SEMESTER V
OPEN ELECTIVE - I

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OCY551</td>
<td>Advanced Engineering Chemistry</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OCE551</td>
<td>Air Pollution and Control Engineering</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OBT552</td>
<td>Basics of Bioinformatics</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>OBM551</td>
<td>Bio Chemistry</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>OIT552</td>
<td>Cloud Computing</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>OIT551</td>
<td>Database Management Systems</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OME551</td>
<td>Energy Conservation and Management</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>OBT553</td>
<td>Fundamentals of Nutrition</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>OCE552</td>
<td>Geographic Information System</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>OCH551</td>
<td>Industrial Nanotechnology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>OBT551</td>
<td>Introduction to Bioenergy and Biofuels</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>OBT554</td>
<td>Principles of Food Preservation</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>OMF551</td>
<td>Product Design and Development</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>ORO551</td>
<td>Renewable Energy Sources</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VII
OPEN ELECTIVE - II

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OGI701</td>
<td>Chemistry in Food Industry</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OGI751</td>
<td>Climate Change and its impact</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OME751</td>
<td>Design of Experiments</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>OCH752</td>
<td>Energy Technology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>OCE751</td>
<td>Environmental and Social Impact Assessment</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>OGI752</td>
<td>Fundamentals of Planetary Remote Sensing</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OEN751</td>
<td>Green Building Design</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>OME754</td>
<td>Industrial Safety</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>OCS752</td>
<td>Introduction to C Programming</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>OAN751</td>
<td>Low Cost Automation</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>OBT752</td>
<td>Microbiology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Code</td>
<td>Course Name</td>
<td>Type</td>
<td>Credits</td>
<td>ECTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>--------------------------------------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>OCH751</td>
<td>Process Modeling and Simulation</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>OIE751</td>
<td>Robotics</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>OME752</td>
<td>Supply Chain Management</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>OME753</td>
<td>Systems Engineering</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OBJECTIVES:
- To make the students conversant with basics of polymer chemistry
- Principles of electrochemical reactions, redox reactions in corrosion of materials and methods for corrosion prevention and protection of materials.
- To acquaint the student with concepts of important photophysical and photochemical processes and spectroscopy.
- To make the student acquire sound knowledge of second law of thermodynamics and second law based derivations of importance in engineering applications in all disciplines.
- To acquaint the students with the basics of nano materials, their properties and applications.

UNIT I POLYMERS AND SPECIALITY POLYMER

UNIT II ELECTROCHEMISTRY, CORROSION AND PROTECTIVE COATINGS

UNIT III PHOTOCHEMISTRY & ANALYTICAL TECHNIQUES

UNIT IV THERMODYNAMICS
Terminology of thermodynamics - Second law: Entropy - entropy change for an ideal gas, reversible and irreversible processes; entropy of phase transitions; Clausius inequality. Free energy and work function- Helmholtz and Gibbs free energy functions (problems); criteria of spontaneity; Gibbs- Helmholtz equation (problems); Clausius-Clapeyron equation; Maxwell relations – Van’t Hoff isotherm and isochore (problems).

UNIT V NANOChemISTRY
Basics - distinction between molecules, nanoparticles and bulk materials; size-dependent properties (surface to volume ratio, melting point, optical and electrical). nanoparticles, nanocluster, nanorod, nanotube (CNT: SWNT and MWNT) and nanowire, synthesis - precipitation, thermolysis, hydrothermal, solvothermal, electrodeposition, chemical vapour deposition, laser ablation, sol-gel process and applications (electronic and biomedical). Fullerenes: Types - C_{60} - preparation, properties and applications.

TOTAL: 45 PERIODS
OUTCOMES:

- The knowledge gained on polymer chemistry, thermodynamics, spectroscopy, phase rule and nano materials will provide a strong platform to understand the concepts on these subjects for further learning.

TEXT BOOKS

REFERENCES

OCE551 AIR POLLUTION AND CONTROL ENGINEERING

OBJECTIVE:

- To impart knowledge on the principle and design of control of Indoor/ particulate/ gaseous air pollutant and its emerging trends.

UNIT I INTRODUCTION

Structure and composition of Atmosphere – Definition, Scope and Scales of Air Pollution – Sources and classification of air pollutants and their effect on human health, vegetation, animals, property, aesthetic value and visibility- Ambient Air Quality and Emission standards.

UNIT II METEOROLOGY

UNIT III CONTROL OF PARTICULATE CONTAMINANTS

UNIT IV CONTROL OF GASEOUS CONTAMINANTS

UNIT V INDOOR AIR QUALITY MANAGEMENT

Sources, types and control of indoor air pollutants, sick building syndrome and Building related illness- Sources and Effects of Noise Pollution – Measurement – Standards –Control and Preventive measures.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have

- an understanding of the nature and characteristics of air pollutants, noise pollution and basic concepts of air quality management
- ability to identify, formulate and solve air and noise pollution problems
- ability to design stacks and particulate air pollution control devices to meet applicable standards.
- Ability to select control equipments.
- Ability to ensure quality, control and preventive measures.

TEXTBOOKS:

REFERENCES:
5. Beginning Perl for Bioinformatics: An introduction to Perl for Biologists by James Tindall, O'Reilley Media

REFERENCE:

OBM551 BIO CHEMISTRY L T P C
3 0 0 3

OBJECTIVES:
- To study the structural and functional properties of carbohydrates, proteins, lipids and nucleic acids
- To discuss the impairments in metabolism of the above, including inborn errors of metabolism.

UNIT I BIOLOGICAL PRINCIPLE 8
Composition & properties of the cell membrane, membrane transports, permeability Coefficient & partition coefficient, body fluids, electrolytes, acid-base balance, blood viscosity and Newtonian nature, colloids, filtration, diffusion, osmosis, dialysis, ultrafiltration, ultracentrifugation, cellular fractionation, electrophoresis, radioimmunoassay, Photochemical reaction, law of photochemistry, fluorescence and phosphorescence.

UNIT II MACROMOLECULES 10
Classification and functions of carbohydrates, glycolysis, TCA cycle, Blood Sugar analysis and glucose tolerance test, Classification and functions of proteins, architecture of proteins, Classification of amino acids, Oxidative and non oxidative deamination, transamination, decarboxylation, urea cycle, Purification/separation of proteins, Classification and functions of lipids, biosynthesis of long chain fatty acids, oxidation and degradation of fatty acids.

UNIT III ENZYMES 9
Chemical Nature, General Properties, Spectrophotometric measurement of enzymes, Isolation techniques, Diagnostic enzymes.

UNIT IV METABOLIC DISORDER 9
Diabetes mellitus, Diabetic ketoacidosis, lactose intolerance, Glycogen storage disorders, Lipid storage disorders, obesity, atherosclerosis, Plasma proteins in health and disease, Inborn error of amino acid metabolism, Disorders associated with abnormalities in the metabolism of bilirubin – Jaundice.

UNIT V 9

TOTAL: 45 PERIODS

OUTCOMES:
After the successful completion of this course, the students will be able to,
- Explain the fundamentals of biochemistry
- Have in-depth knowledge about the classification, structures and properties of carbohydrates, lipid, protein and amino acid.
- Demonstrate about the mechanism of actions of enzymes and co-enzymes, clinical importance of enzymes, hormonal assay and significance.
TEXT BOOKS:

REFERENCES:

OIT552 CLOUD COMPUTING L T P C
3 0 0 3

OBJECTIVES:
- To learn about the concept of cloud and utility computing.
- To have knowledge on the various issues in cloud computing.
- To be familiar with the lead players in cloud.
- To appreciate the emergence of cloud as the next generation computing paradigm.

UNIT I INTRODUCTION TO CLOUD COMPUTING

UNIT II VIRTUALIZATION
Introduction to Virtualization Technology – Load Balancing and Virtualization – Understanding Hypervisor – Seven Layers of Virtualization – Types of Virtualization – Server, Desktop, Application Virtualizat

UNIT III CLOUD ARCHITECTURE, SERVICES AND STORAGE

UNIT IV RESOURCE MANAGEMENT AND SECURITY IN CLOUD

UNIT V CASE STUDIES

TOTAL: 45 PERIODS

OUTCOMES:
On Completion of the course, the students should be able to:
- Articulate the main concepts, key technologies, strengths and limitations of cloud computing.
- Learn the key and enabling technologies that help in the development of cloud.
- Develop the ability to understand and use the architecture of compute and storage cloud, service and delivery models.

7
• Explain the core issues of cloud computing such as resource management and security.
• Be able to install and use current cloud technologies.
• Choose the appropriate technologies, algorithms and approaches for implementation and use of cloud.

TEXT BOOKS:

REFERENCES:

OIT551 DATABASE MANAGEMENT SYSTEMS L T P C
3 0 0 3

OBJECTIVES:
• To learn the fundamentals of data models
• To learn conceptual modeling using ER diagrams.
• To study SQL queries and database programming
• To learn proper designing of relational database.
• To understand database security concepts
• To understand Information retrieval techniques

UNIT I DBMS AND CONCEPTUAL DATA MODELING 9

UNIT II DATABASE QUERYING 11

UNIT III DATABASE PROGRAMMING 7
Database programming with function calls, stored procedures - views – triggers. Embedded SQL. ODBC connectivity with front end tools. Implementation using ODBC/JDBC and SQL/PSM, implementing functions, views, and triggers in MySQL / Oracle.

UNIT IV DATABASE DESIGN 9
UNIT V ADVANCED TOPICS
TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- understand relational data model, evolve conceptual model of a given problem, its mapping to relational model and Normalization
- query the relational database and write programs with database connectivity
- understand the concepts of database security and information retrieval systems

TEXT BOOKS:

REFERENCES:

OME551 ENERGY CONSERVATION AND MANAGEMENT L T P C
3 0 0 3

OBJECTIVES:
At the end of the course, the student is expected to
- understand and analyse the energy data of industries
- carryout energy accounting and balancing
- conduct energy audit and suggest methodologies for energy savings and
- utilise the available resources in optimal ways

UNIT I INTRODUCTION

UNIT II ELECTRICAL SYSTEMS

UNIT III THERMAL SYSTEMS

UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES
Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems – Cooling Towers – D.G. sets
UNIT V ECONOMICS
Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

OUTCOMES:
Upon completion of this course, the students can able to analyse the energy data of industries.

- Can carry out energy accounting and balancing
- Can suggest methodologies for energy savings

TEXT BOOKS:

REFERENCES:

OBT553 FUNDAMENTALS OF NUTRITION L T P C
3003

OBJECTIVES:
- The course aims to develop the knowledge of students in the basic area of Food Chemistry.
- This is necessary for effective understanding of food processing and technology subjects.
- This course will enable students to appreciate the similarities and complexities of the chemical components in foods.

UNIT I OVERVIEW OF NUTRITION
Definition, six classes of nutrients, calculating energy values from food, using the RDA, nutritional status, nutritional requirement, malnutrition, nutritional assessment of individuals and populations, dietary recommendations, Balanced diet planning: Diet planning principles, dietary guidelines; food groups, exchange lists, personal diet analysis;

UNIT II DIGESTION
Digestion, Absorption and Transport: Anatomy and physiology of the digestive tract, mechanical and chemical digestion, absorption of nutrients.

UNIT III CARBOHYDRATES
Glycemic and Non-glycemic carbohydrates, blood glucose regulation, recommendations of sugar intake for health, health effects of fiber and starch intake, Artificial sweeteners; Importance of blood sugar regulation, Dietary recommendations for NIDDM and IDDM

UNIT IV PROTEINS & LIPIDS
Proteins; Food enzymes ; Texturized proteins; Food sources, functional role and uses in foods. Review of structure, composition & nomenclature of fats. Non-glyceride components in fats & oils; Fat replacements; Food sources, functional role and uses in foods. Health effects and recommended intakes of lipids. Recommended intakes of proteins, Deficiency- short term and long term effects.
UNIT V METABOLISM, ENERGY BALANCE AND BODY COMPOSITION

Energy Balance; body weight and body composition; health implications; obesity, BMR and BMI calculations; Weight Control: Fat cell development; hunger, satiety and satiation; dangers of unsafe weight loss schemes; treatment of obesity; attitudes and behaviours toward weight control. Food and Pharmaceutical grades; toxicities, deficiencies, factors affecting bioavailability, Stability under food processing conditions.

TOTAL : 45 PERIODS

TEXT BOOKS:

REFERENCES:

OCE552 GEOGRAPHIC INFORMATION SYSTEM L T P C
3 0 0 3

OBJECTIVES :
• To introduce the fundamentals and components of Geographic Information System
• To provide details of spatial data structures and input, management and output processes.

UNIT I FUNDAMENTALS OF GIS

UNIT II SPATIAL DATA MODELS

UNIT III DATA INPUT AND TOPOLOGY

UNIT IV DATA ANALYSIS
Vector Data Analysis tools - Data Analysis tools - Network Analysis - Digital Education models - 3D data collection and utilisation.
UNIT V APPLICATIONS

OUTCOMES:
This course equips the student to
- Have basic idea about the fundamentals of GIS.
- Understand the types of data models.
- Get knowledge about data input and topology.
- Gain knowledge on data quality and standards.
- Understand data management functions and data output

TEXT BOOKS:

REFERENCE:

OCH551 INDUSTRIAL NANOTECHNOLOGY

OBJECTIVES:
- To elucidate on advantages of nanotechnology based applications in each industry
- To provide instances of contemporary industrial applications of nanotechnology
- To provide an overview of future technological advancements and increasing role of nanotechnology in each industry

UNIT I NANO ELECTRONICS

UNIT II BIONANOTECHNOLOGY

UNIT III NANOTECHNOLOGY IN CHEMICAL INDUSTRY
Nanocatalysts – Smart materials – Heterogenous nanostructures and composites – Nanostructures for Molecular recognition (Quantum dots, Nanorods, Nanotubes) – Molecular Encapsulation and its applications – Nanoporous zeolites – Self-assembled Nanoreactors –

UNIT IV NANOTECHNOLOGY IN AGRICULTURE AND FOOD TECHNOLOGY
Nanotechnology in Agriculture - Precision farming, Smart delivery system – Insecticides using nanotechnology – Potential of nano-fertilizers - Nanotechnology in Food industry -
UNIT V NANOTECHNOLOGY IN TEXTILES AND COSMETICS
Nanofibre production - Electrospinning – Controlling morphologies of nanofibers – Tissue engineering application– Polymer nanofibers - Nylon-6 nanocomposites from polymerization - Nano-filled polypropylene fibers - Nano finishing in textiles (UV resistant, antibacterial, hydrophilic, self-cleaning, flame retardant finishes) – Modern textiles Cosmetics – Formulation of Gels, Shampoos, Hair-conditioners

TOTAL: 45 PERIODS

REFERENCES:

OBT551 INTRODUCTION TO BIOENERGY AND BIOFUELS
L T P C
3 0 0 3

OBJECTIVE:
- This course will be focussed on achievement, acquisition of knowledge and enhancement of comprehension of information regarding bioenergy and biofuel technologies and their sustainable applications.

UNIT I CONCEPTS
Biopower, Bioheat, Biofuels, advanced liquid fuels, drop-in fuels, biobased products

UNIT II FEEDSTOCKS

UNIT III CONVERSION TECHNOLOGIES
Biorefinery concept – biorefineries and end products, Biochemical conversion – hydrolysis, enzyme and acid hydrolysis, fermentation, anaerobic digestion and trans-esterifcation, Thermochemical conversion – Combustion, Gasification, Pyrolysis, other thermochemical conversion technologies. Scaling up of emerging technologies.

UNIT IV BIOFUELS
Pros and cons of Biofuels, Algal biofuels, Cyanobacteria and producers of biofuels, Jatropha as biodiesel producer, Bioethanol, Biomethane, biohydrogen, biobutanol, metabolic engineering of fuel molecules, Engineering aspects of biofuels, Economics of biofuels
UNIT V SUSTAINABILITY & RESILIENCE 9
Environmental Sustainability, bioenergy sustainability, emissions of biomass to power generation applications, emissions from biofuels. ILUC issues, Carbon footprint, Advanced low carbon fuels

TOTAL : 45 PERIODS

TEXTBOOKS:

REFERENCES:
2. Bioenergy: Biomass to Biofuels by Anju Dahiya
3. Bioenergy: Principles and Applications by Yebo Li and Samir Kumar Khanal
4. Bioenergy by Judy D. Wall and Caroline S. Harwood
5. Bioenergy: Sustainable Perspectives by Ted Weyland

OBT554 PRINCIPLES OF FOOD PRESERVATION L T P C
3 0 0 3

OBJECTIVE:
• The course aims to introduce the students to the area of Food Preservation. This is necessary for effective understanding of a detailed study of food processing and technology subjects.

UNIT I FOOD PRESERVATION AND ITS IMPORTANCE 9
Introduction to food preservation. Wastage of processed foods; Shelf life of food products; Types of food based on its perishability. Traditional methods of preservation

UNIT II METHODS OF FOOD HANDLING AND STORAGE 9
Nature of harvested crop, plant and animal; storage of raw materials and products using low temperature, refrigerated gas storage of foods, gas packed refrigerated foods, sub atmospheric storage. Gas atmospheric storage of meat, grains, seeds and flour, roots and tubers; freezing of raw and processed foods. retort pouch packing, Aseptic packaging.

UNIT III THERMAL METHODS 9
Newer methods of thermal processing; batch and continuous; In container sterilization- canning; application of infra-red microwaves; ohmic heating; control of water activity; preservation by concentration and dehydration; osmotic methods

UNIT IV DRYING PROCESS FOR TYPICAL FOODS 9
Rate of drying for food products; design parameters of different type of dryers; properties of air-water mixtures. Psychrometric chart, freezing and cold storage. Freeze concentration, dehydration-freezing, freeze drying, IQF; calculation of refrigeration load, design of freezers and cold storages.

UNIT V NON-THERMAL METHODS 9
Super Critical Technology for Preservation - Chemical preservatives, preservation by ionizing radiations, ultrasonics, high pressure, fermentation, curing, pickling, smoking, membrane technology. Hurdle technology,

TOTAL: 45 PERIODS
OUTCOMES:
On completion of the course the students are expected to
• Be aware of the different methods applied to preserving foods.

TEXT BOOKS:

REFERENCES:

OBJECTIVE:
• The course aims at providing the basic concepts of product design, product features and its architecture so that student can have a basic knowledge in the common features a product has and how to incorporate them suitably in product.

UNIT I INTRODUCTION

UNIT II CONCEPT GENERATION AND SELECTION

UNIT III PRODUCT ARCHITECTURE

UNIT IV INDUSTRIAL DESIGN

UNIT V DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT
Definition – Estimation of Manufacturing cost – reducing the component costs and assembly costs – Minimize system complexity – Prototype basics – principles of prototyping – planning for
prototypes – Economic Analysis – Understanding and representing tasks – baseline project planning – accelerating the project – project execution.

TOTAL: 45 PERIODS

OUTCOME:
- The student will be able to design some products for the given set of applications; also the knowledge gained through prototyping technology will help the student to make a prototype of a problem and hence product design and development can be achieved.

TEXT BOOK:

REFERENCES:

ORO551 RENEWABLE ENERGY SOURCES L T P C
3 0 0 3

OBJECTIVES:
- To get exposure on solar radiation and its environmental impact to power.
- To know about the various collectors used for storing solar energy.
- To know about the various applications in solar energy.
- To learn about the wind energy and biomass and its economic aspects.
- To know about geothermal energy with other energy sources.

UNIT I PRINCIPLES OF SOLAR RADIATION 10
Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.

UNIT II SOLAR ENERGY COLLECTION 8
Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

UNIT III SOLAR ENERGY STORAGE AND APPLICATIONS 7
Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applications- solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.

UNIT IV WIND ENERGY 10
UNIT V GEOTHERMAL ENERGY:
Resources, types of wells, methods of harnessing the energy, potential in India. OCEAN ENERGY: OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics. DIRECT ENERGY CONVERSION: Need for DEC, Carnot cycle, limitations, principles of DEC.

OUTCOMES:
- Understanding the physics of solar radiation.
- Ability to classify the solar energy collectors and methodologies of storing solar energy.
- Knowledge in applying solar energy in a useful way.
- Knowledge in wind energy and biomass with its economic aspects.
- Knowledge in capturing and applying other forms of energy sources like wind, biogas and geothermal energies.

TEXT BOOKS:

REFERENCES:

OCY701 CHEMISTRY IN FOOD INDUSTRY

OBJECTIVES
- To make the students conversant with food chemistry.
- To impart thorough understanding of theory, concepts are present in chemistry in food industry.
- To implement these methods in finding the quality of raw materials, intermediates and finished products.
- To know about methods of chemistry that is widely used in food industries.

UNIT I FOOD CHEMISTRY
Definition and importance; Water: functions, physical properties, types of water, water activity and shelf life of food.

UNIT II CARBOHYDRATES AND PROTEINS
Definition, nomenclature, classification, physical and chemical properties of sugar, functional properties of polysaccharides, modified starch, starch hydrolysates, polyols, glycogen, fibre, gum, proteins, physical and chemical properties of amino acids, proteins, classification and structure, function and properties of protein, animal and plant proteins, effect of processing.

UNIT III LIPIDS
Classification, estimation of fatty acids, physical properties, Fat constant: saponification number, acid number, iodine value, acetyl value, Reichert Meissel number, effect of freezing, flavour reversion, oxidative and hydrolytic rancidity, hydrogenation, inter-esterification, different types of fats, uses in food processing, food emulsions, fat replacers.
UNIT IV MINERALS AND VITAMINS

Classification, minerals in meat, milk, plants and their interaction with other components, losses of minerals during processing, metal uptake in canned foods; fat soluble and water soluble vitamins, their food sources, effect of food processing, Enzymes: nature and functions, enzymes in food processing, immobilized enzymes.

UNIT V NATURAL PIGMENTS AND FLAVOURING AGENTS

Chlorophyll, carotenoids, anthocyanins, anthoxanthins, flavonoids, tannins, natural flavour constituents; Additives and contaminants: intentional additives, incidental additives, antinutritional factors.

OUTCOMES:

- Will be familiar with principles of Chemistry in food industry.
- Will gain the knowledge of Chemistry behind in food industries

TOTAL: 45 PERIODS

TEXTBOOKS:

REFERENCES:

OGI751 CLIMATE CHANGE AND ITS IMPACT L T P C

3 0 0 3

OBJECTIVES:

- To understand the basics of weather and climate
- To have an insight Atmospheric dynamics and transport of heat
- To develop simple climate models and evaluate climate changes using models

UNIT I BASICS OF WEATHER AND CLIMATE:

UNIT II ATMOSPHERIC DYNAMICS:

UNIT III GLOBAL CLIMATE

UNIT IV CLIMATE SYSTEM PROCESSES

UNIT V CLIMATE CHANGE MODELS

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the student will be able to understand
- The concepts of weather and climate
- The principles of Atmospheric dynamics and transport of heat and air mass
- The develop simple climate models and to predict climate change

TEXTBOOKS:
UNIT III FACTORIAL DESIGNS 9
Main and Interaction effects - Two and three factor full factorial designs- Fixed effects and random effects model - Rule for sum of squares and Expected Mean Squares- 2^K Design with two and three factors- Yate’s Algorithm- fitting regression model- Randomized Block Factorial Design - Practical applications.

UNIT IV SPECIAL EXPERIMENTAL DESIGN 9
Blocking and Confounding in 2^K Designs- blocking in replicated design- 2^K Factorial Design in two blocks- Complete and partial confounding- Confounding 2^K Design in four blocks- Two level Fractional Factorial Designs- one-half fraction of 2^K Design, design resolution, Construction of one-half fraction with highest design resolution, one-quarter fraction of 2^K Design

UNIT V TAGUCHI METHODS 9
Design of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments- Response Graph Method, ANOVA- attribute data analysis- Robust design- noise factors, Signal to noise ratios, Inner/outer OA design.

TOTAL: 45 PERIODS

OUTCOME:
- Able to apply experimental techniques to practical problems to improve quality of processes / products by optimizing the process / product parameters.

TEXT BOOK:

REFERENCES:

OCH752 ENERGY TECHNOLOGY L T P C
3 0 0 3

OBJECTIVES:
- Students will gain knowledge about different energy sources

UNIT I ENERGY 8
Introduction to energy – Global energy scene – Indian energy scene - Units of energy, conversion factors, general classification of energy, energy crisis, energy alternatives.

UNIT II CONVENTIONAL ENERGY 8
Conventional energy resources, Thermal, hydel and nuclear reactors, thermal, hydel and nuclear power plants, efficiency, merits and demerits of the above power plants, combustion processes, fluidized bed combustion.

UNIT III NON-CONVENTIONAL ENERGY 10
Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar energy application in India, energy plantations. Wind energy, types of windmills, types of wind rotors, Darrieus rotor and Gravian rotor, wind electric power generation, wind power in India, economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy.
UNIT IV BIOMASS ENERGY
Biomass origin - Resources – Biomass estimation. Thermochemical conversion – Biological conversion, Chemical conversion – Hydrolysis & hydrogenation, solvolysis, biocrude, biodiesel power generation gasifier, biogas, integrated gasification.

UNIT V ENERGY CONSERVATION
Energy conservation - Act; Energy management importance, duties and responsibilities; Energy audit – Types methodology, reports, instruments. Benchmalcing and energy performance, material and energy balance, thermal energy management.

TOTAL : 45 PERIODS

OUTCOMES:
• Understand conventional Energy sources, Non- conventional Energy sources, biomass sources and develop design parameters for equipment to be used in Chemical process industries. Understand energy conservation in process industries

TEXTBOOKS:

REFERENCES:

OCE751 ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT L T P C
3 0 0 3

OBJECTIVE:
• To impart the knowledge and skills to identify, assess and mitigate the environmental and social impacts of developmental projects

UNIT I INTRODUCTION

UNIT II ENVIRONMENTAL ASSESSMENT
Screening and Scoping in EIA – Drafting of Terms of Reference,Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – Networks – Checklist Methods - Mathematical models for Impact prediction.

UNIT III ENVIRONMENTAL MANAGEMENT PLAN

UNIT IV SOCIO ECONOMIC ASSESSMENT
Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis-
UNIT V CASE STUDIES

TOTAL: 45 PERIODS

OUTCOMES:
The students completing the course will have ability to
- carry out scoping and screening of developmental projects for environmental and social assessments
- explain different methodologies for environmental impact prediction and assessment
- plan environmental impact assessments and environmental management plans
- evaluate environmental impact assessment reports

TEXTBOOKS:

REFERENCES:

OGI752 FUNDAMENTALS OF PLANETARY REMOTE SENSING L T P C
3 0 0 3

OBJECTIVES:
- To provide an insight to the basics of planetary Remote Sensing
- To demonstrate how the Remote Sensing technique is applied to explore the surface characteristics of the planets and its environ.

UNIT I PLANETARY SCIENCE

UNIT II SATELLITE ORBIT
UNIT III PROPERTIES OF EMR

UNIT IV RADIOMETRY AND SCATTEROMETRY

UNIT V PLANETARY APPLICATION
Planetary Imaging Spectroscopy- USGS Tetracoder and Expert system - Mars Global Surveyor Mission (MGS) – Digital Elevation Model(DEM) of Mars – Mars Orbiter Camera (MOC) – Stereo and photoclinometric techniques for DEM.

OUTCOMES:
On completion of the course, the students have
- Exposure to fundamentals of planetary science or orbital mechanics
- The principles of observing the planets
- Knowledge of Remote Sensing methods for determining surface elevation and mapping of planets.

REFERENCES:

OEN751 GREEN BUILDING DESIGN

UNIT I ENVIRONMENTAL IMPLICATIONS OF BUILDINGS

UNIT II IMPLICATIONS OF BUILDING TECHNOLOGIES EMBODIED ENERGY OF BUILDINGS

UNIT III COMFORTS IN BUILDING
UNIT IV UTILITY OF SOLAR ENERGY IN BUILDINGS 9

UNIT V GREEN COMPOSITES FOR BUILDINGS 9

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
 Fundamentals of Integrated Design for Sustainable Building By Marian Keeler, Bill Burke

OME754 INDUSTRIAL SAFETY L T P C
3 0 0 3

OBJECTIVE :
• To impart knowledge on safety engineering fundamentals and safety management practices.

UNIT I INTRODUCTION 9
Evolution of modern safety concepts – Fire prevention – Mechanical hazards – Boilers, Pressure vessels, Electrical Exposure.

UNIT II CHEMICAL HAZARDS 9
Chemical exposure – Toxic materials – Ionizing Radiation and Non-ionizing Radiation - Industrial Hygiene – Industrial Toxicology.

UNIT III ENVIRONMENTAL CONTROL 9
Industrial Health Hazards – Environmental Control – Industrial Noise - Noise measuring instruments, Control of Noise, Vibration, - Personal Protection.

UNIT IV HAZARD ANALYSIS 9
System Safety Analysis –Techniques – Fault Tree Analysis (FTA), Failure Modes and Effects Analysis (FMEA), HAZOP analysis and Risk Assessment
UNIT V SAFETY REGULATIONS

TOTAL : 45 PERIODS

OUTCOMES:
- Students must be able to identify and prevent chemical, environmental mechanical, fire hazard through analysis and apply proper safety techniques on safety engineering and management.

TEXT BOOK:

REFERENCES:

OCS752 INTRODUCTION TO C PROGRAMMING

OBJECTIVES:
- To develop C Programs using basic programming constructs
- To develop C programs using arrays and strings
- To develop applications in C using functions and structures

UNIT I INTRODUCTION
Structure of C program – Basics: Data Types – Constants –Variables - Keywords – Operators: Precedence and Associativity - Expressions - Input/Output statements, Assignment statements – Decision-making statements - Switch statement - Looping statements – Pre-processor directives - Compilation process – Exercise Programs: Check whether the required amount can be withdrawn based on the available amount – Menu-driven program to find the area of different shapes – Find the sum of even numbers
Text Book: Reema Thareja (Chapters 2,3)

UNIT II ARRAYS
Introduction to Arrays – One dimensional arrays: Declaration – Initialization - Accessing elements – Operations: Traversal, Insertion, Deletion, Searching - Two dimensional arrays: Declaration – Initialization - Accessing elements – Operations: Read – Print – Sum – Transpose – Exercise Programs: Print the number of positive and negative values present in the array – Sort the numbers using bubble sort - Find whether the given is matrix is diagonal or not.
Text Book: Reema Thareja (Chapters 5)

UNIT III STRINGS
Introduction to Strings - Reading and writing a string - String operations (without using built-in string functions): Length – Compare – Concatenate – Copy – Reverse – Substring – Insertion – Indexing – Deletion – Replacement – Array of strings – Introduction to Pointers – Pointer operators – Pointer arithmetic - Exercise programs: To find the frequency of a character in a string - To find the number of vowels, consonants and white spaces in a given text - Sorting the names.
Text Book: Reema Thareja (Chapters 6 & 7)
UNIT IV FUNCTIONS 9
Introduction to Functions – Types: User-defined and built-in functions - Function prototype - Function definition - Function call - Parameter passing: Pass by value - Pass by reference - Built-in functions (string functions) – Recursive functions – Exercise programs: Calculate the total amount of power consumed by ‘n’ devices (passing an array to a function) – Menu-driven program to count the numbers which are divisible by 3, 5 and by both (passing an array to a function) – Replace the punctuations from a given sentence by the space character (passing an array to a function)
Text Book: Reema Thareja (Chapters 4)

UNIT V STRUCTURES 9
Introduction to structures – Declaration – Initialization – Accessing the members – Nested Structures – Array of Structures – Structures and functions – Passing an entire structure – Exercise programs: Compute the age of a person using structure and functions (passing a structure to a function) – Compute the number of days an employee came late to the office by considering his arrival time for 30 days (Use array of structures and functions)
Text Book: Reema Thareja (Chapters 8)

TOTAL:45 PERIODS

OUTCOMES:
Upon completion of this course, the students will be able to
• Develop simple applications using basic constructs
• Develop applications using arrays and strings
• Develop applications using functions and structures

TEXT BOOK :

REFERENCES:

OAN751 LOW COST AUTOMATION

OBJECTIVES:
• To give basic knowledge about automation
• To understand the basic hydraulics and pneumatics systems for automation
• To understand the assembly automation

UNIT I AUTOMATION OF ASSEMBLY LINES 9
Concept of automation - mechanization and automation - Concept of automation in industry - mechanization and automation - classification, balancing of assembly line using available algorithms - Transfer line-monitoring system (TLMS) using Line Status - Line efficiency - Buffer stock Simulation in assembly line

UNIT II AUTOMATION USING HYDRAULIC SYSTEMS 9
Design aspects of various elements of hydraulic systems such as pumps, valves, filters, reservoirs, accumulators, actuators, intensifiers etc. - Selection of hydraulic fluid, practical case studied on hydraulic circuit design and performance analysis - Servo valves, electro hydraulic valves, proportional valves and their applications.
UNIT III AUTOMATION USING PNEUMATIC SYSTEMS

UNIT IV AUTOMATION USING ELECTRONIC SYSTEMS

Introduction - various sensors – transducers - signal processing - servo systems - programming of microprocessors using 8085 instruction - programmable logic controllers

UNIT V ASSEMBLY AUTOMATION

Types and configurations - Parts delivery at workstations - Various vibratory and non vibratory devices for feeding - hopper feeders, rotary disc feeder, centrifugal and orientation - Product design for automated assembly.

OUTCOMES:
- Upon completion of this course, the students can able to do low cost automation systems
- Students can do some assembly automation

TEXT BOOKS:

REFERENCES:

OBT752 MICROBIOLOGY

OBJECTIVE
- To introduce students to the principles of Microbiology, to emphasize the structure and biochemical aspects of various microbes.
- Microbial classification, Diseases,

UNIT I INTRODUCTION TO MICROBIOLOGY

classification and nomenclature of microorganisms, microscopic examination of microorganisms: light, fluorescent, dark field, phase contrast, and electron microscopy.

UNIT II MICROBES- STRUCTURE AND REPRODUCTION

Structural organization and multiplication of bacteria, viruses (TMV, Hepatitis B), algae (cyanophyta, rhodophyta) and fungi (Neurospora), life history of actinomycetes (Streptomyces), yeast (Sacharomyces), mycoplasma (M. pneumoniae) and bacteriophages (T4 phage, λ phage)
UNIT III MICROBIAL NUTRITION, GROWTH AND METABOLISM 9
Nutritional classification of microorganisms based on carbon, energy and electron sources
Definition of growth, balanced and unbalanced growth, growth curve and different methods
to quantify bacterial growth: (counting chamber, viable count method, counting without
equipment, different media used for bacterial culture (defined, complex, selective, differential,
enriched) themathematics of growth-generation time, specific growth rate.

UNIT IV CONTROL OF MICROORGANISMS 9
Physical and chemical control of microorganisms
Definition of sterilization, dry and moist heat, pasteurization, tyndalization; radiation, ultrasonication, filtration.
Disinfection sanitation, antiseptics sterilants and fumigation. mode of action and resistance to antibiotics; clinically
important microorganisms

UNIT V INDUSTRIAL MICROBIOLOGY 9
Microbes involved in preservation (Lactobacillus, bacteriocins), spoilage of food and food borne pathogens (E.coli, S.aureus, Bacillus, Clostridium).
Industrial use of microbes (production of penicillin, alcohol, vitamin B-12); biogas; bioremediation (oil spillage leaching of ores by
microorganisms, pollution control); biofertilizers, biopesticides. Biosensors.

TOTAL: 45 PERIODS

OUTCOME:
• To provide to the students the fundamentals of Microbiology, the scope of microbiology and
solve the problems in microbial infection and their control,

TEXT BOOKS:

OCH751 PROCESS MODELING AND SIMULATION L T P C
3 0 0 3

OBJECTIVE:
• To give an overview of various methods of process modeling, different computational
 techniques for simulation.

UNIT I INTRODUCTION 7
Introduction to modeling and simulation, classification of mathematical models, conservation
equations and auxiliary relations.

UNIT II STEADY STATE LUMPED SYSTEMS 9
Degree of freedom analysis, single and network of process units, systems yielding linear and non-
linear algebraic equations, flow sheeting – sequential modular and equation oriented approach,
tearing, partitioning and precedence ordering, solution of linear and non-linear algebraic equations.

UNIT III UNSTEADY STATE LUMPED SYSTEMS 9
Analysis of liquid level tank, gravity flow tank, jacketed stirred tank heater, reactors, flash and
distillation column, solution of ODE initial value problems, matrix differential equations, simulation
of closed loop systems.

UNIT IV STEADY STATE DISTRIBUTED SYSTEM 7
Analysis of compressible flow, heat exchanger, packed columns, plug flow reactor, solution of
ODE boundary value problems.
UNIT V UNSTEADY STATE DISTRIBUTED SYSTEM & OTHER MODELLING APPROACHES

OUTCOME:
- Upon completing the course, the student should have understood the development of process models based on conservation principles and process data and computational techniques to solve the process models.

TEXT BOOKS:

REFERENCES:

OIE751 ROBOTICS

OBJECTIVES:
- To understand the functions of the basic components of a Robot.
- To study the use of various types of End of Effectors and Sensors
- To impart knowledge in Robot Kinematics and Programming
- To learn Robot safety issues and economics.

UNIT I FUNDAMENTALS OF ROBOT

Robot - Definition - Robot Anatomy - Coordinate Systems, Work Envelope Types and Classification- Specifications- Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load- Robot Parts and their Functions-Need for Robots-Different Applications.

UNIT II ROBOT DRIVE SYSTEMS AND END EFFECTORS

Pneumatic Drives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and Comparison of all these Drives, End Effectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- Grippers, Magnetic Grippers, Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations.

UNIT III SENSORS AND MACHINE VISION

Requirements of a sensor, Principles and Applications of the following types of sensors- Position sensors - Piezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumatic Position Sensors, Range Sensors Triangulations Principles, Structured, Lighting Approach, Time of Flight, Range

UNIT IV ROBOT KINEMATICS AND ROBOT PROGRAMMING 13
Forward Kinematics, Inverse Kinematics and Difference; Forward Kinematics and Reverse Kinematics of manipulators with Two, Three Degrees of Freedom (in 2 Dimension), Four Degrees of freedom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dynamics, Trajectory Generator, Manipulator Mechanism Design-Derivations and problems. Lead through Programming, Robot programming Languages-VAL Programming-Motion Commands, Sensor Commands, End Effector commands and simple Programs.

UNIT V IMPLEMENTATION AND ROBOT ECONOMICS 5
RGV, AGV; Implementation of Robots in Industries-Various Steps; Safety Considerations for Robot Operations - Economic Analysis of Robots.

TOTAL: 45 PERIODS

OUTCOME:
- Upon completion of this course, the students can able to apply the basic engineering knowledge for the design of robotics

TEXT BOOKS:

REFERENCES:

OME752 SUPPLY CHAIN MANAGEMENT L T P C
3 0 0 3

OBJECTIVE:
- To provide an insight on the fundamentals of supply chain networks, tools and techniques.

UNIT I INTRODUCTION 9
Role of Logistics and Supply chain Management: Scope and Importance- Evolution of Supply Chain - Decision Phases in Supply Chain - Competitive and Supply chain Strategies – Drivers of Supply Chain Performance and Obstacles.

UNIT II SUPPLY CHAIN NETWORK DESIGN 9
UNIT III LOGISTICS IN SUPPLY CHAIN 9
Role of transportation in supply chain – factors affecting transportation decision – Design
option for transportation network – Tailored transportation – Routing and scheduling in
transportation.

UNIT IV SOURCING AND COORDINATION IN SUPPLY CHAIN 9
Role of sourcing supply chain supplier selection assessment and contracts - Design
cooperation - sourcing planning and analysis - supply chain co-ordination - Bull whip effect –
Effect of lack of co-ordination in supply chain and obstacles – Building strategic partnerships
and trust within a supply chain.

UNIT V SUPPLY CHAIN AND INFORMATION TECHNOLOGY 9
The role IT in supply chain- The supply chain IT frame work Customer Relationship
Management – Internal supply chain management – supplier relationship management – future
of IT in supply chain – E-Business in supply chain.

TOTAL: 45 PERIODS

OUTCOME:
• The student would understand the framework and scope of supply chain networks and
functions.

TEXTBOOK:
1. Sunil Chopra, Peter Meindl and Kalra, “Supply Chain Management, Strategy, Planning,

REFERENCES:
2. Srinivasan G.S, “Quantitative models in Operations and Supply Chain Management,
PHI, 2010
UNIT IV ANALYSIS OF ALTERNATIVES–II
Reliability, Availability, Maintainability, and Supportability models; Stochastic networks and Markov models, Queuing network optimization, Time series and Regression models, Evaluation of large scale models

UNIT V DECISION ASSESSMENT
Decision assessment types, Five types of decision assessment efforts, Utility theory, Group decision making and Voting approaches, Social welfare function; Systems Engineering methods for Systems Engineering Management,

TOTAL : 45 PERIODS

OUTCOMES:
- The Student must be able to apply systems engineering principles to make decision for optimization.
- Hence an understanding of the systems engineering discipline and be able to use the core principles and processes for designing effective system.

TEXT BOOK: