OPEN ELECTIVE - I

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Contact Periods</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OCE551</td>
<td>Air Pollution and Control Engineering</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OMD551</td>
<td>Basic of Biomedical Instrumentation</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OBM551</td>
<td>Bio Chemistry</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>OIT552</td>
<td>Cloud Computing</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>OIT551</td>
<td>Database Management Systems</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>OTL552</td>
<td>Digital Audio Engineering</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OME551</td>
<td>Energy Conservation and Management</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>OBT553</td>
<td>Fundamentals of Nutrition</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>OCE552</td>
<td>Geographic Information System</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>OPY551</td>
<td>Herbal Technology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>OMD552</td>
<td>Hospital Waste Management</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>OCH551</td>
<td>Industrial Nanotechnology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>OBT551</td>
<td>Introduction to Bioenergy and Biofuels</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>OEI551</td>
<td>Logic and Distributed Control Systems</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>OBM552</td>
<td>Medical Physics</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>OML552</td>
<td>Microscopy</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>OEI552</td>
<td>SCADA System and Applications Management</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>OBT554</td>
<td>Principles of Food Preservation</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19.</td>
<td>OMF551</td>
<td>Product Design and Development</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>ORO551</td>
<td>Renewable Energy Sources</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>21.</td>
<td>OCS551</td>
<td>Software Engineering</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>22.</td>
<td>OTL551</td>
<td>Space Time Wireless Communication</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>23.</td>
<td>OTL553</td>
<td>Telecommunication Network Management</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>24.</td>
<td>OMD553</td>
<td>Telehealth Technology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>25.</td>
<td>OTL554</td>
<td>Wavelets and its Applications</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>26.</td>
<td>OIM551</td>
<td>World Class Manufacturing</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SL. NO.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>CONTACT PERIODS</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---</td>
<td>----------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.</td>
<td>OAI751</td>
<td>Agricultural Finance, Banking and Co-operation</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OBM751</td>
<td>Basics of Human Anatomy and Physiology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OGI751</td>
<td>Climate Change and its Impact</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>OPY751</td>
<td>Clinical Trials</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>OCS751</td>
<td>Data Structures and Algorithms</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>OME751</td>
<td>Design of Experiments</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OCH752</td>
<td>Energy Technology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>OCE751</td>
<td>Environmental and Social Impact Assessment</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>OGI752</td>
<td>Fundamentals of Planetary Remote Sensing</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>OEN751</td>
<td>Green Building Design</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>OBM752</td>
<td>Hospital Management</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>OME754</td>
<td>Industrial Safety</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>OCS751</td>
<td>Introduction to C Programming</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>OBT753</td>
<td>Introduction of Cell Biology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>OMF751</td>
<td>Lean Six Sigma</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>OAN751</td>
<td>Low Cost Automation</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>OBT752</td>
<td>Microbiology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>OMV751</td>
<td>Marine Vehicles</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19.</td>
<td>OAE752</td>
<td>Principles of Flight Mechanics</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>OIE751</td>
<td>Robotics</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>21.</td>
<td>OME752</td>
<td>Supply Chain Management</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>22.</td>
<td>OME753</td>
<td>Systems Engineering</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>23.</td>
<td>OTL751</td>
<td>Telecommunication System Modeling and Simulation</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>24.</td>
<td>OML751</td>
<td>Testing of Materials</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>25.</td>
<td>OIC751</td>
<td>Transducer Engineering</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>26.</td>
<td>OCY751</td>
<td>Waste Water Treatment</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
OBJECTIVE:
- To impart knowledge on the principle and design of control of Indoor/ particulate/ gaseous air pollutant and its emerging trends.

UNIT I INTRODUCTION
Structure and composition of Atmosphere – Definition, Scope and Scales of Air Pollution – Sources and classification of air pollutants and their effect on human health, vegetation, animals, property, aesthetic value and visibility- Ambient Air Quality and Emission standards.

UNIT II METEOROLOGY

UNIT III CONTROL OF PARTICULATE CONTAMINANTS

UNIT IV CONTROL OF GASEOUS CONTAMINANTS

UNIT V INDOOR AIR QUALITY MANAGEMENT
Sources, types and control of indoor air pollutants, sick building syndrome and Building related illness- Sources and Effects of Noise Pollution – Measurement – Standards –Control and Preventive measures.

OUTCOMES:
The students completing the course will have
- An understanding of the nature and characteristics of air pollutants, noise pollution and basic concepts of air quality management
- Ability to identify, formulate and solve air and noise pollution problems
- Ability to design stacks and particulate air pollution control devices to meet applicable standards.
- Ability to select control equipments.
- Ability to ensure quality, control and preventive measures.

TEXTBOOKS:

REFERENCES:
OBJECTIVES:
- To study about the different bio potential and its propagation
- To understand the different types of electrodes and its placement for various recording
- To study the design of bio amplifier for various physiological recording
- To learn the different measurement techniques for non-physiological parameters.
- To familiarize the different biochemical measurements.

CO-PO MAPPING:

<table>
<thead>
<tr>
<th>COURSE OUTCOME</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIT I BIO POTENTIAL GENERATION AND ELECTRODES TYPES 9
Origin of bio potential and its propagation. Types of electrodes - surface, needle and micro electrodes and their equivalent circuits. Recording problems - measurement with two electrodes

UNIT II BIOSIGNAL CHARACTERISTICS AND ELECTRODE CONFIGURATIONS 9
Biosignals characteristics – frequency and amplitude ranges. ECG – Einthoven’s triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG– unipolar and bipolar mode.

UNIT III SIGNAL CONDITIONING CIRCUITS 9
Need for bio-amplifier - differential bio-amplifier, Impedance matching circuit, isolation amplifiers, Power line interference, Right leg driven ECG amplifier, Band pass filtering

UNIT IV MEASUREMENT OF NON-ELECTRICAL PARAMETERS 10

UNIT V BIO-CHEMICAL MEASUREMENT 8
Blood gas analyzers and Non-Invasive monitoring, colorimeter, Sodium Potassium Analyser, spectrophotometer, blood cell counter, auto analyzer (simplified schematic description).

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:

- CO1: To Learn the different bio potential and its propagation.
- CO2: To get Familiarize the different electrode placement for various physiological recording
- CO3: Students will be able design bio amplifier for various physiological recording
- CO4: Students will understand various technique non electrical physiological measurements
- CO5: Understand the different biochemical measurements

TEXT BOOKS:

REFERENCES:

OBM551 BIO CHEMISTRY L T P C
3 0 0 3

OBJECTIVE:
- To study the structural and functional properties of carbohydrates, proteins, lipids and nucleic acids
- To discuss the impairments in metabolism of the above, including inborn errors of metabolism.

UNIT I BIOLOGICAL PRINCIPLE 8
Composition & properties of the cell membrane, membrane transports, permeability Coefficient & partition coefficient, body fluids, electrolytes, acid-base balance, blood viscosity and Newtonian nature, colloids, filtration, diffusion, osmosis, dialysis, ultrafiltration, ultracentrifugation, cellular fractionation, electrophoresis, radioimmunoassay, Photochemical reaction, law of photochemistry, fluorescence and phosphorescence.

UNIT II MACROMOLECULES 10
Classification and functions of carbohydrates, glycolysis, TCA cycle, Blood Sugar analysis and glucose tolerance test, Classification and functions of proteins, architecture of proteins, Classification of amino acids, Oxidative and non oxidative deamination, transamination, decarboxylation, urea cycle, Purification/separation of proteins, Classification and functions of lipids, biosynthesis of long chain fatty acids, oxidation and degradation of fatty acids.

UNIT III ENZYMES 9
Chemical Nature, General Properties, Spectrophotometric measurement of enzymes, Isolation techniques, Diagnostic enzymes.

UNIT IV METABOLIC DISORDER
Diabetes mellitus, Diabetic ketoacidosis, lactose intolerance, Glycogen storage disorders, Lipid storage disorders, obesity, atherosclerosis, Plasma proteins in health and disease, Inborn error of amino acid metabolism, Disorders associated with abnormalities in the metabolism of bilirubin – Jaundice.

UNIT V

OUTCOMES:
After the successful completion of this course, the students will be able to,

- Explain the fundamentals of biochemistry
- Have in-depth knowledge about the classification, structures and properties of carbohydrates, lipid, protein and amino acid.
- Demonstrate about the mechanism of actions of enzymes and co-enzymes, clinical importance of enzymes, hormonal assay and significance.

TEXT BOOKS:

REFERENCES:

OBJECTIVES:
- To learn about the concept of cloud and utility computing.
- To have knowledge on the various issues in cloud computing.
- To be familiar with the lead players in cloud.
- To appreciate the emergence of cloud as the next generation computing paradigm.

UNIT I INTRODUCTION TO CLOUD COMPUTING
UNIT II VIRTUALIZATION

UNIT III CLOUD ARCHITECTURE, SERVICES AND STORAGE

UNIT IV RESOURCE MANAGEMENT AND SECURITY IN CLOUD

UNIT V CASE STUDIES

TOTAL: 45 PERIODS

OUTCOMES:
On Completion of the course, the students should be able to:
- Articulate the main concepts, key technologies, strengths and limitations of cloud computing.
- Learn the key and enabling technologies that help in the development of cloud.
- Develop the ability to understand and use the architecture of compute and storage cloud, service and delivery models.
- Explain the core issues of cloud computing such as resource management and security.
- Be able to install and use current cloud technologies.
- Choose the appropriate technologies, algorithms and approaches for implementation and use of cloud.

TEXT BOOKS:

REFERENCES:
OBJECTIVES

- To learn the fundamentals of data models
- To learn conceptual modeling using ER diagrams.
- To study SQL queries and database programming
- To learn proper designing of relational database.
- To understand database security concepts
- To understand Information retrieval techniques

UNIT I DBMS AND CONCEPTUAL DATA MODELING 9
Purpose of Database System – Data independence - Data Models – Database System Architecture –
Conceptual Data modeling: ER models - Enhanced-ER Model. Introduction to relational databases –
Relational Model – Keys – ER-to-Relational Mapping. Modeling of a library management system.

UNIT II DATABASE QUERYING 11
Relational Algebra – SQL: fundamentals – DDL – Specifying integrity constraints - DML – Basic
retrieval queries in SQL - Complex SQL retrieval queries – nested queries – correlated queries – joins
- aggregate functions. Creating a table, populating data, adding integrity constraints, querying tables
with simple and complex queries.

UNIT III DATABASE PROGRAMMING 7
Database programming with function calls, stored procedures - views – triggers. Embedded SQL
ODBC connectivity with front end tools. Implementation using ODBC/JDBC and SQL/PSM,
implementing functions, views, and triggers in MySQL / Oracle.

UNIT IV DATABASE DESIGN 9
Functional Dependencies – Design guidelines – Normal Forms: first, second, third – Boyce/Codd
Normal Form – Normalization algorithms. Design of a banking database system / university
database system.

UNIT V ADVANCED TOPICS 9
Database security issues – Discretionary access control – role based access – Encryption and public
key infrastructures – challenges. Information Retrieval: IR Concepts, Retrieval Models, Queries in IR
systems.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to:

- Understand relational data model, evolve conceptual model of a given problem, its mapping to
 relational model and Normalization
- Query the relational database and write programs with database connectivity
- Understand the concepts of database security and information retrieval systems

TEXT BOOKS:
 Pearson, 2011.

REFERENCES:
OBJECTIVES:
- To understand the concept of fundamentals of digital audio.
- To understand the concept of audio in digital TV broadcasting.
- To understand the various codes of digital coding.
- To understand the concept of digital audio tape recorder.
- To analyze the concept internet audio in digital audio engineering.

UNIT I FUNDAMENTALS OF DIGITAL AUDIO

UNIT II RECORDING AND TRANSMISSION PRINCIPLES
PCM – record processing – recording oriented codes – transmission oriented codes – audio in digital TV broadcasting – DAB.

UNIT III DIGITAL CODING & COMPRESSION

UNIT IV DIGITAL AUDIO TECHNIQUES

UNIT V APPLICATIONS OF DIGITAL AUDIO

OUTCOMES:
At the end of the course, students would be able to
- Analyze the type of dither.
- Analyze the recording and transmission principles in digital audio.
- Analyze the various compression techniques.
- Design and analyze the digital audio editing.
- Analyze the various application of digital audio.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
At the end of the course, the student is expected to
• Understand and analyse the energy data of industries
• Carry out energy accounting and balancing
• Conduct energy audit and suggest methodologies for energy savings and
• Utilise the available resources in optimal ways

UNIT I INTRODUCTION

UNIT II ELECTRICAL SYSTEMS

UNIT III THERMAL SYSTEMS

UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES
Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems – Cooling Towers – D.G. sets

UNIT V ECONOMICS
Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course, the students can able to analyse the energy data of industries.
• Can carry out energy accounting and balancing
• Can suggest methodologies for energy savings

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- The course aims to develop the knowledge of students in the basic area of Food Chemistry.
- This is necessary for effective understanding of food processing and technology subjects.
- This course will enable students to appreciate the similarities and complexities of the chemical components in foods.

UNIT I OVERVIEW OF NUTRITION
Definition, six classes of nutrients, calculating energy values from food, using the RDA, nutritional status, nutritional requirement, malnutrition, nutritional assessment of individuals and populations, dietary recommendations, Balanced diet planning: Diet planning principles, dietary guidelines; food groups, exchange lists, personal diet analysis;

UNIT II DIGESTION
Digestion, Absorption and Transport: Anatomy and physiology of the digestive tract, mechanical and chemical digestion, absorption of nutrients.

UNIT III CARBOHYDRATES
Glycemic and Non-glycemic carbohydrates, blood glucose regulation, recommendations of sugar intake for health, health effects of fiber and starch intake, Artificial sweeteners; Importance of blood sugar regulation, Dietary recommendations for NIDDM and IDDM

UNIT IV PROTEINS & LIPIDS
Proteins; Food enzymes ; Texturized proteins; Food sources, functional role and uses in foods. Review of structure, composition & nomenclature of fats. Non-glyceride components in fats & oils; Fat replacements; Food sources, functional role and uses in foods. Health effects and recommended intakes of lipids. Recommended intakes of proteins, Deficiency- short term and long term effects.

UNIT V METABOLISM, ENERGY BALANCE AND BODY COMPOSITION
Energy Balance; body weight and body composition; health implications; obesity, BMR and BMI calculations; Weight Control: Fat cell development; hunger, satiety and satiation; dangers of unsafe weight loss schemes; treatment of obesity; attitudes and behaviours toward weight control. Food and Pharmaceutical grades; toxicities, deficiencies, factors affecting bioavailability, Stability under food processing conditions.

TOTAL : 45 PERIODS

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To introduce the fundamentals and components of Geographic Information System
- To provide details of spatial data structures and input, management and output processes.

UNIT I FUNDAMENTALS OF GIS

UNIT II SPATIAL DATA MODELS

UNIT III DATA INPUT AND TOPOLOGY

UNIT IV DATA ANALYSIS
Vector Data Analysis tools - Data Analysis tools - Network Analysis - Digital Education models - 3D data collection and utilisation.

UNIT V APPLICATIONS

TOTAL: 45 PERIODS

OUTCOME:
This course equips the student to
- Have basic idea about the fundamentals of GIS.
- Understand the types of data models.
- Get knowledge about data input and topology.
- Gain knowledge on data quality and standards.
- Understand data management functions and data output.

TEXT BOOKS:

REFERENCE:
OBJECTIVES:
- To acquire the basic knowledge of Indian system of medicines.
- To enable the students to know about the plant tissue culture techniques and learn about the instruments used in the extraction, isolation, purification and identification of herbal drugs.

UNIT I INDIAN SYSTEMS OF MEDICINE

UNIT II IN-VITRO CULTURE OF MEDICINAL PLANTS
Requirements – Setting up a tissue culture lab – Basic laboratory procedure – Processing of plant tissue culture – Growth profile – Growth measurement – Plant tissue culture methods – Callus culture – Types of tissue culture – Tissue culture of medicinal plants – Applications of plant tissue culture.

UNIT III PHYTO PHARMACEUTICALS
Traditional and modern extraction techniques: Successive solvent extraction- Super critical fluid extraction – Distillation – Head space techniques – Sepbox –General extraction process: Carbohydrates – Proteins – Alkaloids –Glycosides. Isolation and purification of phytochemicals (Eg. Quinine from cinchona, vincristine from Vinca, sennoside from senna, Euginol from clove oil.)

UNIT IV SCREENING METHODS FOR HERBAL DRUGS

UNIT V STANDARDIZATION AND CONSERVATION OF HERBAL DRUGS
Importance of standardization - Standardization of single drugs and compound formulations – WHO guidelines for the quality assessment herbal drugs - Conservation strategies of medicinal plants – Government policies for protecting the traditional knowledge.

TOTAL: 45 PERIODS

OUTCOMES:
The student will be able to
- Understand the basic principle, design, control and processing techniques of medicinal plants and their derivatives.
- Find a solution to problems, including social, scientific and ethical issues connected with the use of medicinal plants in the different field of applications.
- Describe the biological effects of medicinal plants with legislation and governmental policies for conserving medicinal plants.

TEXT BOOKS:
REFERENCES:

OMD552 HOSPITAL WASTE MANAGEMENT L T P C
3 0 0 3

OBJECTIVES:
The student should be made to:
- Know about the healthcare hazard control and accidents
- Understand biomedical waste management
- Learn the facility guidelines, infection control and patient safety.

UNIT I HEALTHCARE HAZARD CONTROL AND UNDERSTANDING ACCIDENTS 9

UNIT II BIOMEDICAL WASTE MANAGEMENT 9
Biomedical Waste Management: Types of wastes, major and minor sources of biomedical waste, Categories and classification of biomedical waste, hazard of biomedical waste, need for disposal of biomedical waste, waste minimization, waste segregation and labeling, waste handling and disposal.

UNIT III HAZARDOUS MATERIALS 9

UNIT IV FACILITY SAFETY 9

UNIT V INFECTION CONTROL, PREVENTION AND PATIENT SAFETY 9

TOTAL : 45 PERIODS

OUTCOMES:
- After successful completion of the course, the students will be able to know the concepts of healthcare waste management, its prevention and safety.

REFERENCES:
OBJECTIVES

- To elucidate on advantages of nanotechnology based applications in each industry
- To provide instances of contemporary industrial applications of nanotechnology
- To provide an overview of future technological advancements and increasing role of nanotechnology in each industry

UNIT I
NANO ELECTRONICS

UNIT II
BIONANOTECHNOLOGY

UNIT III
NANOTECHNOLOGY IN CHEMICAL INDUSTRY
Nanocatalysts – Smart materials – Heterogenous nanostructures and composites – Nanostructures for Molecular recognition (Quantum dots, Nanorods, Nanotubes) – Molecular Encapsulation and its applications – Nanoporous zeolites – Self-assembled Nanoreactors

UNIT IV
NANOTECHNOLOGY IN AGRICULTURE AND FOOD TECHNOLOGY
Nanotechnology in Agriculture -Precision farming, Smart delivery system – Insecticides using nanotechnology – Potential of nano-fertilizers - Nanotechnology in Food industry

UNIT V
NANOTECHNOLOGY IN TEXTILES AND COSMETICS
Nanofibre production - Electrospinning – Controlling morphologies of nanofibers – Tissue engineering application– Polymer nanofibers - Nylon-6 nanocomposites from polymerization - Nano-filled polypropylene fibers - Nano finishing in textiles (UV resistant, antibacterial, hydrophilic, self-cleaning, flame retardant finishes) – Modern textiles Cosmetics – Formulation of Gels, Shampoos, Hair-conditioners

REFERENCES:

OBJECTIVES

- This course will be focused on achievement, acquisition of knowledge and enhancement of comprehension of information regarding bioenergy and biofuel technologies and their sustainable applications.

UNIT I CONCEPTS

Biopower, Bioheat, Biofuels, advanced liquid fuels, drop-in fuels, biobased products

UNIT II FEEDSTOCKS

UNIT III CONVERSION TECHNOLOGIES

Biorefinery concept – biorefineries and end products, Biochemical conversion – hydrolysis, enzyme and acid hydrolysis, fermentation, anaerobic digestion and trans-esterification, Thermochemical conversion – Combustion, Gasification, Pyrolysis, other thermochemical conversion technologies. Scaling up of emerging technologies.

UNIT IV BIOFUELS

Pros and cons of Biofuels, Algal biofuels, Cyanobacteria and producers of biofuels, Jatropha as biodiesel producer, Bioethanol, Biomethane, biohydrogen, biobutanol, metabolic engineering of fuel molecules, Engineering aspects of biofuels, Economics of biofuels

UNIT V SUSTAINABILITY & RESILIENCE

Environmental Sustainability, bioenergy sustainability, emissions of biomass to power generation applications, emissions from biofuels. ILUC issues, Carbon footprint, Advanced low carbon fuels

TOTAL: 45 PERIODS

TEXTBOOKS:

REFERENCES:

2. Bioenergy: Biomass to Biofuels by Anju Dahiya
3. Bioenergy: Principles and Applications by Yebo Li and Samir Kumar Khanal
4. Bioenergy by Judy D. Wall and Caroline S. Harwood
5. Bioenergy: Sustainable Perspectives by Ted Weyland
OBJECTIVES:
- To give an introductory knowledge on Programmable Logic Controller (PLC) and their programming languages
- To give adequate knowledge about applications of PLC
- To give basic knowledge about Computer Controlled Systems
- To give basic knowledge on the architecture and local control unit of Distributed Control System (DCS)
- To give adequate information with respect to interfaces used in DCS

UNIT I PROGRAMMABLE LOGIC CONTROLLER
Evolution of PLCs – Components of PLC – Architecture of PLC – Discrete and analog I/O modules – Programming languages -Ladder diagram – Function block diagram (FBD) - Programming timers and counters

UNIT II APPLICATIONS OF PLC
Instructions in PLC – Program control instructions, math instructions, data manipulation Instructions, sequencer and shift register instructions – Case studies in PLC

UNIT III COMPUTER CONTROLLED SYSTEMS
Basic building blocks of computer controlled systems – Data acquisition system – Supervisory control – Direct digital control- SCADA:- Hardware and software, Remote terminal units, Master Station and Communication architectures.

UNIT IV DISTRIBUTED CONTROL SYSTEM
DCS – Various Architectures – Comparison – Local control unit – Process interfacing issues – Communication facilities

UNIT V INTERFACES IN DCS
Operator interfaces - Low level and high level operator interfaces – Displays - Engineering interfaces – Low level and high level engineering interfaces – Factors to be considered in selecting DCS – Case studies in DCS

OUTCOMES:
- Ability to understand and analyze Instrumentation systems and their applications to various industries.
- Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:
REFERENCES:
1. T.A. Hughes, Programmable Controllers, Fourth edition, ISA press, 2005

OBM552 MEDICAL PHYSICS

OBJECTIVES:
- To study the complete non-ionizing radiations including light and its effect in human body.
- To understand the principles of ultrasound radiation and its applications in medicine.
- To learn about radioactive nuclides and also the interactions of radiation with matters and how isotopes are produced.
- To study the harmful effects of radiation and radiation protection regulations.

UNIT I NON-IONIZING RADIATION AND ITS MEDICAL APPLICATIONS

UNIT II ULTRASOUND IN MEDICINE

UNIT III PRINCIPLES OF RADIOACTIVE NUCLIDES AND DECAY

UNIT IV INTERACTION OF RADIATION WITH MATTER

UNIT V RADIATION EFFECTS AND REGULATIONS

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:
- Analyze the low frequency and high frequency effects of non-ionizing radiation and physics of light.
- Define various clinical applications based on ultrasound wave.
- Explain the process of radioactive nuclide production using different techniques
- Analyze radiation mechanics involved with various physiological systems
- Outline the detrimental effects of radiation and regulations for radiation safety.

TEXT BOOKS:

REFERENCES:

OML552 MICROSCOPY L T P C
3 0 0 3

OBJECTIVE:
This course will cover the basic principles and techniques of optical and electron microscopy. This course also deals with the sample preparation techniques for the microstructural analysis.

UNIT I INTRODUCTION 9

UNIT II MICROSCOPY 9

UNIT III ELECTRON MICROSCOPY 9
UNIT IV SAMPLE PREPARATION FOR MICROSTRUCTURAL ANALYSIS 9

UNIT V CHEMICAL ANALYSIS 9

OUTCOMES:
- Able to understand the physics behind the microscopy.
- Ability to describe the principle, construction and working of light microscopy.
- Ability to appreciate about electron microscopy.
- Ability to understand about the important of sample preparation technique.
- Ability to identify the appropriate spectroscopy technique for chemical analysis.

TEXT BOOKS

REFERENCES:

OEI552 SCADA SYSTEM AND APPLICATIONS MANAGEMENT L T P C
3 0 0 3

COURSE OBJECTIVE:
- To understand about the SCADA system components and SCADA communication protocols
- To provide knowledge about SCADA applicatios in power system

UNIT I INTRODUCTION TO SCADA 9
Evolution of SCADA, SCADA definitions, SCADA Functional requirements and Components, SCADA Hierarchical concept, SCADA architecture, General features, SCADA Applications, Benefits

UNIT II SCADA SYSTEM COMPONENTS 9
Remote Terminal Unit (RTU), Interface units, Human- Machine Interface Units (HMI), Display Monitors/Data Logger Systems, Intelligent Electronic Devices (IED), Communication Network, SCADA Server, SCADA Control systems and Control panels
UNIT III SCADA COMMUNICATION 9
SCADA Communication requirements, Communication protocols: Past, Present and Future, Structure of a SCADA Communications Protocol, Comparison of various communication protocols, IEC61850 based communication architecture, Communication media like Fiber optic, PLC etc. Interface provisions and communication extensions, synchronization with NCC, DCC.

UNIT IV SCADA MONITORING AND CONTROL 9
Online monitoring the event and alarm system, trends and reports, Blocking list, Event disturbance recording. Control function: Station control, bay control, breaker control and disconnector control.

UNIT V SCADA APPLICATIONS IN POWER SYSTEM 9
Applications in Generation, Transmission and Distribution sector, Substation SCADA system Functional description, System specification, System selection such as Substation configuration, IEC61850 ring configuration, SAS cubicle concepts, gateway interoperability list, signal naming concept. System Installation, Testing and Commissioning.

CASE STUDIES:
SCADA Design for 66/11KV and 132/66/11KV or 132/66 KV any utility Substation and IEC 61850 based SCADA Implementation issues in utility Substations,

TOTAL: 45 PERIODS

OUTCOME:

- This course gives knowledge about various system components and communication protocols of SCADA system and its applications.

REFERENCES:
1. Stuart A. Boyer: SCADA-Supervisory Control and Data Acquisition, Instrument Society of America Publications, USA, 2004
4. David Bailey, Edwin Wright, Practical SCADA for industry, Newnes, 2003
5. Michael Wiebe, A guide to utility automation: AMR, SCADA, and IT systems for electric Power, PennWell 1999

OBT554 PRINCIPLES OF FOOD PRESERVATION

OBJECTIVE:

- The course aims to introduce the students to the area of Food Preservation. This is necessary for effective understanding of a detailed study of food processing and technology subjects.

UNIT I FOOD PRESERVATION AND ITS IMPORTANCE 9
Introduction to food preservation. Wastage of processed foods; Shelf life of food products; Types of food based on its perishability. Traditional methods of preservation.

UNIT II METHODS OF FOOD HANDLING AND STORAGE 9
Nature of harvested crop, plant and animal; storage of raw materials and products using low temperature, refrigerated gas storage of foods, gas packed refrigerated foods, sub atmospheric storage, Gas atmospheric storage of meat, grains, seeds and flour, roots and tubers; freezing of raw and processed foods. retort pouch packing, Aseptic packaging.
UNIT III THERMAL METHODS
Newer methods of thermal processing; batch and continuous; In container sterilization- canning; application of infra-red microwaves; ohmic heating; control of water activity; preservation by concentration and dehydration; osmotic methods

UNIT IV DRYING PROCESS FOR TYPICAL FOODS
Rate of drying for food products; design parameters of different type of dryers; properties of air-water mixtures. Psychrometric chart, freezing and cold storage. freeze concentration, dehydro-freezing, freeze drying, IQF; calculation of refrigeration load, design of freezers and cold storages.

UNIT V NON-THERMAL METHODS
Super Critical Technology for Preservation - Chemical preservatives, preservation by ionizing radiations, ultrasonics, high pressure, fermentation, curing, pickling, smoking, membrane technology. Hurdle technology,

OUTCOMES:
On completion of the course the students are expected to
• Be aware of the different methods applied to preserving foods.

TEXT BOOKS:

REFERENCES:

OMF551 PRODUCT DESIGN AND DEVELOPMENT L T P C
3 0 0 3

OBJECTIVE:
The course aims at providing the basic concepts of product design, product features and its architecture so that student can have a basic knowledge in the common features a product has and how to incorporate them suitably in product.

UNIT I INTRODUCTION
UNIT II CONCEPT GENERATION AND SELECTION

UNIT III PRODUCT ARCHITECTURE

UNIT IV INDUSTRIAL DESIGN

UNIT V DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT

TOTAL: 45 PERIODS

OUTCOME:
- The student will be able to design some products for the given set of applications; also the knowledge gained through prototyping technology will help the student to make a prototype of a problem and hence product design and development can be achieved.

TEXT BOOK:

REFERENCES:
OBJECTIVES:
- To get exposure on solar radiation and its environmental impact to power.
- To know about the various collectors used for storing solar energy.
- To know about the various applications in solar energy.
- To learn about the wind energy and biomass and its economic aspects.
- To know about geothermal energy with other energy sources.

UNIT I PRINCIPLES OF SOLAR RADIATION 10
Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on tilted surface, instruments for measuring solar radiation and sun shine, solar radiation data.

UNIT II SOLAR ENERGY COLLECTION 8
Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

UNIT III SOLAR ENERGY STORAGE AND APPLICATIONS 7
Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applications- solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.

UNIT IV WIND ENERGY 10

UNIT V GEOTHERMAL ENERGY: 9
Resources, types of wells, methods of harnessing the energy, potential in India. OCEAN ENERGY: OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics. DIRECT ENERGY CONVERSION: Need for DEC, Carnot cycle, limitations, principles of DEC.

TOTAL : 45 PERIODS

OUTCOMES:
- Understanding the physics of solar radiation.
- Ability to classify the solar energy collectors and methodologies of storing solar energy.
- Knowledge in applying solar energy in a useful way.
- Knowledge in wind energy and biomass with its economic aspects.
- Knowledge in capturing and applying other forms of energy sources like wind, biogas and geothermal energies.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To understand the phases in a software development project
- To learn project management concepts
- To understand the concepts of requirements analysis and modeling.
- To understand software design methodologies
- To learn various testing methodologies
- To be familiar with issues related to software maintenance

UNIT I SOFTWARE PROCESS
Introduction to Software Engineering, scope – software crisis – principles of software engineering -
Software process – Life cycle models – Traditional and Agile Models - Team organization.

UNIT II PLANNING AND ESTIMATION
Planning and the software process – cost estimation: LOC, FP Based Estimation, COCOMO I & II
Models – Duration estimation and tracking – Gantt chart - Software Project Management – plan – risk
analysis and management.

UNIT III REQUIREMENTS ANALYSIS AND SPECIFICATION
Software Requirements: Functional and Non-Functional, Software Requirements specification–

UNIT IV SOFTWARE DESIGN AND IMPLEMENTATION
Design process – Design principles and guidelines – design techniques – coupling and cohesion -
metrics – tools. Implementation: choice of programming language, programming practices – coding
standards – code walkthroughs and inspections.

UNIT V TESTING AND MAINTENANCE
Software testing fundamentals- Testing techniques: white box, black box, glass box testing - unit
testing – integration testing –system testing – acceptance testing – debugging. Post-delivery
maintenance: Types – objectives - metrics - Reverse Engineering.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of this course, the students will be able to
- Understand different software life cycle models.
- Perform software requirements analysis
- Apply systematic methodologies for software design and deployment.
- Understand various testing approaches and maintenance related issues.
- Plan project schedule, and estimate project cost and effort required.

TEXT BOOKS:
REFERENCES:

5. http://nptel.ac.in/.

OTL551 SPACETIME WIRELESS COMMUNICATION LTCP 3 0 0 3

OBJECTIVES:

- To understand the concept of multiple antenna propagation.
- To understand the concept of capacity of frequency flat deterministic MIMO channel.
- To understand the concept of transmitter and receiver diversity technique.
- To design the coding for frequency flat channel.
- To analyze the concept of micro multi user detection.

UNIT I MULTIPLE ANTENNA PROPAGATION AND ST CHANNEL CHARACTERIZATION 9

UNIT II CAPACITY OF MULTIPLE ANTENNA CHANNELS 9

Capacity of frequency flat deterministic MIMO channel: Channel unknown to the transmitter – Channel known to the transmitter – capacity of random MIMO channels – Influence of ricean fading – fading correlation – XPD and degeneracy on MIMO capacity – Capacity of frequency selective MIMO channels.

UNIT III SPATIAL DIVERSITY 9

UNIT IV MULTIPLE ANTENNA CODING AND RECEIVERS 9

UNIT V ST OFDM, SPREAD SPECTRUM AND MIMO MULTIUSER DETECTION 9

OUTCOMES:
At the end of the course, students would be able to
- Design and analyze the channel characterization.
- Analyze the capacity of random MIMO channel.
- Design and analyze the order diversity and channel variability.
- Analyze the multiple antenna coding and receivers.
- Analyze the MIMO multi user detection

TEXT BOOKS:

REFERENCE:

OTL553	TELECOMMUNICATION NETWORK MANAGEMENT	L T P C
3 0 0 3

OBJECTIVES:
- To understand the concept of network management standards.
- To design the common management information service element model.
- To understand the various concept of information modelling.
- To analyze the concept of SNMPv1 and SNMPv2 protocol.
- To analyze the concept of examples of network management.

UNIT I	FOUNDATIONS	9

UNIT II	COMMON MANAGEMENT INFORMATION SERVICE ELEMENT	9
CMISE model—service definitions—errors—scooping and filtering features— synchronization—functional units— association services— common management information protocol specification.

UNIT III	INFORMATION MODELING FOR TMN	9
Rationale for information modeling—management information model—object oriented modeling paradigm— structure of management information—managed object class definition—management information base.

UNIT IV	SIMPLE NETWORK MANAGEMENT PROTOCOL	9
SNMPv1: managed networks—SNMP models— organization model—information model—SNMPv2 communication model—functional model—major changes in SNMPv2—structure of management information, MIB—SNMPv2 protocol— compatibility with SNMPv1— SNMPv3— architecture— applications—MIB security, remote monitoring—SMI and MIB— RMQ1 and RMON2.
UNIT V NETWORK MANAGEMENT EXAMPLES

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, students would be able to
- Design and analyze of fault management.
- Analyze the common management information protocol specifications.
- Design and analyze of management information model.
- Design the simple network management protocol.
- Design the various types of network management tools.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
The student should be made to:
- Learn the key principles for telemedicine and health.
- Understand telemedical technology.
- Know telemedical standards, mobile telemedicine and its applications

UNIT I TELEMEDICINE AND HEALTH
History and Evolution of telemedicine, Organs of telemedicine, Global and Indian scenario, Ethical and legal aspects of Telemedicine - Confidentiality, Social and legal issues, Safety and regulatory issues, Advances in Telemedicine.

UNIT II TELEMEDICAL TECHNOLOGY

UNIT III TELEMEDICAL STANDARDS

UNIT IV MOBILE TELEMEDICINE
Tele radiology: Image Acquisition system Display system, Tele pathology, Medical information storage and management for telemedicine- patient information, medical history, test reports, medical images, Hospital information system

UNIT V TELEMEDICAL APPLICATIONS

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Apply multimedia technologies in telemedicine.
- Explain Protocols behind encryption techniques for secure transmission of data.
- Apply telehealth in healthcare.

TEXT BOOK:

REFERENCES:
OBJECTIVES:
- To understand the concept of Fourier transform and short time Fourier transform.
- To understand the concept of continuous time wavelet transform.
- To analyze the concept of interpolation and decimation.
- To understand the types of filter bank.
- To analyze the concept of image compression.

UNIT I FOURIER ANALYSIS
Fourier basis & Fourier Transform – failure of Fourier Transform – Need for Time-Frequency Analysis – Heisenberg’s Uncertainty principle – Short time Fourier transform (STFT) – short comings of STFT– Need for Wavelets

UNIT II CWT AND MRA

UNIT III INTRODUCTION TO MULTIRATE SYSTEMS
Decimation and Interpolation in Time domain - Decimation and Interpolation in Frequency domain – Multi rate systems for a rational factor.

UNIT IV FILTER BANKS AND DWT
Two channel filter bank – Perfect Reconstruction (PR) condition – relationship between filter banks and wavelet basis – DWT – Filter banks for Daubachies wavelet function.

UNIT V APPLICATIONS

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, students would be able to
- Analyze the need for time frequency analysis.
- Design the concept of multi resolution analysis.
- Analyze the multirate system for rational factor.
- Analyze the relationship between the filter bank and wavelet.
- Analyze the application of wavelet.

TEXT BOOK:

REFERENCE BOOKS:
OBJECTIVES

- Understanding of the concept and importance of strategy planning for manufacturing industries
- To apply principles and techniques in the identifiable formulation and implementation of manufacturing strategy for competitive in global context.

UNIT I INDUSTRIAL DECLINE AND ASCENDANCY

Manufacturing excellence - US Manufacturers - French Manufacturers - Japan decade – American decade - Global decade

UNIT II BUILDING STRENGTH THROUGH CUSTOMER – FOCUSED PRINCIPLES

Customer - Focused principles - General principles - Design - Operations - Human resources - Quality and Process improvement - Promotion and Marketing

UNIT III VALUE AND VALUATION

Product Costing - Motivation to improve - Value of the enterprises QUALITY - The Organization: Bulwark of stability and effectiveness - Employee stability – Quality Individuals Vs. Teams - Team stability and cohesiveness - Project cohesiveness and stability

UNIT IV STRATEGIC LINKAGES

Product decisions and customer service - Multi-company planning - Internal manufacturing planning - Soothing the demand turbulence

UNIT V IMPEDIMENTS

Bad plant design - Mismanagement of capacity - Production Lines - Assembly Lines – Whole Plant Associates - Facilitators - Teamsmanship - Motivation and reward in the age of continuous Improvement.

TOTAL : 45 PERIODS

OUTCOMES:

- Able to understand the concept and the importance of manufacturing strategy for industrial enterprise competitiveness.
- Apply appropriate techniques in the analysis an devaluation of company's opportunities for enhancing competitiveness in the local regional and global context.
- Identify formulation and implement strategies for manufacturing and therefore enterprise competitiveness.

TEXT BOOKS:

OBJECTIVES:

- To make the students aware about the agricultural Finance, Banking and Cooperation.
- To acquaint the students with the basic concepts, principles and functions of management.
- To understand the process of finance banking and cooperation.

UNIT I AGRICULTURAL FINANCE - NATURE AND SCOPE

Agricultural Finance: Definition, Importance, Nature and Scope - Agricultural Credit: Meaning, Definition, Need and Classification - Sources of credit - Role of institutional and non - Institutional agencies: Advantages and Disadvantages - Rural indebtedness: consequences of rural indebtedness - History and Development of rural credit in India.

UNIT II FARM FINANCIAL ANALYSIS

UNIT III FINANCIAL INSTITUTIONS

Institutional Lending Agencies - Commercial banks: Nationalization, Agricultural Development Branches - Area Approach - Priority Sector Lending - Regional Rural Banks, Lead bank, Scale of finance - Higher financial institutions: RBI, NABARD, AFC, ADB, World Bank and Deposit Insurance and Credit Guarantee Corporation of India - Microfinance and its role in poverty alleviation - Self-Help Groups - Non -Governmental Organizations - Rural credit policies followed by State and Central Government - Subsidized farm credit, Differential Interest Rate (DIR), Kisan Credit Card (KCC) Scheme - Relief Measures and Loan Waiver Scheme and Know Your Customer (KYC).

UNIT IV CO-OPERATION

Co-operation: Philosophy and Principles - History of Indian Cooperative Credit Movement: Pre and Post-Independence periods and Cooperation in different plan periods - Cooperative credit institutions: Two tier and three tier structure, Functions: provision of short term and long term credit, Strength and weakness of cooperative credit system, Policies for revitalizing cooperative credit: Salient features of Vaithiyananthan Committee Report on revival of rural cooperative credit institutions, Reorganisation of Cooperative credit structure in Andhra Pradesh and single window system and successful cooperative credit systems in Gujarat, Maharashtra, Punjab etc, - Special cooperatives: LAMPS and FSS: Objectives, role and functions - National Cooperative Development Corporation (NCDC) and National Federation of State Cooperative Banks Ltd., (NAFSCOB) - Objectives and Functions.

UNIT V BANKING AND INSURANCE

OUTCOME:
After completion of this course, the students will

- Be familiar with agricultural finance, Banking, cooperation and basic concepts, principles and functions of management.
REFERENCES:

OBM751 BASICS OF HUMAN ANATOMY AND PHYSIOLOGY L T P C
 3 0 0 3

OBJECTIVES
- To learn the basic components of formation of systems
- To identify all the organelles of an animal cell and their function.
- To understand structure and functions of the various types of systems of human body.
- To demonstrate their knowledge of importance of anatomical features and physiology of human systems

UNIT I INTRODUCTION

UNIT II BASIC STRUCTURE AND FUNCTION OF ANIMAL CELL
Structure of Cell – Structure and Function of Cell Membrane and Sub organelles. Cellular Transport Mechanism – Cell Division – Mitosis and Meiosis

UNIT III TISSUES, MEMBRANE AND SKELETAL SYSTEM
Epithelial tissue – Connective tissue – Muscle tissue – Nerve tissue – Membrane. Types of Bone tissue - Classification of Bones – Functions of the Skeleton system – Skull, Vertebral Column. Joint - Articulation

UNIT IV NERVOUS AND CARDIOVASCULAR SYSTEMS

UNIT V DIGESTIVE AND URINARY SYSTEMS

TOTAL:45 PERIODS

OUTCOMES
At end of the course
- Students would be familiar with the requirements for formation of systems
- Students would be understand the basic structural and functional elements of human body
- Students would have knowledge on Skeletal and muscular systems
- Students would be able to comprehend circulatory and nervous systems and their components
- Students would study importance of digestive and urinary systems in Human body
TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>COURSE OUTCOMES</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students would be familiar with the requirements for formation of systems</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Students would be understand the basic structural and functional elements of human body</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Students would have knowledge on Skeletal and muscular systems</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Students would be able to comprehend circulatory and nervous systems and their components</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Students would study importance of digestive and urinary systems in Human body</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

OGI751 CLIMATE CHANGE AND ITS IMPACT L T P C 3 0 0 3

OBJECTIVES:
- To understand the basics of weather and climate
- To have an insight on Atmospheric dynamics and transport of heat
- To develop simple climate models and evaluate climate changes using models

UNIT I BASICS OF WEATHER AND CLIMATE:
UNIT II ATMOSPHERIC DYNAMICS:

UNIT III GLOBAL CLIMATE

UNIT IV CLIMATE SYSTEM PROCESSES

UNIT V CLIMATE CHANGE MODELS

TOTAL : 45 PERIODS

OUTCOMES:
At the end of the course the student will be able to understand
- The concepts of weather and climate
- The principles of Atmospheric dynamics and transport of heat and air mass
- The develop simple climate models and to predict climate change

TEXTBOOKS:

OPY751 CLINICAL TRIALS

OBJECTIVES:
- To highlight the epidemiologic methods, study design, protocol preparation
- To gain knowledge in the basic bio-statistical techniques involved in clinical research.
- To describe the principles involved in ethical, legal and regulatory issues in clinical trials.
UNIT I ROLE OF CLINICAL TRIALS IN NEW DRUG DEVELOPMENT 9
Drug Discovery, regulatory guidance and governance, pharmaceutical manufacturing, nonclinical research, clinical trials, post-marketing surveillance, ethical conduct during clinical trials.

UNIT II FUNDAMENTALS OF TRIAL DESIGN 9
Randomised clinical trials, uncontrolled trials. Protocol development, endpoints, patient selection, source and control of bias, randomization, blinding, sample size and power.

UNIT III ALTERNATE TRIAL DESIGNS 9
Crossover design, factorial design, equivalence trials, bioequivalence trials, non-inferiority trials, cluster randomized trials, multi-center trials.

UNIT IV BASICS OF STATISTICAL ANALYSIS 9
Types of data and normal distribution, significance tests and confidence intervals, comparison of means, comparison of proportions, analysis of survival data, subgroup analysis, regression analysis, missing data.

UNIT V REPORTING OF TRIALS 9
Overview of reporting, trial profile, presenting baseline data, use of tables, figures, critical appraisal of report, meta-analysis.

TOTAL: 45 PERIODS

OUTCOMES:
The student will be able to
- Explain key concepts in the design of clinical trials.
- Describe study designs used, identify key issues in data management for clinical trials.
- Describe the roles of regulatory affairs in clinical trials.

TEXT BOOKS:

REFERENCES:

OCS751 DATA STRUCTURES AND ALGORITHMS 3003

OBJECTIVES:
- To understand the various algorithm design and analysis techniques
- To learn linear data structures – lists, stacks, and queues
- To learn different sorting and searching algorithms
- To understand Tree and Graph data structures
UNIT I ALGORITHM ANALYSIS, LIST ADT

UNIT II STACKS AND QUEUES

UNIT III SEARCHING AND SORTING ALGORITHMS

UNIT IV TREES

UNIT V GRAPHS
Definition – Representation of Graph – Breadth-first traversal - Depth-first traversal – Dynamic programming Technique – Warshall’s and Floyd’s algorithm – Greedy method - Dijkstra’s algorithm – applications of graphs. Implementation of graph, graph traversal methods, finding shortest path using Dijkstra’s algorithm in C

TOTAL: 45 PERIODS

OUTCOMES:
At the end of this course, the students should be able to:
- Implement linear data structures and solve problems using them.
- Implement and apply trees and graphs to solve problems.
- Implement the various searching and sorting algorithms.

TEXT BOOKS:

REFERENCES:
OBJECTIVE:

- To impart knowledge on various types of experimental designs conduct of experiments and data analysis techniques.

UNIT I FUNDAMENTALS OF EXPERIMENTAL DESIGNS

Hypothesis testing – single mean, two means, dependant/ correlated samples – confidence intervals, Experimentation – need, Conventional test strategies, Analysis of variance, F-test, terminology, basic principles of design, steps in experimentation – choice of sample size – Normal and half normal probability plot – simple linear and multiple linear regression, testing using Analysis of variance.

UNIT II SINGLE FACTOR EXPERIMENTS

Completely Randomized Design- effect of coding the observations- model adequacy checking- estimation of model parameters, residuals analysis- treatment comparison methods-Duncan’s multiple range test, Newman-Keuel’s test, Fisher’s LSD test, Tukey’s test- testing using contrasts- Randomized Block Design – Latin Square Design- Graeco Latin Square Design – Applications.

UNIT III FACTORIAL DESIGNS

Main and Interaction effects - Two and three factor full factorial designs- Fixed effects and random effects model - Rule for sum of squares and Expected Mean Squares- \(2^k \) Design with two and three factors- Yate’s Algorithm- fitting regression model- Randomized Block Factorial Design - Practical applications.

UNIT IV SPECIAL EXPERIMENTAL DESIGN

Blocking and Confounding in \(2^k \) Designs- blocking in replicated design- \(2^k \) Factorial Design in two blocks- Complete and partial confounding- Confounding \(2^k \) Design in four blocks- Two level Fractional Factorial Designs- one-half fraction of \(2^k \) Design, design resolution, Construction of one-half fraction with highest design resolution, one-quarter fraction of \(2^k \) Design.

UNIT V TAGUCHI METHODS

Design of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments- Response Graph Method, ANOVA- attribute data analysis- Robust design- noise factors, Signal to noise ratios, Inner/outer OA design.

TOTAL: 45 PERIODS

OUTCOME:

- Able to apply experimental techniques to practical problems to improve quality of processes / products by optimizing the process / product parameters.

TEXT BOOK:

REFERENCES:

OBJECTIVES

- Students will gain knowledge about different energy sources

UNIT I ENERGY

Introduction to energy – Global energy scene – Indian energy scene - Units of energy, conversion factors, general classification of energy, energy crisis, energy alternatives.

UNIT II CONVENTIONAL ENERGY

Conventional energy resources, Thermal, hydel and nuclear reactors, thermal, hydel and nuclear power plants, efficiency, merits and demerits of the above power plants, combustion processes, fluidized bed combustion.

UNIT III NON-CONVENTIONAL ENERGY

Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar energy application in India, energy plantations. Wind energy, types of windmills, types of wind rotors, Darrieus rotor and Gravian rotor, wind electric power generation, wind power in India, economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy.

UNIT IV BIOMASS ENERGY

Biomass origin - Resources – Biomass estimation. Thermochemical conversion – Biological conversion, Chemical conversion – Hydrolysis & hydrogenation, solvolysis, biocrude, biodiesel power generation gasifier, biogas, integrated gasification.

UNIT V ENERGY CONSERVATION

Energy conservation - Act; Energy management importance, duties and responsibilities; Energy audit – Types methodology, reports, instruments. Benchmarking and energy performance, material and energy balance, thermal energy management.

TOTAL : 45 PERIODS

OUTCOMES:

- Understand conventional Energy sources, Non- conventional Energy sources, biomass sources and develop design parameters for equipment to be used in Chemical process industries. Understand energy conservation in process industries

TEXTBOOKS:

REFERENCES:

OBJECTIVE:
- To impart the knowledge and skills to identify, assess and mitigate the environmental and social impacts of developmental projects

UNIT I INTRODUCTION

UNIT II ENVIRONMENTAL ASSESSMENT
Screening and Scoping in EIA – Drafting of Terms of Reference,Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – Networks – Checklist Methods - Mathematical models for Impact prediction.

UNIT III ENVIRONMENTAL MANAGEMENT PLAN

UNIT IV SOCIO ECONOMIC ASSESSMENT
Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis-

UNIT V CASE STUDIES

TOTAL: 45 PERIODS

OUTCOMES:
The students completing the course will have ability to
- carry out scoping and screening of developmental projects for environmental and social assessments
- explain different methodologies for environmental impact prediction and assessment
- plan environmental impact assessments and environmental management plans
- evaluate environmental impact assessment reports

TEXTBOOKS:

REFERENCES:
OBJECTIVES:
- To provide an insight to the basics of planetary Remote Sensing
- To demonstrate how the Remote Sensing technique is applied to explore the surface characteristics of the planets and its environ.

UNIT I PLANETARY SCIENCE

UNIT II SATELLITE ORBIT

UNIT III PROPERTIES OF EMR

UNIT IV RADIOMETRY AND SCATTEROMETRY

UNIT V PLANETARY APPLICATION
Planetary Imaging Spectroscopy- USGS Tetracoder and Expert system - Mars Global Surveyor Mission (MGS) – Digital Elevation Model(DEM) of Mars – Mars Orbiter Camera (MOC) – Stereo and photoclinometric techniques for DEM.

OUTCOMES:
On completion of the course, the students have
- Exposure to fundamentals of planetary science or orbital mechanics
- The principles of observing the planets
- Knowledge of Remote Sensing methods for determining surface elevation and mapping of planets.

REFERENCES:
UNIT I ENVIRONMENTAL IMPLICATIONS OF BUILDINGS 9

UNIT II IMPLICATIONS OF BUILDING TECHNOLOGIES EMBODIED ENERGY OF BUILDINGS 9

UNIT III COMFORTS IN BUILDING 9

UNIT IV UTILITY OF SOLAR ENERGY IN BUILDINGS 9

UNIT V GREEN COMPOSITES FOR BUILDINGS 9

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
3. Fundamentals of Integrated Design for Sustainable Building By Marian Keeler, Bill Burke

OBM752 HOSPITAL MANAGEMENT L T P C
3 0 0 3

OBJECTIVES:
- To understand the fundamentals of hospital administration and management.
- To know the market related research process
- To explore various information management systems and relative supportive services.
- To learn the quality and safety aspects in hospital.
UNIT I OVERVIEW OF HOSPITAL ADMINISTRATION
Distinction between Hospital and Industry, Challenges in Hospital Administration – Hospital Planning- Equipment Planning – Functional Planning

UNIT II HUMAN RESOURCE MANAGEMENT IN HOSPITAL
Principles of HRM – Functions of HRM – Profile of HRD Manager – Human Resource Inventory – Manpower Planning.

UNIT III RECRUITMENT AND TRAINING
Different Departments of Hospital, Recruitment, Selection, Training Guidelines – Methods of Training – Evaluation of Training – Leadership grooming and Training, Promotion – Transfer.

UNIT IV SUPPORTIVE SERVICES
Medical Records Department – Central Sterilization and Supply Department – Pharmacy – Food Services - Laundry Services.

UNIT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL

OUTCOMES:
At the end of the course, the student should be able to:
- Explain the principles of Hospital administration.
- Identify the importance of Human resource management.
- List various marketing research techniques.
- Identify Information management systems and its uses.
- Understand safety procedures followed in hospitals

TOTAL : 45 PERIODS

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
To impart knowledge on safety engineering fundamentals and safety management practices.

UNIT I INTRODUCTION 9
Evolution of modern safety concepts – Fire prevention – Mechanical hazards – Boilers, Pressure vessels, Electrical Exposure.

UNIT II CHEMICAL HAZARDS 9
Chemical exposure – Toxic materials – Ionizing Radiation and Non-ionizing Radiation - Industrial Hygiene – Industrial Toxicology.

UNIT III ENVIRONMENTAL CONTROL 9
Industrial Health Hazards – Environmental Control – Industrial Noise - Noise measuring instruments, Control of Noise, Vibration, - Personal Protection.

UNIT IV HAZARD ANALYSIS 9
System Safety Analysis –Techniques – Fault Tree Analysis (FTA), Failure Modes and Effects Analysis (FMEA), HAZOP analysis and Risk Assessment

UNIT V SAFETY REGULATIONS 9

OUTCOMES:
- Students must be able to identify and prevent chemical, environmental mechanical, fire hazard through analysis and apply proper safety techniques on safety engineering and management.

TEXT BOOK:

REFERENCES:

OCS752 INTRODUCTION TO C PROGRAMMING L T P C 3 0 0 3

OBJECTIVES
- To develop C Programs using basic programming constructs
- To develop C programs using arrays and strings
- To develop applications in C using functions and structures

UNIT I INTRODUCTION 9
Structure of C program – Basics: Data Types – Constants –Variables - Keywords – Operators: Precedence and Associativity - Expressions - Input/Output statements, Assignment statements – Decision-making statements - Switch statement - Looping statements – Pre-processor directives - Compilation process – Exercise Programs: Check whether the required amount can be withdrawn based on the available amount – Menu-driven program to find the area of different shapes – Find the sum of even numbers
Text Book: Reema Thareja (Chapters 2,3)
UNIT II ARRAYS
Introduction to Arrays – One dimensional arrays: Declaration – Initialization - Accessing elements – Operations: Traversal, Insertion, Deletion, Searching - Two dimensional arrays: Declaration – Initialization - Accessing elements – Operations: Read – Print – Sum – Transpose – Exercise Programs: Print the number of positive and negative values present in the array – Sort the numbers using bubble sort - Find whether the given is matrix is diagonal or not.
Text Book: Reema Thareja (Chapters 5)

UNIT III STRINGS
Introduction to Strings - Reading and writing a string - String operations (without using built-in string functions): Length – Compare – Concatenate – Copy – Reverse – Substring – Insertion – Indexing – Deletion – Replacement – Array of strings – Introduction to Pointers – Pointer operators – Pointer arithmetic - Exercise programs: To find the frequency of a character in a string - To find the number of vowels, consonants and white spaces in a given text - Sorting the names.
Text Book: Reema Thareja (Chapters 6 & 7)

UNIT IV FUNCTIONS
Introduction to Functions – Types: User-defined and built-in functions - Function prototype - Function definition - Function call - Parameter passing: Pass by value - Pass by reference - Built-in functions (string functions) – Recursive functions – Exercise programs: Calculate the total amount of power consumed by ‘n’ devices (passing an array to a function) – Menu-driven program to count the numbers which are divisible by 3, 5 and by both (passing an array to a function) – Replace the punctuations from a given sentence by the space character (passing an array to a function)
Text Book: Reema Thareja (Chapters 4)

UNIT V STRUCTURES
Introduction to structures – Declaration – Initialization – Accessing the members – Nested Structures – Array of Structures – Structures and functions – Passing an entire structure – Exercise programs: Compute the age of a person using structure and functions (passing a structure to a function) – Compute the number of days an employee came late to the office by considering his arrival time for 30 days (Use array of structures and functions)
Text Book: Reema Thareja (Chapters 8)

TOTAL: 45 PERIODS

OUTCOMES
Upon completion of this course, the students will be able to
- Develop simple applications using basic constructs
- Develop applications using arrays and strings
- Develop applications using functions and structures

TEXT BOOK

REFERENCES:
INTRODUCTION OF CELL BIOLOGY

AIM
- To provide knowledge on cell structure and its function.

UNIT I CELL STRUCTURE
Cell organization, structure of organelles, extra cellular matrix and cell junctions.

UNIT II CELL ORGANELLE AND FUNCTION
Nuclues, Mitochondria, Lysosomes, Endoplasmic reticulum, Golgi apparatus, vesicles, centrosomes, cell membranes, ribosomes, cytosol, chloroplasts, flagella, cell wall.

UNIT III DIVISION
Cell cycle – mitosis, meiosis, cell cycle regulation and apoptosis.

UNIT IV MACROMOLECULES
DNA, RNA and Proteins – basic units, architectural hierarchy and organisation, functions.

UNIT V ENZYMES
Enzymes – Structure, Mechanism of action, Factors that affect enzyme activity, Common enzymes used in industrial setup of plant and animal origin.

TOTAL : 45 PERIODS

TEXT BOOKS

REFERENCES

LEAN SIX SIGMA

OBJECTIVE:
- To gain insights about the importance of lean manufacturing and six sigma practices.

UNIT I LEAN & SIX SIGMA BACKGROUND AND FUNDAMENTALS
Historical Overview – Definition of quality – What is six sigma -TQM and Six sigma - lean manufacturing and six sigma- six sigma and process tolerance – Six sigma and cultural changes – six sigma capability – six sigma need assessments - implications of quality levels, Cost of Poor Quality (COPQ), Cost of Doing Nothing – assessment questions.
UNIT II THE SCOPE OF TOOLS AND TECHNIQUES

UNIT III SIX SIGMA METHODOLOGIES
Design For Six Sigma (DFSS), Design For Six Sigma Method - Failure Mode Effect Analysis (FMEA), FMEA process - Risk Priority Number (RPN), Six Sigma and Leadership, committed leadership – Change Acceleration Process (CAP), Developing communication plan – Stakeholder

UNIT IV SIX SIGMA IMPLEMENTATION AND CHALLENGES
Tools for implementation – Supplier Input Process Output Customer (SIPOC) – Quality Function Deployment or House of Quality (QFD) – alternative approach – implementation – leadership training, close communication system, project selection – project management and team – champion training – customer quality index – challenges – program failure, CPQ vs six sigma, structure the deployment of six sigma – cultural challenge – customer/internal metrics

UNIT V EVALUATION AND CONTINUOUS IMPROVEMENT METHODS
Evaluation strategy – the economics of six sigma quality, Return on six Sigma (ROSS), ROI, poor project estimates – continuous improvement – lean manufacturing – value, customer focus, Perfection, focus on waste, overproduction – waiting, inventory in process (IIP), processing waste, transportation, motion, making defective products, underutilizing people – Kaizen – 5S

OUTCOME:
• The student would be able to relate the tools and techniques of lean sigma to increase productivity

REFERENCES:
3. Fred Soleimannejad, Six Sigma, Basic Steps and Implementation, AuthorHouse, 2004

OAN751 LOW COST AUTOMATION L T P C
 3 0 0 3

OBJECTIVES
• To give basic knowledge about automation
• To understand the basic hydraulics and pneumatics systems for automation
• To understand the assembly automation

UNIT I AUTOMATION OF ASSEMBLY LINES
Concept of automation - mechanization and automation - Concept of automation in industry - mechanization and automation classification, balancing of assembly line using available algorithms - Transfer line-monitoring system (TLMS) using Line Status - Line efficiency - Buffer stock Simulation in assembly line
UNIT II AUTOMATION USING HYDRAULIC SYSTEMS
Design aspects of various elements of hydraulic systems such as pumps, valves, filters, reservoirs, accumulators, actuators, intensifiers etc. - Selection of hydraulic fluid, practical case studied on hydraulic circuit design and performance analysis - Servo valves, electro hydraulic valves, proportional valves and their applications.

UNIT III AUTOMATION USING PNEUMATIC SYSTEMS
Pneumatic fundamentals - control elements, position and pressure sensing - logic circuits - switching circuits - fringe conditions modules and these integration - sequential circuits - cascade methods - mapping methods - step counter method - compound circuit design - combination circuit design. Pneumatic equipments - selection of components - design calculations - application - fault finding - hydro pneumatic circuits - use of microprocessors for sequencing - PLC, Low cost automation - Robotic circuits.

UNIT IV AUTOMATION USING ELECTRONIC SYSTEMS
Introduction - various sensors - transducers - signal processing - servo systems - programming of microprocessors using 8085 instruction - programmable logic controllers

UNIT V ASSEMBLY AUTOMATION
Types and configurations - Parts delivery at workstations - Various vibratory and non vibratory devices for feeding - hopper feeders, rotary disc feeder, centrifugal and orientation - Product design for automated assembly.

TOTAL : 45 PERIODS

OUTCOMES:
- Upon completion of this course, the students can able to do low cost automation systems
- Students can do some assembly automation

TEXT BOOKS:

REFERENCES

OBT752 MICROBIOLOGY L T P C
3 0 0 3

OBJECTIVE
- To introduce students to the principles of Microbiology ,to emphasize the structure and biochemical aspects of various microbes.

UNIT I INTRODUCTION TO MICROBIOLOGY
classification and nomenclature of microorganisms, microscopic examination of microorganisms: light, fluorescent, dark field, phase contrast, and electron microscopy.
UNIT II MICROBES- STRUCTURE AND REPRODUCTION
9
Structural organization and multiplication of bacteria, viruses (TMV, Hepatitis B), algae (cyanophyta, rhodophyta) and fungi (Neurospora), life history of actinomycetes (Streptomycyes), yeast (Saccharomyces), mycoplasma (M. pneumoniae) and bacteriophages (T4 phage, λ phage)

UNIT III MICROBIAL NUTRITION, GROWTH AND METABOLISM
9
Nutritional classification of microorganisms based on carbon, energy and electron sources; Definition of growth, balanced and unbalanced growth, growth curve and different methods to quantify bacterial growth: (counting chamber, viable count method, counting without equipment, different media used for bacterial culture (defined, complex, selective, differential, enriched); themathematics of growth-generation time, specific growth rate.

UNIT IV CONTROL OF MICROORGANISMS
9
Physical and chemical control of microorganisms; Definition of sterilization, dry and moist heat, pasteurization, tyndalization; radiation, ultrasonication, filtration. Disinfection, sanitization, antiseptics, sterilants and fumigation; mode of action and resistance to antibiotics; clinically important microorganisms

UNIT V INDUSTRIAL MICROBIOLOGY
9
Microbes involved in preservation (Lactobacillus, bacteriocins), spoilage of food and food borne pathogens (E.coli, S.aureus, Bacillus, Clostridium). Industrial use of microbes (production of penicillin, alcohol, vitamin B-12); biogas; bioremediation (oil spillage leaching of ores by microorganisms, pollution control); biofertilizers, biopesticides. Biosensors.

TOTAL: 45 PERIODS

OUTCOMES:
- To provide to the students the fundamentals of Microbiology, the scope of microbiology and solve the problems in microbial infection and their control,

TEXT BOOKS:

OMV751 MARINE VEHICLES L T P C 3 0 0 3

OBJECTIVES:
- To provide the students a basic knowledge about various types of marine vehicles
- To provide the students basic theory behind the design and development of marine vehicles

UNIT I MARINE VEHICLES 6
Types – general – by function – commercial marine vehicles- passenger ship, cargo ships, oil and chemical tankers , cattle carriers, harbor crafts, off shore platform, container ships

UNIT II REEFERS AND GAS CARRIERS 9
Introduction – Types , design considerations, safety – operation and controls, precaution during bunkering
UNIT III REMOTELY OPERABLE VEHICLE (ROV), UMS SHIPS 9

UNIT IV SUBMERSIBLES AND AUTONOMOUS UNDERWATER VEHICLE (AUV) 9

UNIT V MANNED AND UN MANNED SUBMERSIBLE 12

OUTCOMES:
- Students will be able understand the types of marine vehicles
- Students should get a preliminary knowledge in marine vehicle design, construction and its components

TEXT BOOKS:
1. Jonathan M. Ross, human factors for naval marine vehicle design and operation
3. R. Frank Busby, Manned Submersibles, Office of the oceanographer of the Navy, 1976

REFERENCES

OAE752 PRINCIPLES OF FLIGHT MECHANICS L T P C
3 0 0 3

OBJECTIVE:
- To make the student understand the performance of airplanes under various flight conditions like take off, cruise, landing, climbing, gliding, turning and other maneuvers.

UNIT I GENERAL CONCEPTS 9
International Standard atmosphere, IAS, EAS, TAS, Propeller theory- Froude momentum and blade element theories, Propeller co-efficients, Use of propeller charts, Performance of fixed and variable pitch propellers, High lift devices, Thrust augmentation

UNIT II DRAG OF BODIES 8
Streamlined and bluff body, Types of drag, Effect of Reynold's number on skin friction and pressure drag, Drag reduction of airplanes, Drag polar, Effect of Mach number on drag polar. Concept of sweep- effect of sweep on drag.
UNIT III STEADY LEVEL FLIGHT
General equation of motion of an airplane. Steady level flight, Thrust required and Power required, Thrust available and Power available for propeller driven and jet powered aircraft, Effect of altitude, maximum level flight speed, conditions for minimum drag and minimum power required, Effect of drag divergence on maximum velocity, Range and Endurance of Propeller and Jet aircrafts. Effect of wind on range and endurance.

UNIT IV GLIDING AND CLIMBING FLIGHT
Shallow and steep angles of climb, Rate of climb, Climb hodograph, Maximum Climb angle and Maximum Rate of climb- Effect of design parameters for propeller jet and glider aircrafts, Absolute and service ceiling, Cruise climb, Gliding flight, Glide hodograph

UNIT V ACCELERATED FLIGHT
Estimation of take-off and landing distances, Methods of reducing landing distance, level turn, minimum turn radius, maximum turn rate, bank angle and load factor, Constraints on load factor, SST and MSTR. Pull up and pull down maneuvers, V-n diagram.

TOTAL: 45 PERIODS

OUTCOMES:
Students will be able to
• Understand concepts of take-off, climb, cruise, turn, descent and landing performance.
• understand the performance characteristics of the different types of power plants
• Understand and predict the behavior of fixed wing aircraft undertaking a typical flight profile
• Understand the factors that influence aircraft design and limit aircraft performance.

TEXT BOOKS:

REFERENCES:

OIE751 ROBOTICS

OBJECTIVES:
• To understand the functions of the basic components of a Robot.
• To study the use of various types of End of Effectors and Sensors
• To impart knowledge in Robot Kinematics and Programming
• To learn Robot safety issues and economics.

UNIT I FUNDAMENTALS OF ROBOT
Robot - Definition - Robot Anatomy - Co ordinate Systems, Work Envelope Types and Classification-Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load- Robot Parts and their Functions-Need for Robots-Different Applications.
UNIT II ROBOT DRIVE SYSTEMS AND END EFFECTORS
Pneumatic Drives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and Comparison of all these Drives, End Effectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- Grippers, Magnetic Grippers, Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations.

UNIT III SENSORS AND MACHINE VISION

UNIT IV ROBOT KINEMATICS AND ROBOT PROGRAMMING
Forward Kinematics, Inverse Kinematics and Difference; Forward Kinematics and Reverse Kinematics of manipulators with Two, Three Degrees of Freedom (in 2 Dimension), Four Degrees of freedom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dynamics, Trajectory Generator, Manipulator Mechanism Design-Derivations and problems. Lead through Programming, Robot programming Languages-VAL Programming-Motion Commands, Sensor Commands, End Effector commands and simple Programs.

UNIT V IMPLEMENTATION AND ROBOT ECONOMICS
RGV, AGV; Implementation of Robots in Industries-Various Steps; Safety Considerations for Robot Operations - Economic Analysis of Robots.

TOTAL: 45 PERIODS

OUTCOME:
• Upon completion of this course, the students can able to apply the basic engineering knowledge for the design of robotics

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
- To provide an insight on the fundamentals of supply chain networks, tools and techniques.

UNIT I INTRODUCTION
Role of Logistics and Supply chain Management: Scope and Importance- Evolution of Supply Chain - Decision Phases in Supply Chain - Competitive and Supply chain Strategies – Drivers of Supply Chain Performance and Obstacles.

UNIT II SUPPLY CHAIN NETWORK DESIGN

UNIT III LOGISTICS IN SUPPLY CHAIN

UNIT IV SOURCING AND COORDINATION IN SUPPLY CHAIN
Role of sourcing supply chain supplier selection assessment and contracts- Design collaboration - sourcing planning and analysis - supply chain co-ordination - Bull whip effect – Effect of lack of co-ordination in supply chain and obstacles – Building strategic partnerships and trust within a supply chain.

UNIT V SUPPLY CHAIN AND INFORMATION TECHNOLOGY
The role IT in supply chain- The supply chain IT frame work Customer Relationship Management – Internal supply chain management – supplier relationship management – future of IT in supply chain – E-Business in supply chain.

TOTAL: 45 PERIODS

OUTCOME:
- The student would understand the framework and scope of supply chain networks and functions.

TEXTBOOK:

REFERENCES:

OBJECTIVE:
- To introduce system engineering concepts to design the manufacturing system for optimum utilization of source for effective functioning.
UNIT I INTRODUCTION 9
Definitions of Systems Engineering, Systems Engineering Knowledge, Life cycles, Life-cycle
phases, logical steps of systems engineering, Frame works for systems engineering.

UNIT II SYSTEMS ENGINEERING PROCESSES 9
Formulation of issues with a case study, Value system design, Functional analysis, Business
Process Reengineering, Quality function deployment, System synthesis, Approaches for
generation of alternatives.

UNIT III ANALYSIS OF ALTERNATIVES–I 9
Cross-impact analysis, Structural modeling tools, System Dynamics models with case studies,
Economic models: present value analysis – NPV, Benefits and costs over time, ROI, IRR; Work
and Cost breakdown structure,

UNIT IV ANALYSIS OF ALTERNATIVES–II 9
Reliability, Availability, Maintainability, and Supportability models; Stochastic networks and
Markov models, Queuing network optimization, Time series and Regression models, Evaluation
of large scale models

UNIT V DECISION ASSESSMENT 9
Decision assessment types, Five types of decision assessment efforts, Utility theory, Group
decision making and Voting approaches, Social welfare function; Systems Engineering methods
for Systems Engineering Management,

TOTAL : 45 PERIODS

OUTCOMES:
• The Student must be able to apply systems engineering principles ot make decision for
 optimization.
• Hence an understanding of the systems engineering discipline and be able to use the core
 principles and processes for designing effective system.

TEXT BOOK:

OTL751 TELECOMMUNICATION SYSTEM MODELING AND SIMULATION L T P C
3 0 0 3

OBJECTIVES:
• To gain knowledge in modeling of different communication systems.
• To know the techniques involved in performance estimation of telecommunication systems.
• To learn the use of random process concepts in telecommunication system simulation.
• To study the modeling methodologies of a telecommunication system.
• To study about the QAM digital radio link environment.

UNIT I SIMULATION OF RANDOM VARIABLES RANDOM PROCESS 9
Generation of random numbers and sequence – Gaussian and uniform random numbers Correlated
random sequences – Testing of random numbers generators – Stationary and uncorrelated noise –
Goodness of fit test.
UNIT II MODELING OF COMMUNICATION SYSTEMS
Radio frequency and optical sources – Analog and Digital signals – Communication channel and model – Free space channels – Multipath channel and discrete channel noise and interference.

UNIT III ESTIMATION OF PERFORMANCE MEASURE FOR SIMULATION
Quality of estimator – Estimation of SNR – Probability density function and bit error rate – Monte Carlo method – Importance sampling method – Extreme value theory.

UNIT IV SIMULATION AND MODELING METHODOLOGY
Simulation environment – Modeling considerations – Performance evaluation techniques – Error source simulation – Validation.

UNIT V CASE STUDIES
Simulations of QAM digital radio link environment – Light wave communication link – Satellite system.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, students would be able to
- Apply the constituents of a telecommunication systems.
- Analyze various modeling methodologies and simulation techniques.
- Estimate the performance measures of telecommunication systems.
- Apply system modeling in telecommunication.
- Demonstrate light wave communication and satellite communication systems.

TEXTBOOKS:

REFERENCES:

OML751 TESTING OF MATERIALS

OBJECTIVE:
To understand the various destructive and non-destructive testing methods of materials and its industrial applications.

UNIT I INTRODUCTION TO MATERIALS TESTING
Overview of materials, Classification of material testing, Purpose of testing, Selection of material, Development of testing, Testing organizations and its committee, Testing standards, Result Analysis, Advantages of testing.
UNIT II MECHANICAL TESTING
Introduction to mechanical testing, Hardness test (Vickers, Brinell, Rockwell), Tensile test, Impact test (Izod, Charpy) - Principles, Techniques, Methods, Advantages and Limitations, Applications. Bend test, Shear test, Creep and Fatigue test - Principles, Techniques, Methods, Advantages and Limitations, Applications.

UNIT III NON DESTRUCTIVE TESTING

UNIT IV MATERIAL CHARACTERIZATION TESTING
Macroscopic and Microscopic observations, Optical and Electron microscopy (SEM and TEM) - Principles, Types, Advantages and Limitations, Applications. Diffraction techniques, Spectroscopic Techniques, Electrical and Magnetic Techniques- Principles, Types, Advantages and Limitations, Applications.

UNIT V OTHER TESTING

TOTAL: 45 PERIODS

OUTCOMES:
- Identify suitable testing technique to inspect industrial component
- Ability to use the different technique and know its applications and limitations

TEXT BOOKS:

REFERENCES:

OIC751 TRANSDUCER ENGINEERING L T P C
3 0 0 3

OBJECTIVES:
- To understand how physical quantities are measured and how they are converted to electrical or other forms.
- To have an adequate knowledge in resistance, transducers.
- To develop the knowledge of inductance and capacitance transducers.
- To study the characteristics of Transducers.
- To impart knowledge on various types of transducers
UNIT I SCIENCE OF MEASUREMENTS AND CLASSIFICATION OF TRANSDUCERS 9

UNIT II CHARACTERISTICS OF TRANSDUCERS 9

UNIT III VARIABLE RESISTANCE TRANSDUCERS 9
Principle of operation, construction details, characteristics and applications of potentiometer, strain gauge, resistance thermometer, Thermistor, hot-wire anemometer, piezoresistive sensor and humidity sensor.

UNIT IV VARIABLE INDUCTANCE AND VARIABLE CAPACITANCE TRANSDUCERS 9
Induction potentiometer – Variable reluctance transducers – EI pick up – Principle of operation, construction details, characteristics and applications of LVDT –Capacitive transducer and types – Capacitor microphone – Frequency response.

UNIT V OTHER TRANSDUCERS 9
Piezoelectric transducer - Hall Effect transducer – Magneto elastic sensor- Digital transducers – Smart sensors - Fibre optic sensors- Film sensors-Introduction to MEMS and Nano sensors.

TOTAL : 45 PERIODS

OUTCOMES:
• Ability to model and analyze transducers.

TEXT BOOKS:

REFERENCES:
OBJECTIVES

- To make the student conversant with the water treatment methods including adsorption and oxidation process.
- To provide basic understandings about the requirements of water, its preliminary treatment.

UNIT I WATER QUALITY AND PRELIMINARY TREATMENT
9

UNIT II INDUSTRIAL WATER TREATMENT
9

UNIT III CONVENTIONAL TREATMENT METHODS
9

UNIT IV WASTEWATER TREATMENT
9

UNIT V ADSORPTION AND OXIDATION PROCESSES
9

OUTCOMES

- Will have knowledge about adsorption and oxidation process.
- Will gain idea about various methods available for water treatment.
- Will appreciate the necessity of water and acquire knowledge of preliminary treatment.

TEXTBOOKS:

REFERENCES