PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. To ensure graduates will be proficient in utilizing the fundamental knowledge of basic sciences, mathematics, Computer Science and Business systems for the applications relevant to various streams of Engineering and Technology.

2. To enrich and enable graduates with the core competencies necessary for applying knowledge of computer science and Data analytics tools to store, retrieve, implement and analyze data in the context of business enterprise.

3. To enable graduates to gain employment in organizations and establish themselves as professionals by applying their technical skills and leadership qualities to solve real world problems and meet the diversified needs of industry, academia and research.

PROGRAM OUTCOMES (POs) ENGINEERING GRADUATES WILL BE ABLE TO:

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

1. To create, select, and apply appropriate techniques, resources, modern engineering and business tools including prediction and data analytics to complex engineering activities and business solutions.

2. To evolve Computer Science domain specific methodologies for effective decision making in several domains like business processes and other domains.

3. To manage complex IT projects with consideration of the human, financial, ethical and environmental factors and an understanding of risk management processes, and operational and policy implications.
ANNA UNIVERSITY, CHENNAI
AFFILIATED INSTITUTIONS
B.TECH. COMPUTER SCIENCE AND BUSINESS SYSTEMS
REGULATIONS – 2017
CHOICE BASED CREDIT SYSTEM
I - VIII SEMESTERS CURRICULUM

SEMESTER I

<table>
<thead>
<tr>
<th>SI. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS8151</td>
<td>Communicative English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA8151</td>
<td>Engineering Mathematics – I</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH8151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CY8151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8151</td>
<td>Problem Solving and Python</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE8161</td>
<td>Problem Solving and Python</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>BS8161</td>
<td>Physics and Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>31</td>
<td>19</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>SI. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS8251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA8252</td>
<td>Linear Algebra</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>AD8251</td>
<td>Data Structures Design</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>GE8291</td>
<td>Environmental Science and Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>BE8255</td>
<td>Basic Electrical, Electronics, and Measurements Engineering</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>AD8252</td>
<td>Digital Principles and Computer Organization</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE8261</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>AD8261</td>
<td>Data Structures Design Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>30</td>
<td>20</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>
SEMESTER III

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA8351</td>
<td>Discrete Mathematics</td>
<td>BS</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CW8301</td>
<td>Fundamentals of Economics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CS8392</td>
<td>Object Oriented Programming</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>AD8351</td>
<td>Design and Analysis of Algorithms</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>CS8492</td>
<td>Database Management Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PRACTICALS

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>CW8311</td>
<td>Business Communication and Value Science Laboratory I</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>CW8383</td>
<td>Object Oriented Programming Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CW8481</td>
<td>Database Management Systems Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL 31 15 2 14 23

SEMESTER IV

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA8391</td>
<td>Probability and Statistics</td>
<td>BS</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CS8493</td>
<td>Operating Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CW8401</td>
<td>Introduction to Business Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CW8402</td>
<td>Computational Statistics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CS8494</td>
<td>Software Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PRACTICALS

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>CS8461</td>
<td>Operating Systems Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>CW8411</td>
<td>Computational Statistics</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CW8412</td>
<td>Business Communication and Value Science Laboratory II</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL 29 15 2 12 22
SEMESTER V

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CW8591</td>
<td>Software Architecture</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CW8501</td>
<td>Software Design using UML</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>CW8502</td>
<td>Operations Research</td>
<td>BS</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>CW8503</td>
<td>Design Thinking</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>IT8003</td>
<td>Formal Language and Automata Theory</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Open Elective I</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CW8511</td>
<td>Mini Project(Software / System Design/Architecture) end to end</td>
<td>EEC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CW8512</td>
<td>Soft Skills Laboratory</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>30</td>
<td>18</td>
<td>0</td>
<td>12</td>
<td>24</td>
</tr>
</tbody>
</table>

SEMESTER VI

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CW8691</td>
<td>Computer Networks (Lab Integrated)</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CS8691</td>
<td>Artificial Intelligence</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CS8602</td>
<td>Compiler Design (Lab Integrated)</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>CW8601</td>
<td>Fundamentals of Management</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>AD8551</td>
<td>Business Analytics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective-1</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CW8611</td>
<td>Business Analytics Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CW8612</td>
<td>Artificial intelligence Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>30</td>
<td>18</td>
<td>0</td>
<td>12</td>
<td>24</td>
</tr>
</tbody>
</table>
SEMESTER VII

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CW8701</td>
<td>Financial Management</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>IT8501</td>
<td>Web Technology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>IT8073</td>
<td>Information Security</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>Professional Elective-II</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Professional Elective-III</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Open Elective II</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CW8711</td>
<td>Information Security Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>IT8511</td>
<td>Web Technology Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>CW8712</td>
<td>Mini Project (Based on concepts of Electives)</td>
<td>EEC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>30</td>
<td>18</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

SEMESTER VIII

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Professional Elective-IV</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Professional Elective-V</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>CW8811</td>
<td>Project Work</td>
<td>EEC</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>26</td>
<td>6</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL NO. OF CREDITS: 183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVES(PE)

SEMESTER VI, ELECTIVE – I

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CW8001</td>
<td>Data Mining and Analytics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CS8602</td>
<td>Mobile Computing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CW8002</td>
<td>Cryptology</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CS8791</td>
<td>Cloud Computing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CW8003</td>
<td>Modern Web Applications Development</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
SEMESTER VII, ELECTIVE – II

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CW8004</td>
<td>Blockchain Technologies</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>AD8552</td>
<td>Machine Learning</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>AD8081</td>
<td>Cognitive Science and Analytics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CS8081</td>
<td>Internet of Things</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CW8005</td>
<td>Social, Text and Media Analytics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VII, ELECTIVE – III

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CW8006</td>
<td>Behavioral Economics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CW8007</td>
<td>Computational Finance and Modeling</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CW8008</td>
<td>Marketing Research and Marketing Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CW8009</td>
<td>HR Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CW8010</td>
<td>Supply Chain Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CW8011</td>
<td>Psychology</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CW8012</td>
<td>Business Research Method</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VIII, ELECTIVE – IV

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CW8013</td>
<td>Introduction to Innovation, IP Management and</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entrepreneurship</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>CW8014</td>
<td>Digital Marketing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CW8015</td>
<td>Risk Analytics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CW8016</td>
<td>Customer Relation Management and Customer</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Experience Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>CW8017</td>
<td>IT Project Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CW8018</td>
<td>Enterprise Security</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
SEMESTER VIII, ELECTIVE – V

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CW8019</td>
<td>Quantum Computation and Quantum Information</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CW8020</td>
<td>Conversational Systems</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CW8021</td>
<td>Embedded Systems and Robotics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CW8022</td>
<td>Cloud, Microservices and Application</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SUMMARY

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>SUBJECT AREA</th>
<th>CREDITS AS PER SEMESTER</th>
<th>CREDITS TOTAL</th>
<th>Percent age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>1.</td>
<td>HS</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>BS</td>
<td>12</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>ES</td>
<td>9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>PC</td>
<td>9</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>5.</td>
<td>PE</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6.</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>EEC</td>
<td>3</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>25</td>
<td>25</td>
<td>23</td>
</tr>
</tbody>
</table>

8. Non Credit / Mandatory
OBJECTIVES:
- To develop the basic reading and writing skills of first year engineering and technology students.
- To help learners develop their listening skills, which will enable them listen to lectures and comprehend them by asking questions; seeking clarifications.
- To help learners develop their speaking skills and speak fluently in real contexts.
- To help learners develop vocabulary of a general kind by developing their reading skills.

UNIT I SHARING INFORMATION RELATED TO ONESELF/FAMILY & FRIENDS 12

UNIT II GENERAL READING AND FREE WRITING 12
Reading - comprehension - pre-reading - post reading - comprehension questions (multiple choice questions and /or short questions/ open-ended questions) - inductive reading - short narratives and descriptions from newspapers including dialogues and conversations (also used as short Listening texts) - register. Writing - paragraph writing - topic sentence - main ideas - free writing, short narrative descriptions using some suggested vocabulary and structures. Listening - telephonic conversations. Speaking - sharing information of a personal kind - greeting - taking leave. Language development - prepositions, conjunctions. Vocabulary development - guessing meanings of words in context.

UNIT III GRAMMAR AND LANGUAGE DEVELOPMENT 12
Reading - short texts and longer passages (close reading) Writing - understanding text structure - use of reference words and discourse markers - jumbled sentences. Listening - listening to longer texts and filling up the table - product description - narratives from different sources. Speaking - asking about routine actions and expressing opinions. Language development - degrees of comparison - pronouns - direct vs indirect questions. Vocabulary development - single word substitutes - adverbs.

UNIT IV READING AND LANGUAGE DEVELOPMENT 12
Reading - comprehension - reading longer texts - reading different types of texts - magazines. Writing - letter writing, informal or personal letters - e-mails - conventions of personal email. Listening - listening to dialogues or conversations and completing exercises based on them. Speaking - speaking about oneself - speaking about one’s friend. Language development - Tenses - simple present - simple past - present continuous and past continuous. Vocabulary development - synonyms - antonyms - phrasal verbs.
UNIT V EXTENDED WRITING

Reading- longer texts- close reading –Writing- brainstorming -writing short essays – developing an outline- identifying main and subordinate ideas- dialogue writing-Listening – listening to talks-

Speaking – participating in conversations- short group conversations- Language
development-modal verbs- present/ past perfect tense - Vocabulary development-collocations-

fixed and semi-fixed expressions.

TOTAL: 60 PERIODS

OUTCOMES:

AT THE END OF THE COURSE, LEARNERS WILL BE ABLE TO:

- Read articles of a general kind in magazines and newspapers.
- Participate effectively in informal conversations; introduce themselves and their friends and express opinions in English.
- Comprehend conversations and short talks delivered in English
- Write short essays of a general kind and personal letters and emails in English.

TEXT BOOKS:

REFERENCES:
3. Redston, Chris &Gillies Cunningham Face2Face (Pre-intermediate Student’s Book& Workbook) Cambridge University Press, New Delhi: 2005

MA8151 ENGINEERING MATHEMATICS – I

OBJECTIVES :

The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus. The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modelling the engineering problems mathematically and obtaining solutions. This is a foundation course which mainly deals with topics such as single variable and multivariable calculus and plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

UNIT I DIFFERENTIAL CALCULUS

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules - Maxima and Minima of functions of one variable.
UNIT II FUNCTIONS OF SEVERAL VARIABLES

UNIT III INTEGRAL CALCULUS
Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions. Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT IV MULTIPLE INTEGRALS

UNIT V DIFFERENTIAL EQUATIONS

TOTAL: 60 PERIODS

OUTCOMES:
After completing this course, students should demonstrate competency in the following skills:
- Use both the limit definition and rules of differentiation to differentiate functions.
- Apply differentiation to solve maxima and minima problems.
- Evaluate integrals both by using Riemann sums and by using the Fundamental Theorem of Calculus.
- Apply integration to compute multiple integrals, area, volume, integrals in polar coordinates, in addition to change of order and change of variables.
- Evaluate integrals using techniques of integration, such as substitution, partial fractions and integration by parts.
- Determine convergence/divergence of improper integrals and evaluate convergent improper integrals.
- Apply various techniques in solving differential equations.

TEXT BOOKS:
2. James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 7th Edition, New Delhi, 2015. [For Units I & III - Sections 1.1, 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

REFERENCES:

PH8151

ENGINEERING PHYSICS

L T P C

3 0 0 3

OBJECTIVES:
● To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT I

PROPERTIES OF MATTER

UNIT II

WAVES AND FIBER OPTICS

UNIT III

THERMAL PHYSICS

UNIT IV

QUANTUM PHYSICS

UNIT V

CRYSTAL PHYSICS

Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances - coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures - crystal imperfections: point defects, line defects – Burger vectors, stacking faults – role of imperfections in plastic deformation - growth of single crystals: solution and melt growth techniques.
OUTCOMES:

Upon completion of this course,

- The students will gain knowledge on the basics of properties of matter and its applications,
- The students will acquire knowledge on the concepts of waves and optical devices and their applications in fibre optics,
- The students will have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers,
- The students will get knowledge on advanced physics concepts of quantum theory and its applications in tunneling microscopes, and
- The students will understand the basics of crystals, their structures and different crystal growth techniques.

TEXT BOOKS:

REFERENCES:

CY8151 ENGINEERING CHEMISTRY L T P C

OBJECTIVES:

- To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
- To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- Preparation, properties and applications of engineering materials.
- Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.
- Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.

UNIT I WATER AND ITS TREATMENT

UNIT II SURFACE CHEMISTRY AND CATALYSIS

poisoning and catalytic promoters - acid base catalysis – applications (catalytic convertor) – enzyme catalysis– Michaelis – Menten equation.

UNIT III ALLOYS AND PHASE RULE

UNIT IV FUELS AND COMBUSTION

UNIT V ENERGY SOURCES AND STORAGE DEVICES
Nuclear fission - controlled nuclear fission - nuclear fusion - differences between nuclear fission and fusion - nuclear chain reactions - nuclear energy - light water nuclear power plant - breeder reactor - solar energy conversion - solar cells - wind energy. Batteries, fuel cells and supercapacitors: Types of batteries – primary battery (dry cell) secondary battery (lead acid battery, lithium-ion-battery) fuel cells – H₂-O₂ fuel cell.

TOTAL: 45 PERIODS

OUTCOMES:
- The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:

- To know the basics of algorithmic problem solving
- To read and write simple Python programs.
- To develop Python programs with conditionals and loops.
- To define Python functions and call them.
- To use Python data structures — lists, tuples, dictionaries.
- To do input/output with files in Python.

UNIT I ALGORITHMIC PROBLEM SOLVING

Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II DATA, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT III CONTROL FLOW, FUNCTIONS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

UNIT V FILES, MODULES, PACKAGES

Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to

- Develop algorithmic solutions to simple computational problems
- Read, write, execute by hand simple Python programs.
- Structure simple Python programs for solving problems.
- Decompose a Python program into functions.
- Represent compound data using Python lists, tuples, dictionaries.
Read and write data from/to files in Python Programs.

TEXT BOOKS:

REFERENCES:

GE8152 ENGINEERING GRAPHICS
L T P C 2 0 4 4

OBJECTIVES:
- To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products.
- To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREEHAND SKETCHING
Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves.
Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects – Layout of views- Freehand sketching of multiple views from pictorial views of objects

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE
Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method.
UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 5+12

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones.

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6+12

Principles of isometric projection – isometric scale – Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones - combination of two solid objects in simple vertical positions - Perspective projection of simple solids - Prisms, pyramids and cylinders by visual ray method.

OUTCOMES:
On successful completion of this course, the student will be able to:

- Familiarize with the fundamentals and standards of Engineering graphics
- Perform freehand sketching of basic geometrical constructions and multiple views of objects.
- Project orthographic projections of lines and plane surfaces.
- Draw projections and solids and development of surfaces.
- Visualize and to project isometric and perspective sections of simple solids.

TEXT BOOKS:

REFERENCES:

Publication of Bureau of Indian Standards:
Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
4. The examination will be conducted in appropriate sessions on the same day.

GE8161 PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY

OBJECTIVES:
- To write, test, and debug simple Python programs.
- To implement Python programs with conditionals and loops.
- Use functions for structuring Python programs.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python.

LIST OF PROGRAMS:
1. Compute the GCD of two numbers.
2. Find the square root of a number (Newton’s method)
3. Exponentiation (power of a number)
4. Find the maximum of a list of numbers
5. Linear search and Binary search
6. Selection sort, Insertion sort
7. Merge sort
8. First n prime numbers
9. Multiply matrices
10. Programs that take command line arguments (word count)
11. Find the most frequent words in a text read from a file
12. Simulate elliptical orbits in Pygame
13. Simulate bouncing ball using Pygame

PLATFORM NEEDED
Python 3 interpreter for Windows/Linux

TOTAL: 60 PERIODS

OUTCOMES:
Upon completion of the course, students will be able to:
- Write, test, and debug simple Python programs.
- Implement Python programs with conditionals and loops.
- Develop Python programs step-wise by defining functions and calling them.
- Use Python lists, tuples, dictionaries for representing compound data.
- Read and write data from/to files in Python.
OBJECTIVES:
- To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics, properties of matter and liquids.

LIST OF EXPERIMENTS: PHYSICS LABORATORY (Any 5 Experiments)

1. Determination of rigidity modulus – Torsion pendulum
2. Determination of Young’s modulus by non-uniform bending method
3. (a) Determination of wavelength, and particle size using Laser
 (b) Determination of acceptance angle in an optical fiber.
5. Determination of velocity of sound and compressibility of liquid – Ultrasonic interferometer
6. Determination of wavelength of mercury spectrum – spectrometer grating
7. Determination of band gap of a semiconductor
8. Determination of thickness of a thin wire – Air wedge method

TOTAL: 30 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to
- Apply principles of elasticity, optics and thermal properties for engineering applications.

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

OBJECTIVES:
- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by viscometry.

1. Estimation of HCl using Na₂CO₃ as primary standard and Determination of alkalinity in water sample.
2. Determination of total, temporary & permanent hardness of water by EDTA method.
3. Determination of DO content of water sample by Winkler’s method.
4. Determination of chloride content of water sample by argentometric method.
5. Estimation of copper content of the given solution by iodometry.
6. Determination of strength of given hydrochloric acid using pH meter.
7. Determination of strength of acids in a mixture of acids using conductivity meter.
8. Estimation of iron content of the given solution using potentiometer.
9. Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthonline / thiocyanate method).
10. Estimation of sodium and potassium present in water using flame photometer.
12. Pseudo first order kinetics-ester hydrolysis.
14. Determination of CMC.
15. Phase change in a solid.
16. Conductometric titration of strong acid vs strong base.

OUTCOMES:
- The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters.

TOTAL: 30 PERIODS

TEXTBOOK:

OBJECTIVES:
The Course prepares second semester engineering and Technology students to:

- Develop strategies and skills to enhance their ability to read and comprehend engineering and technology texts.
- Foster their ability to write convincing job applications and effective reports.
- Develop their speaking skills to make technical presentations, participate in group discussions.
- Strengthen their listening skill which will help them comprehend lectures and talks in their areas of specialization.

UNIT I INTRODUCTION TECHNICAL ENGLISH

Listening- Listening to talks mostly of a scientific/technical nature and completing information-gap exercises
Speaking – Asking for and giving directions
Reading – reading short technical texts from journals, newspapers
Writing – purpose statements – extended definitions – issue writing instructions – checklists-recommendations
Vocabulary Development – technical vocabulary
Language Development – subject verb agreement – compound words.

UNIT II READING AND STUDY SKILLS

Listening - Listening to longer technical talks and completing exercises based on them
Speaking – describing a process
Reading – reading longer technical texts – identifying the various transitions in a text
Paragraphing
Writing – interpreting charts, graphs
Vocabulary Development – vocabulary used in formal letters/emails and reports
Language Development – impersonal passive voice, numerical adjectives.

UNIT III TECHNICAL WRITING AND GRAMMAR

Listening - Listening to classroom lectures/talks on engineering/technology
Speaking – introduction to technical presentations
Reading – longer texts both general and technical, practice in speed reading
Writing – Describing a process, use of sequence words
Vocabulary Development – sequence words, Misspelled words
Language Development – embedded sentences

UNIT IV REPORT WRITING

Listening - Listening to documentaries and making notes.
Speaking – mechanics of presentations
Reading – reading for detailed comprehension
Writing – email etiquette, job application – cover letter – Résumé preparation (via email and hard copy)
Analytical essays and
issue based essays -- **Vocabulary Development** -- finding suitable synonyms-paraphrasing.
Language Development -- clauses- if conditionals.

UNIT V

GROUP DISCUSSION AND JOB APPLICATIONS

Listening - TED/Ink talks; **Speaking** -- participating in a group discussion -- **Reading** -- reading and understanding technical articles **Writing** -- Writing reports-- minutes of a meeting-- accident and survey--**Vocabulary Development** -- verbal analogies **Language Development** -- reported speech.

TOTAL :60 PERIODS

OUTCOMES:

At the end of the course learners will be able to:

- Read technical texts and write area- specific texts effortlessly.
- Listen and comprehend lectures and talks in their area of specialisation successfully.
- Speak appropriately and effectively in varied formal and informal contexts.
- Write reports and winning job applications.

TEXT BOOKS:

REFERENCES:

Students can be asked to read Tagore, Chetan Bhagat and for supplementary reading.

MA8252

LINEAR ALGEBRA

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES :

- To test the consistency and solve system of linear equations
- To find the basis and dimension of vector space
- To obtain the matrix of linear transformation and its eigenvalues and eigenvectors
- To find orthonormal basis of inner product space and find least square approximation
- To find eigenvalues of a matrix using numerical techniques and perform matrix decomposition.
UNIT - I MATRICES AND SYSTEM OF LINEAR EQUATIONS

UNIT - II VECTOR SPACES
Real and Complex fields - Vector spaces over Real and Complex fields - Subspace - Linear space - Linear independence and dependence - Basis and dimension.

UNIT - III LINEAR TRANSFORMATION
Linear transformation - Rank space and null space - Rank and nullity - Dimension theorem - Matrix representation of linear transformation - Eigenvalues and eigenvectors of linear transformation.

UNIT - IV INNER PRODUCT SPACES
Inner product and norms - Properties - Orthogonal, Orthonormal vectors - Gram Schmidt orthonormalization process - Least square approximation.

UNIT - V EIGEN VALUE PROBLEMS AND MATRIX DECOMPOSITION

TOTAL : 60 PERIODS

TEXT BOOKS:

REFERENCE BOOKS

COURSE OUTCOMES:
After the completion of the course the student will be able to

- Test the consistency and solve system of linear equations
- Find the basis and dimension of vector space
- Obtain the matrix of linear transformation and its eigenvalues and eigenvectors
- Find orthonormal basis of inner product space and find least square approximation
- Find eigenvalues of a matrix using numerical techniques and perform matrix decomposition
OBJECTIVES:

- To understand the concepts of ADTs
- To design linear data structures – lists, stacks, and queues
- To understand sorting, searching and hashing algorithms
- To apply Tree and Graph structures

UNIT I ABSTRACT DATA TYPES
Abstract Data Types (ADTs) – ADTs and classes – introduction to OOP – classes in Python – inheritance – namespaces – shallow and deep copying

Introduction to analysis of algorithms – asymptotic notations – recursion – analyzing recursive algorithms

UNIT II LINEAR STRUCTURES

UNIT III SORTING AND SEARCHING

UNIT IV TREE STRUCTURES

UNIT V GRAPH STRUCTURES
Graph ADT – representations of graph – graph traversals – DAG – topological ordering – shortest paths – minimum spanning trees

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- explain abstract data types
- design, implement, and analyse linear data structures, such as lists, queues, and stacks, according to the needs of different applications
- design, implement, and analyse efficient tree structures to meet requirements such as searching, indexing, and sorting
- model problems as graph problems and implement efficient graph algorithms to solve them

TEXT BOOK:

REFERENCES:

GE8291 ENVIRONMENTAL SCIENCE AND ENGINEERING L T P C
 3 0 0 3

OBJECTIVES:

- To study the nature and facts about environment.
- To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth’s interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY 14
Definition, scope and importance of environment - need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical and aesthetic values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds; Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION 8
Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – solid waste management: causes, effects and control measures of municipal solid wastes – role of an individual in prevention of pollution – pollution case studies – disaster management: floods, earthquake, cyclone and landslides. Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES 10
Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case
studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

TOTAL: 45 PERIODS

OUTCOMES:
- Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.
- Public awareness of environmental is at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions
- Development and improvement in std. of living has lead to serious environmental disasters

TEXTBOOKS:

REFERENCES:
OBJECTIVES:
- To understand the fundamentals of electronic circuit constructions.
- To learn the fundamental laws, theorems of electrical circuits and also to analyze them.
- To study the basic principles of electrical machines and their performance.
- To study the different energy sources, protective devices and their field applications.
- To understand the principles and operation of measuring instruments and transducers.

UNIT I ELECTRICAL CIRCUITS ANALYSIS 9
Ohms Law, Kirchhoff's Law-Instantaneous power- series and parallel circuit analysis with resistive, capacitive and inductive network - nodal analysis, mesh analysis- network theorems - Thevenins theorem, Norton theorem, maximum power transfer theorem and superposition theorem, three phase supply-Instantaneous, Reactive and apparent power-star delta conversion.

UNIT II ELECTRICAL MACHINES 9
DC and AC ROTATING MACHINES:Types, Construction, principle, Emf and torque equation, application Speed Control- Basics of Stepper Motor – Brushless DC motors- Transformers-Introduction- types and construction, working principle of Ideal transformer-Emf equation- All day efficiency calculation.

UNIT III UTILIZATION OF ELECTRICAL POWER 9

UNIT IV ELECTRONIC CIRCUITS 9

UNIT V ELECTRICAL MEASUREMENT 9
Characteristic of measurement-errors in measurement, torque in indicating instruments- moving coil and moving iron meters, Energy meter and watt meter. Transducers- classification-thermo electric, RTD, Strain gauge, LVDT, LDR and piezoelectric. Oscilloscope-CRO.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Discuss the essentials of electric circuits and analysis.
- Discuss the basic operation of electric machines and transformers.
- Introduction of renewable sources and common domestic loads.
- Introduction to measurement and metering for electric circuits.

TEXT BOOKS:
REFERENCES:

AD8252 DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION L T P C
3 0 2 4

UNIT I DIGITAL FUNDAMENTALS 9

UNIT II COMBINATIONAL AND SEQUENTIAL CIRCUITS 9

UNIT III COMPUTER FUNDAMENTALS 9

UNIT IV PROCESSOR 9
Instruction Execution – Building a Data Path – Designing a Control Unit – Hardwired Control, Microprogrammed Control – Pipelining – Data Hazard – Control Hazards.

UNIT V MEMORY AND I/O 9

PRACTICAL EXERCISES (30 hrs)
1. Verification of Boolean theorems using logic gates.
2. Design and implementation of combinational circuits using gates for arbitrary functions.
3. Implementation of 4-bit binary adder/subtractor circuits.
4. Implementation of code converters.
5. Implementation of BCD adder, encoder and decoder circuits.
7. Implementation of any one of the synchronous counters.
8. Implementation of a Universal Shift register.

TOTAL : 75 PERIODS

TEXT BOOK:

REFERENCES:

GE8261 ENGINEERING PRACTICES LABORATORY L T P C 0 0 4 2

OBJECTIVES:

● To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

I CIVIL ENGINEERING PRACTICE 13

BUILDINGS:

(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

PLUMBING WORKS:

(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
(b) Study of pipe connections requirements for pumps and turbines.
(c) Preparation of plumbing line sketches for water supply and sewage works.
(d) Hands-on-exercise:

Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.
(e) Demonstration of plumbing requirements of high-rise buildings.

CARPENTRY USING POWER TOOLS ONLY:
(a) Study of the joints in roofs, doors, windows and furniture.
(b) Hands-on-exercise:
 Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE

WELDING:
(a) Preparation of butt joints, lap joints and T-joints by Shielded metal arc welding.
(b) Gas welding practice

BASIC MACHINING:
(a) Simple Turning and Taper turning
(b) Drilling Practice

SHEET METAL WORK:
(a) Forming & Bending:
 (b) Model making – Trays and funnels.
 (c) Different type of joints.

MACHINE ASSEMBLY PRACTICE:
(a) Study of centrifugal pump
(b) Study of air conditioner

DEMONSTRATION ON:
(a) Smithy operations, upsetting, swaging, setting down and bending. Example –
 Exercise – Production of hexagonal headed bolt.
(b) Foundry operations like mould preparation for gear and step cone pulley.
(c) Fitting – Exercises – Preparation of square fitting and V-fitting models.

GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE
1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
2. Fluorescent lamp wiring.
3. Stair case wiring
5. Measurement of energy using single phase energy meter.

IV ELECTRONICS ENGINEERING PRACTICE
1. Study of Electronic components and equipments – Resistor, colour coding measurement of
 AC signal parameter (peak-peak, rms period, frequency) using CR.
2. Study of logic gates AND, OR, EX-OR and NOT.
4. Soldering practice – Components Devices and Circuits – Using general purpose PCB.
5. Measurement of ripple factor of HWR and FWR.
OUTCOMES:
On successful completion of this course, the student will be able to
- Fabricate carpentry components and pipe connections including plumbing works.
- Use welding equipments to join the structures.
- Carry out the basic machining operations
- Make the models using sheet metal works
- Illustrate on centrifugal pump, Air conditioner, operations of smithy, foundary and fittings
- Carry out basic home electrical works and appliances
- Measure the electrical quantities
- Elaborate on the components, gates, soldering practices.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CIVIL
1. Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. 15 Sets.
2. Carpentry vice (fitted to work bench) 15 Nos.
4. Models of industrial trusses, door joints, furniture joints 5 each
5. Power Tools: (a) Rotary Hammer 2 Nos
 (b) Demolition Hammer 2 Nos
 (c) Circular Saw 2 Nos
 (d) Planer 2 Nos
 (e) Hand Drilling Machine 2 Nos
 (f) Jigsaw 2 Nos

MECHANICAL
1. Arc welding transformer with cables and holders 5 Nos.
2. Welding booth with exhaust facility 5 Nos.
3. Welding accessories like welding shield, chipping hammer, wire brush, etc. 5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos.
5. Centre lathe 2 Nos.
6. Hearth furnace, anvil and smithy tools 2 Sets.
7. Moulding table, foundry tools 2 Sets.
8. Power Tool: Angle Grinder 2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner One each.

ELECTRICAL
1. Assorted electrical components for house wiring 15 Sets
2. Electrical measuring instruments 10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency lamp 1 each
4. Megger (250V/500V) 1 No.
5. Power Tools: (a) Range Finder 2 Nos
 (b) Digital Live-wire detector 2 Nos

ELECTRONICS
1. Soldering guns 10 Nos.
2. Assorted electronic components for making circuits 50 Nos.
3. Small PCBs 10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power supply

AD8261 DATA STRUCTURES DESIGN LABORATORY

OBJECTIVES:
● To implement ADTs in Python
● To design and implement linear data structures – lists, stacks, and queues
● To implement sorting, searching and hashing algorithms
● To solve problems using tree and graph structures

1. Implement simple ADTs as Python classes
2. Implement recursive algorithms in Python
3. Implement List ADT using Python arrays
4. Linked list implementations of List
5. Implementation of Stack and Queue ADTs
6. Applications of List, Stack and Queue ADTs
7. Implementation of sorting and searching algorithms
8. Implementation of Hash tables
9. Tree representation and traversal algorithms
10. Implementation of Binary Search Trees
11. Implementation of Heaps
12. Graph representation and Traversal algorithms
13. Implementation of single source shortest path algorithm
14. Implementation of minimum spanning tree algorithms

TOTAL: 60 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
● implement ADTs as Python classes
● design, implement, and analyse linear data structures, such as lists, queues, and stacks, according to the needs of different applications
● design, implement, and analyse efficient tree structures to meet requirements such as searching, indexing, and sorting
● model problems as graph problems and implement efficient graph algorithms to solve them

TEXT BOOK:

REFERENCES:
MA8351 DISCRETE MATHEMATICS

OBJECTIVES:
- To extend student’s logical and mathematical maturity and ability to deal with abstraction.
- To introduce most of the basic terminologies used in computer science courses and application of ideas to solve practical problems.
- To understand the basic concepts of combinatorics and graph theory.
- To familiarize the applications of algebraic structures.
- To understand the concepts and significance of lattices and boolean algebra which are widely used in computer science and engineering.

UNIT I LOGIC AND PROOFS

UNIT II COMBINATORICS

UNIT III GRAPHS
Graphs and graph models – Graph terminology and special types of graphs – Matrix representation of graphs and graph isomorphism – Connectivity – Euler and Hamilton paths.

UNIT IV ALGEBRAIC STRUCTURES

UNIT V LATTICES AND BOOLEAN ALGEBRA

TOTAL: 60 PERIODS

OUTCOMES:
At the end of the course, students would:
- Have knowledge of the concepts needed to test the logic of a program.
- Have an understanding in identifying structures on many levels.
- Be aware of a class of functions which transform a finite set into another finite set which relates to input and output functions in computer science.
- Be aware of the counting principles.
- Be exposed to concepts and properties of algebraic structures such as groups, rings and fields.
TEXTBOOKS:

REFERENCES:

CW8301 FUNDAMENTALS OF ECONOMICS

OBJECTIVES:
- To exemplify the demand curves of households and supply curves of firms with the principles.
- To differentiate Price ceilings, Price floors and compare income effects, substitute effects.
- To Analyze the Keynesian's process of multiplier theory in macro economics.

UNIT I INTRODUCTION TO MICRO ECONOMICS
Introduction to Economics – Themes of Economics – Micro Vs Macro Economics- Demand curves and supply curves- Elasticity of Demand - Elasticity of Supply- Demand Curves of Households and firms

UNIT II WELFARE ANALYSIS
Consumers and Producers Surplus- Price Ceilings and Price Floors; Consumer Behavior - Axioms of Choice-Budget Constraints and Indifference Curves; Consumers Equilibrium Effects of a Price Change, Income and Substitution Effects Derivation of a Demand Curve

UNIT III PRODUCTION AD COST FUNCTION
Theory of Production - Production Function and Isoquants - Cost Minimization; Cost Curves - Total, Average and Marginal Costs - Long Run and Short Run Costs; Equilibrium of a Firm under Perfect Competition; Monopoly and Monopolistic Competition

UNIT IV MACRO ECONOMICS
National Income and its Components - GNP, NNP, GDP, NDP Consumption Function; Investment; Simple Keynesian Model of Income Determination and the Keynesian Multiplier; Government Sector - Taxes and Subsidies; External Sector - Exports and Imports; Money -Definitions; Demand for Money Transaction and Speculative Demand; Supply of Money - Banks Credit Creation Multiplier; Integrating Money and Commodity Markets - IS, LM Model

UNIT V BUSINESS CYCLES AND STABILIZATION
Monetary and Fiscal Policy - Central Bank and the Government; the Classical Paradigm - Price and Wage Rigidities - Voluntary and Involuntary Unemployment.
TOTAL : 45 PERIODS

OUTCOMES:
Upon Completion of the course, the students should be able to:

- To analyze the supporting of price, income and substitution effects in the consumers and producers surplus.
- To compare the equilibrium of a firm under perfect competition, monopoly and monopolistic competition.
- To study the concepts of demand for money and supply of money with appropriate model in macro economic analysis.
- To examine and evaluate the problems of voluntary and involuntary unemployment

TEXT BOOKS :

REFERENCES

CS8392 OBJECT ORIENTED PROGRAMMING L T P C 3 0 0 3

OBJECTIVES:

- To understand Object Oriented Programming concepts and basic characteristics of Java
- To know the principles of packages, inheritance and interfaces
- To define exceptions and use I/O streams
- To develop a java application with threads and generics classes
- To design and build simple Graphical User Interfaces

UNIT I INTRODUCTION TO OOP AND JAVA FUNDAMENTALS 10

UNIT II INHERITANCE AND INTERFACES 9
Inheritance – Super classes- sub classes –Protected members – constructors in sub classes- the Object class – abstract classes and methods- final methods and classes – Interfaces – defining an interface, implementing interface, differences between classes and interfaces and extending interfaces - Object cloning -inner classes, Array Lists - Strings
UNIT III EXCEPTION HANDLING AND I/O
Exceptions - exception hierarchy - throwing and catching exceptions – built-in exceptions, creating own exceptions, Stack Trace Elements. Input / Output Basics – Streams – Byte streams and Character streams – Reading and Writing Console – Reading and Writing Files

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING
Differences between multi-threading and multitasking, thread life cycle, creating threads, synchronizing threads, Inter-thread communication, daemon threads, thread groups. Generic Programming – Generic classes – generic methods – Bounded Types – Restrictions and Limitations.

UNIT V EVENT DRIVEN PROGRAMMING

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, students will be able to:
- Develop Java programs using OOP principles
- Develop Java programs with the concepts inheritance and interfaces
- Build Java applications using exceptions and I/O streams
- Develop Java applications with threads and generics classes
- Develop interactive Java programs using swing

TEXT BOOKS:

REFERENCES:
UNIT III DYNAMIC PROGRAMMING AND STATE-SPACE APPROACH

State-space approach – exhaustive search: DFS, BFS, Iterative deepening

UNIT IV BACKTRACKING , ITERATIVE IMPROVEMENT, AND BRANCH & BOUND

UNIT V INTRACTABILITY

Introduction to intractability -- Polynomial reductions – SAT and 3-SAT – NP-complete and NP-Hard problems -- Approximation algorithms: Traveling salesman problem -- Knapsack problem – Introduction to randomized and parallel algorithms

THEORY PERIODS: 45

SUGGESTIVE EXERCISES

1. Implementation of iterative and recursive algorithms for the given problem
2. Empirical analysis of algorithms
3. Implementation of divide-and-conquer sorting algorithms
4. Implementation of closest-pairs algorithm
5. Implementation of Huffman coding
6. Implementation of Dijkstra's and Prim's algorithms
7. Implementation of disjoint sets and Kruskal's algorithm
8. Implementation of dynamic programming algorithm for knapsack problem
9. Implementation of backtracking to solve n-Queens and Hamilton circuits problems
10. Implementation of iterative improvement strategy for stable marriage and maxflow problems
11. Implementation of Branch and Bound technique to solve knapsack and TSP problems
12. Implementation of approximation algorithms for knapsack and TSP problems

PRACTICAL PERIODS: 30

TEXT BOOKS

REFERENCES

OBJECTIVES

- To learn the fundamentals of data models and to represent a database system using ER diagrams.
- To study SQL and relational database design.
- To understand the internal storage structures using different file and indexing techniques which will help in physical DB design.
- To understand the fundamental concepts of transaction processing - concurrency control techniques and recovery procedures.
- To have an introductory knowledge about the Storage and Query processing Techniques

UNIT I RELATIONAL DATABASES

UNIT II DATABASE DESIGN

UNIT III TRANSACTIONS

UNIT IV IMPLEMENTATION TECHNIQUES

UNIT V ADVANCED TOPICS

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to:

- Classify the modern and futuristic database applications based on size and complexity
- Map ER model to Relational model to perform database design effectively
- Write queries using normalization criteria and optimize queries
- Compare and contrast various indexing strategies in different database systems
- Appraise how advanced databases differ from traditional databases

TEXT BOOKS:

REFERENCES:

CW8311 BUSINESS COMMUNICATION AND VALUE SCIENCE LABORATORY - I
L T P C
0 0 4 2

OBJECTIVES
- Augment students overall communication and interpersonal skills by engaging them in group activities and thus aid in helping them to emerge as professionals.
- Focus on the development of basic fluency in English, usage of words and also introduce them to the concept and importance of interpersonal skills so as to effectively present their personalities.

LIST OF EXPERIMENTS:
1. Different forms of words
2. Technical terminology
3. Interpersonal Skills: Dialogue & Conversation
4. Job Application
5. Letters & Reports
6. SWOT analysis
7. Socio cultural & Cross-cultural understanding
8. Women in all spheres
9. Team vs Group
10. Conflict management
11. Acquiring Leadership traits
12. Human values and Corporate culture

TOTAL : 60 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Speak fluently in English without errors in tenses and hence present themselves as effective English communicators. They will be able to learn the 12 tenses and use them appropriately.
- Differentiate between active and passive vocabulary and be able to use the 60 words discussed in class for their daily conversation and 40 words also given as assignments
- The ability to process their ideas and thoughts (verbal communication) into written communication in an effective, coherent and logical manner within a stipulated time and specific word limit of 100-150 words for paragraph writing
- Present them in a certain manner by using the 50-55 phrases discussed in class appropriately for group discussions, personal interviews during the
campus recruitment process/competitive exams.

- Enhance their communication skills by acquainting with the 2 important aspects of communication and helping them to overcome the 10 most common barriers of communication.

REFERENCES:
1. Business Communication, Dr. Saroj Hire
2. English vocabulary in use, Alan McCarthy and O'Dell
3. Strategic Writing by Charles Marsh
4. The Seven Basic Plots by Christopher Booker

CS8383 OBJECT ORIENTED PROGRAMMING LABORATORY L T P C 0 0 4 2

OBJECTIVES
- To build software development skills using java programming for real-world applications.
- To understand and apply the concepts of classes, packages, interfaces, arraylist, exception handling and file processing.
- To develop applications using generic programming and event handling.

LIST OF EXPERIMENTS
1. Develop a Java application to generate Electricity bill. Create a class with the following members: Consumer no., consumer name, previous month reading, current month reading, type of EB connection (i.e domestic or commercial). Compute the bill amount using the following tariff.
 If the type of the EB connection is domestic, calculate the amount to be paid as follows:
 - First 100 units - Rs. 1 per unit
 - 101-200 units - Rs. 2.50 per unit
 - 201-500 units - Rs. 4 per unit
 - > 501 units - Rs. 6 per unit
 If the type of the EB connection is commercial, calculate the amount to be paid as follows:
 - First 100 units - Rs. 2 per unit
 - 101-200 units - Rs. 4.50 per unit
 - 201-500 units - Rs. 6 per unit
 - > 501 units - Rs. 7 per unit

2. Develop a java application to implement currency converter (Dollar to INR, EURO to INR, Yen to INR and vice versa), distance converter (meter to KM, miles to KM and vice versa), time converter (hours to minutes, seconds and vice versa) using packages.

3. Develop a java application with Employee class with Emp_name, Emp_id, Address, Mail_id, Mobile_no as members. Inherit the classes, Programmer, Assistant Professor, Associate Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club fund. Generate pay slips for the employees with their gross and net salary.

4. Design a Java interface for ADT Stack. Implement this interface using array. Provide necessary exception handling in both the implementations.

5. Write a program to perform string operations using ArrayList. Write functions for the following:
 a. Append - add at end
 b. Insert – add at particular index
 c. Search
d. List all string starts with given letter
6. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named print Area(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area() that prints the area of the given shape.

7. Write a Java program to implement user defined exception handling.
8. Write a Java program that reads a file name from the user, displays information about whether the file exists, whether the file is readable, or writable, the type of file and the length of the file in bytes.
9. Write a java program that implements a multi-threaded application that has three threads. First thread generates a random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.
10. Write a java program to find the maximum value from the given type of elements using a generic function.
11. Design a calculator using event-driven programming paradigm of Java with the following options.
 a) Decimal manipulations
 b) Scientific manipulations
12. Develop a mini project for any application using Java concepts.

TOTAL : 60 PERIODS

OUTCOMES
Upon completion of the course, the students will be able to
- Develop and implement Java programs for simple applications that make use of classes, packages and interfaces.
- Develop and implement Java programs with ArrayList, exception handling and multithreading.
- Design applications using file processing, generic programming and event handling.

CS8481 DATABASE MANAGEMENT SYSTEMS LABORATORY

AIM:
The aim of this laboratory is to inculcate the abilities of applying the principles of the database management systems. This course aims to prepare the students for projects where a proper implementation of databases will be required.

OBJECTIVES:
- To understand data definitions and data manipulation commands
- To learn the use of nested and join queries
- To understand functions, procedures and procedural extensions of databases
- To be familiar with the use of a front end tool
- To understand design and implementation of typical database applications

1. Data Definition Commands, Data Manipulation Commands for inserting, deleting, updating and retrieving Tables and Transaction Control statements
2. Database Querying – Simple queries, Nested queries, Sub queries and Joins
3. Views, Sequences, Synonyms
4. Database Programming: Implicit and Explicit Cursors
5. Procedures and Functions
6. Triggers
7. Exception Handling
8. Database Design using ER modeling, normalization and Implementation for any application
9. Database Connectivity with Front End Tools
10. Case Study using real life database applications

TOTAL: 60 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Use typical data definitions and manipulation commands.
- Design applications to test Nested and Join Queries
- Implement simple applications that use Views
- Implement applications that require a Front-end Tool
- Critically analyze the use of Tables, Views, Functions and Procedures

MA8391 PROBABILITY AND STATISTICS

OBJECTIVES:
- This course aims at providing the required skill to apply the statistical tools in engineering problems.
- To introduce the basic concepts of probability and random variables.
- To introduce the basic concepts of two dimensional random variables.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of classifications of design of experiments which plays very important roles in the field of agriculture and statistical quality control.

UNIT I PROBABILITY AND RANDOM VARIABLES

UNIT II TWO - DIMENSIONAL RANDOM VARIABLES
Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Transformation of random variables – Central limit theorem (for independent and identically distributed random variables).

UNIT III TESTING OF HYPOTHESIS
Sampling distributions - Estimation of parameters - Statistical hypothesis - Large sample tests based on Normal distribution for single mean and difference of means - Tests based on t, Chi-square and F distributions for mean, variance and proportion - Contingency table (test for independent) - Goodness of fit.

UNIT IV DESIGN OF EXPERIMENTS
One way and Two way classifications - Completely randomized design – Randomized block design – Latin square design - 2^2 factorial design.

UNIT V STATISTICAL QUALITY CONTROL
Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits - Acceptance sampling.

TOTAL: 60 PERIODS
OUTCOMES:
Upon successful completion of the course, students will be able to:
- Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon.
- Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.
- Apply the concept of testing of hypothesis for small and large samples in real life problems.
- Apply the basic concepts of classifications of design of experiments in the field of agriculture and statistical quality control.
- Have the notion of sampling distributions and statistical techniques used in engineering and management problems.

TEXT BOOKS:

REFERENCES:

CS8493 OPERATING SYSTEMS

OBJECTIVES:
- To understand the basic concepts and functions of operating systems.
- To understand Processes and Threads.
- To analyze Scheduling algorithms.
- To understand the concept of Deadlocks.
- To analyze various memory management schemes.
- To understand I/O management and File systems.
- To be familiar with the basics of Linux system and Mobile OS like iOS and Android.

UNIT I OPERATING SYSTEM OVERVIEW

UNIT II PROCESS MANAGEMENT
Processes - Process Concept, Process Scheduling, Operations on Processes, Inter-process Communication; CPU Scheduling - Scheduling criteria, Scheduling algorithms, Multiple-processor scheduling, Real time scheduling; Threads- Overview, Multithreading models, Threading issues; Process Synchronization - The critical-section problem, Synchronization hardware, Mutex locks,
Semaphores, Classic problems of synchronization, Critical regions, Monitors; Deadlock - System model, Deadlock characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock.

UNIT III STORAGE MANAGEMENT
Main Memory – Background, Swapping, Contiguous Memory Allocation, Paging, Segmentation, Segmentation with paging, 32 and 64 bit architecture Examples; Virtual Memory – Background, Demand Paging, Page Replacement, Allocation, Thrashing; Allocating Kernel Memory, OS Examples.

UNIT IV FILE SYSTEMS AND I/O SYSTEMS

UNIT V CASE STUDY

OUTCOMES:
At the end of the course, the students should be able to:
- Analyze various scheduling algorithms.
- Understand deadlock, prevention and avoidance algorithms.
- Compare and contrast various memory management schemes.
- Understand the functionality of file systems.
- Perform administrative tasks on Linux Servers.
- Compare iOS and Android Operating Systems.

TEXT BOOK :

REFERENCES :
INTRODUCTION TO BUSINESS SYSTEMS

OBJECTIVES:

- To develop and strengthen business quality and motivation in students
- To impart basic business skills
- To understanding to run a business efficiently and effectively.

UNIT I OVERVIEW OF BUSINESS SYSTEM

UNIT II OUTLINE OF BUSINESS ORGANISATION

Types of Business organization - Sole proprietorship, partnership, company-public and private sector enterprises, Multinational and Global companies. Managing Global environment. Management levels and types.

UNIT III FUNCTIONS OF BUSINESS

Functions and Objectives – Production, Marketing, Finance, Human Resource, quality control and Research & development.

UNIT IV MEASURING BUSINESS PERFORMANCE AND CONTROL PROCESS

UNIT V COMPUTER APPLICATIONS IN BUSINESS

Introduction to business Software- Enterprise application and Business application. Overview on types of Business software. ERP. Business Intelligence, e-business and e-governance.

TOTAL : 45 PERIODS

TEXT BOOK

REFERENCE BOOK

OUTCOMES:
Upon completion of the course, the students will be able to:

- State the capabilities of R and its data, variable
- Describe various operators, control statements and scoping rules in R
- Apply R programming for manipulation of datasets
- Produce various graphs and distribution plots using R
- Analyse dataset using Statistical Tools available in R

TEXT BOOKS :
REFERENCES:

CS8494 SOFTWARE ENGINEERING

OBJECTIVES:
- To understand the phases in a software project
- To understand fundamental concepts of requirements engineering and Analysis Modeling.
- To understand the various software design methodologies
- To learn various testing and maintenance measures

UNIT I SOFTWARE PROCESS AND AGILE DEVELOPMENT

UNIT II REQUIREMENTS ANALYSIS AND SPECIFICATION

UNIT III SOFTWARE DESIGN

UNIT IV TESTING AND MAINTENANCE

UNIT V PROJECT MANAGEMENT

TOTAL :45 PERIODS
OUTCOMES:
On Completion of the course, the students should be able to:
- Identify the key activities in managing a software project.
- Compare different process models.
- Concepts of requirements engineering and Analysis Modeling.
- Apply systematic procedure for software design and deployment.
- Compare and contrast the various testing and maintenance.
- Manage project schedule, estimate project cost and effort required.

TEXT BOOKS:

REFERENCES:
5. http://nptel.ac.in/

CS8461 OPERATING SYSTEMS LABORATORY L T P C
0 0 4 2

OBJECTIVES
- To learn Unix commands and shell programming
- To implement various CPU Scheduling Algorithms
- To implement Process Creation and Inter Process Communication.
- To implement Deadlock Avoidance and Deadlock Detection Algorithms
- To implement Page Replacement Algorithms
- To implement File Organization and File Allocation Strategies

LIST OF EXPERIMENTS
1. Basics of UNIX commands
2. Write programs using the following system calls of UNIX operating system
 3. fork, exec, getpid, exit, wait, close, stat, opendir, readdir
4. Write C programs to simulate UNIX commands like cp, ls, grep, etc.
5. Shell Programming
6. Write C programs to implement the various CPU Scheduling Algorithms
7. Implementation of Semaphores
8. Implementation of Shared memory and IPC
9. Bankers Algorithm for Deadlock Avoidance
10. Implementation of Deadlock Detection Algorithm
11. Write C program to implement Threading & Synchronization Applications
12. Implementation of the following Memory Allocation Methods for fixed partition
 a) First Fit b) Worst Fit c) Best Fit
13. Implementation of Paging Technique of Memory Management
14. Implementation of the following Page Replacement Algorithms
 a) FIFO b) LRU c) LFU
15. Implementation of the various File Organization Techniques
16. Implementation of the following File Allocation Strategies
 a) Sequential
 b) Indexed
 c) Linked

TOTAL: 60 PERIODS

OUTCOMES:
At the end of the course, the student should be able to
- Compare the performance of various CPU Scheduling Algorithms
- Implement Deadlock avoidance and Detection Algorithms
- Implement Semaphores
- Create processes and implement IPC
- Analyze the performance of the various Page Replacement Algorithms
- Implement File Organization and File Allocation Strategies

CW8411 COMPUTATIONAL STATISTICS LAB L T P C

0 0 4 2

OBJECTIVES:
- To expose the variables, expressions, control stations of R
- To use R Programming for Analysis of data and visualize outcome inform of graphs, charts
- To develop and understand the modern computational statistical approaches and their applications to different datasets.
- To apply principles of data science to analyze various business problems.
- To use R software to carry out statistical computations
- To analysis data using R

LIST OF EXPERIMENTS :

1. Install R and R Studio
2. Creation and manipulation of Vectors, Matrices, Arrays, Lists, Factors and Data Frames
3. Install of Packages and scripts for Importing and Exporting Data
4. Implement Control structures and Functions
5. Visualize Statistical Graphs using Scatter Plots, Box Plots, Whisker Plot, Histograms
6. Perform Data exploration and visualization techniques over a dataset.
7. Perform Data Query using SQL and R.
8. Create a data set and do statistical analysis on the data

PLATFORM NEEDED

Systems with R, R Studio (Additional libraries required)

TOTAL : 60 PERIODS

OUTCOMES:
Upon Completion of the course, the students should be able to:
- Use R software to carry out statistical computations
- State the capabilities of R and its data, variable
- Describe various operators, control statements and scoping rules in R
- Apply R programming for manipulation of datasets
- Produce various graphs and distribution plots using R
- Analyze dataset using Statistical Tools available in R
OBJECTIVES:

- The course aims to augment students overall communication and interpersonal skills by engaging them in group activities and thus aid in helping them to emerge as professionals.

LIST OF EXPERIMENTS:

1. Writing letters and creating mails
2. Construction of paragraphs and essays
3. Speaking skills and methods of speech
4. Leadership, Communication and Interpersonal skills
5. Being a motivator and role model
6. Corporate Etiquettes
7. Professionalism in the work place
8. Engineering ethics, rights and responsibilities
9. Managing cultural diversities and global diversities
10. Right use of social media
11. Maintaining the image and pride of the organization
12. Winning formula for a successful manager/leader

TOTAL: 60 PERIODS

TEXT BOOKS:

1. Business Communication Today by Bovee, Thill, Raina
2. APAART: Speak Well 1 (English Language and Communication)
3. APAART: Speak Well 2 (Soft Skills)

REFERENCES:

1. Strategic Communication by Charles Marsh
2. English vocabulary in use – Alan Mc’carthy and O’dell
3. Business Communication – Dr. Saroj Hiremath

OUTCOMES:

Upon Completion of the course, the students should be able to:

- Speak fluently in English without errors in the sentence construction and hence present themselves as effective English communicators.
- Differentiate between vocabularies used as adjectives, verbs.
- Deliver a public speech according to the need of the audience and also be aware of positive body language to be manifested during a speech.
- Deal with the deeper parameters of working in teams like team motivation, multicultural team activity and team conflict resolution.
- Set realistic goals in terms of personal and professional growth.