ANNA UNIVERSITY, CHENNAI
AFFILIATED INSTITUTIONS
R – 2014
B.E. (PART TIME) CIVIL ENGINEERING
I TO VII SEMESTERS CURRICULUM & SYLLABUS

SEMESTER I

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PTMA6151</td>
<td>Applied Mathematics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PTPH6151</td>
<td>Applied Physics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PTCY6151</td>
<td>Applied Chemistry</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PTGE6151</td>
<td>Computer Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>PTCE6302</td>
<td>Mechanics of solids</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PTMA6351</td>
<td>Transforms and Partial Differential Equations</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PTCE6303</td>
<td>Mechanics of Fluids</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PTCE6402</td>
<td>Strength of Materials</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PTCE6404</td>
<td>Surveying</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>PTCE6301</td>
<td>Engineering Geology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PTCE6413</td>
<td>Survey Practicals</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>15</td>
<td>0</td>
<td>4</td>
<td>17</td>
</tr>
</tbody>
</table>

SEMESTER III

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PTCE6501</td>
<td>Structural Analysis I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PTGE6351</td>
<td>Environmental Science and Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PTCE6405</td>
<td>Soil Mechanics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PTCE6504</td>
<td>Highway Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>PTCE6503</td>
<td>Environmental Engineering I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PTCE6312</td>
<td>Computer Aided Building Drawing</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>15</td>
<td>0</td>
<td>4</td>
<td>17</td>
</tr>
</tbody>
</table>
SEMESTER IV

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PTCE6603</td>
<td>Design of Steel Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PTCE6506</td>
<td>Construction Techniques, Equipment and Practice</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PTCE6602</td>
<td>Structural Analysis – II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PTCE6403</td>
<td>Applied Hydraulics Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>PTCE6604</td>
<td>Railways Airports and Harbour Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

SEMESTER V

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PTCE6601</td>
<td>Design of Reinforced Concrete and Brick Masonry Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PTCE6605</td>
<td>Environmental Engineering II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PTCE6701</td>
<td>Structural Dynamics and Earthquake Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PTCE6502</td>
<td>Foundation Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Elective I</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

SEMESTER VI

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PTCE6702</td>
<td>Prestressed Concrete Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PTCE6703</td>
<td>Water Resources and Irrigation Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PTCE6704</td>
<td>Estimation and Quantity Surveying</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Elective II</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Elective III</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

SEMESTER VII

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PTMG6851</td>
<td>Principles of Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Elective IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PTCE6811</td>
<td>Project Work</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>6</td>
<td>0</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE = 106
<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PTCE6001</td>
<td>Hydrology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PTCE6002</td>
<td>Concrete Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PTCE6003</td>
<td>Remote Sensing Techniques and GIS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PTCE6004</td>
<td>Architecture</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>PTGE6757</td>
<td>Total Quality Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>PTGE6075</td>
<td>Professional Ethics in Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>PTCE6005</td>
<td>Construction Planning and Scheduling</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>PTCE6019</td>
<td>Industrial Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVE II

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>PTCE6006</td>
<td>Traffic Engineering and Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>PTCE6007</td>
<td>Housing Planning and Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>PTCE6008</td>
<td>Groundwater Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>PTCE6009</td>
<td>Water Resources Systems Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>PTCE6010</td>
<td>Pavement Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>PTCE6020</td>
<td>Finite Element Techniques</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVE III

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>PTEN6801</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>PTCE6023</td>
<td>Industrial Waste Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>PTCE6011</td>
<td>Air Pollution Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>PTEN6501</td>
<td>Municipal Solid Waste Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>PTCE6012</td>
<td>Ground Improvement Techniques</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>PTCE6021</td>
<td>Repair and Rehabilitation of Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>PTGE6083</td>
<td>Disaster Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVE IV

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>PTCE6013</td>
<td>Bridge Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>PTCE6014</td>
<td>Storage Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>PTCE6015</td>
<td>Tall Buildings</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>PTCE6016</td>
<td>Prefabricated structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>PTCE6017</td>
<td>Experimental Analysis of Stress</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>PTCE6018</td>
<td>Computer Aided Design of Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>PTCE6022</td>
<td>Earthquake Geotechnical Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>PTGE6084</td>
<td>Human Rights</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
OBJECTIVES:

- To facilitate the understanding of the principles and to cultivate the art of formulating physical problems in the language of mathematics.

UNIT I MATRICES 9

UNIT II FUNCTIONS OF SEVERAL VARIABLES 9

UNIT III ANALYTIC FUNCTION 9
Analytic functions – Necessary and sufficient conditions for analyticity – Properties – Harmonic conjugates – Construction of analytic function – Conformal Mapping – Mapping by functions $w = a + z$, az, $1/z$, - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION 9
Line Integral – Cauchy’s theorem and integral formula – Taylor’s and Laurent’s Series – Singularities – Residues – Residue theorem – Application of Residue theorem for evaluation of real integrals – Use of circular contour and semicircular contour with no pole on real axis.

UNIT V LAPLACE TRANSFORM 9

TOTAL: 45 PERIODS

OUTCOMES:

- Students will be able to use matrix algebra techniques for practical applications and they will become familiar with functions of several variables needed in many branches of engineering.
- Students will be able to understand the standard techniques of complex variable theory so as to enable them to apply with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow the of electric current. It will be easy to handle the problem that is being investigated by using transforms to create a new domain.

TEXTBOOKS:

REFERENCES
OBJECTIVES:

- To enrich the understanding of various types of materials and their applications in engineering and technology.

UNIT I CONDUCTING MATERIALS 9

UNIT II SEMICONDUCTING MATERIALS 9

UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS 9
Superconductivity : properties – Type I and Type II superconductors – BCS theory of superconductivity(Qualitative) - High Tc superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

UNIT IV DIELECTRIC MATERIALS 9

UNIT V ADVANCED ENGINEERING MATERIALS 9

TOTAL : 45 PERIODS

OUTCOMES:

- The students will be able to understand the fundamentals of materials and their applications in Engineering and Technology.

TEXTBOOKS:

1. Arumugam M., Materials Science, Anuradha publishers, 2010

REFERENCES:

OBJECTIVES:

- To make the students conversant with water technology
- To make the student acquire sound knowledge of electrochemistry and corrosion of importance in engineering applications in all disciplines.
- To acquaint the student with concepts of importance in polymers and energy sources.
- To develop an understanding of the basic concepts and its applications to engineering materials such as abrasives, refractories cement and glass materials.
- To acquaint the students with the basics fuel and combustion and their properties and applications.

UNIT I WATER TECHNOLOGY
Introduction to boiler feed water-requirements-formation of deposits in steam boilers and heat exchangers- disadvantages (wastage of fuels, decrease in efficiency, boiler explosion) prevention of scale formation -softening of hard water -external treatment zeolite and demineralization - internal treatment- boiler compounds (phosphate, calgon, carbonate, colloidal) - caustic embrittlement-boiler corrosion-priming and foaming- desalination of brackish water –reverse osmosis.

UNIT II ELECTROCHEMISTRY AND CORROSION

UNIT III POLYMERS AND ENERGY SOURCES
Polymers – Classification- Polyethylene, Polypropylene, Polyvinyl chloride, Polystyrene-Polyamide, Polyethylene Terephthalate, Polycarbonate, Acrylonitrile Butadiene styrene - Solar energy conversion- solar cells- wind energy. Batteries and fuel cells: Types of batteries- alkaline battery- lead storage battery- nickel-cadmium battery- lithium battery- fuel cell H₂ -O₂ fuel cell-applications.

UNIT IV ENGINEERING MATERIALS
Abrasives: definition, classification or types, grinding wheel, abrasive paper and cloth. Refractories: definition, characteristics, classification, properties – refractoriness and RUL, dimensional stability, thermal spalling, thermal expansion, porosity; Manufacture of alumina, magnesite and silicon carbide, Portland cement- manufacture and properties - setting and hardening of cement, special cement- waterproof and white cement–properties and uses. Glass - manufacture, types, properties and uses.

UNIT V FUELS AND COMBUSTION

TOTAL : 45 PERIODS
OUTCOMES:
- The knowledge gained on water technology, thermodynamics, electrochemistry and corrosion, polymers and energy sources and engineering materials and fuel and combustion will provide a strong platform to understand advanced concepts on these subjects at higher level learning.

TEXTBOOKS:

REFERENCES:

OBJECTIVES:
The students should be made to:
- Learn the organization of a digital computer.
- Be exposed to the number systems.
- Learn to think logically and write pseudo code or draw flow charts for problems.
- Be exposed to the syntax of C.
- Be familiar with programming in C.
- Learn to use arrays, strings, functions, pointers, structures and unions in C.

UNIT I INTRODUCTION

UNIT II C PROGRAMMING BASICS

UNIT III ARRAYS AND STRINGS

UNIT IV FUNCTIONS AND POINTERS
UNIT V STRUCTURES AND UNIONS

Introduction – need for structure data type – structure definition – Structure declaration – Structure within a structure - Union - Programs using structures and Unions – Storage classes, Pre-processor directives.

OUTCOMES:
At the end of the course, the student should be able to:

- Design C Programs for problems.
- Write and execute C programs for simple applications

TEXTBOOKS:

REFERENCES:

PTCE6302 MECHANICS OF SOLIDS

OBJECTIVES:
- To learn fundamental concepts of stress, strain and deformation of solids with applications to bars, beams and thin cylinders.
- To know the mechanism of load transfer in beams, the induced stress resultants and deformations.
- To understand the effect of torsion on shafts and springs.
- To analyse a complex two dimensional state of stress and plane trusses

UNIT I STRESS AND STRAIN

UNIT II SHEAR AND BENDING IN BEAMS
Beams and Bending- Types of loads, supports – Shear Force and Bending Moment Diagrams for statically determinate beam with concentrated load, UDL, uniformly varying load. Theory of Simple Bending – Analysis of Beams for Stresses – Stress Distribution at a cross Section due to bending moment and shear force for Cantilever, simply supported and overhanging beams with different loading conditions - Flitched Beams.

UNIT III DEFLECTION
UNIT IV TORSION

UNIT V COMPLEX STRESSES AND PLANE TRUSSES
2 D State of Stress – 2 D Normal and Shear Stresses on any plane – Principal Stresses and Principal Planes – Mohr’s circle - Plane trusses: Analysis of plane trusses - method of joints - method of sections.

OUTCOMES:
The students will have
- Thorough understanding of the fundamental concepts of stress and strain in mechanics of solids and structures.
- the ability to analyse determinate beams and trusses to determine shearforces, bending moments and axial forces.
- a sufficient knowledge in designing shafts to transmit required power and also springs for its maximum energy storage capacities.

TEXTBOOKS:

REFERENCES :

PTMA6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

OBJECTIVES:
- To facilitate the understanding of the principles and to cultivate the art of formulating physical problems in the language of mathematics.

UNIT I FOURIER SERIES
Dirichlet’s conditions – General Fourier series – Odd and even functions – Half-range Sine and Cosine series –Parseval’s identity – Harmonic Analysis.

UNIT II FOURIER TRANSFORM
UNIT III PARTIAL DIFFERENTIAL EQUATIONS 9
Formation – Solutions of first order equations – Standard types and Equations reducible to standard types – Singular solutions – Lagrange’s Linear equation –Solution of homogenous linear equations of higher order with constant coefficients.

UNIT IV APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9
Method of separation of Variables – Solutions of one dimensional wave equation and one-dimensional heat equation – Steady state solution of two-dimensional heat equation.

UNIT V Z – TRANSFORM AND DIFFERENCE EQUATIONS 9

TOTAL: 45 PERIODS

OUTCOMES:
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier transform techniques used in wide variety of situations in which the functions used are not periodic.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model physical processes.
- To develop Z- transform techniques which will perform the same task for discrete time systems as Laplace Transform, a valuable aid in analysis of continuous time systems.

TEXTBOOK:

REFERENCES:

PTCE6303 MECHANICS OF FLUIDS L T P C 3 0 0 3

OBJECTIVES:
- To understand the basic properties of the fluid, fluid kinematics, fluid dynamics and to analyse and appreciate the complexities involved in solving the fluid flow problems.

UNIT I FLUID PROPERTIES AND FLUID STATICS 9
Fluid – definition, distinction between solid and fluid - Units and dimensions - Properties of fluids - density, specific weight, specific volume, specific gravity, temperature, viscosity, compressibility, vapour pressure, capillarity and surface tension - Fluid statics: concept of fluid static pressure, absolute and gauge pressures - pressure measurements by manometers and pressure gauges-forces on planes – centre of pressure – bouncy and floatation.

UNIT II FLUID KINEMATICS AND DYNAMICS 9
Fluid Kinematics - Flow visualization - lines of flow - types of flow - velocity field and acceleration - continuity equation (one and three dimensional differential forms)- Equation of streamline - stream function - velocity potential function - circulation - flow net. Fluid dynamics - equations of motion -
Euler’s equation along a streamline - Bernoulli’s equation – applications - Venturi meter, Orifice meter and Pitot tube. Linear momentum equation and its application.

UNIT III FLOW THROUGH PIPES
Viscous flow - Shear stress, pressure gradient relationship - laminar flow between parallel plates - Laminar flow through circular tubes (Hagen poiseulle’s) - Hydraulic and energy gradient - flow through pipes - Darcy -Weisbach’s equation - pipe roughness - friction factor- Moody’s diagram- Major and minor losses of flow in pipes - Pipes in series and in parallel.

UNIT IV BOUNDARY LAYER

UNIT V DIMENSIONAL ANALYSIS AND MODEL STUDIES
Fundamental dimensions - dimensional homogeneity - Rayleigh’s method and Buckingham Pi-Theorem - Dimensionless parameters - Similitude and model studies - Distorted Models.

OUTCOMES:
- The students will be able to get a basic knowledge of fluids in static, kinematic and dynamic equilibrium.
- They will also gain the knowledge of the applicability of physical laws in addressing problems in hydraulics.

TEXT BOOKS:

REFERENCES:

PTCE6402 STRENGTH OF MATERIALS

OBJECTIVES:
- To know the method of finding slope and deflection of beams and trusses using energy theorems and to know the concept of analysing indeterminate beam
- To estimate the load carrying capacity of columns, stresses due to unsymmetrical bending and various theories for failure of material.

UNIT I ENERGY PRINCIPLES
Strain energy and strain energy density – strain energy due to axial load, shear, flexure and torsion – castigliano’s theorems – Maxwell’s reciprocal theorems - principle of virtual work –
application of energy theorems for computing deflections in beams and trusses – Williot Mohr’s Diagram.

UNIT II INDETERMINATE BEAMS 9
Concept of Analysis - Propped cantilever and fixed beams-fixed end moments and reactions – Theorem of three moments – analysis of continuous beams – shear force and bending moment diagrams.

UNIT III COLUMNS AND CYLINDER 9
Euler’s theory of long columns – critical loads for prismatic columns with different end conditions; Rankine-Gordon formula for eccentrically loaded columns – Eccentrically loaded short columns – middle third rule – core section – Thick cylinders – Compound cylinders.

UNIT IV STATE OF STRESS IN THREE DIMENSIONS 9

UNIT V ADVANCED TOPICS IN BENDING OF BEAMS 9
Unsymmetrical bending of beams of symmetrical and unsymmetrical sections – Shear Centre - curved beams – Winkler Bach formula.

TOTAL :45 PERIODS

OUTCOMES:
• Students will have through knowledge in analysis of indeterminate beams and use of energy method for estimating the slope and deflections of beams and trusses.
• They will be in a position to assess the behaviour of columns, beams and failure of materials.

TEXTBOOKS:

REFERENCES:
UNIT II
SURVEY ADJUSTMENT
9

UNIT III
TOTAL STATION SURVEYING
9

UNIT IV
GPS SURVEYING
9
Basic Concepts - Different segments - space, control and user segments - satellite configuration - signal structure - Orbit determination and representation - Anti Spoofing and Selective Availability - Task of control segment – Hand Held and Geodetic receivers –data processing - Traversing and triangulation.

UNIT V
ADVANCED TOPICS IN SURVEYING
9

TOTAL: 45 PERIODS
OUTCOMES:
On completion of this course students shall be able to
• Understand the advantages of electronic surveying over conventional surveying methods
• Understand the working principle of GPS , its components, signal structure, and error sources
• Understand various GPS surveying methods and processing techniques used in GPS observations

TEXTBOOKS:

REFERENCES:

PTCE6301
ENGINEERING GEOLOGY
L T P C
3 0 0 3

OBJECTIVES:
• At the end of this course the students will be able to understand the importance of geological knowledge such as earth, earthquake, volcanism and to apply this knowledge in projects such as dams, tunnels, bridges, roads, airport and harbor as well as to choose types of foundations.
UNIT I PHYSICAL GEOLOGY

UNIT II MINEROLOGY

UNIT III PETROLOGY
Classification of rocks, distinction between Igneous, Sedimentary and Metamorphic rocks. Engineering properties of rocks. Description, occurrence, engineering properties, distribution and uses of Granite, Dolerite, Basalt, Sandstone, Limestone, Laterite, Shale, Quartzite, Marble, Slate, Gneiss and Schist.

UNIT IV STRUCTURAL GEOLOGY AND GEOPHYSICAL METHODS

UNIT V APPLICATION OF GEOLOGICAL INVESTIGATIONS
Remote sensing for civil engineering applications; Geological conditions necessary for design and construction of Dams, Reservoirs, Tunnels, and Road cuttings - Hydrogeological investigations and mining - Coastal protection structures. Investigation of Landslides, causes and mitigation.

OUTCOMES:
The students completing this course
- will be able to understand the importance of geological knowledge such as earth, earthquake, volcanism and the action of various geological agencies.
- will realize the importance of this knowledge in projects such as dams, tunnels, bridges, roads, airport and harbor
- can choose the types of foundations and other related aspects.

TEXTBOOKS:

REFERENCES:
OBJECTIVES:
- At the end of the course the student will posses knowledge about Survey field techniques.

LIST OF EXPERIMENTS
1. Study of theodolite
2. Measurement of horizontal angles by reiteration and repetition and vertical angles
3. Theodolite survey traverse
5. Tacheometry - Tangential system - Stadia system - Subtense system.
6. Setting out works - Foundation marking - Simple curve (right/left-handed) - Transition curve.
7. Field observation for and Calculation of azimuth
8. Field work using Total Station.

TOTAL: 60 PERIODS

OUTCOMES:
- Students completing this course would have acquired practical knowledge on handling survey instruments like Theodolite, Tacheometry and Total station and have adequate knowledge to carryout Triangulation and Astronomical surveying including general field marking for various engineering projects and curves setting.

REFERENCES:

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Description of Equipment</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Total Station</td>
<td>3 Nos</td>
</tr>
<tr>
<td>2.</td>
<td>Theodolites</td>
<td>Atleast 1 for every 5 students</td>
</tr>
<tr>
<td>3.</td>
<td>Dumpy level</td>
<td>Atleast 1 for every 5 students</td>
</tr>
<tr>
<td>4.</td>
<td>Plane table</td>
<td>Atleast 1 for every 5 students</td>
</tr>
<tr>
<td>5.</td>
<td>Pocket stereoscope</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>Ranging rods</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Levelling staff</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Cross staff</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Chains</td>
<td>1 for a set of 5 students</td>
</tr>
<tr>
<td>10.</td>
<td>Tapes</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Arrows</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Hand held GPS</td>
<td>3 Nos</td>
</tr>
</tbody>
</table>
UNIT I INDETERMINATE FRAMES
Degree of static and kinematic indeterminacies for plane frames - analysis of indeterminate pin - jointed frames - rigid frames (Degree of statical indeterminacy up to two) - energy and consistent deformation methods.

UNIT II MOVING LOADS AND INFLUENCE LINES
Influence lines for reactions in statically determinate structures – influence lines for member forces in pin-jointed frames – Influence lines for shear force and bending moment in beam sections – Calculation of critical stress resultants due to concentrated and distributed moving loads.
Muller Breslau's principle – Influence lines for continuous beams and single storey rigid frames – Indirect model analysis for influence lines of indeterminate structures – Beggs deformer

UNIT III ARCHES
Arches as structural forms – Examples of arch structures – Types of arches – Analysis of three hinged, two hinged and fixed arches, parabolic and circular arches – Settlement and temperature effects.

UNIT IV SLOPE DEFLECTION METHOD
Continuous beams and rigid frames (with and without sway) – Symmetry and antisymmetry – Simplification for hinged end – Support displacements

UNIT V MOMENT DISTRIBUTION METHOD
Distribution and carry over of moments – Stiffness and carry over factors – Analysis of continuous beams – Plane rigid frames with and without sway – Naylor’s simplification.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
Students will be able to
- analyse trusses, frames and arches
- analyse structures for moving loads and
- will be conversant with classical methods of analysis.

TEXTBOOKS:

REFERENCES:
OBJECTIVES:
To the study of nature and the facts about environment.
• To finding and implementing scientific, technological, economic and political solutions to environmental problems.
• To study the interrelationship between living organism and environment.
• To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
• To study the dynamic processes and understand the features of the earth’s interior and surface.
• To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY
Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards, Biological hazards in the environment – concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers Oxygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.
Field study of common plants, insects, birds
Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION
Definition – causes, effects and control measures of: (a) Air pollution (Atmospheric chemistry-Chemical composition of the atmosphere; Chemical and photochemical reactions in the atmosphere - formation of smog, PAN, acid rain, oxygen and ozone chemistry); Mitigation procedures: Control of particulate and gaseous emission, Control of SO2, NOX, CO and HC (b) Water pollution: Physical and chemical properties of terrestrial and marine water and their environmental significance; Water quality parameters – physical, chemical and biological; absorption of heavy metals - Water treatment processes. (c) Soil pollution – soil waste management: causes, effects and control measures of municipal solid wastes – (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – role of an individual in prevention of pollution – pollution case studies – Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES
Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaerobic digestion; case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Introduction to Environmental Biochemistry: Proteins – Biochemical degradation of pollutants, Bioconversion of pollutants.
Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT
Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

TOTAL : 45 PERIODS

OUTCOMES:
Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.
• Public awareness of environmental is at infant stage.
• Ignorance and incomplete knowledge has lead to misconceptions
• Development and improvement in std. of living has lead to serious environmental disasters

TEXTBOOKS :

REFERENCES :
UNIT I SOIL CLASSIFICATION AND COMPACTION

UNIT II SOIL WATER AND WATER FLOW

UNIT III STRESS DISTRIBUTION AND SETTLEMENT

UNIT IV SHEAR STRENGTH

UNIT V SLOPE STABILITY

TOTAL: 45 PERIODS

OUTCOMES:

- Students have the ability to determine Index properties and classify the soil. They can also know to determine engineering properties through standard tests and empirical correction with index properties.

TEXTBOOKS:

REFERENCES:

OBJECTIVES:
- To give an overview about the highway engineering with respect to, planning, design, construction and maintenance of highways as per IRC standards, specifications and methods.

UNIT I HIGHWAY PLANNING AND ALIGNMENT 8
Significance of highway planning – Modal limitations towards sustainability - History of road development in India – Classification of highways – Locations and functions – Factors influencing highway alignment – Soil suitability analysis - Road ecology - Engineering surveys for alignment, objectives, conventional and modern methods.

UNIT II GEOMETRIC DESIGN OF HIGHWAYS 12
Typical cross sections of Urban and Rural roads — Cross sectional elements - Sight distances – Horizontal curves, Super elevation, transition curves, widening at curves – Vertical curves - Gradients, Special consideration for hill roads - Hairpin bends – Lateral and vertical clearance at underpasses.

UNIT III DESIGN OF FLEXIBLE AND RIGID PAVEMENTS 9
Design principles – pavement components and their role - Design practice for flexible and rigid Pavements (IRC methods only) - Embankments .

UNIT IV HIGHWAY CONSTRUCTION MATERIALS AND PRACTICE 8
Highway construction materials, properties, testing methods – CBR Test for subgrade - tests on aggregate & bitumen – Construction practice including modern materials and methods, Bituminous and Concrete road construction, Polymer modified bitumen, Recycling, Different materials – Glass, Fiber, Plastic, Geo-Textiles, Geo-Membrane (problem not included) - Quality control measures - Highway drainage — Construction machineries.

UNIT V EVALUATION AND MAINTENANCE OF PAVEMENTS 8

TOTAL: 45 PERIODS

OUTCOMES:
- The students completing this course would have acquired knowledge on planning, design, construction and maintenance of highways as per IRC standards and other methods.

TEXTBOOKS:
3. Indian Road Congress (IRC), Guidelines and Special Publications of Planning and Design.

REFERENCES:
PTCE6503 ENVIRONMENTAL ENGINEERING I L T P C
3 0 0 3

OBJECTIVES:

- To make the students conversant with principles of water supply, treatment and distribution

UNIT I PLANNING FOR WATER SUPPLY SYSTEM 8

UNIT II CONVEYANCE SYSTEM 7
Water supply - Intake structures - Functions and drawings - Pipes and conduits for water - Pipe materials - Hydraulics of flow in pipes - Transmission main design - Laying, jointing and testing of pipes - Drawings appurtenances - Types and capacity of pumps - Selection of pumps and pipe materials.

UNIT III WATER TREATMENT 12
Objectives - Unit operations and processes - Principles, functions design and drawing of Chemical feeding, Flash mixers, flocculators, sedimentation tanks and sand filters - Disinfection - Residue Management - Construction and Operation & Maintenance aspects of Water Treatment Plants.

UNIT IV ADVANCED WATER TREATMENT 9
Principles and functions of Aeration - Iron and manganese removal, Defluoridation and demineralization - Water softening - Desalination - Membrane Systems - Recent advances.

UNIT V WATER DISTRIBUTION AND SUPPLY TO BUILDINGS 9

TOTAL: 45 PERIODS

OUTCOMES:
The students completing the course will have
- an insight into the structure of drinking water supply systems, including water transport, treatment and distribution
- an understanding of water quality criteria and standards, and their relation to public health,
- the ability to design and evaluate water supply project alternatives on basis of chosen selection criteria

TEXTBOOKS:
REFERENCES:

PTCE6312 COMPUTER AIDED BUILDING DRAWING L T P C 0 0 4 2

OBJECTIVES:
- To introduce the students to draft the plan, elevation and sectional views of buildings in accordance with development and control rules satisfying orientation and functional requirements as per National Building Code.

LIST OF EXPERIMENTS
1. Principles of planning, orientation and complete joinery details (Paneled and Glazed Doors and Windows)
2. Buildings with load bearing walls
3. Buildings with sloping roof
4. R.C.C. framed structures.
5. Industrial buildings – North light roof structures
6. Building Information Modeling

TOTAL: 60 PERIODS

OUTCOMES:
- The students will be able to draft the plan, elevation and sectional views of the buildings, industrial structures, framed buildings using computer softwares.

TEXTBOOKS:

REFERENCES:

NOTE TO QUESTION PAPER SETTER:
30% of the end semester examination paper shall deal with planning, while the rest 70% shall be based on the drafting skill.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Description of Equipment</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Computer system of Pentium IV or equivalent</td>
<td>1 for each student</td>
</tr>
<tr>
<td>2.</td>
<td>AUTOCAD</td>
<td>1 copy for a set of 3 students</td>
</tr>
</tbody>
</table>
OBJECTIVES:
- To introduce the students to limit state design of structural steel members subjected to compressive, tensile and bending loads, including connections. Design of structural systems such as roof trusses, gantry girders as per provisions of current code (IS 800 - 2007) of practice.

UNIT I INTRODUCTION 9

UNIT II TENSION MEMBERS 6
Types of sections – Net area – Net effective sections for angles and Tee in tension – Design of connections in tension members – Use of lug angles – Design of tension splice – Concept of shear lag

UNIT III COMPRESSION MEMBERS 12

UNIT IV BEAMS 9
Design of laterally supported and unsupported beams – Built up beams – Beams subjected to uniaxial and biaxial bending – Design of plate girders - Riveted and welded – Intermediate and bearing stiffeners – Flange and web splices.

UNIT V ROOF TRUSSES AND INDUSTRIAL STRUCTURES 9
Roof trusses – Roof and side coverings – Design of purlin and elements of truss; end bearing – Design of gantry girder.

TOTAL: 45 PERIODS

OUTCOMES:
- The students would have knowledge on the design of structural steel members subjected to compressive, tensile and bending forces, as per current code and also know to design structural systems such as roof trusses and gantry girders.

TEXTBOOKS:

REFERENCES:
5. IS 800 :2007, General Construction In Steel - Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi, 2007
OBJECTIVES:
- The main objective of this course is to make the student aware of the various construction techniques, practices and the equipment needed for different types of construction activities. At the end of this course the student shall have a reasonable knowledge about the various construction procedures for sub to super structure and also the equipment needed for construction of various types of structures from foundation to super structure.

UNIT I CONCRETE TECHNOLOGY

UNIT II CONSTRUCTION PRACTICES

UNIT III SUB STRUCTURE CONSTRUCTION
Techniques of Box jacking – Pipe Jacking -under water construction of diaphragm walls and basement-Tunneling techniques – Piling techniques - well and caisson - sinking cofferdam - cable anchoring and grouting-driving diaphragm walls, sheet piles - shoring for deep cutting - well points -Dewatering and stand by Plant equipment for underground open excavation.

UNIT IV SUPER STRUCTURE CONSTRUCTION
Launching girders, bridge decks, off shore platforms – special forms for shells - techniques for heavy decks – in-situ pre-stressing in high rise structures, Material handling - erecting light weight components on tall structures - Support structure for heavy Equipment and conveyors -Erection of articulated structures, braced domes and space decks.

UNIT V CONSTRUCTION EQUIPMENT
Selection of equipment for earth work - earth moving operations - types of earthwork equipment - tractors, motor graders, scrapers, front end waders, earth movers – Equipment for foundation and pile driving. Equipment for compaction, batching and mixing and concreting - Equipment for material handling and erection of structures - Equipment for dredging, trenching, tunneling.

TOTAL: 45 PERIODS

OUTCOMES:
- Students completing the course will have understanding of different construction techniques, practices and equipments. They will be able to plan the requirements for substructure and superstructure a construction.

TEXTBOOKS:

REFERENCES:

PTCE6602 STRUCTURAL ANALYSIS II L T P C 3 0 0 3

OBJECTIVES:
- To introduce the students to advanced methods of analysis like matrix methods, Plastic analysis and FE method and also analysis of space structures.

UNIT I FLEXIBILITY METHOD 9
Equilibrium and compatibility – Determinate vs Indeterminate structures – Indeterminacy - Primary structure – Compatibility conditions – Analysis of indeterminate pin-jointed plane frames, continuous beams, rigid jointed plane frames (with redundancy restricted to two).

UNIT II STIFFNESS MATRIX METHOD 9
Element and global stiffness matrices – Analysis of continuous beams – Co-ordinate transformations – Rotation matrix – Transformations of stiffness matrices, load vectors and displacements vectors – Analysis of pin-jointed plane frames and rigid frames (with redundancy limited to two)

UNIT III FINITE ELEMENT METHOD 9

UNIT IV PLASTIC ANALYSIS OF STRUCTURES 9

UNIT V SPACE AND CABLE STRUCTURES 9
Analysis of Space trusses using method of tension coefficients – Beams curved in plan Suspension cables – suspension bridges with two and three hinged stiffening girders

TOTAL : 45 PERIODS

OUTCOMES:
- The student will gain knowledge on advanced methods of analysis of structures and analysis of space and cable structures.

TEXTBOOKS:
REFERENCES:

PTCE6403 APPLIED HYDRAULICS ENGINEERING L T P C
3 0 0 3

OBJECTIVES:
- To introduce the students to various hydraulic engineering problems like open channel flows and hydraulic machines. At the completion of the course, the student should be able to relate the theory and practice of problems in hydraulic engineering.

UNIT I UNIFORM FLOW
9
Definition and differences between pipe flow and open channel flow - Types of Flow - Properties of open channel - Fundamental equations - Velocity distribution in open channel - Steady uniform flow: Chezy equation, Manning equation - Best hydraulic sections for uniform flow - Computation in Uniform Flow - Specific energy and specific force - Critical depth and velocity.

UNIT II GRADUALLY VARIED FLOW
9

UNIT III RAPIDLY VARIED FLOW
9
Application of the energy equation for RVF - Critical depth and velocity - Critical, Sub-critical and Super-critical flow - Application of the momentum equation for RVF - Hydraulic jumps - Types - Energy dissipation - Surges and surge through channel transitions.

UNIT IV TURBINES
9
Impact of Jet on vanes - Turbines - Classification - Reaction turbines - Francis turbine, Radial flow turbines, draft tube and cavitation - Propeller and Kaplan turbines - Impulse turbine - Performance of turbine - Specific speed - Runaway speed - Similarity laws.

UNIT V PUMPS
9
Centrifugal pumps - Minimum speed to start the pump - NPSH - Cavitations in pumps - Operating characteristics - Multistage pumps - Reciprocating pumps - Negative slip - Flow separation conditions - Air vessels, indicator diagrams and its variations - Savings in work done - Rotary pumps: Gear pump.

TOTAL: 45 PERIODS

OUTCOMES:
- The students will be able to apply their knowledge of fluid mechanics in addressing problems in open channels.
- They will possess the skills to solve problems in uniform, gradually and rapidly varied flows in steady state conditions.
- They will have knowledge in hydraulic machineries (pumps and turbines).

TEXTBOOKS:

REFERENCES:
4. Mays L. W., "Water Resources Engineering", John Wiley and Sons (WSE), New York, 2005
TEXTBOOKS:

REFERENCES:

PTCE6601 DESIGN OF REINFORCED CONCRETE & BRICK MASONRY STRUCTURES

OBJECTIVES:
- To give an exposure to the design of continuous beams, slabs, staircases, walls and brick masonry structures and to introduce yield line theory.

UNIT I RETAINING WALLS
Design of Cantilever and Counterfort Retaining walls

UNIT II WATER TANKS
Design of rectangular and circular water tanks both below and above ground level - Design of circular slab.

UNIT III SELECTED TOPICS
Design of staircases (ordinary and doglegged) – Design of flat slabs – Principles of design of mat foundation, box culvert and road bridges

UNIT IV YIELD LINE THEORY
Assumptions - Characteristics of yield line - Determination of collapse load / plastic moment - Application of virtual work method - square, rectangular, circular and triangular slabs - Design problems

UNIT V BRICK MASONRY
Introduction, Classification of walls, Lateral supports and stability, effective height of wall and columns, effective length of walls, design loads, load dispersion, permissible stresses, design of axially and eccentrically loaded brick walls

OUTCOMES:
- The student shall have a comprehensive design knowledge related to various structural systems.
TEXTBOOKS:

REFERENCES:

PTCE6605
ENVIRONMENTAL ENGINEERING II
L T P C
3 0 0 3

OBJECTIVES:
• To educate the students on the principles and design of Sewage Collection, Conveyance, treatment and disposal.

UNIT I PLANNING FOR SEWERAGE SYSTEMS

UNIT II SEWER DESIGN

UNIT III PRIMARY TREATMENT OF SEWAGE
Objective – Selection of treatment processes – Principles, Functions, Design and Drawing of Units - Onsite sanitation - Septic tank with dispersion - Grey water harvesting – Primary treatment – Principles, functions design and drawing of screen, grit chambers and primary sedimentation tanks – Construction, operation and Maintenance aspects.

UNIT IV SECONDARY TREATMENT OF SEWAGE
UNIT V DISPOSAL OF SEWAGE AND SLUDGE MANAGEMENT 9

TOTAL: 45 PERIODS

OUTCOMES:
The students completing the course will have
- ability to estimate sewage generation and design sewer system including sewage pumping stations
- required understanding on the characteristics and composition of sewage, self purification of streams
- ability to perform basic design of the unit operations and processes that are used in sewage treatment

TEXTBOOKS:

REFERENCES:

PTCE6701 STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING L T P C
3 0 0 3

OBJECTIVES:
- The main objective of the course is to introduce dynamic loading and the dynamic performance of the structures to the students. Different types of dynamic loading also to be discussed. The detailed study on the performance of structures under earthquake loading is also one of the focus of the course.

UNIT I THEORY OF VIBRATIONS 9
Difference between static loading and dynamic loading – Degree of freedom – idealisation of structure as single degree of freedom system – Formulation of Equations of motion of SDOF system - D’Alemberts principles – effect of damping – free and forced vibration of damped and undamped structures – Response to harmonic and periodic forces.

UNIT II MULTIPLE DEGREE OF FREEDOM SYSTEM 9
Two degree of freedom system – modes of vibrations – formulation of equations of motion of multi degree of freedom (MDOF) system - Eigen values and Eigen vectors – Response to free and forced vibrations - damped and undamped MDOF system – Modal superposition methods.

UNIT III ELEMENTS OF SEISMOLOGY 9
UNIT IV RESPONSE OF STRUCTURES TO EARTHQUAKE

UNIT V DESIGN METHODOLOGY

OUTCOMES: At the end of the course, student will have the knowledge to analyse structures subjected to dynamic loading and to design the structures for seismic loading as per code provisions.

TEXTBOOKS:

REFERENCES:
UNIT III FOOTINGS AND RAFTS
Types of footings – Contact pressure distribution: Isolated footing – Combined footings – Types and proportioning – Mat foundation – Types and applications – Proportioning – Floating foundation – Seismic force consideration – Codal Provision.

UNIT IV PILE FOUNDATION
Types of piles and their function – Factors influencing the selection of pile – Carrying capacity of single pile in granular and cohesive soil – static formula – dynamic formulae (Engineering news and Hileys) – Capacity from insitu tests (SPT and SCPT) – Negative skin friction – uplift capacity – Group capacity by different methods (Feld’s rule, Converse – Labarra formula and block failure criterion) – Settlement of pile groups – Interpretation of pile load test (routine test only) – Under reamed piles – Capacity under compression and uplift.

UNIT V RETAINING WALLS

OUTCOMES:
• Students will have the ability to select type of foundation required for the soil at a place and able to design shallow, foundation, deep foundation and retaining structures.

TEXTBOOKS:

REFERENCES:

TOTAL : 45 PERIODS
OBJECTIVES:
- To introduce the need for prestressing as well as the methods, types and advantages of prestressing to the students. Students will be introduced to the design of prestressed concrete structures subjected to flexure and shear.

UNIT I INTRODUCTION – THEORY AND BEHAVIOUR

UNIT II DESIGN FOR FLEXURE AND SHEAR
Basic assumptions for calculating flexural stresses – Permissible stresses in steel and concrete as per I.S.1343 Code – Design of sections of Type I and Type II post-tensioned and pre-tensioned beams – Check for strength limit based on I.S. 1343 Code – Layout of cables in post-tensioned beams – Location of wires in pre-tensioned beams – Design for shear based on I.S. 1343 Code.

UNIT III DEFLECTION AND DESIGN OF ANCHORAGE ZONE
Factors influencing deflections – Short term deflections of uncracked members – Prediction of long term deflections due to creep and shrinkage – Check for serviceability limit state of deflection. Determination of anchorage zone stresses in post-tensioned beams by Magnel’s method, Guyon’s method and I.S. 1343 code – design of anchorage zone reinforcement – Check for transfer bond length in pre-tensioned beams.

UNIT IV COMPOSITE BEAMS AND CONTINUOUS BEAMS
Analysis and design of composite beams – Methods of achieving continuity in continuous beams – Analysis for secondary moments – Concordant cable and linear transformation – Calculation of stresses – Principles of design.

UNIT V MISCELLANEOUS STRUCTURES
Design of tension and compression members – Tanks, pipes and poles – Partial prestressing – Definition, methods of achieving partial prestressing, merits and demerits of partial prestressing.

TOTAL: 45 PERIODS

OUTCOMES:
- Student shall have a knowledge on methods of prestressing and able to design various prestressed concrete structural elements.

TEXTBOOKS:

REFERENCES:
OBJECTIVES:
- The student is exposed to different phases in Water Resources Management and National Water Policy. Further they will be imparted required knowledge on Reservoir planning, management and economic analysis including Irrigation and Irrigation management practices.

UNIT I WATER RESOURCES 9

UNIT II WATER RESOURCE MANAGEMENT 9
Economics of water resources planning; – National Water Policy – Consumptive and non-consumptive water use - Water quality – Scope and aims of master plan - Concept of basin as a unit for development - Water budget- Conjunctive use of surface and ground water

UNIT III IRRIGATION ENGINEERING 9

UNIT IV CANAL IRRIGATION 9
Types of Impounding structures: Gravity dam – Diversion Head works - Canal drop – Cross drainage works – Canal regulations – Canal outlets – Canal lining - Kennady’s and Lacey’s Regime theory

UNIT V IRRIGATION METHODS AND MANAGEMENT 9
Lift irrigation – Tank irrigation – Well irrigation – Irrigation methods: Surface and Sub-Surface and Micro Irrigation - Merits and demerits – Irrigation scheduling – Water distribution – Participatory irrigation management with a case study

OUT COMES:
- The students will have knowledge and skills on Planning, design, operation and management of reservoir system.
- The student will gain knowledge on different methods of irrigation including canal irrigation.

TEXTBOOKS:

REFERENCES:
OBJECTIVES:

- To provide the student with the ability to estimate the quantities of item of works involved in buildings, water supply and sanitary works, road works and irrigation works, and also to equip the student with the ability to do rate analysis, valuation of properties and preparation of reports for estimation of various items.

UNIT I ESTIMATE OF BUILDINGS 11
Load bearing and framed structures – Calculation of quantities of brick work, RCC, PCC, Plastering, white washing, colour washing and painting / varnishing for shops, rooms, residential building with flat and pitched roof – Various types of arches – Calculation of brick work and RCC works in arches – Estimate of joineries for panelled and glazed doors, windows, ventilators, handrails etc.

UNIT II ESTIMATE OF OTHER STRUCTURES 10

UNIT III SPECIFICATION AND TENDERS 8

UNIT IV VALUATION 8

UNIT V REPORT PREPARATION 8

TOTAL : 45 PERIODS

OUTCOMES:

- The student shall be able to estimate the material quantities, prepare a bill of quantities, make specifications and prepare tender documents. Student shall be able to prepare value estimates.

TEXTBOOKS:

REFERENCES:

1. PWD Data Book.
2. Tamilnadu Transparencies in Tender Act 1998
3. Arbitration and Conciliation Act 1996
OBJECTIVES:

- To enable the students to study the evolution of Management, to study the functions and principles of management and to learn the application of the principles in an organization.

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS 9

UNIT II PLANNING 9

UNIT III ORGANISING 9

UNIT IV DIRECTING 9

UNIT V CONTROLLING 9
System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

TOTAL: 45 PERIODS

OUTCOMES:
- Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

TEXTBOOKS:

REFERENCES:
OBJECTIVES:
- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 135 PERIODS

OUTCOMES:
- On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

OBJECTIVES:
- To impart knowledge on hydrological cycle, spatial and temporal measurement and analysis of rainfall and their applications including flood routing and ground water hydrology.

UNIT I PRECIPITATION

UNIT II ABSTRACTION FROM PRECIPITATION

UNIT III HYDROGRAPHS
Factors affecting Hydrograph – Baseflow separation – Unit hydrograph – Derivation of unit hydrograph – S curve hydrograph – Unit hydrograph of different deviations - Synthetic Unit Hydrograph

UNIT IV FLOODS AND FLOOD ROUTING
Flood frequency studies – Recurrence interval – Gumbel’s method – Flood routing – Reservoir flood routing – Muskingum’s Channel Routing – Flood control

UNIT V GROUND WATER HYDROLOGY

TOTAL: 45 PERIODS
OUTCOMES:
- The students gain the knowledge needed on hydrologic cycle, hydrometeorology and formation of precipitation.
- The students are able to apply the various methods of field measurements and empirical formulae for estimating the various losses of precipitation, stream flow, flood and flood routing.
- The students will know the basics of groundwater and hydraulics of subsurface flows.

TEXTBOOKS:

REFERENCES:

PTCE6002 CONCRETE TECHNOLOGY L T P C 3 0 0 3

OBJECTIVES:
- To impart knowledge to the students on the properties of materials for concrete by suitable tests, mix design for concrete and special concretes.

UNIT I CONSTITUENT MATERIALS
Cement-Different types-Chemical composition and Properties -Tests on cement-IS Specifications-Aggregates-Classification-Mechanical properties and tests as per BIS Grading requirements-Water- Quality of water for use in concrete.

UNIT II CHEMICAL AND MINERAL ADMIXTURES
Accelerators- Retarders- Plasticisers- Super plasticizers- Water proofers - Mineral Admixtures like Fly Ash, Silica Fume, Ground Granulated Blast Furnace Slag and Metakaoline -Their effects on concrete properties

UNIT III PROPORTIONING OF CONCRETE MIX
Principles of Mix Proportioning-Properties of concrete related to Mix Design-Physical properties of materials required for Mix Design - Design Mix and Nominal Mix-BIS Method of Mix Design - Mix Design Examples

UNIT IV FRESH AND HARDENED PROPERTIES OF CONCRETE
Workability-Tests for workability of concrete-Slump Test and Compacting factor Test-Segregation and Bleeding-Determination of Compressive and Flexural strength as per BIS - Properties of Hardened concrete-Determination of Compressive and Flexural strength-Stress-strain curve for concrete-Determination of Young’s Modulus.

UNIT V SPECIAL CONCRETES

TOTAL : 45 PERIODS
OUTCOMES:
- The student will possess the knowledge on properties of materials required for concrete tests on those materials and design procedures for making conventional and special concretes.

TEXTBOOKS:
2. Shetty M.S, "Concrete Technology", S.Chand and Company Ltd, New Delhi 2003

REFERENCES:
1. Santhakumar A.R; "Concrete Technology", Oxford University Press, New Delhi, 2007
4. IS10262-1982 Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi, 1998

PTCE6003 REMOTE SENSING TECHNIQUES AND GIS L T P C 3 0 0 3

OBJECTIVES:
- To introduce the students to the basic concepts and principles of various components of remote sensing.
- To provide an exposure to GIS and its practical applications in civil engineering.

UNIT I EMR AND ITS INTERACTION WITH ATMOSPHERE & EARTH MATERIAL 9
Definition of remote sensing and its components – Electromagnetic spectrum – wavelength regions important to remote sensing – Wave theory, Particle theory, Stefan-Boltzman and Wein’s Displacement Law – Atmospheric scattering, absorption – Atmospheric windows – spectral signature concepts – typical spectral reflective characteristics of water, vegetation and soil.

UNIT II PLATFORMS AND SENSORS 9
Types of platforms – orbit types, Sun-synchronous and Geosynchronous – Passive and Active sensors – resolution concept – Pay load description of important Earth Resources and Meteorological satellites – Airborne and spaceborne TIR and microwave sensors.

UNIT III IMAGE INTERPRETATION AND ANALYSIS 9

UNIT IV GEOGRAPHIC INFORMATION SYSTEM 9

UNIT V DATA ENTRY, STORAGE AND ANALYSIS 9

TOTAL: 45 PERIODS

OUTCOMES:
On completion of the course the students will have knowledge on
- Principles of Remote Sensing and GIS
- Analysis of RS and GIS data and interpreting the data for modeling applications
TEXTBOOKS:

REFERENCES:
3. Ian Heywood "An Introduction to GIS", Pearson Education Asia, 2000

PTCE6004 ARCHITECTURE L T P C
3 0 0 3

OBJECTIVES:
• To provide the basic knowledge on the principles and functional design of buildings relating to the environment and climate.

UNIT I ARCHITECTURAL DESIGN 8
Architectural Design – an analysis – integration of function and aesthetics – Introduction to basic elements and principles of design.

UNIT II SITE PLANNING 9
Surveys – Site analysis – Development Control – Layout regulations- Layout design concepts.

UNIT III BUILDING TYPES 12
Residential, institutional, commercial and Industrial – Application of anthropometry and space standards-Inter relationships of functions – Safety standards – Building rules and regulations – Integration of building services – Interior design

UNIT IV CLIMATE AND ENVIRONMENTAL RESPONSIVE DESIGN 8
Man and environment interaction- Factors that determine climate – Characteristics of climate types – Design for various climate types – Passive and active energy controls – Green building concept

UNIT V TOWN PLANNING 8
Planning – Definition, concepts and processes- Urban planning standards and zoning regulations- Urban renewal – Conservation – Principles of Landscape design

TOTAL: 45 PERIODS

OUTCOMES:
• Students will have the ability to plan any civil engineering project by incorporating various aspect of environment and climate of the project area. Further they know various rules and regulation of town planning and development authorities.

REFERENCES:

PTGE6757 TOTAL QUALITY MANAGEMENT

OBJECTIVES:
- To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

UNIT II TQM PRINCIPLES
Leadership - Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Quality circles Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I
The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT IV TQM TOOLS AND TECHNIQUES II

UNIT V QUALITY SYSTEMS

OUTCOMES:
- The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXTBOOK:

REFERENCES:
PTGE6075 PROFESSIONAL ETHICS IN ENGINEERING L T P C
3 0 0 3

OBJECTIVES:
• To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES

UNIT II ENGINEERING ETHICS

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION
Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

UNIT V GLOBAL ISSUES

TOTAL: 45 PERIODS

OUTCOMES:
• Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society

TEXTBOOKS:

REFERENCES:

Web sources:
1. www.onlineethics.org
2. www.nspe.org
3. www.globalethics.org
4. www.ethics.org

PTCE6005 CONSTRUCTION PLANNING AND SCHEDULING L T P C 3 0 0 3

OBJECTIVES:
- To make the students to learn about planning of construction projects, scheduling procedures and techniques, cost and quality control projects and use of project information as decision making tool.

UNIT I CONSTRUCTION PLANNING 6

UNIT II SCHEDULING PROCEDURES AND TECHNIQUES 12
Relevance of construction schedules-Bar charts - The critical path method-Calculations for critical path scheduling-Activity float and schedules-Presenting project schedules-Critical path scheduling for Activity-on-node and with leads, Lags and Windows-Calculations for scheduling with leads, lags and windows-Resource oriented scheduling-Scheduling with resource constraints and precedences -Use of Advanced Scheduling Techniques-Scheduling with uncertain durations-Crashing and time/cost trade offs -Improving the Scheduling process – Introduction to application software.

UNIT III COST CONTROL MONITORING AND ACCOUNTING 9
The cost control problem-The project Budget-Forecasting for Activity cost control - financial accounting systems and cost accounts-Control of project cash flows-Schedule control-Schedule and Budget updates-Relating cost and schedule information.

UNIT IV QUALITY CONTROL AND SAFETY DURING CONSTRUCTION 9

UNIT V ORGANIZATION AND USE OF PROJECT INFORMATION 9
Types of project information-Accuracy and Use of Information-Computerized organization and use of Information -Organizing information in databases-relational model of Data bases-Other conceptual Models of Databases-Centralized database Management systems-Databases and application programs-Information transfer and Flow.

TOTAL: 45 PERIODS

OUTCOMES:
- The student should be able to plan construction projects, schedule the activities using network diagrams, determine the cost of the project, control the cost of the project by creating cash flows and budgeting and to use the project information as decision making tool.
TEXTBOOKS:

REFERENCES:

PTCE6019 INDUSTRIAL STRUCTURES L T P C
3 0 0 3

OBJECTIVES:
• This course deals with some of the special aspects with respect to Civil Engineering structures in industries.

UNIT I PLANNING 9
Classification of industries and industrial structures — General requirements of various industries — Planning and layout of buildings and components.

UNIT II FUNCTIONAL REQUIREMENTS 9

UNIT III DESIGN OF STEEL STRUCTURES 9
Industrial roofs — Crane girders — Mills buildings — Bunkers and Silos - Chimney.

UNIT IV DESIGN OF R.C. STRUCTURES 9
Corbels, Brackets and Nibs - Silos and bunkers —Chimney - Principles of folded plates and shell roofs

UNIT V PREFABRICATION 9
Principles of prefabrication — Prestressed precast roof trusses - Construction of roof and floor slabs - Wall panels.

TOTAL: 45 PERIODS

OUTCOMES:
• At the end of this course the student shall be able to design some of the structures used in industries.

TEXTBOOKS:

REFERENCES:

TCE6006 TRAFFIC ENGINEERING AND MANAGEMENT L T P C 3 0 0 3

OBJECTIVES:
- To give an overview of Traffic engineering, traffic regulation, management and traffic safety with integrated approach in traffic planning as well.

UNIT I TRAFFIC PLANNING AND CHARACTERISTICS 9

UNIT II TRAFFIC SURVEYS 10

UNIT III TRAFFIC DESIGN AND VISUAL AIDS 10
Intersection Design - channelization, Rotary intersection design – Signal design – Coordination of signals — Grade separation - Traffic signs including VMS and road markings – Significant roles of traffic control personnel - Networking pedestrian facilities & cycle tracks.

UNIT IV TRAFFIC SAFETY AND ENVIRONMENT 8
Road accidents – Causes, effect, prevention, and cost – Street lighting – Traffic and environment hazards – Air and Noise Pollution, causes, abatement measures – Promotion and integration of public transportation – Promotion of non-motorized transport.

UNIT V TRAFFIC MANAGEMENT 8
Area Traffic Management System - Traffic System Management (TSM) with IRC standards — Traffic Regulatory Measures-Travel Demand Management (TDM) – Direct and indirect methods – Congestion and parking pricing – All segregation methods - Coordination among different agencies – Intelligent Transport System for traffic management, enforcement and education.

TOTAL: 45 PERIODS

OUTCOMES:
On completing this course, the Students will be able to
- Analyse traffic problems and plan for traffic systems various uses
- Design Channels, Intersections, signals and parking arrangements
- Develop Traffic management Systems

TEXTBOOKS:
2. Indian Roads Congress (IRC) Specifications: Guidelines and Special Publications on Traffic Planning and Management.

REFERENCES:
2. Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New Delhi, 2010

PTCE6007 HOUSING PLANNING AND MANAGEMENT

OBJECTIVES:
- The objective of the course is to train the students to have a comprehensive knowledge of planning, design, evaluation, construction and financing of housing projects. The course focuses on cost effective construction materials and methods. Emphasis is given on the principles of sustainable housing policies and programmes.

UNIT I INTRODUCTION TO HOUSING
10
Definition of Basic Terms – House, Home, Household, Apartments, Multi storied Buildings, Special Buildings. Objectives and Strategies of National Housing Policies including Slum Housing Policy, Principle of Sustainable Housing – Integrated approach on arriving holding capacity and density norms - All basic infrastructure consideration - Institutions for Housing at National, State and Local levels.

UNIT II HOUSING PROGRAMMES
10
Basic Concepts, Contents and Standards for Housing Programmes - Sites and Services, Neighborhoods- Plotted land development programs, Open Development Plots, Apartments, Gated communities, Townships, Rental Housing, Co-operative Housing, Slum Housing Programmes – Slum improvement – Slum redevelopment and Relocation – Use of GIS and MIS in Slum Housing Projects, Role of Public housing agencies, and Private sector in supply, quality, infrastructure and pricing – Role of Non-Government Organizations in slum housing.

UNIT III PLANNING AND DESIGN OF HOUSING PROJECTS
9
Formulation of Housing Projects – Land Use and Soil suitability analysis -Building Byelaws and Rules and Development Control Regulations - Site Analysis, Layout Design, Design of Housing Units (Design Problems) – Housing Project Formulation.

UNIT IV CONSTRUCTION TECHNIQUES AND COST-EFFECTIVE MATERIALS
8

UNIT V HOUSING FINANCE AND PROJECT APPRAISAL
8

TOTAL: 45 PERIODS

OUTCOMES:
- The students should have a comprehensive knowledge of planning, design, evaluation, construction and financing of housing projects.
TEXTBOOKS:

REFERENCES:
5. UNCHS, National Experiences with Shelter Delivery for the Poorest Groups, UNCHS Habitat, Nairobi, 1994
6. Government of India, National Housing Policy, 1994

PTCE6008 GROUNDWATER ENGINEERING L T P C 3 0 0 3

OBJECTIVES:
• To introduce the student to the principles of Groundwater governing equations and characteristics of different aquifers,
• To understand the techniques of development and management of groundwater.

UNIT I HYDROGEOLOGICAL PARAMETERS 9

UNIT II WELL HYDRAULICS 9

UNIT III GROUNDWATER MANAGEMENT 9

UNIT IV GROUNDWATER QUALITY 9
Ground water chemistry - Origin, movement and quality - Water quality standards – Health and aesthetic aspects of water quality - Saline intrusion – Environmental concern and Regulatory requirements

UNIT V GROUNDWATER CONSERVATION 9
Artificial recharge techniques – Remediation of Saline intrusion– Ground water management studies – Protection zone delineation, Contamination source inventory, remediation schemes - Ground water Pollution and legislation.

TOTAL: 45 PERIODS

OUTCOMES:
• Students will be able to understand aquifer properties and its dynamics after the completion of the course. It gives an exposure towards well design and practical problems of groundwater aquifers.
• Students will be able to understand the importance of artificial recharge and groundwater quality concepts.
TEXTBOOKS:

REFERENCES:

PTCE6009 WATER RESOURCES SYSTEMS ANALYSIS

OBJECTIVES:
• To introduce the student to the concept of Mathematical approaches for managing the water resources system.
• To make the students apply an appropriate system approach to optimally operate a water resource system.

UNIT I SYSTEM APPROACH
Philosophy of modelling – Goals and Objectives – Basics of system analysis concept – scopes and steps in systems engineering.

UNIT II PHYSICAL AND SOCIO-ECONOMIC DATA
Collection, evaluation and processing – project appraisal – public involvement, master Comprehensive and integrated planning of water resources project.

UNIT III LINEAR PROGRAMMING
Operation research - introduction - Problem Formulation-graphical solution- Simplex method – Sensitivity analysis - simple applications

UNIT IV DYNAMIC PROGRAMMING
Optimality criteria Stage coach problem – Bellman’s optimality criteria Problem formulation and Solution - simple applications

UNIT V SIMULATION
Basic principles – Methodology and Philosophy – Model development – input and outputs – Deterministic simulation - simple applications

TOTAL: 45 PERIODS

OUTCOMES:
• The students will be exposed to the economical aspects and analysis of water resources systems by which they will get an idea of comprehensive and integrated planning of a water resources project.
• The students will develop skills in solving problems in operations research through LP, DP and Simulation techniques.

TEXTBOOK:

REFERENCES:

PTCE6010 PAVEMENT ENGINEERING LTPC 3 0 0 3

OBJECTIVES:
- Student gains knowledge on various IRC guidelines for designing rigid and flexible pavements. Further, he/she will be in a position to assess quality and serviceability conditions of roads.

UNIT I TYPE OF PAVEMENT AND STRESS DISTRIBUTION ON LAYERED SYSTEM 8
Introduction – Pavement as layered structure – Pavement types rigid and flexible. Resilient modulus - Stress and deflections in pavements under repeated loading.

UNIT II DESIGN OF FLEXIBLE PAVEMENTS 10
Flexible pavement design factors influencing design of flexible pavement, Empirical - Semi empirical and theoretical methods – Design procedure as per IRC guidelines – Design and specification of rural roads.

UNIT III DESIGN OF RIGID PAVEMENTS 9
Cement concrete pavements factors influencing CC pavements – Modified Westergaard approach – Design procedure as per IRC guidelines – Concrete roads and their scope in India.

UNIT IV PERFORMANCE EVALUATION AND MAINTENANCE 10

UNIT V STABILIZATION OF PAVEMENTS 8

TOTAL : 45 PERIODS

OUTCOMES:
- Students will have adequate knowledge to design flexible and rigid pavements based on IRC guidelines. Further they know various techniques to evaluate performance of pavements.

TEXTBOOKS:

REFERENCES:
2. IRC-37–001,The Indian roads Congress, Guidelines for the Design of flexible pavements, New Delhi, 2001

PTCE6020 FINITE ELEMENT TECHNIQUES L T P C 3 0 0 3

OBJECTIVES:
- To apprise the students about the basics of Finite Element theory, computer implementation of this theory and its practical applications.

UNIT I INTRODUCTION TO FINITE ELEMENT ANALYSIS AND FINITE ELEMENT FORMULATION TECHNIQUES 9

UNIT II ELEMENT PROPERTIES 9
Natural Coordinates - Triangular Elements - Rectangular Elements - Lagrange and Serendipity Elements - Solid Elements - Isoparametric Formulation - Stiffness Matrix of Isoparametric Elements - Numerical Integration: One, Two and Three Dimensional

UNIT III ANALYSIS OF FRAME STRUCTURES 9
Stiffness of Truss Members - Analysis of Truss - Stiffness of Beam Members - Finite Element Analysis of Continuous Beam - Plane Frame Analysis - Analysis of Grid and Space Frame.

UNIT IV FEM FOR TWO AND THREE DIMENSIONAL SOLIDS 9
Constant Strain Triangle - Linear Strain Triangle - Rectangular Elements - Numerical Evaluation of Element Stiffness - Computation of Stresses, Geometric Nonlinearity and Static Condensation - Axisymmetric Element - Finite Element Formulation of Axisymmetric Element - Finite Element Formulation for 3 Dimensional Elements

UNIT V APPLICATIONS OF FEM 9
Plate Bending Problems - Finite Elements for Elastic Stability - Finite Elements in Fluid Mechanics - Dynamic Analysis

TOTAL: 45 PERIODS

OUTCOMES:
- Students will be in a position to develop computer codes for any physical problems using FE techniques.

TEXTBOOKS:

REFERENCES:

PTEN6801 ENVIRONMENTAL IMPACT ASSESSMENT L T P C 3 0 0 3

OBJECTIVES:
• To impart knowledge on Environmental management and Environmental Impact Assessment.

UNIT I INTRODUCTION 8
Impact of development projects – Sustainable development- Need for Environmental Impact Assessment (EIA) - Environmental Impact Statement (EIS) – EIA capability and limitations – Legal provisions on EIA-Stages of EIA, Types of EIA

UNIT II METHODOLOGIES 9
Methods of EIA – Check lists – Matrices – Networks – Cost-benefit analysis – Analysis of alternatives

UNIT III PREDICTION AND ASSESSMENT 9
Assessment of Impact on land, water, air, social & cultural activities and on flora & fauna- Mathematical models- Public participation

UNIT IV ENVIRONMENTAL MANAGEMENT PLAN 9
Plan for mitigation of adverse impact on environment – Options for mitigation of impact on water, air, land and on flora & fauna - Addressing the issues related to the Project Affected People. Post project monitoring

UNIT V CASE STUDIES 10

TOTAL : 45 PERIODS

OUTCOMES:
The students completing the course will have ability to
• carry out scoping and screening of developmental projects for environmental and social assessments
• explain different methodologies for environmental impact prediction and assessment
• plan environmental impact assessments and environmental management plans
• evaluate environmental impact assessment reports

TEXTBOOKS:

REFERENCES:
OBJECTIVES:
- To impart knowledge on sources and characteristics of various industrial wastes and strategies for its prevention and control

UNIT I INTRODUCTION
Types of industries and industrial pollution – Characteristics of industrial wastes – Population equivalent – Bioassay studies – effects of industrial effluents on streams, sewer, land, sewage treatment plants and human health – Environmental legislations related to prevention and control of industrial effluents and hazardous wastes

UNIT II CLEANER PRODUCTION

UNIT III POLLUTION FROM MAJOR INDUSTRIES
Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants, Refineries, fertilizer, thermal power plants – Wastewater reclamation concepts

UNIT IV TREATMENT TECHNOLOGIES

UNIT V HAZARDOUS WASTE MANAGEMENT
Hazardous wastes - Physico chemical treatment – solidification – incineration – Secure land fills

TOTAL: 45 PERIODS

OUTCOMES:
The students completing the course will have
- an insight into the pollution from major industries including the sources and characteristics of pollutants
- ability to plan minimization of industrial wastes
- ability to design facilities for the processing and reclamation of industrial waste water

TEXTBOOKS:

REFERENCES:
OBJECTIVES:

- This subject covers the sources, characteristics and effects of air and noise pollution and the methods of controlling the same. The student is expected to know about source inventory and control mechanism.

UNIT I SOURCES AND EFFECTS OF AIR POLLUTANTS

UNIT II DISPERSION OF POLLUTANTS

UNIT III AIR POLLUTION CONTROL

Concepts of control – Principles and design of control measures – Particulates control by gravitational, centrifugal, filtration, scrubbing, electrostatic precipitation – Selection criteria for equipment - gaseous pollutant control by adsorption, absorption, condensation, combustion – Pollution control for specific major industries.

UNIT IV AIR QUALITY MANAGEMENT

UNIT V NOISE POLLUTION

Sources of noise pollution – Effects – Assessment - Standards – Control methods – Prevention

OUTCOMES:
The students completing the course will have

- an understanding of the nature and characteristics of air pollutants, noise pollution and basic concepts of air quality management
- ability to identify, formulate and solve air and noise pollution problems
- ability to design stacks and particulate air pollution control devices to meet applicable standards.

TEXTBOOKS:

REFERENCES:

OBJECTIVES:
- To make the students conversant with different aspects of the types, sources, generation, storage, collection, transport, processing and disposal of municipal solid waste.

UNIT I SOURCES AND TYPES
Sources and types of municipal solid wastes-waste generation rates-factors affecting generation, characteristics-methods of sampling and characterization; Effects of improper disposal of solid wastes-Public health and environmental effects. Elements of solid waste management—Social and Financial aspects – Municipal solid waste (M&H) rules – integrated management-Public awareness; Role of NGO’s.

UNIT II ON-SITE STORAGE AND PROCESSING

UNIT III COLLECTION AND TRANSFER
Methods of Residential and commercial waste collection – Collection vehicles – Manpower–Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems- solving.

UNIT IV OFF-SITE PROCESSING
Objectives of waste processing – Physical Processing techniques and Equipments; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions.

UNIT V DISPOSAL
Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor–Dumpsite Rehabilitation

TOTAL: 45 PERIODS

OUTCOMES:
The students completing the course will have
- an understanding of the nature and characteristics of municipal solid wastes and the regulatory requirements regarding municipal solid waste management
- ability to plan waste minimisation and design storage, collection, transport, processing and disposal of municipal solid waste

TEXTBOOKS:

REFERENCES
OBJECTIVES:

- At the end of the course student is expected to identify the problematic soil and suitable suggest remedial measures to improve their behaviour.

UNIT I PROBLEMATIC SOIL AND IMPROVEMENT TECHNIQUES 8
Role of ground improvement in foundation engineering – methods of ground improvement – Geotechnical problems in alluvial, lateritic and black cotton soils – Selection of suitable ground improvement techniques based on soil conditions.

UNIT II DEWATERING 10
Dewatering Techniques - Well points – Vacuum and electroosmotic methods – Seepage analysis for two – dimensional flow for fully and partially penetrated slots in homogeneous deposits - Simple cases - Design.

UNIT III INSITU TREATMENT OF COHESIONLESS AND COHESIVE SOILS 10

UNIT IV EARTH REINFORCEMENT 9
Concept of reinforcement – Types of reinforcement material – Reinforced earth wall – Mechanism – simple design - applications of reinforced earth. Role of Geotextiles in filtration, drainage, separation, road works and containment.

UNIT V GROUT TECHNIQUES 8

TOTAL: 45 PERIODS

OUTCOMES:

- Student will be in a position to identify and evaluate the deficiencies if any in the deposits of a project area and capable of providing alternate methods to improve its character suitable to the project so that the structures built will be stable and serve.

TEXTBOOKS:

REFERENCES:

OBJECTIVES:

- To make the students to gain the knowledge on quality of concrete, durability aspects, causes of deterioration, assessment of distressed structures, repairing of structures and demolition procedures.

UNIT I MAINTENANCE AND REPAIR STRATEGIES

Maintenance, Repair and Rehabilitation, Facets of Maintenance, importance of Maintenance, Various aspects of Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration.

UNIT II STRENGTH AND DURABILITY OF CONCRETE

Quality assurance for concrete – Strength, Durability and Thermal properties, of concrete - Cracks, different types, causes – Effects due to climate, temperature, Sustained elevated temperature, Corrosion - Effects of cover thickness.

UNIT III SPECIAL CONCRETES

UNIT IV TECHNIQUES FOR REPAIR AND PROTECTION METHODS

Non-destructive Testing Techniques, Epoxy injection, Shoring, Underpinning, Corrosion protection techniques – Corrosion inhibitors, Corrosion resistant steels, Coatings to reinforcement, cathodic protection.

UNIT V REPAIR, REHABILITATION AND RETROFITTING OF STRUCTURES

Strengthening of Structural elements, Repair of structures distressed due to corrosion, fire, Leakage, earthquake – DEMOLITION TECHNIQUES - Engineered demolition methods - Case studies.

OUTCOMES:

- Students must gained knowledge on quality of concrete, durability aspects, causes of deterioration, assessment of distressed structures, repairing of structures and demolition procedures.

TEXTBOOKS:

REFERENCES:

OBJECTIVES:

- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction.
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR).
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity.

UNIT I: INTRODUCTION TO DISASTERS

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don’ts during various types of Disasters.

UNIT II: APPROACHES TO DISASTER RISK REDUCTION (DRR)

Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stakeholders- Institutional Processes and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.

UNIT III: INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc. - Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV: DISASTER RISK MANAGEMENT IN INDIA

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

UNIT V: DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

OUTCOMES:

The students will be able to

- Differentiate the types of disasters, causes and their impact on environment and society.
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarious in the Indian context, Disaster damage assessment and management.
TEXTBOOKS:

REFERENCES
1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005

PTCE6013 BRIDGE STRUCTURES L T P C 3 0 0 3

OBJECTIVES:
- To make the student to know about various bridge structures, selection of appropriate bridge structures and design it for given site conditions.

UNIT I INTRODUCTION
History of Bridges - Components of a Bridge and its definitions- Classification of Road Bridges - Selection of Site and Initial Decision Process - Survey and Alignment; Geotechnical Investigations and Interpretations. River Bridge: Selection of Bridge site and planning - Collection of Bridge design data - Hydrological calculation

Road Bridges - IRC codes - Standard Loading for Bridge Design - Influence lines for statically determinate structures - I.L. for statically indeterminate structures - Transverse distribution of Live loads among deck longitudinal - Load combinations for different working state and limit state designs

Railway Bridges: Loadings for Railway Bridges; Railroad data. Pre-design considerations; - Railroad vs. Highway bridges.

UNIT II SUPERSTRUCTURES
Selection of main bridge parameters, design methodologies -Choices of superstructure types; Orthotropic plate theory, load + techniques - Grillage analysis - Finite element analysis - Different types of superstructure (RCC and PSC); Longitudinal Analysis of Bridge- Temperature Analysis-Distortional Analysis-Effects of Differential settlement of supports-Reinforced earth structures

UNIT III DESIGN OF STEEL BRIDGES
Design of Truss Bridges – Design of Plate girder bridges.

UNIT IV DESIGN OF RC AND PSC BRIDGES
Design of slab bridges – Girder bridges – PSC bridges

UNIT V SUBSTRUCTURE, BEARINGS AND DECK JOINTS, PARAPETS AND RAILINGS
Substructure - Pier; Abutment - Wing walls- Importance of Soil-Structure Interaction - Types of foundations - Open foundation- Pile foundation- Well foundation- Simply supported bridge-Continuous Bridge - Bearings and Deck Joints - Different types of bridge bearings and expansion joints - Parapets and Railings for Highway Bridges

TOTAL: 45 PERIODS
OUTCOMES:
- To develop an understanding of an appreciation for basic concepts in proportioning and design of bridges in terms of aesthetics, geographical location and functionality.
- To help the student develop an intuitive feeling about the sizing of bridge elements, i.e., develop a clear understanding of conceptual design.
- To understand the load flow mechanism and identify loads on bridges.
- To carry out a design of bridge starting from conceptual design, selecting suitable bridge, geometry to sizing of its elements.

TEXTBOOKS:

REFERENCES:

PTCE6014 STORAGE STRUCTURES L T P C
3 0 0 3

OBJECTIVES:
- To introduce the student to basic theory and concepts of design of storage structures like steel and concrete tanks, bunkers and silos.

UNIT I STEEL WATER TANKS 9

UNIT II CONCRETE WATER TANKS 9

UNIT III STEEL BUNKERS AND SILOS 9

UNIT IV CONCRETE BUNKERS AND SILOS 9
Design of square bunker – Side Walls – Hopper bottom – Top and bottom edge beams – Design of cylindrical silo – Wall portion – Design of conical hopper – Ring beam at junction

UNIT V PRESTRESSED CONCRETE WATER TANKS 9
Principles of circular prestressing – Design of prestressed concrete circular water tanks

TOTAL: 45 PERIODS
OUTCOMES:
- At the end of the course the student shall be able to design concrete and steel material storage structures.

TEXTBOOKS:

REFERENCES:

PTCE6015 TALL BUILDINGS L T P C
3 0 0 3

OBJECTIVES:
- The design aspects and analysis methodologies of tall buildings will be introduced. The stability analysis of tall buildings is another important objective of this course.

UNIT I DESIGN CRITERIA AND MATERIALS
Development of High Rise Structures - General Planning Considerations - Design philosophies - Materials used for Construction - High Strength Concrete - High Performance Concrete - Self Compacting Concrete - Glass - High Strength Steel

UNIT II LOADING

UNIT III BEHAVIOUR OF VARIOUS STRUCTURAL SYSTEMS
Factors affecting growth, Height and Structural form. High rise behaviour of Various structural systems - Rigid frames, braced frames, Infilled frames, shear walls, coupled shear walls, wall-frames, tubular structures, cores, outrigger - braced and hybrid mega systems.

UNIT IV ANALYSIS AND DESIGN
Modeling for approximate analysis, Accurate analysis and reduction techniques, Analysis of buildings as total structural system considering overall integrity and major subsystem interaction, Analysis for member forces, drift and twist, computerised general three dimensional analysis.

UNIT V STABILITY OF TALL BUILDINGS
Overall buckling analysis of frames, wall-frames, Approximate methods, second order effects of gravity of loading, P-Delta analysis, simultaneous first-order and P-Delta analysis, Translational, Torsional instability, out of plumb effects, stiffness of member in stability, effect of foundation rotation.

OUTCOMES:
- At the end of this course the student should have an understanding on the behaviour of tall buildings subjected to lateral building. The students should have knowledge about the rudimentary principles of designing tall buildings as per the existing codes.
PTCE6016 PREFABRICATED STRUCTURES L T P C
 3 0 0 3

OBJECTIVES:
 • To impart knowledge to students on modular construction, industrialised construction and
design of prefabricated elements and construction methods.

UNIT I INTRODUCTION 9
Need for prefabrication – Principles – Materials – Modular coordination – Standardization –

UNIT II PREFABRICATED COMPONENTS 9
Behaviour of structural components – Large panel constructions – Construction of roof and floor
slabs – Wall panels – Columns – Shear walls

UNIT III DESIGN PRINCIPLES 9
Disuniting of structures- Design of cross section based on efficiency of material used – Problems
in design because of joint flexibility – Allowance for joint deformation.

UNIT IV JOINT IN STRUCTURAL MEMBERS 9
Joints for different structural connections – Dimensions and detailing – Design of expansion joints

UNIT V DESIGN FOR ABNORMAL LOADS 9
Progressive collapse – Code provisions – Equivalent design loads for considering abnormal
effects such as earthquakes, cyclones, etc., - Importance of avoidance of progressive collapse.

TOTAL: 45 PERIODS

OUTCOMES:
 • The student shall be able to design some of the prefabricated elements and also have the
knowledge of the construction methods in using these elements.

TEXTBOOKS:
 1. CBRI, Building materials and components, India, 1990
 2. Gerostiza C.Z., Hendrikson C. and Rehat D.R., "Knowledge based process planning for

REFERENCES:
1976.
 2. "Structural design manual", Precast concrete connection details, Society for the studies in
the use of precast concrete, Netherland Betor Verlag, 2009
OBJECTIVES:
- To make students aware of various measurement techniques and experimental planning and procedures adopted in laboratory.

UNIT I STRAIN GAUGES
Definition of Gauge length, sensitivity and range – Characteristics of an ideal strain gauge – Different types of mechanical strain gauges for use in metal and concrete specimens – Optical strain gauge – Acoustic strain gauge – Pneumatic strain gauge – Merits and demerits.

UNIT II ELECTRICAL STRAIN GAUGES
Inductance, capacitance and piezo-electric gauges – Bonded and unbounded resistance gauges and their application in stress analysis – Fixing technique and measurement of strains – Rosettes – Determination of principal strains using rosettes – Use of Murphy’s construction for drawing circle of strains – Mohr’s stress circle – Analytical solution.

UNIT III PHOTOELASTICITY

UNIT IV MODEL ANALYSIS
Direct and indirect models – Laws of structural similitude – Choice of scales – Limitation of model studies - Buckingham piktheorem – Dimensional analysis – Model materials – Begg’s deformeter and its use in model analysis – Simple design of models for direct and indirect model analysis.

UNIT V BRITTLE COATINGS

OUTCOMES:
- Students will be able to select the appropriate strain gauges for strain measurements and they have sufficient knowledge in model analysis and predict the behaviour of prototypes.

TEXTBOOKS:

REFERENCES:
OBJECTIVES:

- To introduce the students about computer graphics, structural analysis, design and optimization and expert systems, applications in analysis.

UNIT I INTRODUCTION

Fundamental reason for implementing CAD - Software requirements – Hardware components in CAD system – Design process - Applications and benefits.

UNIT II COMPUTER GRAPHICS

Graphic Software – Graphic primitives - Transformations - 2 Dimensional and 3 Dimensional transformations – Concatenation - Wire frame modeling - Solid modeling - Graphic standards - Drafting packages – Auto CAD.

UNIT III STRUCTURAL ANALYSIS

UNIT IV DESIGN AND OPTIMIZATION

Principles of design of steel and RC structures - Beams and Columns - Applications to simple design problems - Optimization techniques - Algorithms - Linear programming.

UNIT V EXPERT SYSTEMS

Introduction to artificial intelligence - Knowledge based expert systems – Applications of KBES- Rules and decision tables - Inference mechanisms - simple applications

TOTAL: 45 PERIODS

OUTCOMES:

- Students will be able to implement ideas of computer aided design with advantages and demerits.

TEXTBOOKS:

REFERENCES:

OBJECTIVES:

- To understand the dynamics of earth and to estimate dynamic properties of soils
- To develop the site specific design spectrum for design of sub structure and evaluation of liquefaction potential.
UNIT I SEISMOLOGY AND EARTHQUAKES

UNIT II DYNAMIC PROPERTIES OF SOILS

UNIT III SEISMIC HAZARD ANALYSIS

UNIT IV GROUND RESPONSE ANALYSIS

UNIT V LIQUEFACTION ANALYSIS

TOTAL: 45 PERIODS

OUTCOMES:
- Students are able to perform site specific response analysis to develop design spectra and to do detailed liquefaction analysis using SPT data.

TEXTBOOKS:

REFERENCES:
OBJECTIVES:

- To sensitize the Engineering students to various aspects of Human Rights.

UNIT I

UNIT II

UNIT III
Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV
Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V

TOTAL: 45 PERIODS

OUTCOME:

- Engineering students will acquire the basic knowledge of human rights.

REFERENCES: