYSIS  
9  

UNIT V  
THERMICS  
9  
Modes of electrical heating. Design criteria of arc furnaces. Description of furnaces used and the process for production of calcium carbide. Calcium silicide, Calcium cyanamide, fused alumina, ferroalloys, phosphorous, graphite and Silicon carbide.

OUTCOME:
Upon completion of this course, the students would understand the electrometallurgy techniques that are used in the various Industries.

TEXT BOOKS:

REFERENCES:

EL6711  
BATTERIES AND ELECTROCHEMICAL MATERIALS  
SCIENCE LABORATORY  
L T P C 0 0 3 2  

OBJECTIVES:
To enable the students understand the techniques to measure the battery characteristic and photo-conductive cells.

LIST OF EXPERIMENTS
BATTERIES
1. Porosity determination of unformed and formed positive and negative plates by theoretical and experimental methods.
3. Characteristics of lead acid cell/battery during constant current discharge
4. Characteristics of lead acid cell/battery during constant current charge
5. Measurement of internal resistance of a lead acid cell/battery by d.c voltage drop method and graphical methods.
ELECTROCHEMICAL MATERIAL SCIENCE
(Any Five experiments)
1. Chemical deposition of lead sulphide films and determining the thickness of the films deposited.
2. Current voltage characteristics of the given photo-conductive cell in darkness as well as in light and estimation of photosensitivity.
3. Intensity-photocurrent characteristics of the given photoconductive cell for different bias voltage conditions.
4. Power characteristics of the given silicon at specified intensities.
5. Estimation of the diode parameters of a silicon solar cell.
6. Preparation of semiconducting thin films by the electrochemical route and find the growth rate of thickness for different time intervals.
7. Power Characteristics of Photoelectrochemical cell

DEMONSTRATION
1. Mott-Schottky plot from capacitance measurements and estimation of the flat-band potential and carrier concentration (Demonstration)
2. Preparation of thin films by physical vapor deposition methods (Electron Beam Evaporation and Pulsed Laser Deposition) [Demonstration]  

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this practical course, the students will have in-depth knowledge on characterization of batteries.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Water Inhibition Apparatus
2. Rectifier
3. Constant current discharge apparatus
4. Constant current charge apparatus
5. Chemical bath deposition apparatus
6. Photo-conductivity meter
7. Solar cell apparatus
8. Photo electrochemical cell

REFERENCE:
1. Laboratory Manual prepared by Faculty.

EL6712 ELECTROCHEMICALS AND ELECTRO METALLURGY
LABORATORY

OBJECTIVES:
To train the students on methodology of the preparation of electrochemicals.

LIST OF EXPERIMENTS
ELECTROCHEMICALS
(Any Five experiments)
1. Potassium chlorate from potassium chloride
2. Sodium perchlorate from sodium chlorate
3. Sodium hypochlorite from sodium chloride
4. Calcium gluconate from glucose
5. Succinic acid from maleic acid
6. Manganic sulphate from manganous sulphate
ELECTROTHERMICS
(Any Five experiments)
7. Electro winning of zinc.
8. Determination of etching rate of copper in acidic/ammonical medium.
10. Determination of decomposition potential for electrodeposition of copper
11. Stripping and extraction efficiency of D2EHPA for zinc ion.
12. Recovery of metals by ion exchange resins.

TOTAL: 45 PERIODS

OUTCOMES:
Students would have knowledge on the preparation of electrochemicals and electrometallurgy techniques that are used in the various industries.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
1. Ion exchange apparatus
2. Electrochemical bath
3. Membrane Cell
4. Electrolytic Cell
5. Etching apparatus
6. Hull Cell
7. Packed bed resin column

REFERENCE:
1. Laboratory Manual prepared by Faculty.

EL6713 PROCESS DYNAMICS AND CONTROL
LABORATORY

OBJECTIVE:
To train the students to determine experimentally the methods of controlling the processes including measurements using process simulation techniques.

LIST OF EXPERIMENTS
1. Response of first order system
2. Response of second order system
3. Response of Non-Interacting level System
4. Response of Interacting level System
5. Open loop study on a thermal system
6. Closed loop study on a level system
7. Closed loop study on a flow system
8. Closed loop study on a thermal system
9. Tuning of a level system
10. Tuning of a pressure system
11. Tuning of a thermal system
12. Flow co-efficient of control valves
13. Characteristics of different types of control valves
14. Closed loop study on a pressure system
15. Tuning of pressure system
16. Closed loop response of cascade control system

*Minimum 10 experiments shall be Offered.

TOTAL: 45 PERIODS
OUTCOMES:
Upon completion of this practical course, the students would know development and use of right type of control dynamics for process control under different operative conditions.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS:
1. U tube manometer with controller
2. Interacting Tank
3. Non Interacting Tank
4. Open loop control system
5. Closed loop control system
6. ON/OFF controller
7. Control valve characteristics
8. Pressure Tuner
9. Temperature Tuner
10. Proportional Controller
11. Flow Transmitter
12. Level Transmitter
13. Cascade control system

EL6801 ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE
L T P C
3 0 0 3

OBJECTIVES:
To enable the students to gain the knowledge of principle and applications of batteries and fuel cells.

UNIT I FUNDAMENTALS
EMF, reversible and irreversible cells, free energy, effect of cell temperature, thermodynamic calculation of the capacity of a battery, calculations of energy density of cells.

UNIT II FACTORS AFFECTING BATTERY PERFORMANCE
Factors affecting battery capacity, voltage level, current drain of discharge, types of discharge: continuous, intermittent, constant current, constant load, constant power, service life, voltage regulation, charging methods, battery age & storage condition.

UNIT III STORAGE BATTERIES
Principle, design, construction, performance characteristics, advantage and disadvantages. Primary batteries - Zn-MnO₂ carbon-zinc, carbon-zinc chlorides, and zinc-silver oxide. Secondary batteries – lead-acid, nickel-cadmium, nickel-metal hydride, silver oxide-zinc system, lithium-ion, lithium- polymer. Batteries for electric vehicle applications, Micro batteries.

UNIT IV TESTING & EVALUATION
UNIT V  FUEL CELLS & SUPER CAPACITOR


TOTAL : 45 PERIODS

OUTCOMES:
Upon completion of this course, the students would know designing of batteries and fuel cells for various applications.

TEXT BOOKS:

REFERENCES:

EL6802  SURFACE SCIENCE

OBJECTIVE:
To enable the students to analyze properties of a surfaces and correlate them to structure, chemistry, and physics and surface modification technique.

UNIT I  SURFACE STRUCTURE AND EXPERIMENTAL PROBES
Relevance of surface science to Chemical and Electrochemical Engineering, Heterogeneous Catalysis and Nanoscience; Surface structure and reconstructions, absorbate structure, Band and Vibrational structure, Importance of UHV techniques, Electronic probes and molecular beams, Scanning probes and diffraction, Qualitative introduction to electronic and vibrational spectroscopy

UNIT II  ADSORPTION, DYNAMICS, THERMODYNAMICS AND KINETICS AT SURFACES
Interactions at the surface, Physisorption, Chemisorption, Diffusion, dynamics and reactions of atoms/molecules on surfaces, Generic reaction mechanism on surfaces, Adsorption isotherms, Kinetics of adsorption, Use of temperature desorption methods

UNIT III  LIQUID INTERFACES
Structure and Thermodynamics of liquid-solid interface, Self-assembled monolayers, Electrified interfaces, Charge transfer at the liquid-solid interfaces, Photoelectrochemical processes, Gratzel cells

UNIT IV  HETEROGENEOUS CATALYSIS
Characterization of heterogeneous catalytic processes, Microscopic kinetics to catalysis, Overview of important heterogeneous catalytic processes: Haber-Bosch, Fishcher-Tropsch and Automotive catalysis, Role of promoters and poisons, Bimetallic surfaces, surface functionalization and clusters in catalysis, Role of Sabatier principle in catalyst design, Rate oscillations and spatiotemporal pattern formation
UNIT V  
EPITAXIAL GROWTH AND NANO SURFACE-STRUCTURES  

TOTAL : 45 PERIODS

OUTCOMES:
Upon completion of this course, the students can understand, predict and design surface properties based on surface structure. Students would understand the physics and chemistry behind surface phenomena.

TEXT BOOK:

REFERENCE:

EL6811  
PROJECT WORK AND VIVA VOCE  
L  T  P  C  
0  0  12  6

PROJECT REPORT
Each student is required to submit a project report on the research/design and development of Industrial plant selecting the best process with optimum equipment sizes and operating conditions. The project report will be treated as test of ability of the student to tackle a practical problem in the same way as might be expected of him if he were required to report as an Electrochemical Engineer on a new manufacturing proposal.

VIVA – VOCE
The objective of the viva-voce examination is to test the performance of a student for his attainment for the profession of an Electrochemical Engineer.

CH6018  
PROCESS PLANT UTILITIES  
L  T  P  C  
3  0  0  3

OBJECTIVE:
To enable the students to understand the process plant utilities and optimization techniques to optimize various parameters in chemical industries.

UNIT I  
IMPORTANCE OF UTILITIES  
Hard and Soft water, Requisites of Industrial Water and its uses. Methods of water Treatment such as Chemical Softening and Demineralization, Resins used for Water Softening and Reverse Osmosis. Effects of impure Boiler Feed Water.

UNIT II  
STEAM AND STEAM GENERATION  
Properties of Steam, problems based on Steam, Types of Steam Generator such as Solid Fuel Fired Boiler, Waste Gas Fired Boiler and Fluidized Bed Boiler. Scaling and Trouble Shooting. Steam Traps and Accessories.
UNIT III REFRIGERATION
Refrigeration Cycles, Methods of Refrigeration used in Industry and Different Types of Refrigerants such as Monochlorodifluoro Methane, Chlorofluoro Carbons and Brins. Refrigerating Effects and Liquefaction Processes.

UNIT IV COMpressed AIR

UNIT V FUEL AND WASTE DISPOSAL

TOTAL: 45 PERIODS

OUTCOMES:
At the end of this course, the students will understand the importance of health, safety and the environment in process industries. Steam, power, water, air are extensively used in process industries and their efficient operation is imperative for economic and safe operation is essential for the survival of industries

TEXT BOOKS:

REFERENCE:

EL6001 OPTIMIZATION OF CHEMICAL PROCESSES

OBJECTIVE:
To acquaint the student with the concepts and techniques of single and multivariable optimization techniques using numerical search and analytical methods

UNIT I INTRODUCTION
Introduction to optimization; applications of optimization in chemical engineering; classification of optimization problems.

UNIT II SINGLE VARIABLE OPTIMIZATION
Necessary and sufficient conditions for optimum; region elimination methods; interpolation methods; direct root methods.

UNIT III MULTIVARIABLE OPTIMIZATION WITHOUT AND WITH CONSTRAINTS
Necessary and sufficient conditions for optimum; direct search methods; indirect search methods.
UNIT IV OTHER OPTIMIZATION METHODS
Introduction to geometric, dynamic and integer programming and genetic algorithms.

UNIT V APPLICATIONS OF OPTIMIZATION
Formulation of objective functions; fitting models to data; applications in fluid mechanics, heat transfer, mass transfer, reaction engineering, equipment design, resource allocation and inventory control.

OUTCOME:
At the end of the course, the students will be able to optimize the problems related to design, planning and operations involved in a chemical industry

TEXT BOOKS:

EL6002 ADVANCED ELECTROCHEMICAL REACTION ENGINEERING

OBJECTIVE:
To make the students learn the kinetics of electrochemical engineering

UNIT I FUNDAMENTALS OF ELECTROCHEMICAL REACTION KINETICS
Fundamentals of reaction kinetics, rate of electrochemical reaction, thermodynamics-heat of reaction and reaction equilibria, electrochemical thermodynamics, practical cell voltage requirements and polarization. Reactor classification, configuration and production capacity, Basic electrode kinetics, Ideal isothermal reactors: single electrochemical reactions, potentiostatic operations of first order reaction and galvanostatic operation of first order reactions. CSTR with general order reactions, Effect of mass transport and side reaction.

UNIT II PLUG FLOW REACTORS WITH AND WITHOUT MASS TRANSPORT
Plug flow and recycle reactors, Kinetics of electrochemical reactions: multistep electrochemical reactions, p electrode processes with mass transport, series and parallel reactions, interaction of chemical reaction, electrochemical reactions involving adsorption, electro analytical methods.

UNIT III MULTIPLE ELECTROCHEMICAL REACTIONS
Multiple electrochemical reactions with inter-phase mass transport-reaction classification, consecutive reactions, parallel reaction and complex reaction. Potentiostatic and galvanostatic operation of series and parallel electrochemical reactions, reversible reaction. RTD analysis, dispersed plug flow, tank in series model, multi parameter models, reactor dynamics of isothermal CSTR and PFR.
UNIT IV  SIMULTANEOUS MASS TRANSFER AND ELECTROCHEMICAL REACTION
Simultaneous mass transfer and chemical reaction; mathematical model of interphase mass transport-film model, penetration model, regimes of operation, fast and intermediate chemical reaction. Multiple chemical reaction, multiple electrochemicals and chemical reaction. Batch recycle and continuous recycle operation, multiple fluid phases at the electrode surface and in the electrolyte phase. Reactor for multiple phase reactions.

UNIT V  MIGRATION AND CURRENT DISTRIBUTION
Migration effects on mass transport, influence of migration in the reactor design, current and potential distribution, primary current distribution, current and potential distribution arising from polarization, three dimensional electrodes, diaphragm cell reactor models, energy balance, heat transfer and technical optimizations.

TOTAL: 45 PERIODS

OUTCOME:
At the end of this course, the student would be in a position to understand advanced electrochemical reaction, plug flow reactors and migration & current distribution in reactors.

TEXT BOOKS:

REFERENCES:

EL6003 TOTAL QUALITY MANAGEMENT AND ENGINEERING  L T P C
ECONOMICS  3 0 0 3

OBJECTIVE:
To provide the student with the underlying principles and techniques of Total Quality Management (TQM) with emphasis on their application to technical organizations.

UNIT I  QUALITY AND CUSTOMER CONCEPTS

UNIT II  QUALITY MANAGEMENT TOOLS AND QUALITY SYSTEMS
TQM tools - benchmarking - reasons to benchmark, benchmarking process, quality function deployment - house of quality, QFD process, benefits, Taguchi quality loss function, total productive maintenance - concept, improvement needs, FMEA - stages of FMEA. Quality systems - Need for ISO 9000 and QS 9000 : elements, implementation, documentation, quality auditing, concept, requirements and benefits.
UNIT III  VALUE OF MONEY, AMORTIZATION, CAPITAL REQUIREMENTS, COSTS, EARNINGS, PROFITS
Value of money – equivalence - value of money, equations for economic studies, equivalence amortization - capital recovery, depreciation, interest in depreciation calculations, depreciation accounting, capital requirements for process plants - cost indices, the Williams six-tenths factor, capital requirements for complete plants, balance sheet, sources of capital, earnings, profits and returns - variable costs, fixed costs, profits and earnings, economic production charts.

UNIT IV  ECONOMICS OF SELECTING ALTERNATES, RATE OF RETURN & PAYOUT TIME, ECONOMIC BALANCE
Economics of selecting alternates - annual cost method, present worth method, equivalent alternates, rate-of return method, payout-time method, replacement of existing facilities, irreducible factors in economic analyses, economic balance - economic balance in evaporation, economic vessel design, economic balance in fluid flow, economic balance with two variables, economic balance in combined operations – economic balance with one variable and two variable.

UNIT V  ECONOMIC BALANCE - CYCLIC OPERATIONS – YIELD AND RECOVERY
Economic balance in cyclic operation, batch operations (fixed cycle time), batch operations (variable cycle time), continuous and semi continuous operations, economic balance in yield and recovery - economic analysis for variable feed and product grades, economic analysis of a complete process - operating plants, proposed plants, evaluation.

OUTCOME:
Students will learn to view quality from a variety of functional perspectives and in the process, gain a better understanding of the problems associated with improving quality, also quality tools utilized in service and international/environment.

TEXT BOOKS:

REFERENCES:

GE6084  HUMAN RIGHTS

OBJECTIVES:
• To sensitize the Engineering students to various aspects of Human Rights.

UNIT I
UNIT II

UNIT III
Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV
Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V

TOTAL : 45 PERIODS

OUTCOME :
• Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

EL6004 CHLOR - ALKALI TECHNOLOGY

OBJECTIVES:
To enable the students to understand the process of Chlor alkali technology and the unit operations involved in the process.

UNIT I ELECTRODES AND SEPARATORS

UNIT II CONVENTIONAL PROCESSES

UNIT III MODERN PROCESS
Membrane cell process, Different designs of membrane cell, mono polar and bipolar cells. Conversion of mercury and diaphragm cells to membrane cells. Factors affecting the performance of the membrane cells.
UNIT IV UNIT OPERATIONS

UNIT V GENERAL TOPICS

TOTAL : 45 PERIODS

OUTCOMES:
Students would be able to explain the material requirements, chemical reactions and operations carried out in production of Chlor-Alkali industry

TEXT BOOKS:

REFERENCES:

EL6005 CATHODIC PROTECTION & ELECTROPHORETIC COATINGS

OBJECTIVES:
To familiarize the students with the basics of cathodic protection and electrophoretic coatings.

UNIT I BASICS OF CATHODIC PROTECTION

UNIT II SACRIFICIAL ANODE SYSTEM & IMPRESSED CURRENT SYSTEM
Cathodic protection system, components of galvanic systems, galvanic anodes, fields of application and backfills for sacrificial anodes. Advantages and disadvantages of sacrificial anode system. Impressed current system, impressed current anodes, fields of application and backfills for impressed current anodes.

UNIT III DESIGNING OF CP SYSTEM
Design parameters in cathodic protection, soil resistivity measurement, pipe to soil potential data, pH determination, redox potential measurement, coating resistance, stray current measurement and cathodic protection interferences designing of sacrificial anode system - designing of impressed current system - designing of cathodic protection to ship hull

UNIT IV BASIC CONCEPTS OF ELECTROPHORETIC COATINGS
Electrical Constitution of Aqueous Solutions, Dispersions and Suspensions of Paint Binders-Electrokinetic Effects-Electrochemical Parameters of Colloid Particles- Electro-osmosis-
Voltage and current Relations in Electropainting-Throwing power & other factors in Electropainting-Pretreatment for Electropainting-Synthetic resins used for Electropainting.

UNIT V APPLIED ASPECTS OF ELECTROPHORETIC COATINGS

Installations for Electropainting- Paint bath stability, Control, & Replenishment-Testing of paint bath-Effluent treatment-Process involved in Electropainting installations-Economics.

OUTCOMES:
Students would be able to design the cathodic protection systems and applied aspects of electrophoretic coatings.

TEXT BOOKS:

REFERENCE:

EL6006 FUNCTIONAL MATERIALS

OBJECTIVE:
The course emphasis on the molecular safe assembly and materials for polymer electronics

UNIT I INTRODUCTION

UNIT II MOLECULAR SELF ASSEMBLY

UNIT III BIO-INSPIRED MATERIALS

UNIT IV SMART OR INTELLIGENT MATERIALS
Criteria for Smartness, Significance of Smart Materials, Representative Examples like Smart Gels and Polymers, Electro/Magneto Rheological Fluids, Smart Electroceramics, Technical Limitations and Challenges, Functional Nanocomposites, Polymer-carbon nanotube composites.
UNIT V MATERIALS FOR POLYMER ELECTRONICS

Polymers for Electronics, Organic Light Emitting Diodes, Working Principle of OLEDs, Illustrated Examples, Organic Field-Effect Transistors Operating Principle, Design Considerations, Polymer FETs vs Inorganic FETs, Liquid Crystal Displays, Engineering Aspects of Flat Panel Displays, Intelligent Polymers for Data Storage, Polymer-based Data Storage-Principle, Magnetic Vs. Polymer-based Data Storage.

TOTAL: 45 PERIODS

OUTCOME:
Students will be able to differentiate among various functional properties and select appropriate material for certain functional applications, analyze the nature and potential of functional material.

TEXTBOOK:

REFERENCE:

EL6007 ORGANIC ELECTROCHEMISTRY

OBJECTIVE:
To impart the knowledge of fundamental aspects of electrochemistry, as well as techniques for characterizing surfaces under electrochemical conditions.

UNIT I CATHODIC REACTIONS OF ORGANIC COMPOUNDS
Principles and methods, synthetic and mechanistic aspects of cathodic reactions of organic compounds classified by electrophores, hydrocarbons, halogenated organic compounds, nitro and related compounds, carbonyl compounds, azomethine compounds.

UNIT II ANODIC REACTIONS OF ORGANIC COMPOUNDS
Synthetic and mechanistic aspects of anodic reactions of organic compounds classified by electrophores, anodic oxidation of hydrocarbon, carboxylic acids, nitrogen-containing compounds, oxygen-containing compounds, sulphur-containing compounds, electrochemistry of certain comprehensive classes of compounds, electrolysis of heterocyclic compounds, natural products and pharmaceuticals, biomass, organoelemental and coordination compounds.

UNIT III CLASSIFICATIONS OF ELECTRODE REACTIONS
Electrode reactions classified by reaction type, reductive coupling, oxidative coupling, cleavages and deprotection, anodic substitution, anodic fluorination.
UNIT IV  STEREOCHEMISTRY OF ELECTROCHEMICAL PROCESSES  9
Stereochemistry of organic electrode processes, amalgam and related reductions, 
electrogenerated reagents, electrogenerated acids and bases.

UNIT V  INDUSTRIAL APPLICATIONS OF ELECTRO ORGANIC CHEMISTRY  9
Present and future applications, industrial electroorganic chemistry, electrochemical 
polymerization, chemically modified electrodes and conducting polymers, photoelectron 
chemistry, paired electro synthesis.

TOTAL: 45 PERIODS

OUTCOME:
Upon completion of this course, the students will be able to analyse and answer questions on 
a number of electrochemical reactions such as metal deposition and electroorganic reactions.

TEXT BOOK:
1. Henning Laud, Manuel M. Baizer, "Organic Electrochemistry", Marcel Dekker, INC, New 

REFERENCES:
1. D.E.Danly “Emerging opportunities for electro organic process”, Marcel Dekker, New York, 
1984.

GE6083 DISASTER MANAGEMENT       L T P C
                                      3 0 0 3

OBJECTIVES:
- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, 
disasters, disaster prevention and risk reduction
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential 
disaster response in areas where they live, with due sensitivity

UNIT I  INTRODUCTION TO DISASTERS  9
Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – 
Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including 
social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in 
terms of caste, class, gender, age, location, disability - Global trends in disasters: urban 
disasters, pandemics, complex emergencies, Climate change- Dos and Don’ts during various 
types of Disasters.

UNIT II  APPROACHES TO DISASTER RISK REDUCTION (DRR)  9
Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness 
community based DRR, Structural- nonstructural measures, Roles and responsibilities of- 
community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and 
other stake-holders- Institutional Processess and Framework at State and Central Level-
State Disaster Management Authority(SDMA) – Early Warning System – Advisories from 
Appropriate Agencies.

89
UNIT III  INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT
Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV  DISASTER RISK MANAGEMENT IN INDIA
Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

UNIT V  DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS
Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

TOTAL: 45 PERIODS

OUTCOMES:
The students will be able to
- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarios in the Indian context,
- Disaster damage assessment and management.

TEXTBOOKS:

REFERENCES
1. Govt. of India: Disaster Management Act , Government of India, New Delhi, 2005