ANNA UNIVERSITY, CHENNAI
AFFILIATED INSTITUTIONS
B.E. COMPUTER AND COMMUNICATION ENGINEERING
REGULATIONS – 2017
CHOICE BASED CREDIT SYSTEM

PROGRAMME EDUCATIONAL OBJECTIVES
PEO1: To enable graduates to pursue research, or have a successful career in academia or industries associated with Computer and Communication Engineering, or as entrepreneurs.

PEO2: To provide students with strong foundational concepts and also advanced techniques and tools in order to enable them to build solutions or systems of varying complexity.

PEO3: To prepare students to critically analyze existing literature in an area of specialization and ethically develop innovative and research oriented methodologies to solve the problems identified.

PROGRAMME OUTCOMES:
Engineering Graduates will be able to:

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OBJECTIVES (PSOS)

1. To analyse, design and develop solutions by applying foundational concepts of computer and communication engineering.
2. To apply design principles and best practices for developing quality products for scientific and business applications.
3. To adapt to emerging information and communication technologies (ICT) to innovate ideas and solutions to existing/novel problems.

Contributions: 1: Reasonable 2: Significant 3: Strong

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES WITH PROGRAMME OUTCOMES

A broad relation between the programme objective and the outcomes is given in the following table

<table>
<thead>
<tr>
<th>Programme Educational Objectives</th>
<th>Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1.</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
</tr>
</tbody>
</table>

MAPPING OF PROGRAM SPECIFIC OBJECTIVES WITH PROGRAMME OUTCOMES:

A broad relation between the Program Specific Objectives and the outcomes is given in the following table

<table>
<thead>
<tr>
<th>Program Specific Objectives</th>
<th>Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1.</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
</tr>
<tr>
<td>Course Title</td>
<td>Programme Outcome (PO)</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SEMESTER I</td>
<td></td>
</tr>
<tr>
<td>Communicative English</td>
<td></td>
</tr>
<tr>
<td>Engineering Mathematics - I</td>
<td>√</td>
</tr>
<tr>
<td>Engineering Physics</td>
<td></td>
</tr>
<tr>
<td>Engineering Chemistry</td>
<td></td>
</tr>
<tr>
<td>Problem Solving and Python Programming</td>
<td>√</td>
</tr>
<tr>
<td>Engineering Graphics</td>
<td>√</td>
</tr>
<tr>
<td>Problem Solving and Python Programming Laboratory</td>
<td>√</td>
</tr>
<tr>
<td>Physics and Chemistry Laboratory</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMESTER II</td>
<td></td>
</tr>
<tr>
<td>Technical English</td>
<td></td>
</tr>
<tr>
<td>Engineering Mathematics II</td>
<td>√</td>
</tr>
<tr>
<td>Physics for Information Science</td>
<td>√</td>
</tr>
<tr>
<td>Basic Electrical and Instrumentation</td>
<td>√</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Engineering Programming in C</td>
<td>√</td>
</tr>
<tr>
<td>Engineering Practices Laboratory</td>
<td>√</td>
</tr>
<tr>
<td>C Programming Laboratory</td>
<td>√</td>
</tr>
<tr>
<td>COURSE TITLE</td>
<td>1</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Linear Algebra and Partial Differential Equations</td>
<td>✓</td>
</tr>
<tr>
<td>Data Structures</td>
<td>✓</td>
</tr>
<tr>
<td>Electron Devices and Circuits</td>
<td></td>
</tr>
<tr>
<td>Digital Electronics</td>
<td>✓</td>
</tr>
<tr>
<td>Database Management Systems</td>
<td>✓</td>
</tr>
<tr>
<td>Signals and Systems</td>
<td>✓</td>
</tr>
<tr>
<td>Data Structures Laboratory</td>
<td>✓</td>
</tr>
<tr>
<td>Database Management Systems Laboratory</td>
<td>✓</td>
</tr>
<tr>
<td>Design and Analysis of Algorithms</td>
<td>✓</td>
</tr>
<tr>
<td>Probability and Random Processes</td>
<td>✓</td>
</tr>
<tr>
<td>Object Oriented Programming</td>
<td>✓</td>
</tr>
<tr>
<td>Computer Architecture</td>
<td>✓</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>✓</td>
</tr>
<tr>
<td>Object Oriented Programming Laboratory</td>
<td>✓</td>
</tr>
<tr>
<td>Digital Electronics Laboratory</td>
<td>✓</td>
</tr>
<tr>
<td>Advanced Reading and Writing</td>
<td></td>
</tr>
<tr>
<td>YEAR II</td>
<td>COURSE TITLE</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>SEMESTER V</td>
<td>Algebra and Number Theory</td>
</tr>
<tr>
<td></td>
<td>Microprocessors and Microcontrollers</td>
</tr>
<tr>
<td></td>
<td>Analog and Digital Communication</td>
</tr>
<tr>
<td></td>
<td>Object Oriented Analysis and Design</td>
</tr>
<tr>
<td></td>
<td>Discrete-Time Signal Processing</td>
</tr>
<tr>
<td></td>
<td>Microprocessors and Microcontrollers Laboratory</td>
</tr>
<tr>
<td></td>
<td>Object Oriented Analysis and Design Laboratory</td>
</tr>
<tr>
<td></td>
<td>Digital Signal Processing Laboratory</td>
</tr>
<tr>
<td></td>
<td>Internet Programming</td>
</tr>
<tr>
<td></td>
<td>Computer Networks</td>
</tr>
<tr>
<td></td>
<td>Telecommunication Switching and Network</td>
</tr>
<tr>
<td></td>
<td>Wireless Communication</td>
</tr>
<tr>
<td></td>
<td>Principles of Management</td>
</tr>
<tr>
<td></td>
<td>Professional Elective I</td>
</tr>
<tr>
<td></td>
<td>Internet Programming Laboratory</td>
</tr>
<tr>
<td></td>
<td>Mini Project</td>
</tr>
<tr>
<td></td>
<td>Professional Communication</td>
</tr>
<tr>
<td></td>
<td>Networks Laboratory</td>
</tr>
</tbody>
</table>

<p>| SEMESTER VI | Internet Programming | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | |
| | Computer Networks | ✓ | ✓ | ✓ | | | | | | | | | |
| | Telecommunication Switching and Network | ✓ | ✓ | ✓ | | | | | | | | | |
| | Wireless Communication | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | |
| | Principles of Management | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | |
| | Professional Elective I | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | |
| | Internet Programming Laboratory | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | |
| | Mini Project | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | |
| | Professional Communication | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | |
| | Networks Laboratory | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | |</p>
<table>
<thead>
<tr>
<th>YEAR II</th>
<th>SEMESTER VII</th>
<th>COURSE TITLE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cryptography and Network Security</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antennas and Wave Propagation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optical Communication</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open Elective II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective III</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Security Laboratory</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Communication Laboratory</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Work</td>
<td>√</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER VIII</th>
<th>COURSE TITLE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Professional Elective IV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Elective V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Work</td>
<td>√</td>
</tr>
<tr>
<td>SEM</td>
<td>COURSE TITLE</td>
<td>PROGRAMME OUTCOME (PO)</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>VI</td>
<td>Data Warehousing and Data Mining</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Network Analysis and Management</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Testing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Embedded Systems</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agile Methodologies</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intellectual Property Rights</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>Big Data Analytics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Machine Learning Techniques</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internet of Things</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service Oriented Architecture</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cognitive Radio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Quality Management</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Multicore - Architectures and Programming</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human Computer Interaction</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Network Protocols</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C# and .Net Programming</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Wireless Adhoc and Sensor Networks</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foundation Skills in Integrated Product Development</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human Rights</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disaster Management</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>Digital Image Processing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information Security</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Defined Networks</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyber Forensics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soft Computing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Ethics in Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>Information Retrieval Techniques</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green Computing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPU Architecture and Programming</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Design and Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloud Computing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Nano Science</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sl. No</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>CONTACT PERIODS</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------------------------------------</td>
<td>----------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS8151</td>
<td>Communicative English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>MA8151</td>
<td>Engineering Mathematics - I</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>PH8151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>CY8151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>GE8151</td>
<td>Problem Solving and Python Programming</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>GE8152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE8161</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>BS8161</td>
<td>Physics and Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td>19</td>
<td>0</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS8251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA8251</td>
<td>Engineering Mathematics - II</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH8253</td>
<td>Physics for Electronics Engineering</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BE8254</td>
<td>Basic Electrical and Instrumentation Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8291</td>
<td>Environmental Science and Engineering</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CS8251</td>
<td>Programming in C</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE8261</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CS8261</td>
<td>C Programming Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>20</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>
SEMESTER III

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA8352</td>
<td>Linear Algebra and Partial Differential Equations</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CS8391</td>
<td>Data Structures</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EC8353</td>
<td>Electron Devices and Circuits</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>EC8392</td>
<td>Digital Electronics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CS8492</td>
<td>Database Management Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>EC8352</td>
<td>Signals and Systems</td>
<td>PC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CS8381</td>
<td>Data Structures Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CS8481</td>
<td>Database Management Systems Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>20</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

SEMESTER IV

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CS8451</td>
<td>Design and Analysis of Algorithms</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MA8451</td>
<td>Probability and Random Processes</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>CS8392</td>
<td>Object Oriented Programming</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CS8491</td>
<td>Computer Architecture</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EC8491</td>
<td>Communication Theory</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CS8494</td>
<td>Software Engineering Theory</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CS8383</td>
<td>Object Oriented Programming Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CO8411</td>
<td>Digital Electronics Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>HS8461</td>
<td>Advanced Reading and Writing</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>19</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

10
SEMESTER V

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA8551</td>
<td>Algebra and Number Theory</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>EC8691</td>
<td>Microprocessors and Microcontrollers</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EC8394</td>
<td>Analog and Digital Communication</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CS8592</td>
<td>Object Oriented Analysis and Design</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EC8553</td>
<td>Discrete-Time Signal Processing</td>
<td>PC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Open Elective I</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>EC8681</td>
<td>Microprocessors and Microcontrollers Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CS8582</td>
<td>Object Oriented Analysis and Design Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>EC8562</td>
<td>Digital Signal Processing Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>32</td>
<td>20</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

SEMESTER VI

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CS8651</td>
<td>Internet Programming</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CS8591</td>
<td>Computer Networks</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CO8601</td>
<td>Telecommunication Switching and Networks</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>EC8652</td>
<td>Wireless Communication</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>MG8591</td>
<td>Principles of Management</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective I</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CS8661</td>
<td>Internet Programming Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CS8581</td>
<td>Networks Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>HS8581</td>
<td>Professional Communication</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10.</td>
<td>CO8611</td>
<td>Mini Project</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>30</td>
<td>18</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>
SEMESTER VII

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CS8792</td>
<td>Cryptography and Network Security</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CO8701</td>
<td>Antennas and Wave Propagation</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EC8751</td>
<td>Optical Communication</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Open Elective II</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>Professional Elective II</td>
<td>Professional Elective III</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>IT8761</td>
<td>Security Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>EC8761</td>
<td>Advanced Communication Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>26</td>
<td>18</td>
<td>8</td>
<td>22</td>
</tr>
</tbody>
</table>

TOTAL NO. OF CREDITS: 185

SEMESTER VIII

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Professional Elective IV</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Professional Elective V</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>CO8811</td>
<td>Project Work</td>
<td>EEC</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>26</td>
<td>6</td>
<td>20</td>
<td>16</td>
</tr>
</tbody>
</table>

TOTAL NO. OF CREDITS: 185
<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Contact Periods</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS8151</td>
<td>Communicative English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>HS8251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>GE8291</td>
<td>Environmental Science and Engineering</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MG8591</td>
<td>Principles of Management</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

BASIC SCIENCES (BS)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Contact Periods</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA8151</td>
<td>Engineering Mathematics I</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>PH8151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CY8151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BS8161</td>
<td>Physics and Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>MA8251</td>
<td>Engineering Mathematics II</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>PH8253</td>
<td>Physics for Electronics Engineering</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>MA8352</td>
<td>Linear Algebra and Partial Differential Equation</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>MA8451</td>
<td>Probability and Random Processes</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>MA8551</td>
<td>Algebra and Number Theory</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

ENGINEERING SCIENCES (ES)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Contact Periods</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GE8151</td>
<td>Problem Solving and Python Programming</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>GE8152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>GE8161</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>BE8254</td>
<td>Basic Electrical and Instrumentation</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8261</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>EC8394</td>
<td>Analog and Digital Communication</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Sl. No</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>CONTACT PERIODS</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---</td>
<td>----------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.</td>
<td>CS8251</td>
<td>Programming in C</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CS8261</td>
<td>C Programming Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>CS8391</td>
<td>Data Structures</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>EC8353</td>
<td>Electron Devices and Circuits</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EC8392</td>
<td>Digital Electronics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CS8492</td>
<td>Database Management Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>EC8352</td>
<td>Signals and Systems</td>
<td>PC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>CS8381</td>
<td>Data Structures</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>CS8481</td>
<td>Database Management Systems Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>CO8411</td>
<td>Digital Electronics Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>11.</td>
<td>CS8451</td>
<td>Design and Analysis of Algorithms</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>CS8392</td>
<td>Object Oriented Programming</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>CS8491</td>
<td>Computer Architecture</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>EC8491</td>
<td>Communication Theory</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>CS8494</td>
<td>Software Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>CS8383</td>
<td>Object Oriented Programming Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>17.</td>
<td>EC8691</td>
<td>Microprocessors and Microcontrollers</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>CS8592</td>
<td>Object Oriented Analysis and Design</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19.</td>
<td>EC8553</td>
<td>Discrete-Time Signal Processing</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>EC8681</td>
<td>Microprocessors and Microcontrollers</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>21.</td>
<td>CS8582</td>
<td>Object Oriented Analysis and Design Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>22.</td>
<td>EC8562</td>
<td>Digital Signal Processing Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>23.</td>
<td>CS8651</td>
<td>Internet Programming</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>24.</td>
<td>CS8591</td>
<td>Computer Networks</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>25.</td>
<td>CO8601</td>
<td>Telecommunication Switching and Networks</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>26.</td>
<td>EC8652</td>
<td>Wireless Communication</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>27.</td>
<td>CS8661</td>
<td>Internet Programming Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>28.</td>
<td>CS8581</td>
<td>Networks Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>29.</td>
<td>CS8792</td>
<td>Cryptography and Network Security</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>30.</td>
<td>CO8701</td>
<td>Antennas and Wave Propagation</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>31.</td>
<td>EC8751</td>
<td>Optical Communication</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>32.</td>
<td>IT8761</td>
<td>Security Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>33.</td>
<td>EC8761</td>
<td>Advanced Communication Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
PROFESSIONAL ELECTIVES (PE)

SEMESTER VI

ELECTIVE – I

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CS8075</td>
<td>Data Warehousing and Data mining</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CO8001</td>
<td>Network Analysis and Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>IT8076</td>
<td>Software Testing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>IT8072</td>
<td>Embedded systems</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CS8072</td>
<td>Agile Methodologies</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8075</td>
<td>Intellectual Property Rights</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VII

ELECTIVE – II

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CS8091</td>
<td>Big Data Analytics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CS8082</td>
<td>Machine Learning Techniques</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CS8081</td>
<td>Internet of Things</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>IT8074</td>
<td>Service Oriented Architecture</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EC8071</td>
<td>Cognitive Radio</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8077</td>
<td>Total Quality Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VII

ELECTIVE – III

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CS8083</td>
<td>Multi-core Architectures and Programming</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CS8079</td>
<td>Human Computer Interaction</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CO8002</td>
<td>Network Protocols</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CS8073</td>
<td>C# and .Net Programming</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CS8088</td>
<td>Wireless Adhoc and Sensor Networks</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8072</td>
<td>Foundation Skills in Integrated Product Development</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>GE8074</td>
<td>Human Rights</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>GE8071</td>
<td>Disaster Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
SEMESTER VIII
ELECTIVE – IV

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>EC8093</td>
<td>Digital Image Processing</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CS8074</td>
<td>Cyber Forensics</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>IT8073</td>
<td>Information Security</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CS8087</td>
<td>Software Defined Networks</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CS8086</td>
<td>Soft Computing</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8076</td>
<td>Professional Ethics in Engineering</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VIII
ELECTIVE – V

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CS8080</td>
<td>Information Retrieval Techniques</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CS8078</td>
<td>Green Computing</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CS8076</td>
<td>GPU Architecture and Programming</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>IT8078</td>
<td>Web Design and Management</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CS8791</td>
<td>Cloud Computing</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8073</td>
<td>Fundamentals of Nano Science</td>
<td>PE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Professional Electives are grouped according to elective number as was done previously.

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

<table>
<thead>
<tr>
<th>S.NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS8461</td>
<td>Advanced Reading and Writing</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>CO8611</td>
<td>Mini Project</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>HS8581</td>
<td>Professional Communication</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>CO8811</td>
<td>Project Work</td>
<td>EEC</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>
SUMMARY

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>SUBJECT AREA</th>
<th>CREDITS AS PER SEMESTER</th>
<th>CREDITS TOTAL</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>1.</td>
<td>HS</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>BS</td>
<td>12</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>ES</td>
<td>9</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PC</td>
<td>5</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>5.</td>
<td>PE</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6.</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>EEC</td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>8.</td>
<td>Non Credit / Mandatory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>25</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>
OBJECTIVES:

- To develop the basic reading and writing skills of first year engineering and technology students.
- To help learners develop their listening skills, which will, enable them listen to lectures and comprehend them by asking questions; seeking clarifications.
- To help learners develop their speaking skills and speak fluently in real contexts.
- To help learners develop vocabulary of a general kind by developing their reading skills

UNIT I SHARING INFORMATION RELATED TO ONESELF/FAMILY & FRIENDS 12
Reading - short comprehension passages, practice in skimming-scanning and predicting
Writing - completing sentences - developing hints. Listening - short texts - short formal and informal conversations. Speaking - introducing oneself - exchanging personal information

UNIT II GENERAL READING AND FREE WRITING 12
Reading - comprehension-pre-reading-post reading - comprehension questions (multiple choice questions and/or short questions/ open-ended questions)- inductive reading - short narratives and descriptions from newspapers including dialogues and conversations (also used as short Listening texts)- register. Writing - paragraph writing - topic sentence - main ideas - free writing, short narrative descriptions using some suggested vocabulary and structures. Listening - telephonic conversations. Speaking - sharing information of a personal kind—greeting — taking leave.
Language development — prepositions, conjunctions Vocabulary development— guessing meanings of words in context.

UNIT III GRAMMAR AND LANGUAGE DEVELOPMENT 12
Reading - short texts and longer passages (close reading) Writing- understanding text structure- use of reference words and discourse markers-coherence-jumbled sentences Listening – listening to longer texts and filling up the table - product description- narratives from different sources. Speaking - asking about routine actions and expressing opinions. Language development - degrees of comparison- pronouns- direct vs indirect questions- Vocabulary development — single word substitutes- adverbs.

UNIT IV READING AND LANGUAGE DEVELOPMENT 12
Reading- comprehension-reading longer texts- reading different types of texts- magazines Writing- letter writing, informal or personal letters- e-mails-conventions of personal email Listening- listening to dialogues or conversations and completing exercises based on them. Speaking - speaking about oneself- speaking about one’s friend. Language development- Tenses- simple present-simple past- present continuous and past continuous- Vocabulary development - synonyms- antonyms- phrasal verbs.
UNIT V EXTENDED WRITING

TOTAL: 60 PERIODS

OUTCOMES:
At the end of the course, learners will be able to:
• Read articles of a general kind in magazines and newspapers.
• Participate effectively in informal conversations; introduce themselves and their friends and express opinions in English.
• Comprehend conversations and short talks delivered in English
• Write short essays of a general kind and personal letters and emails in English.

TEXT BOOKS:

REFERENCES:
3. Redston, Chris & Gillies Cunningham Face2Face (Pre-intermediate Student’s Book& Workbook) Cambridge University Press, New Delhi: 2005
OBJECTIVES:
The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus. The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modelling the engineering problems mathematically and obtaining solutions. This is a foundation course which mainly deals with topics such as single variable and multivariable calculus and plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

UNIT I DIFFERENTIAL CALCULUS 12
Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules - Maxima and Minima of functions of one variable.

UNIT II FUNCTIONS OF SEVERAL VARIABLES 12

UNIT III INTEGRAL CALCULUS 12
Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT IV MULTIPLE INTEGRALS 12

UNIT V DIFFERENTIAL EQUATIONS 12

TOTAL : 60 PERIODS

OUTCOMES:
After completing this course, students should demonstrate competency in the following skills:

- Use both the limit definition and rules of differentiation to differentiate functions.
- Apply differentiation to solve maxima and minima problems.
- Evaluate integrals both by using Riemann sums and by using the Fundamental Theorem of Calculus.
- Apply integration to compute multiple integrals, area, volume, integrals in polar coordinates, in addition to change of order and change of variables.
- Evaluate integrals using techniques of integration, such as substitution, partial fractions and integration by parts.
- Determine convergence/divergence of improper integrals and evaluate convergent improper integrals.
- Apply various techniques in solving differential equations.
TEXT BOOKS:
2. James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 7th Edition, New Delhi, 2015. [For Units I & III - Sections 1.1, 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

REFERENCES:

PH8151 ENGINEERING PHYSICS

OBJECTIVES:
- To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT I PROPERTIES OF MATTER

UNIT II WAVES AND FIBER OPTICS

UNIT III THERMAL PHYSICS
UNIT IV QUANTUM PHYSICS

UNIT V CRYSTAL PHYSICS
Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances - coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures - crystal imperfections: point defects, line defects – Burger vectors, stacking faults – role of imperfections in plastic deformation - growth of single crystals: solution and melt growth techniques.

OUTCOMES:
Upon completion of this course,
- The students will gain knowledge on the basics of properties of matter and its applications,
- The students will acquire knowledge on the concepts of waves and optical devices and their applications in fibre optics,
- The students will have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers,
- The students will get knowledge on advanced physics concepts of quantum theory and its applications in tunneling microscopes, and
- The students will understand the basics of crystals, their structures and different crystal growth techniques.

TEXT BOOKS:

REFERENCES:

CY8151 ENGINEERING CHEMISTRY

OBJECTIVES:
- To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
- To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- Preparation, properties and applications of engineering materials.
- Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.
- Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.
UNIT I WATER AND ITS TREATMENT

UNIT II SURFACE CHEMISTRY AND CATALYSIS

UNIT III ALLOYS AND PHASE RULE

UNIT IV FUELS AND COMBUSTION

UNIT V ENERGY SOURCES AND STORAGE DEVICES
Nuclear fission - controlled nuclear fission - nuclear fusion - differences between nuclear fission and fusion - nuclear chain reactions - nuclear energy - light water nuclear power plant - breeder reactor - solar energy conversion - solar cells - wind energy. Batteries, fuel cells and supercapacitors: Types of batteries – primary battery (dry cell) secondary battery (lead acid battery, lithium-ion-battery) fuel cells – H₂-O₂ fuel cell.

TOTAL: 45 PERIODS

OUTCOMES:
- The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:
REFERENCES:

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING L T P C 3 0 0 3

OBJECTIVES:
- To know the basics of algorithmic problem solving
- To read and write simple Python programs.
- To develop Python programs with conditionals and loops.
- To define Python functions and call them.
- To use Python data structures — lists, tuples, dictionaries.
- To do input/output with files in Python.

UNIT I ALGORITHMIC PROBLEM SOLVING 9
Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II DATA, EXPRESSIONS, STATEMENTS 9
Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT III CONTROL FLOW, FUNCTIONS 9
Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of n numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES 9
Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

UNIT V FILES, MODULES, PACKAGES 9
Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.

TOTAL : 45 PERIODS
OUTCOMES:
Upon completion of the course, students will be able to
- Develop algorithmic solutions to simple computational problems
- Read, write, execute by hand simple Python programs.
- Structure simple Python programs for solving problems.
- Decompose a Python program into functions.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python Programs.

TEXT BOOKS:

REFERENCES:

GE8152

ENGINEERING GRAPHICS

OBJECTIVES:
- To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products.
- To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I

PLANE CURVES AND FREEHAND SKETCHING
Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves. Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects – Layout of views- Freehand sketching of multiple views from pictorial views of objects
UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6+12
Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS 5+12
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 5+12
Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones.

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6+12
Principles of isometric projection – isometric scale – Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones - combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method .

TOTAL: 90 PERIODS

OUTCOMES:
On successful completion of this course, the student will be able to
• Familiarize with the fundamentals and standards of Engineering graphics
• Perform freehand sketching of basic geometrical constructions and multiple views of objects.
• Project orthographic projections of lines and plane surfaces.
• Draw projections and solids and development of surfaces.
• Visualize and to project isometric and perspective sections of simple solids.

TEXT BOOKS:

REFERENCES:
Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
4. The examination will be conducted in appropriate sessions on the same day.

GE8161 PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY L T P C
0 0 4 2

OBJECTIVES
- To write, test, and debug simple Python programs.
- To implement Python programs with conditionals and loops.
- Use functions for structuring Python programs.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python.

LIST OF PROGRAMS
1. Compute the GCD of two numbers.
2. Find the square root of a number (Newton’s method)
3. Exponentiation (power of a number)
4. Find the maximum of a list of numbers
5. Linear search and Binary search
6. Selection sort, Insertion sort
7. Merge sort
8. First n prime numbers
9. Multiply matrices
10. Programs that take command line arguments (word count)
11. Find the most frequent words in a text read from a file
12. Simulate elliptical orbits in Pygame
13. Simulate bouncing ball using Pygame

PLATFORM NEEDED
Python 3 interpreter for Windows/Linux

TOTAL :60 PERIODS

OUTCOMES
Upon completion of the course, students will be able to
- Write, test, and debug simple Python programs.
- Implement Python programs with conditionals and loops.
- Develop Python programs step-wise by defining functions and calling them.
- Use Python lists, tuples, dictionaries for representing compound data.
- Read and write data from/to files in Python.
OBJECTIVES:
- To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics, properties of matter and liquids.

LIST OF EXPERIMENTS: PHYSICS LABORATORY (Any 5 Experiments)
1. Determination of rigidity modulus – Torsion pendulum
2. Determination of Young’s modulus by non-uniform bending method
3. (a) Determination of wavelength, and particle size using Laser (b) Determination of acceptance angle in an optical fiber.
5. Determination of velocity of sound and compressibility of liquid – Ultrasonic interferometer
6. Determination of wavelength of mercury spectrum – spectrometer grating
7. Determination of band gap of a semiconductor
8. Determination of thickness of a thin wire – Air wedge method

TOTAL: 30 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to
- Apply principles of elasticity, optics and thermal properties for engineering applications.

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

OBJECTIVES:
- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by viscometry.

1. Estimation of HCl using Na₂CO₃ as primary standard and Determination of alkalinity in water sample.
2. Determination of total, temporary & permanent hardness of water by EDTA method.
3. Determination of DO content of water sample by Winkler’s method.
4. Determination of chloride content of water sample by argentometric method.
5. Estimation of copper content of the given solution by Iodometry.
6. Determination of strength of given hydrochloric acid using pH meter.
7. Determination of strength of acids in a mixture of acids using conductivity meter.
8. Estimation of iron content of the given solution using potentiometer.
9. Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthroline / thiocyanate method).
10. Estimation of sodium and potassium present in water using flame photometer.
12. Pseudo first order kinetics-ester hydrolysis.
14. Determination of CMC.
15. Phase change in a solid.
16. Conductometric titration of strong acid vs strong base.

TOTAL: 30 PERIODS
OUTCOMES:
- The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters.

TEXTBOOKS:

OBJECTIVES: The Course prepares second semester engineering and Technology students to:
- Develop strategies and skills to enhance their ability to read and comprehend engineering and technology texts.
- Foster their ability to write convincing job applications and effective reports.
- Develop their speaking skills to make technical presentations, participate in group discussions.
- Strengthen their listening skill which will help them comprehend lectures and talks in their areas of specialisation.

UNIT I INTRODUCTION TECHNICAL ENGLISH

UNIT II READING AND STUDY SKILLS

UNIT III TECHNICAL WRITING AND GRAMMAR

UNIT IV REPORT WRITING
UNIT V GROUP DISCUSSION AND JOB APPLICATIONS 12

Listening- TED/Ink talks; Speaking –participating in a group discussion -Reading– reading and understanding technical articles Writing– Writing reports- minutes of a meeting- accident and survey- Vocabulary Development- verbal analogies Language Development- reported speech.

TOTAL : 60 PERIODS

OUTCOMES:
At the end of the course learners will be able to:
- Read technical texts and write area- specific texts effortlessly.
- Listen and comprehend lectures and talks in their area of specialisation successfully.
- Speak appropriately and effectively in varied formal and informal contexts.
- Write reports and winning job applications.

TEXT BOOKS:

REFERENCES:

Students can be asked to read Tagore, Chetan Bhagat and for supplementary reading.

MA8251 ENGINEERING MATHEMATICS – II L T P C 4 0 0 4

OBJECTIVES:
This course is designed to cover topics such as Matrix Algebra, Vector Calculus, Complex Analysis and Laplace Transform. Matrix Algebra is one of the powerful tools to handle practical problems arising in the field of engineering. Vector calculus can be widely used for modelling the various laws of physics. The various methods of complex analysis and Laplace transforms can be used for efficiently solving the problems that occur in various branches of engineering disciplines.

UNIT I MATRICES 12
UNIT II VECTOR CALCULUS 12
Gradient and directional derivative – Divergence and curl - Vector identities – Irrotational and Solenoidal vector fields – Line integral over a plane curve – Surface integral - Area of a curved surface - Volume integral - Green’s, Gauss divergence and Stoke’s theorems – Verification and application in evaluating line, surface and volume integrals.

UNIT III ANALYTIC FUNCTIONS 12
Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by functions \(w = z + c, \frac{1}{z}, z^3 \) - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION 12

UNIT V LAPLACE TRANSFORMS 12

TOTAL: 60 PERIODS

OUTCOMES:
After successfully completing the course, the student will have a good understanding of the following topics and their applications:

- Eigenvalues and eigenvectors, diagonalization of a matrix, Symmetric matrices, Positive definite matrices and similar matrices.
- Gradient, divergence and curl of a vector point function and related identities.
- Evaluation of line, surface and volume integrals using Gauss, Stokes and Green’s theorems and their verification.
- Analytic functions, conformal mapping and complex integration.
- Laplace transform and inverse transform of simple functions, properties, various related theorems and application to differential equations with constant coefficients.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To understand the essential principles of Physics of semiconductor device and Electron transport properties. Become proficient in magnetic, dielectric and optical properties of materials and nano devices.

UNIT I ELECTRICAL PROPERTIES OF MATERIALS

UNIT II SEMICONDUCTOR PHYSICS

UNIT III MAGNETIC AND DIELECTRIC PROPERTIES OF MATERIALS

UNIT IV OPTICAL PROPERTIES OF MATERIALS

UNIT V NANOELECTRONIC DEVICES

TOTAL : 45 PERIODS

OUTCOMES:
At the end of the course, the students will able to
- gain knowledge on classical and quantum electron theories, and energy band structures,
- acquire knowledge on basics of semiconductor physics and its applications in various devices,
- get knowledge on magnetic and dielectric properties of materials,
- have the necessary understanding on the functioning of optical materials for optoelectronics,
- understand the basics of quantum structures and their applications in spintronics and carbon electronics.
TEXT BOOKS:

REFERENCES:

BE8254 BASIC ELECTRICAL AND INSTRUMENTATION ENGINEERING L T P C 3 0 0 3

OBJECTIVES:
To impart knowledge on
- Operation of Three phase electrical circuits and power measurement
- Working principles of Electrical Machines
- Working principle of Various measuring instruments

UNIT I AC CIRCUITS AND POWER SYSTEMS 9

UNIT II TRANSFORMER 9
Introduction - Ideal Transformer – Accounting For Finite Permeability And Core Loss – Circuit Model Of Transformer – Per Unit System – Determination Of Parameters Of Circuit Model Of Transformer – Voltage Regulation – Name Plate Rating – Efficiency – Three Phase Transformers - Auto Transformers

UNIT III DC MACHINES 9
Introduction – Constructional Features– Motoring and generation principle - Emf And Torque equation – Circuit Model – Methods of Excitation and magnetisation characteristics – Starting and Speed Control – Universal Motor

UNIT IV AC MACHINES 9
UNIT V MEASUREMENT AND INSTRUMENTATION

Type of Electrical and electronic instruments – Classification
- Types of indicating Instruments
- Principles of Electrical Instruments – Multimeters, Oscilloscopes
- Static and Dynamic Characteristics of Measurement – Errors in Measurement – Transducers
- Classification of Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect and Mechanical

OUTCOMES:
At the end of the course the students will be able to
- Understand the concept of three phase power circuits and measurement.
- Comprehend the concepts in electrical generators, motors and transformers
- Choose appropriate measuring instruments for given application

TEXT BOOKS:

REFERENCES:

GE8291 ENVIRONMENTAL SCIENCE AND ENGINEERING

OBJECTIVES:
- To study the nature and facts about environment.
- To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth’s interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY

Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national
and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds; Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION 8
Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – solid waste management: causes, effects and control measures of municipal solid wastes – role of an individual in prevention of pollution – pollution case studies – disaster management: floods, earthquake, cyclone and landslides. Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES 10
Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 7

UNIT V HUMAN POPULATION AND THE ENVIRONMENT 6

OUTCOMES:
- Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.
- Public awareness of environmental is at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions
- Development and improvement in std. of living has lead to serious environmental disasters
TEXTBOOKS:

REFERENCES:

CS8251 PROGRAMMING IN C

OBJECTIVES:
- To develop C Programs using basic programming constructs
- To develop C programs using arrays and strings
- To develop applications in C using functions, pointers and structures
- To do input/output and file handling in C

UNIT I BASICS OF C PROGRAMMING
Introduction to programming paradigms - Structure of C program - C programming: Data Types - Storage classes - Constants – Enumeration Constants - Keywords – Operators: Precedence and Associativity - Expressions - Input/Output statements, Assignment statements - Decision making statements - Switch statement - Looping statements – Pre-processor directives - Compilation process

UNIT II ARRAYS AND STRINGS

UNIT III FUNCTIONS AND POINTERS

UNIT IV STRUCTURES
UNIT V FILE PROCESSING

Files – Types of file processing: Sequential access, Random access – Sequential access file - Example Program: Finding average of numbers stored in sequential access file - Random access file - Example Program: Transaction processing using random access files – Command line arguments.

OUTCOMES:
Upon completion of the course, the students will be able to
- Develop simple applications in C using basic constructs
- Design and implement applications using arrays and strings
- Develop and implement applications in C using functions and pointers.
- Develop applications in C using structures.
- Design applications using sequential and random access file processing.

TEXT BOOKS:

REFERENCES:
1. Paul Deitel and Harvey Deitel, "C How to Program", Seventh edition, Pearson Publication

GE8261 ENGINEERING PRACTICES LABORATORY L T P C
 0 0 4 2

OBJECTIVES:
To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

I CIVIL ENGINEERING PRACTICE 13

Buildings:
(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:
(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
(b) Study of pipe connections requirements for pumps and turbines.
(c) Preparation of plumbing line sketches for water supply and sewage works.
(d) Hands-on-exercise:
Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.

(e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:
(a) Study of the joints in roofs, doors, windows and furniture.
(b) Hands-on-exercise:
 Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE 18

Welding:
(a) Preparation of butt joints, lap joints and T-joints by Shielded metal arc welding.
(b) Gas welding practice

Basic Machining:
(a) Simple Turning and Taper turning
(b) Drilling Practice

Sheet Metal Work:
(a) Forming & Bending:
(b) Model making – Trays and funnels.
(c) Different type of joints.

Machine assembly practice:
(a) Study of centrifugal pump
(b) Study of air conditioner

Demonstration on:
(a) Smithy operations, upsetting, swaging, setting down and bending. Example – Production of hexagonal headed bolt.
(b) Foundry operations like mould preparation for gear and step cone pulley.
(c) Fitting – Exercises – Preparation of square fitting and V-fitting models.

GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE 13
1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
2. Fluorescent lamp wiring.
3. Stair case wiring

IV ELECTRONICS ENGINEERING PRACTICE 16
1. Study of Electronic components and equipments – Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
2. Study of logic gates AND, OR, EX-OR and NOT.
4. Soldering practice – Components Devices and Circuits – Using general purpose PCB.
5. Measurement of ripple factor of HWR and FWR.

TOTAL: 60 PERIODS
OUTCOMES:
On successful completion of this course, the student will be able to
- Fabricate carpentry components and pipe connections including plumbing works.
- Use welding equipments to join the structures.
- Carry out the basic machining operations
- Make the models using sheet metal works
- Illustrate on centrifugal pump, Air conditioner, operations of smithy, foundary and fittings
- Carry out basic home electrical works and appliances
- Measure the electrical quantities
- Elaborate on the components, gates, soldering practices.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CIVIL
1. Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings.
2. Carpentry vice (fitted to work bench)
3. Standard woodworking tools
4. Models of industrial trusses, door joints, furniture joints
5. Power Tools: (a) Rotary Hammer
 (b) Demolition Hammer
 (c) Circular Saw
 (d) Planer
 (e) Hand Drilling Machine
 (f) Jigsaw

MECHANICAL
1. Arc welding transformer with cables and holders
2. Welding booth with exhaust facility
3. Welding accessories like welding shield, chipping hammer, wire brush, etc.
4. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit.
5. Centre lathe
6. Hearth furnace, anvil and smithy tools
7. Moulding table, foundry tools
8. Power Tool: Angle Grinder
9. Study-purpose items: centrifugal pump, air-conditioner

ELECTRICAL
1. Assorted electrical components for house wiring
2. Electrical measuring instruments
3. Study purpose items: Iron box, fan and regulator, emergency lamp
4. Megger (250V/500V)
5. Power Tools: (a) Range Finder
 (b) Digital Live-wire detector

ELECTRONICS
1. Soldering guns
2. Assorted electronic components for making circuits
3. Small PCBs
4. Multimeters
5. Study purpose items: Telephone, FM radio, low-voltage power supply
OBJECTIVES:
- To develop programs in C using basic constructs.
- To develop applications in C using strings, pointers, functions, structures.
- To develop applications in C using file processing.

List of Experiments:
1. Programs using I/O statements and expressions.
2. Programs using decision-making constructs.
3. Write a program to find whether the given year is a leap year or not? (Hint: not every
 century is a leap. For example 1700, 1800 and 1900 is not a leap year).
4. Design a calculator to perform the operations, namely, addition, subtraction, multiplication,
 division and square of a number.
5. Check whether a given number is an Armstrong number or not?
6. Given a set of numbers like <10, 36, 54, 89, 12, 27>, find sum of weights based on the
 following conditions:
 - 5 if it is a perfect cube
 - 4 if it is a multiple of 4 and divisible by 6
 - 3 if it is a prime number
 Sort the numbers based on the weight in the increasing order as shown below:
 <10, its weight>,<36, its weight>,<89, its weight>
7. Populate an array with height of persons and find how many persons are above the
 average height.
8. Populate a two dimensional array with height and weight of persons and compute the Body
 Mass Index of the individuals.
9. Given a string “a$bcd./fg” find its reverse without changing the position of special
 characters.
 (Example input: a@gh%; j and output: j@hg%; a)
10. Convert the given decimal number into binary, octal and hexadecimal numbers using user
 defined functions.
11. From a given paragraph perform the following using built-in functions:
 a. Find the total number of words.
 b. Capitalize the first word of each sentence.
 c. Replace a given word with another word.
13. Sort the list of numbers using pass by reference.
15. Compute internal marks of students for five different subjects using structures and
 functions.
16. Insert, update, delete and append telephone details of an individual or a company into a
 telephone directory using random access file.
17. Count the number of account holders whose balance is less than the minimum balance
 using sequential access file.

Miniproject
18. Create a “Railway reservation system” with the following modules:
 - Booking
 - Availability checking
 - Cancellation
 - Prepare chart

TOTAL : 60 PERIODS
OUTCOMES:
Upon completion of the course, the students will be able to

- Develop C programs for simple applications making use of basic constructs, arrays and strings.
- Develop C programs involving functions, recursion, pointers, and structures.
- Design applications using sequential and random access file processing.

MA8352 LINEAR ALGEBRA AND PARTIAL DIFFERENTIAL EQUATIONS L T P C
4 0 0 4

OBJECTIVES:
- To introduce the basic notions of groups, rings, fields which will then be used to solve related problems.
- To understand the concepts of vector space, linear transformations and diagonalization.
- To apply the concept of inner product spaces in orthogonalization.
- To understand the procedure to solve partial differential equations.
- To give an integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.

UNIT I VECTOR SPACES 12
Vector spaces – Subspaces – Linear combinations and linear system of equations – Linear independence and linear dependence – Bases and dimensions.

UNIT II LINEAR TRANSFORMATION AND DIAGONALIZATION 12
Linear transformation - Null spaces and ranges - Dimension theorem - Matrix representation of a linear transformations - Eigenvalues and eigenvectors - Diagonalizability.

UNIT III INNER PRODUCT SPACES 12
Inner product, norms - Gram Schmidt orthogonalization process - Adjoint of linear operations - Least square approximation.

UNIT IV PARTIAL DIFFERENTIAL EQUATIONS 12

UNIT V FOURIER SERIES SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 12

TOTAL: 60 PERIODS

OUTCOMES:
Upon successful completion of the course, students should be able to:

- Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.
- Demonstrate accurate and efficient use of advanced algebraic techniques.
- Demonstrate their mastery by solving non-trivial problems related to the concepts and by proving simple theorems about the statements proven by the text.
- Able to solve various types of partial differential equations.
- Able to solve engineering problems using Fourier series.
TEXTBOOKS:

REFERENCES:

CS8391 DATA STRUCTURES L T P C
3 0 0 3

OBJECTIVES:
- To understand the concepts of ADTs
- To learn linear data structures – lists, stacks, and queues
- To understand sorting, searching and hashing algorithms
- To apply Tree and Graph structures

UNIT I LINEAR DATA STRUCTURES – LIST 9
Abstract Data Types (ADTs) – List ADT – array-based implementation – linked list implementation —singly linked lists- circularly linked lists- doubly-linked lists – applications of lists –Polynomial Manipulation – All operations (Insertion, Deletion, Merge, Traversal).

UNIT II LINEAR DATA STRUCTURES – STACKS, QUEUES 9

UNIT III NON LINEAR DATA STRUCTURES – TREES 9

UNIT IV NON LINEAR DATA STRUCTURES - GRAPHS 9

UNIT V SEARCHING, SORTING AND HASHING TECHNIQUES 9

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:

- Implement abstract data types for linear data structures.
- Apply the different linear and non-linear data structures to problem solutions.
- Critically analyze the various sorting algorithms.

TEXT BOOKS:

REFERENCES:

EC8353 ELECTRON DEVICES AND CIRCUITS
L T P C 3 0 0 3

OBJECTIVES:
The student should be made to:
- Understand the structure of basic electronic devices.
- Be exposed to active and passive circuit elements.
- Familiarize the operation and applications of transistor like BJT and FET.
- Explore the characteristics of amplifier gain and frequency response.
- Learn the required functionality of positive and negative feedback systems.

UNIT I PN JUNCTION DEVICES
PN junction diode – structure, operation and V-I characteristics, diffusion and transition capacitance
- Rectifiers – Half Wave and Full Wave Rectifier,– Display devices- LED, Laser diodes, Zener diode characteristics - Zener Reverse characteristics – Zener as regulator

UNIT II TRANSISTORS AND THYRISTORS
BJT, JFET, MOSFET- structure, operation, characteristics and Biasing UJT, Thyristors and IGBT - Structure and characteristics.

UNIT III AMPLIFIERS
BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response – MOSFET small signal model– Analysis of CS and Source follower – Gain and frequency response- High frequency analysis.

UNIT IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER
BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET input stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifiers – Types (Qualitative analysis).

UNIT V FEEDBACK AMPLIFIERS AND OSCILLATORS

TOTAL: 45 PERIODS
OUTCOMES:
Upon Completion of the course, the students will be able to:
- Explain the structure and working operation of basic electronic devices.
- Able to identify and differentiate both active and passive elements
- Analyze the characteristics of different electronic devices such as diodes and transistors
- Choose and adapt the required components to construct an amplifier circuit.
- Employ the acquired knowledge in design and analysis of oscillators

TEXT BOOKS:

REFERENCES:

EC8392 DIGITAL ELECTRONICS

OBJECTIVES:
- To present the Digital fundamentals, Boolean algebra and its applications in digital systems
- To familiarize with the design of various combinational digital circuits using logic gates
- To introduce the analysis and design procedures for synchronous and asynchronous sequential circuits
- To explain the various semiconductor memories and related technology
- To introduce the electronic circuits involved in the making of logic gates

UNIT I DIGITAL FUNDAMENTALS
Number Systems – Decimal, Binary, Octal, Hexadecimal, 1’s and 2’s complements, Codes – Binary, BCD, Excess 3, Gray, Alphanumeric codes, Boolean theorems, Logic gates, Universal gates, Sum of products and product of sums, Minterms and Maxterms, Karnaugh map Minimization and Quine-McCluskey method of minimization.

UNIT II COMBINATIONAL CIRCUIT DESIGN

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS
UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS 9
Stable and Unstable states, output specifications, cycles and races, state reduction, race free assignments, Hazards, Essential Hazards, Pulse mode sequential circuits, Design of Hazard free circuits.

UNIT V MEMORY DEVICES AND DIGITAL INTEGRATED CIRCUITS 9
Basic memory structure – ROM -PROM – EPROM – EEPROM –EAPROM, RAM – Static and dynamic RAM - Programmable Logic Devices – Programmable Logic Array (PLA) - Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA) - Implementation of combinational logic circuits using PLA, PAL.
Digital integrated circuits: Logic levels, propagation delay, power dissipation, fan-out and fan-in, noise margin, logic families and their characteristics-RTL,TTL,ECL,CMOS.

OUTCOMES:
At the end of the course:
- Use digital electronics in the present contemporary world
- Design various combinational digital circuits using logic gates
- Do the analysis and design procedures for synchronous and asynchronous sequential circuits
- Use the semiconductor memories and related technology
- Use electronic circuits involved in the design of logic gates

TEXT BOOK:

REFERENCES

CS8492 DATABASE MANAGEMENT SYSTEMS L T P C 3 0 0 3
OBJECTIVES
- To learn the fundamentals of data models and to represent a database system using ER diagrams.
- To study SQL and relational database design.
- To understand the internal storage structures using different file and indexing techniques which will help in physical DB design.
- To understand the fundamental concepts of transaction processing- concurrency control techniques and recovery procedures.
- To have an introductory knowledge about the Storage and Query processing Techniques
UNIT I RELATIONAL DATABASES

UNIT II DATABASE DESIGN

UNIT III TRANSACTIONS

UNIT IV IMPLEMENTATION TECHNIQUES

UNIT V ADVANCED TOPICS

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Classify the modern and futuristic database applications based on size and complexity
- Map ER model to Relational model to perform database design effectively
- Write queries using normalization criteria and optimize queries
- Compare and contrast various indexing strategies in different database systems
- Appraise how advanced databases differ from traditional databases.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To understand the basic properties of signal & systems
- To know the methods of characterization of LTI systems in time domain
- To analyze continuous time signals and system in the Fourier and Laplace domain
- To analyze discrete time signals and system in the Fourier and Z transform domain

UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS 12
Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and Sinusoids_ Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals - Classification of systems- CT systems and DT systems- – Linear & Nonlinear, Time-variant & Time-invariant, Causal & Non-causal, Stable & Unstable.

UNIT II ANALYSIS OF CONTINUOUS TIME SIGNALS 12
Fourier series for periodic signals - Fourier Transform – properties- Laplace Transforms and properties

UNIT III LINEAR TIME INVARIANT CONTINUOUS TIME SYSTEMS 12

UNIT IV ANALYSIS OF DISCRETE TIME SIGNALS 12
Baseband signal Sampling – Fourier Transform of discrete time signals (DTFT) – Properties of DTFT - Z Transform & Properties

UNIT V LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS 12

OUTCOMES:
At the end of the course, the student should be able to:
- To be able to determine if a given system is linear/causal/stable
- Capable of determining the frequency components present in a deterministic signal
- Capable of characterizing LTI systems in the time domain and frequency domain
- To be able to compute the output of an LTI system in the time and frequency domains

TEXT BOOK:

REFERENCES:
CS8381 DATA STRUCTURES LABORATORY L T P C 0 0 4 2

OBJECTIVES
- To implement linear and non-linear data structures
- To understand the different operations of search trees
- To implement graph traversal algorithms
- To get familiarized to sorting and searching algorithms

1. Array implementation of Stack and Queue ADTs
2. Array implementation of List ADT
3. Linked list implementation of List, Stack and Queue ADTs
4. Applications of List, Stack and Queue ADTs
5. Implementation of Binary Trees and operations of Binary Trees
6. Implementation of Binary Search Trees
7. Implementation of AVL Trees
9. Graph representation and Traversal algorithms
10. Applications of Graphs
11. Implementation of searching and sorting algorithms
12. Hashing – any two collision techniques

TOTAL : 60 PERIODS

OUTCOMES
At the end of the course, the students will be able to:
- Write functions to implement linear and non-linear data structure operations
- Suggest appropriate linear / non-linear data structure operations for solving a given problem
- Appropriately use the linear / non-linear data structure operations for a given problem
- Apply appropriate hash functions that result in a collision free scenario for data storage and retrieval

CS8481 DATABASE MANAGEMENT SYSTEMS LABORATORY L T P C 0 0 4 2

AIM:
The aim of this laboratory is to inculcate the abilities of applying the principles of the database management systems. This course aims to prepare the students for projects where a proper implementation of databases will be required.

OBJECTIVES:
- To understand data definitions and data manipulation commands
- To learn the use of nested and join queries
- To understand functions, procedures and procedural extensions of data bases
- To be familiar with the use of a front end tool
- To understand design and implementation of typical database applications

1. Data Definition Commands, Data Manipulation Commands for inserting, deleting, updating and retrieving Tables and Transaction Control statements
2. Database Querying – Simple queries, Nested queries, Sub queries and Joins
3. Views, Sequences, Synonyms
4. Database Programming: Implicit and Explicit Cursors
5. Procedures and Functions
6. Triggers
7. Exception Handling
8. Database Design using ER modeling, normalization and Implementation for any application
9. Database Connectivity with Front End Tools
10. Case Study using real life database applications

TOTAL: 60 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
• Use typical data definitions and manipulation commands.
• Design applications to test Nested and Join Queries
• Implement simple applications that use Views
• Implement applications that require a Front-end Tool
• Critically analyze the use of Tables, Views, Functions and Procedures

CS8451 DESIGN AND ANALYSIS OF ALGORITHMS L T P C
3 0 0 3

OBJECTIVES:
• To understand and apply the algorithm analysis techniques.
• To critically analyze the efficiency of alternative algorithmic solutions for the same problem
• To understand different algorithm design techniques.
• To understand the limitations of Algorithmic power.

UNIT I INTRODUCTION 9

UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER 9

UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE 9
Greedy Technique – Container loading problem - Prim’s algorithm and Kruskal's Algorithm – 0/1 Knapsack problem, Optimal Merge pattern - Huffman Trees.

UNIT IV ITERATIVE IMPROVEMENT 9
The Simplex Method - The Maximum-Flow Problem – Maximum Matching in Bipartite Graphs, Stable marriage Problem.

UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER 9

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the students should be able to:
- Design algorithms for various computing problems.
- Analyze the time and space complexity of algorithms.
- Critically analyze the different algorithm design techniques for a given problem.
- Modify existing algorithms to improve efficiency.

TEXT BOOKS:

REFERENCES:
5. http://nptel.ac.in/

MA8451 PROBABILITY AND RANDOM PROCESSES L T P C 4 0 0 4
OBJECTIVES :
- To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems in communication engineering.
- To understand the basic concepts of probability, one and two dimensional random variables and to introduce some standard distributions applicable to engineering which can describe real life phenomenon.
- To understand the basic concepts of random processes which are widely used in IT fields.
- To understand the concept of correlation and spectral densities.
- To understand the significance of linear systems with random inputs

UNIT I PROBABILITY AND RANDOM VARIABLES 12
Probability – Axioms of probability – Conditional probability – Baye’s theorem - Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions.

UNIT II TWO - DIMENSIONAL RANDOM VARIABLES 12
Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Transformation of random variables – Central limit theorem (for independent and identically distributed random variables).

UNIT III RANDOM PROCESSES 12

UNIT IV CORRELATION AND SPECTRAL DENSITIES 12
UNIT V LINEAR SYSTEMS WITH RANDOM INPUTS

Linear time invariant system – System transfer function – Linear systems with random inputs – Auto correlation and cross correlation functions of input and output.

TOTAL : 60 PERIODS

OUTCOMES:
Upon successful completion of the course, students should be able to:

- Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon.
- Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.
- Apply the concept random processes in engineering disciplines.
- Understand and apply the concept of correlation and spectral densities.
- The students will have an exposure of various distribution functions and help in acquiring skills in handling situations involving more than one variable. Able to analyze the response of random inputs to linear time invariant systems.

TEXT BOOKS:

REFERENCES:

CS8392 OBJECT ORIENTED PROGRAMMING L T P C

OBJECTIVES:
- To learn Object Oriented Programming concepts and basic characteristics of Java
- To know the principles of packages, inheritance and interfaces
- To define exceptions and use I/O streams
- To develop a java application with threads and generics classes
- To design and build simple Graphical User Interface

UNIT I INTRODUCTION TO OOP AND JAVA FUNDAMENTALS 10

UNIT II INHERITANCE AND INTERFACES
Inheritance – Super classes- sub classes –Protected members – constructors in sub classes- the Object class – abstract classes and methods- final methods and classes – Interfaces – defining an interface, implementing interface, differences between classes and interfaces and extending interfaces - Object cloning -inner classes, Array Lists - Strings

UNIT III EXCEPTION HANDLING AND I/O
Exceptions - exception hierarchy - throwing and catching exceptions - built in exceptions, creating own exception, Stack Trace Elements.
Input / Output Basics – Streams – Byte streams and Character streams – Reading and Writing Console – Reading and Writing Files

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING
Differences between multi-threading and multitasking, thread life cycle, creating threads, synchronizing threads, Inter thread communication, daemon threads, thread groups.

UNIT V EVENT DRIVEN PROGRAMMING

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, students will be able to:

• Develop Java programs using OOP principles
• Develop Java programs with the concepts inheritance and interfaces
• Build Java applications using exceptions and I/O streams
• Develop Java applications with threads and generics classes
• Develop interactive Java programs using swings

TEXT BOOKS

REFERENCES
OBJECTIVES:
- To learn the basic structure and operations of a computer.
- To learn the arithmetic and logic unit and implementation of fixed-point and floating point arithmetic unit.
- To learn the basics of pipelined execution.
- To understand parallelism and multi-core processors.
- To understand the memory hierarchies, cache memories and virtual memories.
- To learn the different ways of communication with I/O devices.

UNIT I BASIC STRUCTURE OF A COMPUTER SYSTEM 9

UNIT II ARITHMETIC FOR COMPUTERS 9
Addition and Subtraction – Multiplication – Division – Floating Point Representation – Floating Point Operations – Subword Parallelism

UNIT III PROCESSOR AND CONTROL UNIT 9
A Basic MIPS implementation – Building a Datapath – Control Implementation Scheme – Pipelining – Pipelined datapath and control – Handling Data Hazards & Control Hazards – Exceptions.

UNIT IV PARALLELISM 9

UNIT V MEMORY & I/O SYSTEMS 9

TOTAL : 45 PERIODS

OUTCOMES:
On Completion of the course, the students should be able to:
- Understand the basics structure of computers, operations and instructions.
- Design arithmetic and logic unit.
- Understand pipelined execution and design control unit.
- Understand parallel processing architectures.
- Understand the various memory systems and I/O communication.

TEXT BOOKS:
REFERENCES:

EC8491 COMMUNICATION THEORY

OBJECTIVES:
- To introduce the concepts of various analog modulations and their spectral characteristics
- To understand the properties of random process
- To know the effect of noise on communication systems
- To know the principles of sampling & quantization

UNIT I AMPLITUDE MODULATION

UNIT II ANGLE MODULATION

UNIT III RANDOM PROCESS

UNIT IV NOISE CHARACTERIZATION
Noise sources – Noise figure, noise temperature and noise bandwidth – Noise in cascaded systems. Representation of Narrow band noise – In-phase and quadrature, Envelope and Phase – Noise performance analysis in AM & FM systems – Threshold effect, Pre-emphasis and de-emphasis for FM.

UNIT V SAMPLING & QUANTIZATION
Low pass sampling – Aliasing- Signal Reconstruction-Quantization - Uniform & non-uniform quantization - quantization noise - Logarithmic Companding – PAM, PPM, PWM, PCM – TDM, FDM.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Design AM communication systems
- Design Angle modulated communication systems
- Apply the concepts of Random Process to the design of Communication systems
- Analyze the noise performance of AM and FM systems
- Gain knowledge in sampling and quantization
TEXT BOOKS:

REFERENCES:
5. H P Hsu, Schaum Outline Series - “Analog and Digital Communications” TMH 2006

CS8494 SOFTWARE ENGINEERING L T P C
3 0 0 3

OBJECTIVES:
- To understand the phases in a software project
- To understand fundamental concepts of requirements engineering and Analysis Modeling.
- To understand the various software design methodologies
- To learn various testing and maintenance measures

UNIT I SOFTWARE PROCESS AND AGILE DEVELOPMENT 9

UNIT II REQUIREMENTS ANALYSIS AND SPECIFICATION 9

UNIT III SOFTWARE DESIGN 9

UNIT IV TESTING AND MAINTENANCE 9

UNIT V PROJECT MANAGEMENT 9

TOTAL :45 PERIODS
OUTCOMES:
On Completion of the course, the students should be able to:

- Identify the key activities in managing a software project.
- Compare different process models.
- Concepts of requirements engineering and Analysis Modeling.
- Apply systematic procedure for software design and deployment.
- Compare and contrast the various testing and maintenance.
- Manage project schedule, estimate project cost and effort required.

TEXT BOOKS:

REFERENCES:
5. http://nptel.ac.in/.

CS8383 OBJECT ORIENTED PROGRAMMING LABORATORY L T P C 0 0 4 2

OBJECTIVES

- To build software development skills using java programming for real-world applications.
- To understand and apply the concepts of classes, packages, interfaces, arraylist, exception handling and file processing.
- To develop applications using generic programming and event handling.

LIST OF EXPERIMENTS

1. Develop a Java application to generate Electricity bill. Create a class with the following members: Consumer no., consumer name, previous month reading, current month reading, type of EB connection (i.e domestic or commercial). Compute the bill amount using the following tariff.

 If the type of the EB connection is domestic, calculate the amount to be paid as follows:
 - First 100 units - Rs. 1 per unit
 - 101-200 units - Rs. 2.50 per unit
 - 201 -500 units - Rs. 4 per unit
 - > 501 units - Rs. 6 per unit

 If the type of the EB connection is commercial, calculate the amount to be paid as follows:
 - First 100 units - Rs. 2 per unit
 - 101-200 units - Rs. 4.50 per unit
 - 201 -500 units - Rs. 6 per unit
 - > 501 units - Rs. 7 per unit

2. Develop a java application to implement currency converter (Dollar to INR, EURO to INR, Yen to INR and vice versa), distance converter (meter to KM, miles to KM and vice versa), time converter (hours to minutes, seconds and vice versa) using packages.

3. Develop a java application with Employee class with Emp_name, Emp_id, Address, Mail_id, Mobile_no as members. Inherit the classes, Programmer, Assistant Professor, Associate Professor.
Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club fund. Generate pay slips for the employees with their gross and net salary.

4. Design a Java interface for ADT Stack. Implement this interface using array. Provide necessary exception handling in both the implementations.

5. Write a program to perform string operations using ArrayList. Write functions for the following

 a. Append - add at end
 b. Insert – add at particular index
 c. Search
 d. List all string starts with given letter

6. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named print Area(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.

7. Write a Java program to implement user defined exception handling.

8. Write a Java program that reads a file name from the user, displays information about whether the file exists, whether the file is readable, or writable, the type of file and the length of the file in bytes.

9. Write a java program that implements a multi-threaded application that has three threads. First thread generates a random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.

10. Write a java program to find the maximum value from the given type of elements using a generic function.

11. Design a calculator using event-driven programming paradigm of Java with the following options.
 a) Decimal manipulations
 b) Scientific manipulations

12. Develop a mini project for any application using Java concepts.

TOTAL : 60 PERIODS

OUTCOMES
Upon completion of the course, the students will be able to

- Develop and implement Java programs for simple applications that make use of classes, packages and interfaces.
- Develop and implement Java programs with arraylist, exception handling and multithreading.
- Design applications using file processing, generic programming and event handling.
OBJECTIVES:
- To understand the various basic logic gates
- To design and implement the various combinational circuits
- To design and implement combinational circuits using MSI devices.
- To design and implement sequential circuits

LIST OF EXPERIMENTS
1. Verification of Boolean Theorems using basic gates.
2. Design and implementation of combinational circuits using basic gates for arbitrary functions, code converters.
3. Design and implement Half/Full Adder and Subtractor.
4. Design and implement combinational circuits using MSI devices:
 - 4 – bit binary adder / subtractor
 - Parity generator / checker
 - Magnitude Comparator
 - Application using multiplexers
5. Design and implement shift-registers.
6. Design and implement synchronous counters.
7. Design and implement asynchronous counters.
8. Design and implementation of a simple digital system (Mini Project).

OUTCOMES:
Upon Completion of the course, the students will be able to:
- Implement simplified combinational circuits using basic logic gates
- Implement combinational circuits using MSI devices
- Implement sequential circuits like registers and counters

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
LABORATORY REQUIREMENT FOR BATCH OF 30 STUDENTS HARDWARE:
1. Digital trainer kits - 30
2. Digital ICs required for the experiments in sufficient numbers

OBJECTIVES:
- Strengthen the reading skills of students of engineering.
- Enhance their writing skills with specific reference to technical writing.
- Develop students’ critical thinking skills.
- Provide more opportunities to develop their project and proposal writing skills.

UNIT I
Reading - Strategies for effective reading-Use glosses and footnotes to aid reading comprehension- Read and recognize different text types-Predicting content using photos and title
Writing-Plan before writing- Develop a paragraph: topic sentence, supporting sentences, concluding sentence –Write a descriptive paragraph
UNIT II
Reading: Read for details-Use of graphic organizers to review and aid comprehension
Writing: State reasons and examples to support ideas in writing- Write a paragraph with reasons and examples- Write an opinion paragraph

UNIT III
Reading: Understanding pronoun reference and use of connectors in a passage- speed reading techniques
Writing: Elements of a good essay-Types of essays- descriptive-narrative- issue-based-argumentative-analytical.

UNIT IV
Reading- Genre and Organization of Ideas
Writing- Email writing- visumes – Job application-project writing-writing convincing proposals.

UNIT V
Reading- Critical reading and thinking- understanding how the text positions the reader- identify
Writing- Statement of Purpose- letter of recommendation- Vision statement

TOTAL: 30 PERIODS

OUTCOMES:
At the end of the course Learners will be able to:
- Write different types of essays.
- Write winning job applications.
- Read and evaluate texts critically.
- Display critical thinking in various professional contexts.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To introduce the basic notions of groups, rings, fields which will then be used to solve related problems.
- To introduce and apply the concepts of rings, finite fields and polynomials.
- To understand the basic concepts in number theory
- To examine the key questions in the Theory of Numbers.
- To give an integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.

UNIT I GROUPS AND RINGS

UNIT II FINITE FIELDS AND POLYNOMIALS
Rings - Polynomial rings - Irreducible polynomials over finite fields - Factorization of polynomials over finite fields.

UNIT III DIVISIBILITY THEORY AND CANONICAL DECOMPOSITIONS
Division algorithm – Base - b representations – Number patterns – Prime and composite numbers – GCD – Euclidean algorithm – Fundamental theorem of arithmetic – LCM.

UNIT IV DIOPHANTINE EQUATIONS AND CONGRUENCES
Linear Diophantine equations – Congruence’s – Linear Congruence’s - Applications: Divisibility tests - Modular exponentiation-Chinese remainder theorem – 2 x 2 linear systems.

UNIT V CLASSICAL THEOREMS AND MULTIPlicative FUNCTIONS
Wilson’s theorem – Fermat's little theorem – Euler’s theorem – Euler's Phi functions – Tau and Sigma functions.

TOTAL:60 PERIODS

OUTCOMES:
Upon successful completion of the course, students should be able to:
- Apply the basic notions of groups, rings, fields which will then be used to solve related problems.
- Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.
- Demonstrate accurate and efficient use of advanced algebraic techniques.
- Demonstrate their mastery by solving non-trivial problems related to the concepts, and by proving simple theorems about the, statements proven by the text.
- Apply integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.

TEXTBOOKS:

REFERENCES:
EC8691 MICROPROCESSORS AND MICROCONTROLLERS

OBJECTIVES:
- To understand the Architecture of 8086 microprocessor.
- To learn the design aspects of I/O and Memory Interfacing circuits.
- To interface microprocessors with supporting chips.
- To study the Architecture of 8051 microcontroller.
- To design a microcontroller based system

UNIT I THE 8086 MICROPROCESSOR
Introduction to 8086 – Microprocessor architecture – Addressing modes - Instruction set and assembler directives – Assembly language programming – Modular Programming - Linking and Relocation - Stacks - Procedures – Macros – Interrupts and interrupt service routines – Byte and String Manipulation.

UNIT II 8086 SYSTEM BUS STRUCTURE

UNIT III I/O INTERFACING

UNIT IV MICROCONTROLLER
Architecture of 8051 – Special Function Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set - Addressing modes - Assembly language programming.

UNIT V INTERFACING MICROCONTROLLER
Programming 8051 Timers - Serial Port Programming - Interrupts Programming – LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper Motor and Waveform generation - Comparison of Microprocessor, Microcontroller, PIC and ARM processors

OUTCOMES:
At the end of the course, the students should be able to:
- Understand and execute programs based on 8086 microprocessor.
- Design Memory Interfacing circuits.
- Design and interface I/O circuits.
- Design and implement 8051 microcontroller based systems.

TEXT BOOKS:

REFERENCES:
1. Doughlas V.Hall, “Microprocessors and Interfacing, Programming and Hardware”,TMH,2012
OBJECTIVES:
The student should be made to:
- Understand analog and digital communication techniques.
- Learn data and pulse communication techniques.
- Be familiarized with source and Error control coding.
- Gain knowledge on multi-user radio communication.

UNIT I ANALOG COMMUNICATION
9

UNIT II PULSE AND DATA COMMUNICATION
9

Data Communication: History of Data Communication - Standards Organizations for Data Communication- Data Communication Circuits - Data Communication Codes - Data communication Hardware - serial and parallel interfaces.

UNIT III DIGITAL COMMUNICATION
9

UNIT IV SOURCE AND ERROR CONTROL CODING
9
Entropy, Source encoding theorem, Shannon fano coding, Huffman coding, mutual information, channel capacity, Error Control Coding, linear block codes, cyclic codes - ARQ Techniques.

UNIT V MULTI-USER RADIO COMMUNICATION
9
Global System for Mobile Communications (GSM) - Code division multiple access (CDMA) – Cellular Concept and Frequency Reuse - Channel Assignment and Handover Techniques - Overview of Multiple Access Schemes - Satellite Communication - Bluetooth.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Apply analog and digital communication techniques.
- Use data and pulse communication techniques.
- Analyze Source and Error control coding.
- Utilize multi-user radio communication.

TEXT BOOK:

REFERENCES:
At the end of the course, the students will be able to:

- Express software design with UML diagrams
- Design software applications using OO concepts.
- Identify various scenarios based on software requirements
- Transform UML based software design into pattern based design using design patterns
- Understand the various testing methodologies for OO software
TEXT BOOKS:

REFERENCES:

EC8553 DISCRETE-TIME SIGNAL PROCESSING

OBJECTIVES:
- To learn discrete fourier transform, properties of DFT and its application to linear filtering
- To understand the characteristics of digital filters, design digital IIR and FIR filters and apply these filters to filter undesirable signals in various frequency bands
- To understand the effects of finite precision representation on digital filters
- To understand the fundamental concepts of multi rate signal processing and its applications
- To introduce the concepts of adaptive filters and its application to communication engineering

UNIT I DISCRETE FOURIER TRANSFORM

UNIT II INFINITE IMPULSE RESPONSE FILTERS

UNIT III FINITE IMPULSE RESPONSE FILTERS
Design of FIR filters - symmetric and Anti-symmetric FIR filters - design of linear phase FIR filters using Fourier series method - FIR filter design using windows (Rectangular, Hamming and Hanning window), Frequency sampling method. FIR filter structures - linear phase structure, direct form realizations

UNIT IV FINITE WORD LENGTH EFFECTS
Fixed point and floating point number representation - ADC - quantization - truncation and rounding - quantization noise - input / output quantization - coefficient quantization error - product quantization error - overflow error - limit cycle oscillations due to product quantization and summation - scaling to prevent overflow.
UNIT V INTRODUCTION TO DIGITAL SIGNAL PROCESSORS

DSP functionalities - circular buffering – DSP architecture – Fixed and Floating point architecture principles – Programming – Application examples.

TOTAL: 60 PERIODS

OUTCOMES:
At the end of the course, the student should be able to

- Apply DFT for the analysis of digital signals and systems
- Design IIR and FIR filters
- Characterize the effects of finite precision representation on digital filters
- Design multirate filters
- Apply adaptive filters appropriately in communication systems

TEXT BOOK:

REFERENCES:

EC8681 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

OBJECTIVES:
- To Introduce ALP concepts, features and Coding methods
- Write ALP for arithmetic and logical operations in 8086 and 8051
- Differentiate Serial and Parallel Interface
- Interface different I/Os with Microprocessors
- Be familiar with MASM

LIST OF EXPERIMENTS:
8086 Programs using kits and MASM
1. Basic arithmetic and Logical operations
2. Move a data block without overlap
3. Code conversion, decimal arithmetic and Matrix operations.
4. Floating point operations, string manipulations, sorting and searching
5. Password checking, Print RAM size and system date

Peripherals and Interfacing Experiments
7. Traffic light controller
8. Stepper motor control
9. Digital clock
10. Key board and Display
11. Printer status
12. Serial interface and Parallel interface
13. A/D and D/A interface and Waveform Generation

8051 Experiments using kits and MASM
14. Basic arithmetic and Logical operations
15. Square and Cube program, Find 2’s complement of a number
16. Unpacked BCD to ASCII

TOTAL: 60 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Write ALP Programmes for fixed and Floating Point and Arithmetic operations
- Interface different I/Os with processor
- Generate waveforms using Microprocessors
- Execute Programs in 8051
- Explain the difference between simulator and Emulator

LAB EQUIPMENT FOR A BATCH OF 30 STUDENTS:
HARDWARE:
- 8086 development kits - 30 nos
- Interfacing Units - Each 10 nos
- Microcontroller - 30 nos

SOFTWARE:
- Intel Desktop Systems with MASM - 30 nos
- 8086 Assembler
- 8051 Cross Assembler

CS8582 OBJECT ORIENTED ANALYSIS AND DESIGN LABORATORY

OBJECTIVES:
- To capture the requirements specification for an intended software system
- To draw the UML diagrams for the given specification
- To map the design properly to code
- To test the software system thoroughly for all scenarios
- To improve the design by applying appropriate design patterns.

Draw standard UML diagrams using an UML modeling tool for a given case study and map design to code and implement a 3 layered architecture. Test the developed code and validate whether the SRS is satisfied.

1. Identify a software system that needs to be developed.
2. Document the Software Requirements Specification (SRS) for the identified system.
3. Identify use cases and develop the Use Case model.
4. Identify the conceptual classes and develop a Domain Model and also derive a Class Diagram from that.
5. Using the identified scenarios, find the interaction between objects and represent them using UML Sequence and Collaboration Diagrams
6. Draw relevant State Chart and Activity Diagrams for the same system.
7. Implement the system as per the detailed design
8. Test the software system for all the scenarios identified as per the usecase diagram
9. Improve the reusability and maintainability of the software system by applying appropriate design patterns.
10. Implement the modified system and test it for various scenarios
SUGGESTED DOMAINS FOR MINI-PROJECT:
1. Passport automation system.
2. Book bank
3. Exam registration
4. Stock maintenance system.
5. Online course reservation system
6. Airline/Railway reservation system
7. Software personnel management system
8. Credit card processing
9. e-book management system
10. Recruitment system
11. Foreign trading system
12. Conference management system
13. BPO management system
14. Library management system
15. Student information system

TOTAL: 60 PERIODS

OUTCOMES:
Upon completion of this course, the students will be able to:
- Perform OO analysis and design for a given problem specification.
- Identify and map basic software requirements in UML mapping.
- Improve the software quality using design patterns and to explain the rationale behind applying specific design patterns
- Test the compliance of the software with the SRS.

HARDWARE REQUIREMENTS
Standard PC

SOFTWARE REQUIREMENTS
1. Windows 7 or higher
2. ArgoUML that supports UML 1.4 and higher
3. Selenium, JUnit or Apache JMeter

EC8562 DIGITAL SIGNAL PROCESSING LABORATORY

OBJECTIVES:
The student should be made:
- To perform basic signal processing operations such as Linear Convolution, Circular Convolution, Auto Correlation, Cross Correlation and Frequency analysis in MATLAB
- To implement FIR and IIR filters in MATLAB and DSP Processor
- To study the architecture of DSP processor
- To design a DSP system to demonstrate the Multi-rate and Adaptive signal processing concepts.

LIST OF EXPERIMENTS: MATLAB / EQUIVALENT SOFTWARE PACKAGE
1. Generation of elementary Discrete-Time sequences
2. Linear and Circular convolutions
3. Auto correlation and Cross Correlation
4. Frequency Analysis using DFT
5. Design of FIR filters (LPF/HPF/BPF/BSF) and demonstrates the filtering operation
6. Design of Butterworth and Chebyshev IIR filters (LPF/HPF/BPF/BSF) and demonstrate the filtering operations
DSP PROCESSOR BASED IMPLEMENTATION
1. Study of architecture of Digital Signal Processor
2. Perform MAC operation using various addressing modes
3. Generation of various signals and random noise
4. Design and demonstration of FIR Filter for Low pass, High pass, Band pass and Band stop filtering
5. Design and demonstration of Butter worth and Chebyshev IIR Filters for Low pass, High pass, Band pass and Band stop filtering
6. Implement an Up-sampling and Down-sampling operation in DSP Processor

TOTAL: 60 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Carry out basic signal processing operations
- Demonstrate their abilities towards MATLAB based implementation of various DSP systems
- Analyze the architecture of a DSP Processor
- Design and Implement the FIR and IIR Filters in DSP Processor for performing filtering operation over real-time signals
- Design a DSP system for various applications of DSP

CS8651 INTERNET PROGRAMMING

OBJECTIVES:
- To understand different Internet Technologies.
- To learn java-specific web services architecture

UNIT I WEBSITE BASICS, HTML 5, CSS 3, WEB 2.0

UNIT II CLIENT SIDE PROGRAMMING

UNIT III SERVER SIDE PROGRAMMING

UNIT IV PHP and XML
An introduction to PHP: PHP- Using PHP- Variables- Program control- Built-in functions- Form Validation- Regular Expressions - File handling – Cookies - Connecting to Database. XML: Basic XML- Document Type Definition- XML Schema DOM and Presenting XML, XML Parsers and Validation, XSL and XSLT Transformation, News Feed (RSS and ATOM).
UNIT V INTRODUCTION TO AJAX and WEB SERVICES

TOTAL 45 PERIODS

OUTCOMES:
At the end of the course, the students should be able to:
- Construct a basic website using HTML and Cascading Style Sheets.
- Build dynamic web page with validation using Java Script objects and by applying different event handling mechanisms.
- Develop server side programs using Servlets and JSP.
- Construct simple web pages in PHP and to represent data in XML format.
- Use AJAX and web services to develop interactive web applications

TEXT BOOK:

REFERENCES:

CS8591 COMPUTER NETWORKS
L T P C
3 0 0 3

OBJECTIVES:
- To understand the protocol layering and physical level communication.
- To analyze the performance of a network.
- To understand the various components required to build different networks.
- To learn the functions of network layer and the various routing protocols.
- To familiarize the functions and protocols of the Transport layer.

UNIT I INTRODUCTION AND PHYSICAL LAYER

UNIT II DATA-LINK LAYER & MEDIA ACCESS

UNIT III NETWORK LAYER
UNIT IV TRANSPORT LAYER 9

UNIT V APPLICATION LAYER 9
WWW and HTTP – FTP – Email – Telnet – SSH – DNS – SNMP.

TOTAL: 45 PERIODS

OUTCOMES:
On Completion of the course, the students should be able to:
- Understand the basic layers and its functions in computer networks.
- Evaluate the performance of a network.
- Understand the basics of how data flows from one node to another.
- Analyze and design routing algorithms.
- Design protocols for various functions in the network.
- Understand the working of various application layer protocols.

TEXT BOOK:

REFERENCES

CO8601 TELECOMMUNICATION SWITCHING AND NETWORKS L T P C 3 0 0 3

OBJECTIVES:
- To introduce digital multiplexing and digital hierarchy namely SONET / SDH.
- To introduce the concepts of space switching, time switching and combination switching.
- To introduce a mathematical model for the analysis of telecommunication traffic.
- To introduce the need for network synchronization and study synchronization issues.
- To study the enhanced local loop systems in digital environment.
- To introduce ISDN, DSL / ADSL, and fiber optic systems in subscriber loop.
- To introduce statistical modeling of telephone traffic.

UNIT I MULTIPLEXING 9
UNIT II DIGITAL SWITCHING
Switching Functions, Space Division Switching, Time Division Switching, two-dimensional Switching: STS Switching, TST Switching, No.4 ESS Toll Switch, Digital Cross-Connect Systems, Digital Switching in an Analog Environment. Elements of SSN07 signaling.

UNIT III NETWORK SYNCHRONIZATION CONTROL AND MANAGEMENT

UNIT IV DIGITAL SUBSCRIBER ACCESS

UNIT V TRAFFIC ANALYSIS

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to
- Have knowledge about the network control and management issues.
- Solve mathematically the telecommunication related problems.
- Have knowledge about the blocking system characteristics and queuing system characteristics.

TEXT BOOK:

REFERENCES:

EC8652 WIRELESS COMMUNICATION

OBJECTIVES:
- To study the characteristic of wireless channel
- To understand the design of a cellular system
- To study the various digital signaling techniques and multipath mitigation techniques
- To understand the concepts of multiple antenna techniques

UNIT I WIRELESS CHANNELS
UNIT II CELLULAR ARCHITECTURE 9
Multiple Access techniques - FDMA, TDMA, CDMA – Capacity calculations–Cellular
concept- Frequency reuse - channel assignment- hand off- interference & system capacity-
trunking & grade of service – Coverage and capacity improvement.

UNIT III DIGITAL SIGNALING FOR FADING CHANNELS 9
Structure of a wireless communication link, Principles of Offset-QPSK, p/4-DQPSK,
Minimum Shift Keying, Gaussian Minimum Shift Keying, Error performance in fading
channels, OFDM principle – Cyclic prefix, Windowing, PAPR.

UNIT IV MULTIPATH MITIGATION TECHNIQUES 9
Equalisation – Adaptive equalization, Linear and Non-Linear equalization, Zero forcing and
LMS Algorithms. Diversity – Micro and Macro diversity, Diversity combining techniques,
Error probability in fading channels with diversity reception, Rake receiver.

UNIT V MULTIPLE ANTENNA TECHNIQUES 9
MIMO systems – spatial multiplexing -System model -Pre-coding - Beam forming -
transmitter diversity, receiver diversity- Channel state information-capacity in fading and
non-fading channels.

TOTAL: 45 PERIODS

OUTCOMES:
The student should be able to:
• Characterize a wireless channel and evolve the system design specifications
• Design a cellular system based on resource availability and traffic demands
• Identify suitable signaling and multipath mitigation techniques for the wireless
channel and system under consideration.

TEXT BOOKS:
2010.(UNIT I, II, IV)
III,V)

REFERENCES:
2. Van Nee, R. and Ramji Prasad, —OFDM for wireless multimedia communications,
Artech House, 2000
3. David Tse and Pramod Viswanath, —Fundamentals of Wireless Communication,

MG8591 PRINCIPLES OF MANAGEMENT LT P C
3 0 0 3

OBJECTIVE:
• To enable the students to study the evolution of Management, to study the functions and
principles of management and to learn the application of the principles in an organization .

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS 9
Definition of Management – Science or Art – Manager Vs Entrepreneur - types of managers -
managerial roles and skills – Evolution of Management – Scientific, human relations, system and
contingency approaches – Types of Business organization - Sole proprietorship, partnership,
company-public and private sector enterprises - Organization culture and Environment – Current
trends and issues in Management.
UNIT II PLANNING 9

UNIT III ORGANISING 9

UNIT IV DIRECTING 9

UNIT V CONTROLLING 9
System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

TOTAL: 45 PERIODS

OUTCOME:
- Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

TEXTBOOKS:

REFERENCES:

CS8661 INTERNET PROGRAMMING LABORATORY L T P C
0 0 4 2

OBJECTIVES:
- To be familiar with Web page design using HTML/XML and style sheets
- To be exposed to creation of user interfaces using Java frames and applets.
- To learn to create dynamic web pages using server side scripting.
- To learn to write Client Server applications.
- To be familiar with the PHP programming.
- To be exposed to creating applications with AJAX
LIST OF EXPERIMENTS

1. Create a web page with the following using HTML
 a. To embed a map in a web page
 b. To fix the hot spots in that map
 c. Show all the related information when the hot spots are clicked.

2. Create a web page with the following.
 a. Cascading style sheets.
 b. Embedded style sheets.
 c. Inline style sheets. Use our college information for the web pages.

3. Validate the Registration, user login, user profile and payment by credit card pages using JavaScript.

4. Write programs in Java using Servlets:
 i. To invoke servlets from HTML forms
 ii. Session tracking using hidden form fields and Session tracking for a hit count

5. Write programs in Java to create three-tier applications using servlets for conducting online examination for displaying student mark list. Assume that student information is available in a database which has been stored in a database server.

6. Install TOMCAT web server. Convert the static web pages of programs into dynamic web pages using servlets (or JSP) and cookies. Hint: Users information (user id, password, credit card number) would be stored in web.xml. Each user should have a separate Shopping Cart.

7. Redo the previous task using JSP by converting the static web pages into dynamic web pages. Create a database with user information and books information. The books catalogue should be dynamically loaded from the database.

8. Create and save an XML document at the server, which contains 10 users Information. Write a Program, which takes user Id as an input and returns the User details by taking the user information from the XML document

9. i. Validate the form using PHP regular expression.
 ii. PHP stores a form data into database.

10. Write a web service for finding what people think by asking 500 people’s opinion for any consumer product.

TOTAL: 60 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to:

- Construct Web pages using HTML/XML and style sheets.
- Build dynamic web pages with validation using Java Script objects and by applying different event handling mechanisms.
- Develop dynamic web pages using server side scripting.
- Use PHP programming to develop web applications.
- Construct web applications using AJAX and web services.

SOFTWARE REQUIRED:
- Dream Weaver or Equivalent, MySQL or Equivalent, Apache Server, WAMP/XAMPP

OBJECTIVES:
- To learn and use network commands.
- To learn socket programming.
- To implement and analyze various network protocols.
- To learn and use simulation tools.
- To use simulation tools to analyze the performance of various network protocols.
LIST OF EXPERIMENTS
1. Learn to use commands like tcpdump, netstat, ifconfig, nslookup and traceroute. Capture
ping and traceroute PDUs using a network protocol analyzer and examine.
2. Write a HTTP web client program to download a web page using TCP sockets.
3. Applications using TCP sockets like:
 - Echo client and echo server
 - Chat
 - File Transfer
4. Simulation of DNS using UDP sockets.
5. Write a code simulating ARP /RARP protocols.
6. Study of Network simulator (NS) and Simulation of Congestion Control Algorithms using
 NS.
7. Study of TCP/UDP performance using Simulation tool.
8. Simulation of Distance Vector/ Link State Routing algorithm.
10. Simulation of error correction code (like CRC).
 TOTAL: 60 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to:
- Implement various protocols using TCP and UDP.
- Compare the performance of different transport layer protocols.
- Use simulation tools to analyze the performance of various network protocols.
- Analyze various routing algorithms.
- Implement error correction codes.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

LABORATORY REQUIREMENT FOR BATCH OF 30 STUDENTS:
HARDWARE:
1. Standalone desktops 30 Nos

SOFTWARE:
1. C / C++ / Java / Python / Equivalent Compiler 30
2. Network simulator like NS2/Glomosim/OPNET/ Packet Tracer / Equivalent

HS8581 PROFESSIONAL COMMUNICATION

OBJECTIVES:
The course aims to:
- Enhance the Employability and Career Skills of students
- Orient the students towards grooming as a professional
- Make them Employable Graduates
- Develop their confidence and help them attend interviews successfully.

UNIT I
Introduction to Soft Skills-- Hard skills & soft skills - employability and career Skills—Grooming as a
professional with values—Time Management—General awareness of Current Affairs
UNIT II
Self-Introduction-organizing the material - Introducing oneself to the audience – introducing the topic – answering questions – individual presentation practice— presenting the visuals effectively – 5 minute presentations

UNIT III
Introduction to Group Discussion— Participating in group discussions – understanding group dynamics - brainstorming the topic — questioning and clarifying – GD strategies- activities to improve GD skills

UNIT IV
Interview etiquette – dress code – body language – attending job interviews– telephone/skype interview -one to one interview & panel interview – FAQs related to job interviews

UNIT V
Recognizing differences between groups and teams- managing time-managing stress- networking professionally- respecting social protocols-understanding career management-developing a long-term career plan-making career changes

OUTCOMES:
At the end of the course Learners will be able to:
• Make effective presentations
• Participate confidently in Group Discussions.
• Attend job interviews and be successful in them.
• Develop adequate Soft Skills required for the workplace

Recommended Software
1. Globearena
2. Win English

REFERENCES:

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY

OBJECTIVES:
• To understand Cryptography Theories, Algorithms and Systems.
• To understand necessary Approaches and Techniques to build protection mechanisms in order to secure computers networks.

UNIT I INTRODUCTION
UNIT II SYMMETRIC KEY CRYPTOGRAPHY 9

UNIT III PUBLIC KEY CRYPTOGRAPHY 9

UNIT IV MESSAGE AUTHENTICATION AND INTEGRITY 9

UNIT V SECURITY PRACTICE AND SYSTEM SECURITY 9

TOTAL 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Understand the fundamentals of networks security, security architecture, threats and vulnerabilities
- Apply the different cryptographic operations of symmetric cryptographic algorithms
- Apply the different cryptographic operations of public key cryptography
- Apply the various Authentication schemes to simulate different applications.
- Understand various Security practices and System security standards

TEXT BOOK:

REFERENCES:
1. C K Shyamala, N Harini and Dr. T R Padmanabhan: Cryptography and Network Security, Wiley India Pvt.Ltd

CO8701 ANTENNAS AND WAVE PROPAGATION L T P C 3 0 0 3

OBJECTIVES:
- To give insight of the radiation phenomena.
- To give a thorough understanding of the radiation characteristics of different types of antennas
- To create awareness about the different types of propagation of radio waves at different
UNIT I FUNDAMENTALS OF RADIATION 9

UNIT II APERTURE AND SLOT ANTENNAS 9
Radiation from rectangular apertures, Uniform and Tapered aperture, Horn antenna, Reflecto r antenna, Aperture blockage, Feeding structures, Slot antennas, Microstrip antennas – Radiation mechanism – Application, Numerical tool for antenna analysis

UNIT III ANTENNA ARRAYS 9
N element linear array, Pattern multiplication, Broadside and End fire array – Concept of Phased arrays, Adaptive array, Basic principle of antenna Synthesis-Binomial array

UNIT IV SPECIAL ANTENNAS 9

UNIT V PROPAGATION OF RADIO WAVES 9
Modes of propagation, Structure of atmosphere, Ground wave propagation, Tropospheric propagation, Duct propagation, Troposcatter propagation, Flat earth and Curved earth concept Sky wave propagation – Virtual height, critical frequency, Maximum usable frequency – Skip distance, Fading, Multi hop propagation

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, students will be able to
• Explain the various types of antennas and wave propagation.
• Write about the radiation from a current element.
• Analyze the antenna arrays, aperture antennas and special antennas such as frequency independent and broad band

TEXT BOOK:

REFERENCES:
OBJECTIVES:
- To study about the various optical fiber modes, configuration and transmission characteristics of optical fibers
- To learn about the various optical sources, detectors and transmission techniques
- To explore various ideas about optical fiber measurements and various coupling techniques
- To enrich the knowledge about optical communication systems and networks

UNIT I INTRODUCTION TO OPTICAL FIBERS
Introduction-general optical fiber communication system- basic optical laws and definitions-optical modes and configurations-mode analysis for optical propagation through fiber-modes in planar wave guide-modes in cylindrical optical fiber-transverse electric and transverse magnetic modes- fiber materials-fiber fabrication techniques-fiber optic cables-classification of optical fiber-single mode fiber-graded index fiber.

UNIT II TRANSMISSION CHARACTERISTIC OF OPTICAL FIBER

UNIT III OPTICAL SOURCES AND DETECTORS
Sources: Intrinsic and extrinsic material-direct and indirect band gaps-LED-LED structures-surface emitting LED-Edge emitting LED-quantum efficiency and LED power-light source materials-modulation of LED-LASER diodes-modes and threshold conditions-Rate equations-external quantum efficiency-resonant frequencies-structures and radiation patterns-single mode laser-external modulation-temperature effort.

UNIT IV OPTICAL RECEIVER, MEASUREMENTS AND COUPLING

UNIT V OPTICAL COMMUNICATION SYSTEMS AND NETWORKS

TOTAL:45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:

- Realize basic elements in optical fibers, different modes and configurations.
- Analyze the transmission characteristics associated with dispersion and polarization techniques.
- Design optical sources and detectors with their use in optical communication system.
- Construct fiber optic receiver systems, measurements and coupling techniques.
- Design optical communication systems and its networks.

TEXT BOOKS:

REFERENCES

IT8761 SECURITY LABORATORY

OBJECTIVES:
- To learn different cipher techniques
- To implement the algorithms DES, RSA, MD5, SHA-1
- To use network security tools and vulnerability assessment tools

LIST OF EXPERIMENTS
1. Perform encryption, decryption using the following substitution techniques
 (i) Caesar cipher, (ii) Playfair cipher, (iii) Hill cipher, (iv) Vigenere cipher
2. Perform encryption and decryption using following transposition techniques
 (i) Rail fence, (ii) row & Column Transformation
3. Apply DES algorithm for practical applications.
4. Apply AES algorithm for practical applications.
5. Implement RSA Algorithm using HTML and JavaScript
7. Calculate the message digest of a text using the SHA-1 algorithm.
8. Implement the SIGNATURE SCHEME - Digital Signature Standard.
9. Demonstrate intrusion detection system (IDS) using any tool eg. Snort or any other s/w.
10. Automated Attack and Penetration Tools
 Exploring N-Stalker, a Vulnerability Assessment Tool
11. Defeating Malware
 (i) Building Trojans, (ii) Rootkit Hunter

TOTAL: 60 PERIODS
OUTCOMES:
Upon Completion of the course, the students will be able to:
- Develop code for classical Encryption Techniques to solve the problems.
- Build cryptosystems by applying symmetric and public key encryption algorithms.
- Construct code for authentication algorithms.
- Develop a signature scheme using Digital signature standard.
- Demonstrate the network security system using open source tools

REFERENCES:
1. Build Your Own Security Lab, Michael Gregg, Wiley India

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
SOFTWARE: C / C++ / Java or equivalent compiler GnuPG, Snort, N-Stalker or Equivalent
HARDWARE: Standalone desktops - 30 Nos. (or) Server supporting 30 terminals or more.
OBJECTIVES:
The student should be made to:

- Understand the working principle of optical sources, detector, fibers
- Develop understanding of simple optical communication link
- Understand the measurement of BER, Pulse broadening
- Understand and capture an experimental approach to digital wireless communication
- Understand actual communication waveforms that will be sent and received across wireless channel

LIST OF OPTICAL EXPERIMENTS
1. Measurement of connector, bending and fiber attenuation losses.
3. DC Characteristics of LED and PIN Photo diode.
4. Fiber optic Analog and Digital Link Characterization - frequency response(analog), eye diagram and BER (digital)

LIST OF WIRELESS COMMUNICATION EXPERIMENTS
1. Wireless Channel Simulation including fading and Doppler effects
2. Simulation of Channel Estimation, Synchronization & Equalization techniques
3. Analysing Impact of Pulse Shaping and Matched Filtering using Software Defined Radios
4. OFDM Signal Transmission and Reception using Software Defined Radios

LIST OF MICROWAVE EXPERIMENTS
1. VSWR and Impedance Measurement and Impedance Matching
2. Characterization of Directional Couplers, Isolators, Circulators
3. Gunn Diode Characteristics
4. Microwave IC – Filter Characteristics

OUTCOMES:
On completion of this lab course, the student would be able to

- Analyze the performance of simple optical link by measurement of losses and Analyzing the mode characteristics of fiber
- Analyze the Eye Pattern, Pulse broadening of optical fiber and the impact on BER
- Estimate the Wireless Channel Characteristics and Analyze the performance of Wireless Communication System
- Understand the intricacies in Microwave System design

TOTAL: 60 PERIODS
LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS 3 STUDENTS PER EXPERIMENT:

<table>
<thead>
<tr>
<th>S.NO</th>
<th>NAME OF THE EQUIPMENT</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trainer kit for carrying out LED and PIN diode characteristics, Digital multi meter, optical power meter</td>
<td>2 Nos</td>
</tr>
<tr>
<td>2</td>
<td>Trainer kit for determining the mode characteristics, losses in optical fiber</td>
<td>2 Nos</td>
</tr>
<tr>
<td>3</td>
<td>Trainer kit for analyzing Analog and Digital link performance, 2 Mbps PRBS Data source, 10 MHz signal generator, 20 MHz Digital storage Oscilloscope</td>
<td>2 Nos</td>
</tr>
<tr>
<td>4</td>
<td>Kit for measuring Numerical aperture and Attenuation of fiber</td>
<td>2 Nos</td>
</tr>
<tr>
<td>5</td>
<td>Advanced Optical fiber trainer kit for PC to PC communication, BER Measurement, Pulse broadening.</td>
<td>2 Nos</td>
</tr>
<tr>
<td>6</td>
<td>MM/SM Glass and plastic fiber patch chords with ST/SC/E2000 connectors</td>
<td>2 sets</td>
</tr>
<tr>
<td>7</td>
<td>LEDs with ST / SC / E2000 receptacles – 650 / 850 nm</td>
<td>2 sets</td>
</tr>
<tr>
<td>8</td>
<td>PIN PDs with ST / SC / E2000 receptacles – 650 / 850 nm</td>
<td>2 sets</td>
</tr>
<tr>
<td>9</td>
<td>Digital Communications Teaching Bundle (LabVIEW/MATLAB/Equivalent software tools)</td>
<td>10 Users</td>
</tr>
<tr>
<td>10</td>
<td>Transmit/receive pair of NI USRP-2920 transceivers (50 MHz to 2.2 GHz)</td>
<td>2 Nos</td>
</tr>
</tbody>
</table>

CS8075 DATA WAREHOUSING AND DATA MINING L T P C

| 3 0 0 3 |

OBJECTIVES:

- To understand data warehouse concepts, architecture, business analysis and tools
- To understand data pre-processing and data visualization techniques
- To study algorithms for finding hidden and interesting patterns in data
- To understand and apply various classification and clustering techniques using tools.

UNIT I DATA WAREHOUSING, BUSINESS ANALYSIS AND ON-LINE ANALYTICAL PROCESSING (OLAP)

UNIT II DATA MINING – INTRODUCTION

- Introduction to Data Mining Systems – Knowledge Discovery Process – Data Mining Techniques – Issues – applications- Data Objects and attribute types, Statistical description of data, Data Preprocessing – Cleaning, Integration, Reduction, Transformation and discretization, Data Visualization, Data similarity and dissimilarity measures.

UNIT III DATA MINING - FREQUENT PATTERN ANALYSIS

- Mining Frequent Patterns, Associations and Correlations – Mining Methods- Pattern Evaluation Method – Pattern Mining in Multilevel, Multi Dimensional Space – Constraint Based Frequent Pattern Mining, Classification using Frequent Patterns
UNIT IV CLASSIFICATION AND CLUSTERING 9
Decision Tree Induction - Bayesian Classification – Rule Based Classification – Classification by Back Propagation – Support Vector Machines — Lazy Learners – Model Evaluation and Selection-Techniques to improve Classification Accuracy.

UNIT V WEKA TOOL 9

OUTCOMES:
Upon completion of the course, the students should be able to:
- Design a Data warehouse system and perform business analysis with OLAP tools.
- Apply suitable pre-processing and visualization techniques for data analysis
- Apply frequent pattern and association rule mining techniques for data analysis
- Apply appropriate classification and clustering techniques for data analysis

TEXT BOOK:

REFERENCES:

CO8001 NETWORK ANALYSIS AND MANAGEMENT L T P C 3 0 0 3

OBJECTIVES:
- Learn network devices functions and configurations hub, switch, tap and routers.
- Be familiar with network Security Devices.
- Be exposed to network services.
- Understand and analyze application performance.
- Learn to analyze network traffic and protocols.
- Be aware of network-troubleshooting concepts.
- Understand network security concepts.

UNIT I A SYSTEM APPROACH TO NETWORK DESIGN AND REQUIREMENT ANALYSIS 9
UNIT II FLOW ANALYSIS: CONCEPTS, GUIDELINES AND PRACTICE

UNIT III LOGICAL DESIGN: CHOICES, INTERCONNECTION MECHANISMS, NETWORK MANAGEMENT AND SECURITY

UNIT IV NETWORK DESIGN: PHYSICAL, ADDRESSING AND ROUTING
Introduction- Evaluating cable plant design options – Network equipment placement-diagramming the physical design- diagramming the worksheet –case study. Introduction to Addressing and routing establishing routing flow in the design environments- manipulating routing flows- developing addressing strategies- developing a routing strategy- case study.

UNIT V NETWORK MANAGEMENT AND SNMP PROTOCOL MODEL
Network and System management, Network management system platform; Current SNMP Broadband and TMN management, Network management standards. SNMPV1, SNMPV2 system architecture, SNMPV2, structure of management information. SNMPV2 – MIB – SNMPV2 protocol, SNMPV3-Architecture, Application, MIB, security user based security model, access control RMON.

TOTAL : 45 PERIODS

OUTCOMES:
On Completion of the course, the students should be able to:
- Explain the key concepts and algorithms in complex network analysis.
- Apply a range of techniques for characterizing network structure.
- Discuss methodologies for analyzing networks of different fields.
- Demonstrate knowledge of recent research in the area and exhibit technical writing and presentation skills.

TEXT BOOKS:

REFERENCES
OBJECTIVES:
- To learn the criteria for test cases.
- To learn the design of test cases.
- To understand test management and test automation techniques.
- To apply test metrics and measurements.

UNIT I INTRODUCTION

UNIT II TEST CASE DESIGN STRATEGIES

UNIT III LEVELS OF TESTING

UNIT IV TEST MANAGEMENT

UNIT V TEST AUTOMATION

OUTCOMES:
At the end of the course the students will be able to:
- Design test cases suitable for a software development for different domains.
- Identify suitable tests to be carried out.
- Prepare test planning based on the document.
- Document test plans and test cases designed.
- Use automatic testing tools.
- Develop and validate a test plan.
TEXT BOOKS:

REFERENCES:

IT8072 EMBEDDED SYSTEMS

OBJECTIVES:
- To learn the architecture and programming of ARM processor.
- To become familiar with the embedded computing platform design and analysis.
- To get thorough knowledge in interfacing concepts
- To design an embedded system and to develop programs

UNIT I INTRODUCTION TO EMBEDDED COMPUTING AND ARM PROCESSORS 9
- Complex systems and micro processors– Embedded system design process –Design example: Model train controller- Instruction sets preliminaries - ARM Processor – CPU: programming input and output- supervisor mode, exceptions and traps – Co-processors- Memory system mechanisms – CPU performance- CPU power consumption.

UNIT II EMBEDDED COMPUTING PLATFORM DESIGN 9
- The CPU Bus-Memory devices and systems–Designing with computing platforms – consumer electronics architecture – platform-level performance analysis - Components for embedded programs- Models of programs- Assembly, linking and loading – compilation techniques- Program level performance analysis – Software performance optimization – Program level energy and power analysis and optimization – Analysis and optimization of program size- Program validation and testing.

UNIT III SENSOR INTERFACING WITH ARDUINO 9
- Basics of hardware design and functions of basic passive components-sensors and actuators-Arduino code - library file for sensor interfacing-construction of basic applications

UNIT IV EMBEDDED FIRMWARE 9
- Reset Circuit, Brown-out Protection Circuit-Oscillator Unit - Real Time Clock-Watchdog Timer - Embedded Firmware Design Approaches and Development Languages.

UNIT V EMBEDDED C PROGRAMMING 9
- Introduction-Creating ‘hardware delays’ using Timer 0 and Timer 1-Reading switches-Adding Structure to the code-Generating a minimum and maximum delay-Example: Creating a portable hardware delay- Timeout mechanisms-Creating loop timeouts-Testing loop timeouts- hardware timeouts-Testing a hardware timeout

TOTAL: 45 PERIODS
OUTCOMES:
Upon completion of the course, students will be able to:
- Describe the architecture and programming of ARM processor.
- Explain the concepts of embedded systems.
- Understand the Concepts of peripherals and interfacing of sensors.
- Capable of using the system design techniques to develop firmware.
- Illustrate the code for constructing a system.

TEXT BOOKS:
2. https://www.coursera.org/learn/interface-with-arduino#syllabus (Unit III)

REFERENCES

CS8072 AGILE METHODOLOGIES L T P C
3 0 0 3

OBJECTIVES:
- To provide students with a theoretical as well as practical understanding of agile software development practices and how small teams can apply them to create high-quality software.
- To provide a good understanding of software design and a set of software technologies and APIs.
- To do a detailed examination and demonstration of Agile development and testing techniques.
- To understand the benefits and pitfalls of working in an Agile team.
- To understand Agile development and testing.

UNIT I AGILE METHODOLOGY 9

UNIT II AGILE PROCESSES 9

UNIT III AGILITY AND KNOWLEDGE MANAGEMENT 9
<table>
<thead>
<tr>
<th>UNIT IV</th>
<th>AGILITY AND REQUIREMENTS ENGINEERING</th>
<th>9</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>UNIT V</th>
<th>AGILITY AND QUALITY ASSURANCE</th>
<th>9</th>
</tr>
</thead>
</table>

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Realize the importance of interacting with business stakeholders in determining the requirements for a software system.
- Perform iterative software development processes: how to plan them, how to execute them.
- Point out the impact of social aspects on software development success.
- Develop techniques and tools for improving team collaboration and software quality.
- Perform Software process improvement as an ongoing task for development teams.
- Show how agile approaches can be scaled up to the enterprise level.

TEXT BOOKS:

REFERENCES:

GE8075 INTELLECTUAL PROPERTY RIGHTS

OBJECTIVE:
To give an idea about IPR, registration and its enforcement.

UNIT I INTRODUCTION
Introduction to IPRs, Basic concepts and need for Intellectual Property – Patents, Copyrights, Geographical Indications, IPR in India and Abroad – Genesis and Development – the way from WTO to WIPO –TRIPS, Nature of Intellectual Property, Industrial Property, technological Research, Inventions and Innovations – Important examples of IPR.

UNIT II REGISTRATION OF IPRs
Meaning and practical aspects of registration of Copy Rights, Trademarks, Patents, Geographical Indications, Trade Secrets and Industrial Design registration in India and Abroad.
UNIT III AGREEMENTS AND LEGISLATIONS 10

UNIT IV DIGITAL PRODUCTS AND LAW 9

UNIT V ENFORCEMENT OF IPRs 7
Infringement of IPRs, Enforcement Measures, Emerging issues – Case Studies.

OUTCOME:
- Ability to manage Intellectual Property portfolio to enhance the value of the firm.

TEXT BOOKS
2. S. V. Satak, "Intellectual Property Rights and Copy Rights, Ess Ess Publications, New Delhi, 2002

REFERENCES

CS8091 BIG DATA ANALYTICS L T P C
3 0 0 3

OBJECTIVES:
- To know the fundamental concepts of big data and analytics.
- To explore tools and practices for working with big data
- To learn about stream computing.
- To know about the research that requires the integration of large amounts of data.

UNIT I INTRODUCTION TO BIG DATA 9
Evolution of Big data - Best Practices for Big data Analytics - Big data characteristics - Validating - The Promotion of the Value of Big Data - Big Data Use Cases- Characteristics of Big Data Applications - Perception and Quantification of Value -Understanding Big Data Storage - A General Overview of High-Performance Architecture - HDFS - MapReduce and YARN - Map Reduce Programming Model

UNIT II CLUSTERING AND CLASSIFICATION 9
UNIT III ASSOCIATION AND RECOMMENDATION SYSTEM 9

UNIT IV STREAM MEMORY 9

UNIT V NOSQL DATA MANAGEMENT FOR BIG DATA AND VISUALIZATION 9
NoSQL Databases : Schema-less Models“: Increasing Flexibility for Data Manipulation-Key Value Stores- Document Stores - Tabular Stores - Object Data Stores - Graph Databases Hive - Sharding – - Hbase – Analyzing big data with twitter - Big data for E-Commerce Big data for blogs - Review of Basic Data Analytic Methods using R.

OUTCOMES:
Upon completion of the course, the students will be able to:
- Work with big data tools and its analysis techniques
- Analyze data by utilizing clustering and classification algorithms
- Learn and apply different mining algorithms and recommendation systems for large volumes of data
- Perform analytics on data streams
- Learn NoSQL databases and management.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To understand the need for machine learning for various problem solving
- To study the various supervised, semi-supervised and unsupervised learning algorithms in machine learning
- To understand the latest trends in machine learning
- To design appropriate machine learning algorithms for problem solving

UNIT I INTRODUCTION

UNIT II NEURAL NETWORKS AND GENETIC ALGORITHMS

UNIT III BAYESIAN AND COMPUTATIONAL LEARNING

UNIT IV INSTANT BASED LEARNING
K- Nearest Neighbour Learning – Locally weighted Regression – Radial Basis Functions – Case Based Learning.

UNIT V ADVANCED LEARNING

TOTAL : 45 PERIODS

OUTCOMES:
At the end of the course, the students will be able to
- Differentiate between supervised, unsupervised, semi-supervised machine learning approaches
- Discuss the decision tree algorithm and identity and overcome the problem of overfitting
- Discuss and apply the back propagation algorithm and genetic algorithms to various problems
- Apply the Bayesian concepts to machine learning
- Analyse and suggest appropriate machine learning approaches for various types of problems

TEXT BOOK:

REFERENCES:
OBJECTIVES:
- To understand Smart Objects and IoT Architectures
- To learn about various IOT-related protocols
- To build simple IoT Systems using Arduino and Raspberry Pi.
- To understand data analytics and cloud in the context of IoT
- To develop IoT infrastructure for popular applications

UNIT I FUNDAMENTALS OF IoT

UNIT II IoT PROTOCOLS
IoT Access Technologies: Physical and MAC layers, topology and Security of IEEE 802.15.4, 802.15.4g, 802.15.4e, 1901.2a, 802.11ah and LoRaWAN – Network Layer: IP versions, Constrained Nodes and Constrained Networks – Optimizing IP for IoT: From 6LoWPAN to 6Lo, Routing over Low Power and Lossy Networks – Application Transport Methods: Supervisory Control and Data Acquisition – Application Layer Protocols: CoAP and MQTT

UNIT III DESIGN AND DEVELOPMENT
Design Methodology - Embedded computing logic - Microcontroller, System on Chips - IoT system building blocks - Arduino - Board details, IDE programming - Raspberry Pi - Interfaces and Raspberry Pi with Python Programming.

UNIT IV DATA ANALYTICS AND SUPPORTING SERVICES

UNIT V CASE STUDIES/INDUSTRIAL APPLICATIONS
Cisco IoT system - IBM Watson IoT platform – Manufacturing - Converged Plantwide Ethernet Model (CPwE) – Power Utility Industry – GridBlocks Reference Model - Smart and Connected Cities: Layered architecture, Smart Lighting, Smart Parking Architecture and Smart Traffic Control

TOTAL : 45 PERIODS

OUTCOMES:
Upon completion of the course, the student should be able to:
- Explain the concept of IoT.
- Analyze various protocols for IoT.
- Design a PoC of an IoT system using Rasperry Pi/Arduino
- Apply data analytics and use cloud offerings related to IoT.
- Analyze applications of IoT in real time scenario

TEXTBOOK:
REFERENCES:
https://www.arduino.cc/

IT8074 SERVICE ORIENTED ARCHITECTURE L T P C 3 0 0 3

OBJECTIVES:
- To learn fundamentals of XML
- To provide an overview of Service Oriented Architecture and Web services and their importance
- To learn web services standards and technologies
- To learn service oriented analysis and design for developing SOA based applications

UNIT I XML

UNIT II SERVICE ORIENTED ARCHITECTURE (SOA) BASICS
Characteristics of SOA, Benefits of SOA, Comparing SOA with Client-Server and Distributed architectures --- Principles of Service Orientation – Service layers

UNIT III WEB SERVICES (WS) AND STANDARDS

UNIT IV WEB SERVICES EXTENSIONS

UNIT V SERVICE ORIENTED ANALYSIS AND DESIGN
SOA delivery strategies – Service oriented analysis – Service Modelling – Service oriented design – Standards and composition guidelines -- Service design – Business process design – Case Study

TOTAL : 45 PERIODS

OUTCOMES:
Upon successful completion of this course, the students will be able to:
- Understand XML technologies
- Understand service orientation, benefits of SOA
- Understand web services and WS standards
- Use web services extensions to develop solutions
- Understand and apply service modeling, service oriented analysis and design for application development
TEXTBOOKS:

REFERENCES:

EC8071 COGNITIVE RADIO L T P C
3 0 0 3

OBJECTIVES:
The student should be made:
- To understand the evolving software defined radio and cognitive radio techniques and their essential functionalities
- To study the basic architecture and standard for cognitive radio
- To understand the physical, MAC and Network layer design of cognitive radio
- To expose the student to evolving applications and advanced features of cognitive radio

UNIT I INTRODUCTION TO SOFTWARE-DEFINED RADIO AND COGNITIVE RADIO 9
Evolution of Software Defined Radio and Cognitive radio: goals, benefits, definitions, architectures, relations with other radios, issues, enabling technologies, radio frequency spectrum and regulations.

UNIT II COGNITIVE RADIO ARCHITECTURE 9
Cognition cycle – orient, plan, decide and act phases, Organization, SDR as a platform for Cognitive Radio – Hardware and Software Architectures, Overview of IEEE 802.22 standard for broadband wireless access in TV bands.

UNIT III SPECTRUM SENSING AND DYNAMIC SPECTRUM ACCESS 9

UNIT IV MAC AND NETWORK LAYER DESIGN FOR COGNITIVE RADIO 9
MAC for cognitive radios – Polling, ALOHA, slotted ALOHA, CSMA, CSMA / CA, Network layer design – routing in cognitive radios, flow control and error control techniques.

UNIT V ADVANCED TOPICS IN COGNITIVE RADIO 9
Overview of security issues in cognitive radios, auction based spectrum markets in cognitive radio networks, public safety and cognitive radio, cognitive radio for Internet of Things.

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:

- Gain knowledge on the design principles on software defined radio and cognitive radio
- Develop the ability to design and implement algorithms for cognitive radio spectrum sensing and dynamic spectrum access
- Build experiments and projects with real time wireless applications
- Apply the knowledge of advanced features of cognitive radio for real world applications

TEXT BOOKS

REFERENCES:

GE8077 TOTAL QUALITY MANAGEMENT

OBJECTIVE:
- To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

UNIT II TQM PRINCIPLES
Leadership - Quality Statements, Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I
The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT IV TQM TOOLS AND TECHNIQUES II
Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.
UNIT V QUALITY MANAGEMENT SYSTEM

ENVIRONMENTAL MANAGEMENT SYSTEM:

OUTCOME:
- The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXT BOOK:

REFERENCES:
4. ISO9001-2015 standards

CS8083 MULTI-CORE ARCHITECTURES AND PROGRAMMING L T P C
3 0 0 3

OBJECTIVES:
- To understand the need for multi-core processors, and their architecture.
- To understand the challenges in parallel and multi-threaded programming.
- To learn about the various parallel programming paradigms.
- To develop multicore programs and design parallel solutions.

UNIT I MULTI-CORE PROCESSORS

UNIT II PARALLEL PROGRAM CHALLENGES
Performance – Scalability – Synchronization and data sharing – Data races – Synchronization primitives (mutEXES, locks, semaphores, barriers) – deadlocks and livelocks – communication between threads (condition variables, signals, message queues and pipes).

UNIT III SHARED MEMORY PROGRAMMING WITH OpenMP

UNIT IV DISTRIBUTED MEMORY PROGRAMMING WITH MPI
MPI program execution – MPI constructs – libraries – MPI send and receive – Point-to-point and Collective communication – MPI derived datatypes – Performance evaluation
UNIT V PARALLEL PROGRAM DEVELOPMENT

Case studies - n-Body solvers – Tree Search – OpenMP and MPI implementations and comparison.

OUTCOMES:
At the end of the course, the students should be able to:
- Describe multicore architectures and identify their characteristics and challenges.
- Identify the issues in programming Parallel Processors.
- Write programs using OpenMP and MPI.
- Design parallel programming solutions to common problems.
- Compare and contrast programming for serial processors and programming for parallel processors.

TEXT BOOKS:

REFERENCES:

CS8079 HUMAN COMPUTER INTERACTION

OBJECTIVES:
- To learn the foundations of Human Computer Interaction.
- To become familiar with the design technologies for individuals and persons with disabilities.
- To be aware of mobile HCl.
- To learn the guidelines for user interface.

UNIT I FOUNDATIONS OF HCI

UNIT II DESIGN & SOFTWARE PROCESS

UNIT III MODELS AND THEORIES
HCI Models: Cognitive models: Socio-Organizational issues and stakeholder requirements – Communication and collaboration models-Hypertext, Multimedia and WWW.

UNIT IV MOBILE HCI

98
UNIT V WEB INTERFACE DESIGN

Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow - Case Studies

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students should be able to:
- Design effective dialog for HCI
- Design effective HCI for individuals and persons with disabilities.
- Assess the importance of user feedback.
- Explain the HCI implications for designing multimedia/ecommerce/e-learning Web sites.
- Develop meaningful user interface.

TEXT BOOKS:

CO8002 NETWORK PROTOCOLS

OBJECTIVES:
- To learn the different network architectures and protocols.
- To learn the various TCP/IP protocols.
- To learn the various network security technologies and protocols.
- To understand VOIP protocols.
- To understand WAN and LAN protocols.

UNIT I NETWORK COMMUNICATION ARCHITECTURE AND PROTOCOLS

UNIT II TCP/IP PROTOCOLS
- BOOTP, DHCP, DNS, Finger, FTP, HTTP, S-HTTP, IMAP & IMAP4, MIME (S-MIME), NAT, NNTP, POP and POP3, rlogin, RMON, SLP, SMTP, SNMP, SNMPv1, SNMPv2, SNMPv3, SNTP, TELNET, URL, Whois (and RWhois), XMPP, X Window/X Protocol, RPC, RDP, RUDP, TCP, UDP, BGP (BGP4), EGP, ICMP & ICMPv6, IP, IPv6, IRDP, Mobile IP, NARP, NHRP, OSPF, RIP, RIPng, RSVP, BGMP, DVMRP, IGMP, MARS, MBGP, MOSPF, MSDP, ARP and InARP, IPCP and IPv6CP, RARP.

UNIT III NETWORK SECURITY TECHNOLOGIES AND PROTOCOLS
UNIT IV

VOICE OVER IP AND VOIP PROTOCOLS

UNIT V

WAN AND LAN PROTOCOLS

TOTAL: 45 PERIODS

OUTCOMES:
On Completion of the course, the students should be able to:
- Understand the different network architectures and protocols.
- Design different TCP/IP protocols.
- Understand various network security technologies and protocols.
- Understand VOIP protocols.
- Understand the WAN and LAN protocols.

TEXT BOOKS:

REFERENCES
OBJECTIVES:

- To learn basic programming in C# and the object oriented programming concepts.
- To update and enhance skills in writing Windows applications, ADO.NET and ASP .NET.
- To study the advanced concepts in data connectivity, WPF, WCF and WWF with C# and .NET 4.5.
- To implement mobile applications using .Net compact framework.
- To understand the working of base class libraries, their operations and manipulation of data using XML.

UNIT I C# LANGUAGE BASICS 9

-.Net Architecture - Core C# - Variables - Data Types - Flow control - Objects and Types - Classes and Structs - Inheritance- Generics – Arrays and Tuples - Operators and Casts - Indexers

UNIT II C# ADVANCED FEATURES 9

Delegates - Lambdas - Lambda Expressions - Events - Event Publisher - Event Listener - Strings and Regular Expressions - Generics - Collections - Memory Management and Pointers - Errors and Exceptions - Reflection

UNIT III BASE CLASS LIBRARIES AND DATA MANIPULATION 9

UNIT IV WINDOW BASED APPLICATIONS, WCF AND WWF 9

Window based applications - Core ASP.NET- ASP.NET Web forms -Windows Communication Foundation (WCF)- Introduction to Web Services - .Net Remoting - Windows Service - Windows Workflow Foundation (WWF) - Activities – Workflows

UNIT V .NET FRAMEWORK AND COMPACT FRAMEWORK 9

OUTCOMES:

Upon completion of the course, the students will be able to:

- Write various applications using C# Language in the .NET Framework.
- Develop distributed applications using .NET Framework.
- Create mobile applications using .NET compact Framework.

TEXT BOOKS:

REFERENCES

CS8088 WIRELESS ADHOC AND SENSOR NETWORKS LTPC

OBJECTIVES:
- To learn about the issues and challenges in the design of wireless ad hoc networks.
- To understand the working of MAC and Routing Protocols for ad hoc and sensor networks
- To learn about the Transport Layer protocols and their QoS for ad hoc and sensor networks.
- To understand various security issues in ad hoc and sensor networks and the corresponding solutions.

UNIT I MAC & ROUTING IN AD HOC NETWORKS

UNIT II TRANSPORT & QOS IN AD HOC NETWORKS

UNIT III MAC & ROUTING IN WIRELESS SENSOR NETWORKS

UNIT IV TRANSPORT & QOS IN WIRELESS SENSOR NETWORKS

UNIT V SECURITY IN AD HOC AND SENSOR NETWORKS

TOTAL :45 PERIODS
OUTCOMES:
Upon completion of the course, the students will be able to:
- Identify different issues in wireless ad hoc and sensor networks.
- To analyze protocols developed for ad hoc and sensor networks.
- To identify and understand security issues in ad hoc and sensor networks.

TEXT BOOKS:

REFERENCES

GE8072 FOUNDATION SKILLS IN INTEGRATED PRODUCT DEVELOPMENT

OBJECTIVES:
- To understand the global trends and development methodologies of various types of products and services
- To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
- To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them in to design specification
- To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
- To develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer

UNIT I FUNDAMENTALS OF PRODUCT DEVELOPMENT

UNIT II REQUIREMENTS AND SYSTEM DESIGN
UNIT III DESIGN AND TESTING

UNIT IV SUSTENANCE ENGINEERING AND END-OF-LIFE (EOL) SUPPORT

UNIT V BUSINESS DYNAMICS – ENGINEERING SERVICES INDUSTRY

OUTCOMES:

Upon completion of the course, the students will be able to:

- Define, formulate and analyze a problem
- Solve specific problems independently or as part of a team
- Gain knowledge of the Innovation & Product Development process in the Business Context
- Work independently as well as in teams
- Manage a project from start to finish

TEXTBOOKS:

1. Book specially prepared by NASSCOM as per the MoU.

REFERENCES:

TOTAL: 45 PERIODS
OBJECTIVE:

- To sensitize the Engineering students to various aspects of Human Rights.

UNIT I

UNIT II

UNIT III

Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV

Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V

TOTAL : 45 PERIODS

OUTCOME:

- Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

OBJECTIVES:

- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

UNIT I

INTRODUCTION TO DISASTERS

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.
UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR) 9
Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stakeholders- Institutional Processes and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.

UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT 9
Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA 9
Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS 9
Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

TOTAL: 45 PERIODS

OUTCOMES:
The students will be able to
• Differentiate the types of disasters, causes and their impact on environment and society
• Assess vulnerability and various methods of risk reduction measures as well as mitigation.
• Draw the hazard and vulnerability profile of India, Scenarios in the Indian context, Disaster damage assessment and management.

TEXTBOOKS:

REFERENCES
1. Govt. of India: Disaster Management Act , Government of India, New Delhi, 2005
OBJECTIVES:
- To become familiar with digital image fundamentals
- To get exposed to simple image enhancement techniques in Spatial and Frequency domain.
- To learn concepts of degradation function and restoration techniques.
- To study the image segmentation and representation techniques.
- To become familiar with image compression and recognition methods

UNIT I DIGITAL IMAGE FUNDAMENTALS

UNIT II IMAGE ENHANCEMENT

UNIT III IMAGE RESTORATION

UNIT IV IMAGE SEGMENTATION

UNIT V IMAGE COMPRESSION AND RECOGNITION
Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, JPEG standard, MPEG. Boundary representation, Boundary description, Fourier Descriptor, Regional Descriptors – Topological feature, Texture - Patterns and Pattern classes - Recognition based on matching.

OUTCOMES:
At the end of the course, the students should be able to:
- Know and understand the basics and fundamentals of digital image processing, such as digitization, sampling, quantization, and 2D-transforms.
- Operate on images using the techniques of smoothing, sharpening and enhancement.
- Understand the restoration concepts and filtering techniques.
- Learn the basics of segmentation, features extraction, compression and recognition methods for color models.

TEXT BOOKS:
REFERENCES

CS8074 CYBER FORENSICS L T P C
3 0 0 3

OBJECTIVES:
- To learn computer forensics
- To become familiar with forensics tools
- To learn to analyze and validate forensics data

UNIT I INTRODUCTION TO COMPUTER FORENSICS

UNIT II EVIDENCE COLLECTION AND FORENSICS TOOLS

UNIT III ANALYSIS AND VALIDATION
Validating Forensics Data – Data Hiding Techniques – Performing Remote Acquisition – Network Forensics – Email Investigations – Cell Phone and Mobile Devices Forensics

UNIT IV ETHICAL HACKING
Introduction to Ethical Hacking - Footprinting and Reconnaissance - Scanning Networks - Enumeration - System Hacking - Malware Threats - Sniffing

UNIT V ETHICAL HACKING IN WEB

TOTAL 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Understand the basics of computer forensics
- Apply a number of different computer forensic tools to a given scenario
- Analyze and validate forensics data
- Identify the vulnerabilities in a given network infrastructure
- Implement real-world hacking techniques to test system security
TEXT BOOKS:

REFERENCES:

IT8073 INFORMATION SECURITY

OBJECTIVES:
- To understand the basics of Information Security
- To know the legal, ethical and professional issues in Information Security
- To know the aspects of risk management
- To become aware of various standards in this area
- To know the technological aspects of Information Security

UNIT I INTRODUCTION

UNIT II SECURITY INVESTIGATION

UNIT III SECURITY ANALYSIS

UNIT IV LOGICAL DESIGN

UNIT V PHYSICAL DESIGN

TOTAL 45 PERIODS

OUTCOMES:
At the end of this course, the students should be able to:
- Discuss the basics of information security
- Illustrate the legal, ethical and professional issues in information security
- Demonstrate the aspects of risk management.
- Become aware of various standards in the Information Security System
- Design and implementation of Security Techniques.
REFERENCES

OBJECTIVES:
- To learn the fundamentals of software defined networks.
- To understand the separation of the data plane and the control plane.
- To study about the SDN Programming.
- To study about the various applications of SDN

UNIT I INTRODUCTION
History of Software Defined Networking (SDN) – Modern Data Center – Traditional Switch Architecture – Why SDN – Evolution of SDN – How SDN Works – Centralized and Distributed Control and Date Planes

UNIT II OPEN FLOW & SDN CONTROLLERS
Open Flow Specification – Drawbacks of Open SDN, SDN via APIs, SDN via Hypervisor-Based Overlays – SDN via Opening up the Device – SDN Controllers – General Concepts

UNIT III DATA CENTERS
Multitenant and Virtualized Multitenant Data Center – SDN Solutions for the Data Center Network – VLANs – EVPN – VxLAN – NVGRE

UNIT IV SDN PROGRAMMING
Programming SDNs: Northbound Application Programming Interface, Current Languages and Tools, Composition of SDNs – Network Functions Virtualization (NFV) and Software Defined Networks: Concepts, Implementation and Applications

UNIT V SDN
Juniper SDN Framework – IETF SDN Framework – Open Daylight Controller – Floodlight Controller – Bandwidth Calendaring – Data Center Orchestration

TOTAL :45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Analyze the evolution of software defined networks
- Express the various components of SDN and their uses
- Explain the use of SDN in the current networking scenario
- Design and develop various applications of SDN
TEXT BOOKS:

REFERENCES:

CS8086 SOFT COMPUTING

OBJECTIVES:
- To learn the basic concepts of Soft Computing
- To become familiar with various techniques like neural networks, genetic algorithms and fuzzy systems.
- To apply soft computing techniques to solve problems.

UNIT I INTRODUCTION TO SOFT COMPUTING

UNIT II ARTIFICIAL NEURAL NETWORKS
Back propagation Neural Networks - Kohonen Neural Network -Learning Vector Quantization -Hamming Neural Network - Hopfield Neural Network- Bi-directional Associative Memory -Adaptive Resonance Theory Neural Networks- Support Vector Machines - Spike Neuron Models.

UNIT III FUZZY SYSTEMS

UNIT IV GENETIC ALGORITHMS

UNIT V HYBRID SYSTEMS

TOTAL : 45 PERIODS
OUTCOMES:
Upon completion of this course, the students should be able to
- Apply suitable soft computing techniques for various applications.
- Integrate various soft computing techniques for complex problems.

TEXT BOOKS:

REFERENCES

GE8076 PROFESSIONAL ETHICS IN ENGINEERING LT P C 3 0 0 3

OBJECTIVES:
- To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES 10

UNIT II ENGINEERING ETHICS 9

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION 9
Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS 9
UNIT V GLOBAL ISSUES

TOTAL: 45 PERIODS

OUTCOMES:
- Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society.

TEXT BOOKS:

REFERENCES:

Web sources:
1. www.onlineethics.org
2. www.nspe.org
3. www.globalethics.org
4. www.ethics.org

CS8080 INFORMATION RETRIEVAL TECHNIQUES

OBJECTIVES:
- To understand the basics of Information Retrieval.
- To understand machine learning techniques for text classification and clustering.
- To understand various search engine system operations.
- To learn different techniques of recommender system.

UNIT I INTRODUCTION

UNIT II MODELING AND RETRIEVAL EVALUATION 9

UNIT III TEXT CLASSIFICATION AND CLUSTERING 9

UNIT IV WEB RETRIEVAL AND WEB CRAWLING 9

UNIT V RECOMMENDER SYSTEM 9

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Use an open source search engine framework and explore its capabilities
- Apply appropriate method of classification or clustering.
- Design and implement innovative features in a search engine.
- Design and implement a recommender system.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To learn the fundamentals of Green Computing.
- To analyze the Green computing Grid Framework.
- To understand the issues related with Green compliance.
- To study and develop various case studies.

UNIT I FUNDAMENTALS

UNIT II GREEN ASSETS AND MODELING

UNIT III GRID FRAMEWORK
Virtualization of IT systems – Role of electric utilities, Telecommuting, teleconferencing and teleporting – Materials recycling – Best ways for Green PC – Green Data center – Green Grid framework.

UNIT IV GREEN COMPLIANCE

UNIT V CASE STUDIES
The Environmentally Responsible Business Strategies (ERBS) – Case Study Scenarios for Trial Runs – Case Studies – Applying Green IT Strategies and Applications to a Home, Hospital, Packaging Industry and Telecom Sector.

TOTAL : 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Acquire knowledge to adopt green computing practices to minimize negative impacts on the environment.
- Enhance the skill in energy saving practices in their use of hardware.
- Evaluate technology tools that can reduce paper waste and carbon footprint by the stakeholders.
- Understand the ways to minimize equipment disposal requirements.

TEXT BOOKS:
REFERENCES:

CS8076 GPU ARCHITECTURE AND PROGRAMMING L T P C

OBJECTIVES:

- To understand the basics of GPU architectures
- To write programs for massively parallel processors
- To understand the issues in mapping algorithms for GPUs
- To introduce different GPU programming models

UNIT I GPU ARCHITECTURE 12
Evolution of GPU architectures - Understanding Parallelism with GPU –Typical GPU Architecture - CUDA Hardware Overview - Threads, Blocks, Grids, Warps, Scheduling - Memory Handling with CUDA: Shared Memory, Global Memory, Constant Memory and Texture Memory.

UNIT II CUDA PROGRAMMING 8
Using CUDA - Multi GPU - Multi GPU Solutions - Optimizing CUDA Applications: Problem Decomposition, Memory Considerations, Transfers, Thread Usage, Resource Contentions.

UNIT III PROGRAMMING ISSUES 8

UNIT IV OPENCL BASICS 8

UNIT V ALGORITHMS ON GPU 9
Parallel Patterns: Convolution, Prefix Sum, Sparse Matrix - Matrix Multiplication - Programming Heterogeneous Cluster.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to

- Describe GPU Architecture
- Write programs using CUDA, identify issues and debug them
- Implement efficient algorithms in GPUs for common application kernels, such as matrix multiplication
- Write simple programs using OpenCL
- Identify efficient parallel programming patterns to solve problems
TEXT BOOKS:

REFERENCES:

IT8078 WEB DESIGN AND MANAGEMENT

OBJECTIVES:
- To Learn the basic concepts in HTML, CSS, Javascript
- To Understand the responsive design and development
- To learn the web project management and maintenance process
- To Design a Website with HTML, JS, CSS / CMS - Word press

UNIT I WEB DESIGN - HTML MARKUP FOR STRUCTURE
Working of Web - HTML Markup for Structure - Creating simple page - Marking up text - Adding Links - Adding Images - Table Markup - Forms - HTML5

UNIT II CSS AND JAVASCRIPT
CSS - Formatting text - Colours and Background - Padding, Borders and Margins - Floating and positioning - Page Layout with CSS - Transition, Transforms and Animation - Javascript - Using Java Script

UNIT III RESPONSIVE WEB DESIGN
Sass for Responsive Web Design - Marking Content with HTML5 - Mobile-First or Desktop-First - CSS Grids, CSS Frameworks, UI Kits, and Flexbox for RWD - Designing small UIs by Large Finger - Images and Videos in Responsive Web Design - Meaningful Typography for Responsive Web Design

UNIT IV WEB PROJECT MANAGEMENT
Project Life Cycle - Project Definition - Discovery and Requirements - Project Schedule and Budgeting - Running the project - Technical Documentation - Development, Communication, Documentation - QA and testing -Deployment - Support and operations

UNIT V PROJECT CASE STUDY
Using HTML, CSS, JS or using Opensource CMS like Wordpress, design and develop a Website having Aesthetics, Advanced and Minimal UI Transitions based on the project - Host and manage the project live in any public hosting

TOTAL : 45 PERIODS
OUTCOMES:
On Successful completion of the course ,Students will be able to

- Design Website using HTML CSS and JS
- Design Responsive Sites
- Manage, Maintain and Support Web Apps

TEXT BOOKS:

REFERENCES

CS8791 CLOUD COMPUTING L T P C
3 0 0 3

OBJECTIVES:
- To understand the concept of cloud computing.
- To appreciate the evolution of cloud from the existing technologies.
- To have knowledge on the various issues in cloud computing.
- To be familiar with the lead players in cloud.
- To appreciate the emergence of cloud as the next generation computing paradigm.

UNIT I INTRODUCTION 9

UNIT II CLOUD ENABLING TECHNOLOGIES 10

UNIT III CLOUD ARCHITECTURE, SERVICES AND STORAGE 8

UNIT IV RESOURCE MANAGEMENT AND SECURITY IN CLOUD 10
UNIT V CLOUD TECHNOLOGIES AND ADVANCEMENTS

TOTAL: 45 PERIODS

OUTCOMES:
On Completion of the course, the students should be able to:
- Articulate the main concepts, key technologies, strengths and limitations of cloud computing.
- Learn the key and enabling technologies that help in the development of cloud.
- Develop the ability to understand and use the architecture of compute and storage cloud, service and delivery models.
- Explain the core issues of cloud computing such as resource management and security.
- Be able to install and use current cloud technologies.
- Evaluate and choose the appropriate technologies, algorithms and approaches for implementation and use of cloud.

TEXT BOOKS:

REFERENCES:

GE8073 FUNDAMENTALS OF NANOSCIENCE L T P C
3 0 0 3

OBJECTIVE:
To learn about basis of nanomaterial science, preparation method, types and application

UNIT I INTRODUCTION
Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nano particles- quantum dots, nanowires-ultra-thinfils-multilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

UNIT II GENERAL METHODS OF PREPARATION
Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.
UNIT III NANOMATERIALS

UNIT IV CHARACTERIZATION TECHNIQUES

UNIT V APPLICATIONS

TOTAL: 45 PERIODS

OUTCOMES:
• Will familiarize about the science of nanomaterials
• Will demonstrate the preparation of nanomaterials
• Will develop knowledge in characteristic nanomaterial

TEXT BOOKS:

REFERENCES: