<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Contact Periods</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OCE551</td>
<td>Air Pollution and Control Engineering</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OBT552</td>
<td>Basics of Bioinformatics</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OIT552</td>
<td>Cloud Computing</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>OIT551</td>
<td>Database Management Systems</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>OTL552</td>
<td>Digital Audio Engineering</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>OME551</td>
<td>Energy Conservation and Management</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OBT553</td>
<td>Fundamentals of Nutrition</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>OCE552</td>
<td>Geographic Information System</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>OPY551</td>
<td>Herbal Technology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>OCH551</td>
<td>Industrial Nanotechnology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>OME553</td>
<td>Industrial Safety Engineering</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>OBT551</td>
<td>Introduction to Bioenergy and Biofuels</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>OML552</td>
<td>Microscopy</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>OBT554</td>
<td>Principles of Food Preservation</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>OMF551</td>
<td>Product Design and Development</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>ORO551</td>
<td>Renewable Energy Sources</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>OEI552</td>
<td>SCADA System and Applications Management</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>OCS551</td>
<td>Software Engineering</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19.</td>
<td>OTL551</td>
<td>Space Time Wireless Communication</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>OTL553</td>
<td>Telecommunication Network Management</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>21.</td>
<td>OTL554</td>
<td>Wavelets and Its Applications</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>22.</td>
<td>OIM551</td>
<td>World Class Manufacturing</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Si. No</td>
<td>Course Code</td>
<td>Course Title</td>
<td>Category</td>
<td>Contact Periods</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>OAI751</td>
<td>Agricultural Finance, Banking and Co-operation</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>OBT751</td>
<td>Analytical Methods and Instrumentation</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>OGI751</td>
<td>Climate Change and its Impact</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>OPY751</td>
<td>Clinical Trials</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>OCS751</td>
<td>Data Structures and Algorithms</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>OME751</td>
<td>Design of Experiments</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>OML752</td>
<td>Electronics Materials</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>OCH752</td>
<td>Energy Technology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>OCE751</td>
<td>Environmental and Social Impact Assessment</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>OEN751</td>
<td>Green Building Design</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>OBT573</td>
<td>Introduction of Cell Biology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>OCS752</td>
<td>Introduction to C Programming</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>OMF751</td>
<td>Lean Six Sigma</td>
<td>Lean</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>OAN751</td>
<td>Low Cost Automation</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>OBT752</td>
<td>Microbiology</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>OEC755</td>
<td>Photonic Networks</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>OCH751</td>
<td>Process Modeling and Simulation</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>OPY752</td>
<td>Regulatory Requirements in Pharmaceutical Industries</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>OME752</td>
<td>Supply Chain Management</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>OTL751</td>
<td>Telecommunication System Modeling and Simulation</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>OIC751</td>
<td>Transducers Engineering</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>OCY751</td>
<td>Waste Water Treatment</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
OBJECTIVE:

- To impart knowledge on the principle and design of control of Indoor/ particulate/ gaseous air pollutant and its emerging trends.

UNIT I INTRODUCTION
Structure and composition of Atmosphere – Definition, Scope and Scales of Air Pollution – Sources and classification of air pollutants and their effect on human health, vegetation, animals, property, aesthetic value and visibility- Ambient Air Quality and Emission standards.

UNIT II METEOROLOGY

UNIT III CONTROL OF PARTICULATE CONTAMINANTS

UNIT IV CONTROL OF GASEOUS CONTAMINANTS

UNIT V INDOOR AIR QUALITY MANAGEMENT
Sources, types and control of indoor air pollutants, sick building syndrome and Building related illness- Sources and Effects of Noise Pollution – Measurement – Standards –Control and Preventive measures.

OUTCOMES:
The students completing the course will have

- an understanding of the nature and characteristics of air pollutants, noise pollution and basic concepts of air quality management
- ability to identify, formulate and solve air and noise pollution problems
- ability to design stacks and particulate air pollution control devices to meet applicable standards.
- Ability to select control equipments.
- Ability to ensure quality, control and preventive measures.

TEXTBOOKS:

REFERENCES:
UNIT I BIOLOGICAL DATA ACQUISITION 9
The form of biological information. Retrieval methods for DNA sequence, protein sequence and protein structure information

UNIT II DATABASES 9
Format and Annotation: Conventions for database indexing and specification of search terms, Common sequence file formats. Annotated sequence databases - primary sequence databases, protein sequence and structure databases, Organism specific databases

UNIT III DATA PROCESSING 9
Data – Access, Retrieval and Submission: Standard search engines; Data retrieval tools – Entrez, DBGET and SRS; Submission of (new and revised) data; Sequence Similarity Searches: Local versus global. Distance metrics. Similarity and homology. Scoring matrices.

UNIT IV METHODS OF ANALYSIS 9
Dynamic programming algorithms, Needleman-wunsch and Smith-waterman. Heuristic Methods of sequence alignment, FASTA, and PSI BLAST. Multiple Sequence Alignment and software tools for pairwise and multiple sequence alignment;

UNIT V APPLICATIONS 9
Genome Annotation and Gene Prediction; ORF finding; Phylogenetic Analysis: Comparative genomics, orthologs, paralogs. Genome analysis – Genome annotation

TOTAL: 45 PERIODS

TEXT BOOKS
1. Introduction to Bioinformatics by Arthur K. Lesk, Oxford University Press.
5. Beginning Perl for Bioinformatics: An introduction to Perl for Biologists by James Tindall, O'Reilley Media

REFERENCE

OBJECTIVES:
- To learn about the concept of cloud and utility computing.
- To have knowledge on the various issues in cloud computing.
- To be familiar with the lead players in cloud.
- To appreciate the emergence of cloud as the next generation computing paradigm.
UNIT I INTRODUCTION TO CLOUD COMPUTING

UNIT II VIRTUALIZATION

UNIT III CLOUD ARCHITECTURE, SERVICES AND STORAGE

UNIT IV RESOURCE MANAGEMENT AND SECURITY IN CLOUD

UNIT V CASE STUDIES

TOTAL: 45 PERIODS

OUTCOMES:
On Completion of the course, the students should be able to:
- Articulate the main concepts, key technologies, strengths and limitations of cloud computing.
- Learn the key and enabling technologies that help in the development of cloud.
- Develop the ability to understand and use the architecture of compute and storage cloud, service and delivery models.
- Explain the core issues of cloud computing such as resource management and security.
- Be able to install and use current cloud technologies.
- Choose the appropriate technologies, algorithms and approaches for implementation and use of cloud.

TEXT BOOKS:

REFERENCES:
OBJECTIVES

- To learn the fundamentals of data models
- To learn conceptual modeling using ER diagrams.
- To study SQL queries and database programming
- To learn proper designing of relational database.
- To understand database security concepts
- To understand Information retrieval techniques

UNIT I DBMS AND CONCEPTUAL DATA MODELING 9
Purpose of Database System – Data independence - Data Models – Database System Architecture –
Conceptual Data modeling: ER models - Enhanced-ER Model. Introduction to relational databases –
Relational Model – Keys – ER-to-Relational Mapping. Modeling of a library management system.

UNIT II DATABASE QUERYING 11
Relational Algebra – SQL: fundamentals – DDL – Specifying integrity constraints - DML – Basic
retrieval queries in SQL - Complex SQL retrieval queries – nested queries – correlated queries – joins
- aggregate functions. Creating a table, populating data, adding integrity constraints, querying tables
with simple and complex queries.

UNIT III DATABASE PROGRAMMING 7
Database programming with function calls, stored procedures - views – triggers. Embedded SQL.
ODBC connectivity with front end tools. Implementation using ODBC/JDBC and SQL/PSM,
implementing functions, views, and triggers in MySQL / Oracle.

UNIT IV DATABASE DESIGN 9
Functional Dependencies – Design guidelines – Normal Forms: first, second, third – Boyce/Codd
Normal Form – Normalization algorithms. Design of a banking database system / university
database system.

UNIT V ADVANCED TOPICS 9
Database security issues – Discretionary access control – role based access – Encryption and public
key infrastructures – challenges. Information Retrieval: IR Concepts, Retrieval Models, Queries in IR
systems.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to:
- Understand relational data model, evolve conceptual model of a given problem, its mapping to
 relational model and Normalization
- Query the relational database and write programs with database connectivity
- Understand the concepts of database security and information retrieval systems

TEXT BOOKS:
 Pearson, 2011.

REFERENCES:
OBJECTIVES:

- To understand the concept of fundamentals of digital audio.
- To understand the concept of audio in digital TV broadcasting.
- To understand the various codes of digital coding.
- To understand the concept of digital audio tape recorder.
- To analyze the concept internet audio in digital audio engineering.

UNIT I FUNDAMENTALS OF DIGITAL AUDIO 9

UNIT II RECORDING AND TRANSMISSION PRINCIPLES 9
PCM – record processing – recording oriented codes – transmission oriented codes – audio in digital TV broadcasting – DAB.

UNIT III DIGITAL CODING & COMPRESSION 9

UNIT IV DIGITAL AUDIO TECHNIQUES 9

UNIT V APPLICATIONS OF DIGITAL AUDIO 9

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, students would be able to

- Analyze the type of dither.
- Analyze the recording and transmission principles in digital audio.
- Analyze the various compression techniques.
- Design and analyze the digital audio editing.
- Analyze the various application of digital audio.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
At the end of the course, the student is expected to
- Understand and analyse the energy data of industries
- Carry out energy accounting and balancing
- Conduct energy audit and suggest methodologies for energy savings and
- Utilise the available resources in optimal ways

UNIT I INTRODUCTION

UNIT II ELECTRICAL SYSTEMS

UNIT III THERMAL SYSTEMS

UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES
Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems – Cooling Towers – D.G. sets

UNIT V ECONOMICS
Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

OUTCOMES:
Upon completion of this course, the students can able to analyse the energy data of industries.
- Can carry out energy accounting and balancing
- Can suggest methodologies for energy savings

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- The course aims to develop the knowledge of students in the basic area of Food Chemistry.
- This is necessary for effective understanding of food processing and technology subjects.
- This course will enable students to appreciate the similarities and complexities of the chemical components in foods.

UNIT I OVERVIEW OF NUTRITION
Definition, six classes of nutrients, calculating energy values from food, using the RDA, nutritional status, nutritional requirement, malnutrition, nutritional assessment of individuals and populations, dietary recommendations, Balanced diet planning: Diet planning principles, dietary guidelines; food groups, exchange lists, personal diet analysis;

UNIT II DIGESTION
Digestion, Absorption and Transport: Anatomy and physiology of the digestive tract, mechanical and chemical digestion, absorption of nutrients.

UNIT III CARBOHYDRATES
Glycemic and Non-glycemic carbohydrates, blood glucose regulation, recommendations of sugar intake for health, health effects of fiber and starch intake, Artificial sweeteners; Importance of blood sugar regulation, Dietary recommendations for NIDDM and IDDM

UNIT IV PROTEINS & LIPIDS
Proteins; Food enzymes ; Texturized proteins; Food sources, functional role and uses in foods. Review of structure, composition & nomenclature of fats. Non-glyceride components in fats & oils; Fat replacements; Food sources, functional role and uses in foods. Health effects and recommended intakes of lipids. Recommended intakes of proteins, Deficiency- short term and long term effects.

UNIT V METABOLISM, ENERGY BALANCE AND BODY COMPOSITION
Energy Balance; body weight and body composition; health implications; obesity, BMR and BMI calculations; Weight Control: Fat cell development; hunger, satiety and satiation; dangers of unsafe weight loss schemes; treatment of obesity; attitudes and behaviours toward weight control. Food and Pharmaceutical grades; toxicities, deficiencies, factors affecting bioavailability, Stability under food processing conditions.

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
OBJECTIVES:

- To introduce the fundamentals and components of Geographic Information System
- To provide details of spatial data structures and input, management and output processes.

UNIT I FUNDAMENTALS OF GIS
Introduction to GIS - Basic spatial concepts - Coordinate Systems - GIS and Information Systems - Definitions – History of GIS - Components of a GIS – Hardware, Software, Data, People, Methods – Proprietary and open source Software - Types of data – Spatial, Attribute data- types of attributes – scales/ levels of measurements.

UNIT II SPATIAL DATA MODELS

UNIT III DATA INPUT AND TOPOLOGY

UNIT IV DATA ANALYSIS
Vector Data Analysis tools - Data Analysis tools - Network Analysis - Digital Education models - 3D data collection and utilisation.

UNIT V APPLICATIONS

TOTAL: 45 PERIODS

OUTCOME:
This course equips the student to

- Have basic idea about the fundamentals of GIS.
- Understand the types of data models.
- Get knowledge about data input and topology.
- Gain knowledge on data quality and standards.
- Understand data management functions and data output

TEXT BOOKS:

REFERENCE:
OBJECTIVES:
- To acquire the basic knowledge of Indian system of medicines.
- To enable the students to know about the plant tissue culture techniques and learn about the instruments used in the extraction, isolation, purification and identification of herbal drugs.

UNIT I INDIAN SYSTEMS OF MEDICINE

UNIT II IN-VITRO CULTURE OF MEDICINAL PLANTS
Requirements – Setting up a tissue culture lab – Basic laboratory procedure – Processing of plant tissue culture – Growth profile – Growth measurement – Plant tissue culture methods – Callus culture – Types of tissue culture – Tissue culture of medicinal plants – Applications of plant tissue culture.

UNIT III PHYTO PHARMACEUTICALS
Traditional and modern extraction techniques: Successive solvent extraction- Super critical fluid extraction – Steam distillation – Head space techniques – Sepbox –General extraction process: Carbohydrates – Proteins – Alkaloids –Glycosides. Isolation and purification of phytochemicals (Eg. Quinine from cinchona, vincristine from Vinca, sennoside from senna, Euginol from clove oil.)

UNIT IV SCREENING METHODS FOR HERBAL DRUGS

UNIT V STANDARDIZATION AND CONSERVATION OF HERBAL DRUGS
Importance of standardization - Standardization of single drugs and compound formulations – WHO guidelines for the quality assessment herbal drugs - Conservation strategies of medicinal plants – Government policies for protecting the traditional knowledge.

TOTAL: 45 PERIODS

OUTCOMES:
The student will be able to
- Understand the basic principle, design, control and processing techniques of medicinal plants and their derivatives.
- Find a solution to problems, including social, scientific and ethical issues connected with the use of medicinal plants in the different field of applications.
- Describe the biological effects of medicinal plants with legislation and governmental policies for conserving medicinal plants.

TEXT BOOKS:
REFERENCES:

OCH551 INDUSTRIAL NANOTECHNOLOGY

OBJECTIVES
- To elucidate on advantages of nanotechnology based applications in each industry
- To provide instances of contemporary industrial applications of nanotechnology
- To provide an overview of future technological advancements and increasing role of nanotechnology in each industry.

UNIT I NANO ELECTRONICS

UNIT II BIONANOTECHNOLOGY

UNIT III NANOTECHNOLOGY IN CHEMICAL INDUSTRY
Nanocatalysts – Smart materials – Heterogenous nanostructures and composites – Nanostructures for Molecular recognition (Quantum dots, Nanorods, Nanotubes) – Molecular Encapsulation and its applications – Nanoporous zeolites – Self-assembled Nanoreactors

UNIT IV NANOTECHNOLOGY IN AGRICULTURE AND FOOD TECHNOLOGY
Nanotechnology in Agriculture - Precision farming. Smart delivery system – Insecticides using nanotechnology – Potential of nano-fertilizers - Nanotechnology in Food industry

UNIT V NANOTECHNOLOGY IN TEXTILES AND COSMETICS
Nanofibre production - Electrospinning – Controlling morphologies of nanofibers – Tissue engineering application– Polymer nanofibers - Nylon-6 nanocomposites from polymerization - Nano-filled polypropylene fibers - Nano finishing in textiles (UV resistant, antibacterial, hydrophilic, self-cleaning, flame retardant finishes) – Modern textiles Cosmetics – Formulation of Gels, Shampoos, Hair-conditioners

TOTAL: 45 PERIODS
REFERENCES:

OME553 INDUSTRIAL SAFETY ENGINEERING
L T P C
3 0 0 3

OBJECTIVES:
- To provide in depth knowledge in Principles of Environmental safety and its applications in various fields.
- To provide the knowledge of air and water pollution and their control.
- To expose the students to the basics in hazardous waste management.

UNIT I SAFETY IN METAL WORKING AND WOOD WORKING MACHINES
General safety rules, principles, maintenance, Inspections of turning machines, boring machines, milling machine, planning machine and grinding machines, CNC machines, Wood working machinery, types, safety principles, electrical guards, work area, material handling, inspection, standards and codes- saws, types, hazards. Inspection of material handling equipments.

UNIT II SAFETY IN WELDING AND GAS CUTTING
Gas welding and oxygen cutting, resistances welding, arc welding and cutting, common hazards, personal protective equipment, training, safety precautions in brazing, soldering and metalizing – explosive welding, selection, care and maintenance of the associated equipment and instruments – safety in generation, distribution and handling of industrial gases-colour coding – flashback arrestor – leak detection-pipe line safety-storage and handling of gas cylinders.

UNIT III SAFETY IN COLD FORMING AND HOT WORKING OF METALS
Cold working, power presses, point of operation safe guarding, auxiliary mechanisms, feeding and cutting mechanism, hand or foot-operated presses, power press electric controls, power press set up and die removal, inspection and maintenance-metal sheers-press brakes - Hot working safety in forging, hot rolling mill operation, safe guards in hot rolling mills – hot bending of pipes, hazards and control measures - Safety in Gas Furnace Operation, Cupola, Crucibles, Ovens, Foundry Health Hazards, Work Environment, Material Handling in Foundries, Foundry Production Cleaning And Finishing Foundry Processes.

UNIT IV SAFETY IN FINISHING, INSPECTION AND TESTING
Heat treatment operations, Electro Plating, Paint Shops, Sand And Shot Blasting, Safety In Inspection And Testing, Dynamic Balancing, Hydro Testing, Valves, Boiler Drums And Headers, Pressure Vessels, Air Leak Test, Steam Testing, Safety In Radiography, Personal Monitoring Devices, Radiation Hazards, Engineering And Administrative Controls, Indian Boilers Regulation.
UNIT V INDUSTRIAL SAFETY
Advances in Industrial Ergonomics and safety, Work and protective clothing, Theory and practice of Industrial safety, Industrial Noise and Vibration, Machine Guarding and Industrial machine safety, Manual material handling, Modeling for safety and health.

TOTAL: 45 PERIODS

OUTCOMES:
Students will be able to
- Illustrate and familiarize the basic concepts and scope of engineering safety.
- Understand the standards of professional conduct that are published by professional safety organizations and certification bodies.
- Illustrate the importance of safety of employees while working with machineries.

REFERENCES:
7. Dr. Vincent Matthew Ciriello (Prediction of the maximum acceptable weight of lift from the frequency of lift, journal of industrial ergonomics,(2014), pg .225–237

OBT551 INTRODUCTION TO BIOENERGY AND BIOFUELS

OBJECTIVES
- This course will be focussed on achievement, acquisition of knowledge and enhancement of comprehension of information regarding bioenergy and biofuel technologies and their sustainable applications.

UNIT I CONCEPTS
Biopower, Bioheat, Biofuels, advanced liquid fuels, drop-in fuels, biobased products

UNIT II FEEDSTOCKS

UNIT III CONVERSION TECHNOLOGIES
Biorefinery concept – biorefineries and end products, Biochemical conversion – hydrolysis, enzyme and acid hydrolysis, fermentation, anaerobic digestion and trans-esterification, Thermochemical conversion – Combustion, Gasification, Pyrolysis, other thermochemical conversion technologies. Scaling up of emerging technologies.
UNIT IV BIOFUELS 9
Pros and cons of Biofuels, Algal biofuels, Cyanobacteria and producers of biofuels, Jatropha as biodiesel producer, Bioethanol, Biomethane, biohydrogen, biobutanol, metabolic engineering of fuel molecules, Engineering aspects of biofuels, Economics of biofuels

UNIT V SUSTAINABILITY & RESILIENCE 9
Environmental Sustainability, bioenergy sustainability, emissions of biomass to power generation applications, emissions from biofuels. ILUC issues, Carbon footprint, Advanced low carbon fuels

TEXTBOOKS:

REFERENCES:
2. Bioenergy: Biomass to Biofuels by Anju Dahiya
3. Bioenergy: Principles and Applications by Yebo Li and Samir Kumar Khanal
4. Bioenergy by Judy D. Wall and Caroline S. Harwood
5. Bioenergy: Sustainable Perspectives by Ted Weyland

OML552 MICROSCOPY L T P C
3 0 0 3

OBJECTIVES:
- This course will cover the basic principles and techniques of optical and electron microscopy.
- This course also deals with the sample preparation techniques for the microstructural analysis.

UNIT I INTRODUCTION 9

UNIT II MICROSCOPY 9

UNIT III ELECTRON MICROSCOPY 9
UNIT IV SAMPLE PREPARATION FOR MICROSTRUCTURAL ANALYSIS 9

UNIT V CHEMICAL ANALYSIS 9

OUTCOMES:
- Able to understand the physics behind the microscopy.
- Ability to describe the principle, construction and working of light microscopy.
- Ability to appreciate about electron microscopy.
- Ability to understand about the important of sample preparation technique.
- Ability to identify the appropriate spectroscopy technique for chemical analysis.

TEXT BOOKS

REFERENCES:

OBT554 PRINCIPLES OF FOOD PRESERVATION L T P C 3 0 0 3

OBJECTIVE:
- The course aims to introduce the students to the area of Food Preservation. This is necessary for effective understanding of a detailed study of food processing and technology subjects.

UNIT I FOOD PRESERVATION AND ITS IMPORTANCE 9
Introduction to food preservation. Wastage of processed foods; Shelf life of food products; Types of food based on its perishability. Traditional methods of preservation.

UNIT II METHODS OF FOOD HANDLING AND STORAGE 9
Nature of harvested crop, plant and animal; storage of raw materials and products using low temperature, refrigerated gas storage of foods, gas packed refrigerated foods, sub atmospheric storage, Gas atmospheric storage of meat, grains, seeds and flour, roots and tubers; freezing of raw and processed foods. retort pouch packing, Aseptic packaging.
UNIT III THERMAL METHODS
Newer methods of thermal processing; batch and continuous; In container sterilization- canning; application of infra-red microwaves; ohmic heating; control of water activity; preservation by concentration and dehydration; osmotic methods

UNIT IV DRYING PROCESS FOR TYPICAL FOODS
Rate of drying for food products; design parameters of different type of dryers; properties of air-water mixtures. Psychrometric chart, freezing and cold storage.freeze concentration, dehydro-freezing, freeze drying, IQF; calculation of refrigeration load, design of freezers and cold storages.

UNIT V NON-THERMAL METHODS
Super Critical Technology for Preservation - Chemical preservatives, preservation by ionizing radiations, ultrasonics, high pressure, fermentation, curing, pickling, smoking, membrane technology. Hurdle technology,

TOTAL: 45 PERIODS

OUTCOMES:
On completion of the course the students are expected to
• Be aware of the different methods applied to preserving foods.

TEXT BOOKS:

REFERENCES:

OMF551 PRODUCT DESIGN AND DEVELOPMENT

OBJECTIVE:
• The course aims at providing the basic concepts of product design, product features and its architecture so that student can have a basic knowledge in the common features a product has and how to incorporate them suitably in product.

UNIT I INTRODUCTION

UNIT II CONCEPT GENERATION AND SELECTION
UNIT III PRODUCT ARCHITECTURE

UNIT IV INDUSTRIAL DESIGN

UNIT V DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT

TOTAL: 45 PERIODS

OUTCOME:
- The student will be able to design some products for the given set of applications; also the knowledge gained through prototyping technology will help the student to make a prototype of a problem and hence product design and development can be achieved.

TEXT BOOK:

REFERENCES:

ORO551 RENEWABLE ENERGY SOURCES L T P C
3 0 0 3

OBJECTIVES:
- To get exposure on solar radiation and its environmental impact to power.
- To know about the various collectors used for storing solar energy.
- To know about the various applications in solar energy.
- To learn about the wind energy and biomass and its economic aspects.
- To know about geothermal energy with other energy sources.
UNIT I PRINCIPLES OF SOLAR RADIATION
Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.

UNIT II SOLAR ENERGY COLLECTION
Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

UNIT III SOLAR ENERGY STORAGE AND APPLICATIONS
Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applications- solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.

UNIT IV WIND ENERGY

UNIT V GEOTHERMAL ENERGY:
Resources, types of wells, methods of harnessing the energy, potential in India. OCEAN ENERGY: OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics. DIRECT ENERGY CONVERSION: Need for DEC, Carnot cycle, limitations, principles of DEC.

TOTAL : 45 PERIODS

OUTCOMES:
- Understanding the physics of solar radiation.
- Ability to classify the solar energy collectors and methodologies of storing solar energy.
- Knowledge in applying solar energy in a useful way.
- Knowledge in wind energy and biomass with its economic aspects.
- Knowledge in capturing and applying other forms of energy sources like wind, biogas and geothermal energies.

TEXT BOOKS:

REFERENCES:
COURSE OBJECTIVE:
- To understand about the SCADA system components and SCADA communication protocols
- To provide knowledge about SCADA applications in power system

UNIT I INTRODUCTION TO SCADA
Evolution of SCADA, SCADA definitions, SCADA Functional requirements and Components, SCADA Hierarchical concept, SCADA architecture, General features, SCADA Applications, Benefits

UNIT II SCADA SYSTEM COMPONENTS
Remote Terminal Unit (RTU), Interface units, Human- Machine Interface Units (HMI), Display Monitors/Data Logger Systems, Intelligent Electronic Devices (IED), Communication Network, SCADA Server, SCADA Control systems and Control panels

UNIT III SCADA COMMUNICATION
SCADA Communication requirements, Communication protocols: Past, Present and Future, Structure of a SCADA Communications Protocol, Comparison of various communication protocols, IEC61850 based communication architecture, Communication media like Fiber optic, PLCC etc. Interface provisions and communication extensions, synchronization with NCC, DCC.

UNIT IV SCADA MONITORING AND CONTROL
Online monitoring the event and alarm system, trends and reports, Blocking list, Event disturbance recording. Control function: Station control, bay control, breaker control and disconnector control.

UNIT V SCADA APPLICATIONS IN POWER SYSTEM
Applications in Generation, Transmission and Distribution sector, Substation SCADA system Functional description, System specification, System selection such as Substation configuration, IEC61850 ring configuration, SAS cubicle concepts, gateway interoperability list, signal naming concept. System Installation, Testing and Commissioning.

CASE STUDIES:
SCADA Design for 66/11KV and 132/66/11KV or 132/66 KV any utility Substation and IEC 61850 based SCADA Implementation issues in utility Substations,

TOTAL: 45 PERIODS

OUTCOME:
- This course gives knowledge about various system components and communication protocols of SCADA system and its applications.

REFERENCES:
1. Stuart A. Boyer: SCADA-Supervisory Control and Data Acquisition, Instrument Society of America Publications, USA, 2004
4. David Bailey, Edwin Wright, Practical SCADA for industry, Newnes, 2003
5. Michael Wiebe, A guide to utility automation: AMR, SCADA, and IT systems for electric Power, PennWell 1999
OBJECTIVES:
- To understand the phases in a software development project
- To learn project management concepts
- To understand the concepts of requirements analysis and modeling.
- To understand software design methodologies
- To learn various testing methodologies
- To be familiar with issues related to software maintenance

UNIT I SOFTWARE PROCESS

UNIT II PLANNING AND ESTIMATION

UNIT III REQUIREMENTS ANALYSIS AND SPECIFICATION

UNIT IV SOFTWARE DESIGN AND IMPLEMENTATION

UNIT V TESTING AND MAINTENANCE

OUTCOMES:
At the end of this course, the students will be able to
- Understand different software life cycle models.
- Perform software requirements analysis
- Apply systematic methodologies for software design and deployment.
- Understand various testing approaches and maintenance related issues.
- Plan project schedule, and estimate project cost and effort required.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To understand the concept of multiple antenna propagation.
- To understand the concept of capacity of frequency flat deterministic MIMO channel.
- To understand the concept of transmitter and receiver diversity technique.
- To design the coding for frequency flat channel.
- To analyze the concept of micro multi user detection.

UNIT I MULTIPLE ANTENNA PROPAGATION AND ST CHANNEL CHARACTERIZATION

UNIT II CAPACITY OF MULTIPLE ANTENNA CHANNELS

Capacity of frequency flat deterministic MIMO channel: Channel unknown to the transmitter – Channel known to the transmitter – capacity of random MIMO channels – Influence of ricean fading – fading correlation – XPD and degeneracy on MIMO capacity – Capacity of frequency selective MIMO channels.

UNIT III SPATIAL DIVERSITY

UNIT IV MULTIPLE ANTENNA CODING AND RECEIVERS

UNIT V ST OFDM, SPREAD SPECTRUM AND MIMO MULTIUSER DETECTION

OUTCOMES:
At the end of the course, students would be able to
- Design and analyze the channel characterization.
- Analyze the capacity of random MIMO channel.
- Design and analyze the order diversity and channel variability.
- Analyze the multiple antenna coding and receivers.
- Analyze the MIMO multi user detection
TEXT BOOKS:

REFERENCES:

OTL553 TELECOMMUNICATION NETWORK MANAGEMENT

OBJECTIVES:
- To understand the concept of network management standards.
- To design the common management information service element model.
- To understand the various concept of information modelling.
- To analyze the concept of SNMPv1 and SNMPv2 protocol.
- To analyze the concept of examples of network management.

UNIT I FOUNDATIONS

UNIT II COMMON MANAGEMENT INFORMATION SERVICE ELEMENT
CMISE model—service definitions—errors—scooping and filtering features—synchronization—functional units—association services—common management information protocol specification.

UNIT III INFORMATION MODELING FOR TMN
Rationale for information modeling—management information model—object oriented modeling paradigm—structure of management information—managed object class definition—management information base.

UNIT IV SIMPLE NETWORK MANAGEMENT PROTOCOL

UNIT V NETWORK MANAGEMENT EXAMPLES

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, students would be able to
- Design and analyze of fault management.
- Analyze the common management information protocol specifications.
- Design and analyze of management information model.
- Design the simple network management protocol.
- Design the various types of network management tools.

TEXT BOOKS:

REFERENCES:

OTL554 WAVELETS AND ITS APPLICATIONS

OBJECTIVES:
- To understand the concept of Fourier transform and short time Fourier transform.
- To understand the concept of continuous time wavelet transform,
- To analyze the concept of interpolation and decimation.
- To understand the types of filter bank.
- To analyze the concept of image compression.

UNIT I FOURIER ANALYSIS
Fourier basis & Fourier Transform – failure of Fourier Transform – Need for Time-Frequency Analysis – Heisenberg’s Uncertainty principle – Short time Fourier transform (STFT) – short comings of STFT– Need for Wavelets

UNIT II CWT AND MRA

UNIT III INTRODUCTION TO MULTIRATE SYSTEMS
Decimation and Interpolation in Time domain - Decimation and Interpolation in Frequency domain – Multi rate systems for a rational factor.

UNIT IV FILTER BANKS AND DWT
Two channel filter bank – Perfect Reconstruction (PR) condition – relationship between filter banks and wavelet basis – DWT – Filter banks for Daubachies wavelet function.

UNIT V APPLICATIONS

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, students would be able to
- Analyze the need for time frequency analysis..
- Design the concept of multi resolution analysis.
- Analyze the multirate system for rational factor.
- Analyze the relationship between the filter bank and wavelet.
- Analyze the application of wavelet.

TEXT BOOK:

REFERENCE BOOKS:

OIM551 WORLD CLASS MANUFACTURING

OBJECTIVES:
- Understanding of the concept and importance of strategy planning for manufacturing industries
- To apply principles and techniques in the identifiable formulation and implementation of manufacturing strategy for competitive in global context.

UNIT I INDUSTRIAL DECLINE AND ASCENDANCY 9
Manufacturing excellence - US Manufacturers - French Manufacturers - Japan decade – American decade - Global decade

UNIT II BUILDING STRENGTH THROUGH CUSTOMER – FOCUSED PRINCIPLES 9
Customer - Focused principles - General principles - Design - Operations - Human resources - Quality and Process improvement - Promotion and Marketing

UNIT III VALUE AND VALUATION 9
Product Costing - Motivation to improve - Value of the enterprises QUALITY - The Organization: Bulwark of stability and effectiveness - Employee stability – Quality Individuals Vs. Teams - Team stability and cohesiveness - Project cohesiveness and stability

UNIT IV STRATEGIC LINKAGES 9
Product decisions and customer service - Multi-company planning - Internal manufacturing planning - Soothing the demand turbulence

UNIT V IMPEDIMENTS 9
Bad plant design - Mismanagement of capacity - Production Lines - Assembly Lines – Whole Plant Associates - Facilitators - Teamsmanship - Motivation and reward in the age of continuous improvement

TOTAL: 45 PERIODS
OUTCOMES:
- Able to understand the concept and the importance of manufacturing strategy for industrial enterprise competitiveness.
- Apply appropriate techniques in the analysis and evaluation of company's opportunities for enhancing competitiveness in the local regional and global context.
- Identify formulation and implement strategies for manufacturing and therefore enterprise competitiveness.

TEXT BOOKS:

OAI751 AGRICULTURAL FINANCE, BANKING AND CO-OPERATION L T P C
3 0 0 3

OBJECTIVES:
- To make the students aware about the agricultural Finance, Banking and Cooperation.
- To acquaint the students with the basic concepts, principles and functions of management.
- To understand the process of finance banking and cooperation.

UNIT I AGRICULTURAL FINANCE - NATURE AND SCOPE
Agricultural Finance: Definition, Importance, Nature and Scope - Agricultural Credit: Meaning, Definition, Need and Classification - Sources of credit - Role of institutional and non - Institutional agencies: Advantages and Disadvantages - Rural indebtedness: consequences of rural indebtedness - History and Development of rural credit in India.

UNIT II FARM FINANCIAL ANALYSIS

UNIT III FINANCIAL INSTITUTIONS
Institutional Lending Agencies - Commercial banks: Nationalization, Agricultural Development Branches - Area Approach - Priority Sector Lending - Regional Rural Banks, Lead bank, Scale of finance - Higher financial institutions: RBI, NABARD, AFC, ADB, World Bank and Deposit Insurance and Credit Guarantee Corporation of India - Microfinance and its role in poverty alleviation - Self-Help Groups - Non -Governmental Organizations - Rural credit policies followed by State and Central Government - Subsidized farm credit, Differential Interest Rate (DIR), Kisan Credit Card (KCC) Scheme - Relief Measures and Loan Waiver Scheme and Know Your Customer (KYC).
UNIT IV CO-OPERATION
Co-operation: Philosophy and Principles - History of Indian Cooperative Credit Movement: Pre and Post-Independence periods and Cooperation in different plan periods - Cooperative credit institutions: Two tier and three tier structure, Functions: provision of short term and long term credit, Strength and weakness of cooperative credit system, Policies for revitalizing cooperative credit: Salient features of Vaithiyananthan Committee Report on revival of rural cooperative credit institutions, Reorganisation of Cooperative credit structure in Andhra Pradesh and single window system and successful cooperative credit systems in Gujarat, Maharashtra, Punjab etc. - Special cooperatives: LAMPS and FSS: Objectives, role and functions - National Cooperative Development Corporation (NCDC) and National Federation of State Cooperative Banks Ltd., (NAFSCOB) - Objectives and Functions.

UNIT V BANKING AND INSURANCE

TOTAL: 45 PERIODS

OUTCOME:
After completion of this course, the students will
- Be familiar with agricultural finance, Banking, cooperation and basic concepts, principles and functions of management.

REFERENCES:

OBT751 ANALYTICAL METHODS AND INSTRUMENTATION L T P C
3 0 0 3

UNIT I SPECTROMETRY

UNIT II MOLECULAR SPECTROSCOPY
UNIT III NMR AND MASS SPECTROMETRY

UNIT IV SEPARATION METHODS

UNIT V ELECTRO ANALYSIS AND SURFACE MICROSCOPY

TOTAL: 45 PERIODS

TEXT BOOKS

REFERENCES:

OGI751 CLIMATE CHANGE AND ITS IMPACT

OBJECTIVES:
- To understand the basics of weather and climate
- To have an insight on Atmospheric dynamics and transport of heat
- To develop simple climate models and evaluate climate changes using models

UNIT I BASICS OF WEATHER AND CLIMATE:
UNIT II
ATMOSPHERIC DYNAMICS:
9

UNIT III
GLOBAL CLIMATE
9

UNIT IV
CLIMATE SYSTEM PROCESSES
9

UNIT V
CLIMATE CHANGE MODELS
9

OUTCOMES:
At the end of the course the student will be able to understand
- The concepts of weather and climate
- The principles of Atmospheric dynamics and transport of heat and air mass
- The develop simple climate models and to predict climate change

TEXTBOOKS:

OPY751
CLINICAL TRIALS
L T P C
3 0 0 3

OBJECTIVES:
- To highlight the epidemiologic methods, study design, protocol preparation
- To gain knowledge in the basic bio-statistical techniques involved in clinical research.
- To describe the principles involved in ethical, legal and regulatory issues in clinical trials.
UNIT I ROLE OF CLINICAL TRIALS IN NEW DRUG DEVELOPMENT
Drug Discovery, regulatory guidance and governance, pharmaceutical manufacturing, nonclinical research, clinical trials, post-marketing surveillance, ethical conduct during clinical trials.

UNIT II FUNDAMENTALS OF TRIAL DESIGN
Randomised clinical trials, uncontrolled trials. Protocol development, endpoints, patient selection, source and control of bias, randomization, blinding, sample size and power.

UNIT III ALTERNATE TRIAL DESIGNS
Crossover design, factorial design, equivalence trials, bioequivalence trials, non-inferiority trials, cluster randomized trials, multi-center trials.

UNIT IV BASICS OF STATISTICAL ANALYSIS
Types of data and normal distribution, significance tests and confidence intervals, comparison of means, comparison of proportions, analysis of survival data, subgroup analysis, regression analysis, missing data.

UNIT V REPORTING OF TRIALS
Overview of reporting, trial profile, presenting baseline data, use of tables, figures, critical appraisal of report, meta-analysis.

TOTAL: 45 PERIODS

OUTCOMES:
The student will be able to
- Explain key concepts in the design of clinical trials.
- Describe study designs used, identify key issues in data management for clinical trials.
- Describe the roles of regulatory affairs in clinical trials.

TEXT BOOKS:

REFERENCES:

OCS751 DATA STRUCTURES AND ALGORITHMS
OBJECTIVES:
- To understand the various algorithm design and analysis techniques
- To learn linear data structures – lists, stacks, and queues
- To learn different sorting and searching algorithms
- To understand Tree and Graph data structures
UNIT I ALGORITHM ANALYSIS, LIST ADT

UNIT II STACKS AND QUEUES

UNIT III SEARCHING AND SORTING ALGORITHMS

UNIT IV TREES

UNIT V GRAPHS

OUTCOMES:
At the end of this course, the students should be able to:
- Implement linear data structures and solve problems using them.
- Implement and apply trees and graphs to solve problems.
- Implement the various searching and sorting algorithms.

TEXT BOOKS:

REFERENCES:

TOTAL: 45 PERIODS
OBJECTIVE:
- To impart knowledge on various types of experimental designs, conduct of experiments and data analysis techniques.

UNIT I FUNDAMENTALS OF EXPERIMENTAL DESIGNS 9
Hypothesis testing – single mean, two means, dependant/ correlated samples – confidence intervals, Experimentation – need, Conventional test strategies, Analysis of variance, F-test, terminology, basic principles of design, steps in experimentation – choice of sample size – Normal and half normal probability plot – simple linear and multiple linear regression, testing using Analysis of variance.

UNIT II SINGLE FACTOR EXPERIMENTS 9
Completely Randomized Design- effect of coding the observations- model adequacy checking- estimation of model parameters, residuals analysis- treatment comparison methods-Duncan’s multiple range test, Newman-Keuel’s test, Fisher’s LSD test, Tukey’s test- testing using contrasts- Randomized Block Design – Latin Square Design- Graeco Latin Square Design – Applications.

UNIT III FACTORIAL DESIGNS 9
Main and Interaction effects - Two and three factor full factorial designs- Fixed effects and random effects model - Rule for sum of squares and Expected Mean Squares- 2^K Design with two and three factors- Yate’s Algorithm- fitting regression model- Randomized Block Factorial Design - Practical applications.

UNIT IV SPECIAL EXPERIMENTAL DESIGN 9
Blocking and Confounding in 2^K Designs- blocking in replicated design- 2^K Factorial Design in two blocks- Complete and partial confounding- Confounding 2^K Design in four blocks- Two level Fractional Factorial Designs- one-half fraction of 2^K Design, design resolution, Construction of one-half fraction with highest design resolution, one-quarter fraction of 2^K Design

UNIT V TAGUCHI METHODS 9
Design of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments- Response Graph Method, ANOVA- attribute data analysis- Robust design- noise factors, Signal to noise ratios, Inner/outer OA design.

OUTCOME:
- Able to apply experimental techniques to practical problems to improve quality of processes / products by optimizing the process / product parameters.

TEXT BOOK:

REFERENCES:
OBJECTIVE:

- Understanding the various materials and its properties contribution towards electrical and electronics field. This course covers the properties of materials behind the electronic applications.

UNIT I INTRODUCTION

UNIT II CONDUCTING MATERIALS
Introduction, factors affecting the conductivity of materials, classification based on conductivity of materials, temperature dependence of resistivity, Low resistivity materials (graphite, Al, Cu and steel) and its applications, high resistivity materials (manganin, constantin, nichrome, tungsten) and their applications. Superconductors: Meissner effect, classification and applications.

UNIT III SEMICONDUCTING AND MAGNETIC MATERIALS

UNIT IV DIELECTRIC AND INSULATING MATERIALS

UNIT V OPTOELECTRONIC AND NANO ELECTRONIC MATERIALS

TOTAL : 45 PERIODS

OUTCOME:

- With the basis, students will be able to have clear concepts on electronic behaviors of materials

TEXT BOOKS:

REFERENCES:
2. Eugene A. Irene, Electronic Materials Science, Wiley, 2005
OBJECTIVES

- Students will gain knowledge about different energy sources

UNIT I ENERGY 8
Introduction to energy – Global energy scene – Indian energy scene - Units of energy, conversion factors, general classification of energy, energy crisis, energy alternatives.

UNIT II CONVENTIONAL ENERGY 8
Conventional energy resources, Thermal, hydel and nuclear reactors, thermal, hydel and nuclear power plants, efficiency, merits and demerits of the above power plants, combustion processes, fluidized bed combustion.

UNIT III NON-CONVENTIONAL ENERGY 10
Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar energy application in India, energy plantations. Wind energy, types of windmills, types of wind rotors, Darrieus rotor and Gravian rotor, wind electric power generation, wind power in India, economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy.

UNIT IV BIOMASS ENERGY 10
Biomass origin - Resources – Biomass estimation. Thermochemical conversion – Biological conversion, Chemical conversion – Hydrolysis & hydrogenation, solvolysis, biocrude, biodiesel power generation gasifier, biogas, integrated gasification.

UNIT V ENERGY CONSERVATION 9
Energy conservation - Act; Energy management importance, duties and responsibilities; Energy audit – Types methodology, reports, instruments. Benchmarking and energy performance, material and energy balance, thermal energy management.

TOTAL : 45 PERIODS

OUTCOMES:

- Understand conventional Energy sources, Non-conventional Energy sources, biomass sources and develop design parameters for equipment to be used in Chemical process industries. Understand energy conservation in process industries

TEXTBOOKS:

REFERENCES:
OBJECTIVE:
- To impart the knowledge and skills to identify, assess and mitigate the environmental and social impacts of developmental projects

UNIT I INTRODUCTION

UNIT II ENVIRONMENTAL ASSESSMENT
Screening and Scoping in EIA – Drafting of Terms of Reference, Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – Networks – Checklist Methods - Mathematical models for Impact prediction.

UNIT III ENVIRONMENTAL MANAGEMENT PLAN

UNIT IV SOCIO ECONOMIC ASSESSMENT
Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis-

UNIT V CASE STUDIES

TOTAL: 45 PERIODS

OUTCOMES:
The students completing the course will have ability to
- Carry out scoping and screening of developmental projects for environmental and social assessments
- Explain different methodologies for environmental impact prediction and assessment
- Plan environmental impact assessments and environmental management plans
- Evaluate environmental impact assessment reports

TEXTBOOKS:
REFERENCES:

OEN751

GREEN BUILDING DESIGN

<table>
<thead>
<tr>
<th>UNIT I</th>
<th>ENVIRONMENTAL IMPLICATIONS OF BUILDINGS</th>
<th>9</th>
</tr>
</thead>
</table>

UNIT II

IMPLICATIONS OF BUILDING TECHNOLOGIES EMBODIED ENERGY OF BUILDINGS

| 9 |

UNIT III

COMFORTS IN BUILDING

| 9 |

UNIT IV

UTILITY OF SOLAR ENERGY IN BUILDINGS

| 9 |

UNIT V

GREEN COMPOSITES FOR BUILDINGS

| 9 |

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
3. Fundamentals of Integrated Design for Sustainable Building By Marian Keeler, Bill Burke
OBT753 INTRODUCTION OF CELL BIOLOGY L T P C
3 0 0 3

AIM
- To provide knowledge on cell structure and its function.

UNIT I CELL STRUCTURE 9
Cell organization, structure of organelles, extra cellular matrix and cell junctions.

UNIT II CELL ORGANELLE AND FUNCTION 9
Nucleus, Mitochondria, Lysosomes, Endoplasmic reticulum, Golgi apparatus, vesicles, centrosomes, cell membranes, ribosomes, cytosol, chloroplasts, flagella, cell wall.

UNIT III DIVISION 9
Cell cycle – mitosis, meiosis, cell cycle regulation and apoptosis.

UNIT IV MACROMOLECULES 9
DNA, RNA and Proteins – basic units, architectural hierarchy and organisation, functions.

UNIT V ENZYMES 9
Enzymes – Structure, Mechanism of action, Factors that affect enzyme activity, Common enzymes used in industrial setup of plant and animal origin.

TOTAL : 45 PERIODS

TEXT BOOKS

REFERENCES:

OCS752 INTRODUCTION TO C PROGRAMMING L T P C
3 0 0 3

OBJECTIVES
- To develop C Programs using basic programming constructs
- To develop C programs using arrays and strings
- To develop applications in C using functions and structures

UNIT I INTRODUCTION 9
Structure of C program – Basics: Data Types – Constants –Variables - Keywords – Operators: Precedence and Associativity - Expressions - Input/Output statements, Assignment statements – Decision-making statements - Switch statement - Looping statements – Pre-processor directives - Compilation process – Exercise Programs: Check whether the required amount can be withdrawn based on the available amount – Menu-driven program to find the area of different shapes – Find the sum of even numbers
Text Book: Reema Thareja (Chapters 2,3)
UNIT II ARRAYS
Introduction to Arrays – One dimensional arrays: Declaration – Initialization – Accessing elements – Operations: Traversal, Insertion, Deletion, Searching - Two dimensional arrays: Declaration – Initialization – Accessing elements – Operations: Read – Print – Sum – Transpose – Exercise Programs: Print the number of positive and negative values present in the array – Sort the numbers using bubble sort - Find whether the given is matrix is diagonal or not.
Text Book: Reema Thareja (Chapters 5)

UNIT III STRINGS
Introduction to Strings - Reading and writing a string - String operations (without using built-in string functions): Length – Compare – Concatenate – Copy – Reverse – Substring – Insertion – Indexing – Deletion – Replacement – Array of strings – Introduction to Pointers – Pointer operators – Pointer arithmetic - Exercise programs: To find the frequency of a character in a string - To find the number of vowels, consonants and white spaces in a given text - Sorting the names.
Text Book: Reema Thareja (Chapters 6 & 7)

UNIT IV FUNCTIONS
Introduction to Functions – Types: User-defined and built-in functions - Function prototype - Function definition - Function call - Parameter passing: Pass by value - Pass by reference - Built-in functions (string functions) – Recursive functions – Exercise programs: Calculate the total amount of power consumed by ‘n’ devices (passing an array to a function) – Menu-driven program to count the numbers which are divisible by 3, 5 and by both (passing an array to a function) – Replace the punctuations from a given sentence by the space character (passing an array to a function)
Text Book: Reema Thareja (Chapters 4)

UNIT V STRUCTURES
Introduction to structures – Declaration – Initialization – Accessing the members – Nested Structures – Array of Structures – Structures and functions – Passing an entire structure – Exercise programs: Compute the age of a person using structure and functions (passing a structure to a function) – Compute the number of days an employee came late to the office by considering his arrival time for 30 days (Use array of structures and functions)
Text Book: Reema Thareja (Chapters 8)

TOTAL:45 PERIODS

OUTCOMES
Upon completion of this course, the students will be able to
- Develop simple applications using basic constructs
- Develop applications using arrays and strings
- Develop applications using functions and structures

TEXT BOOK

REFERENCES:
OBJECTIVE:
- To gain insights about the importance of lean manufacturing and six sigma practices.

UNIT I LEAN & SIX SIGMA BACKGROUND AND FUNDAMENTALS
Historical Overview – Definition of quality – What is six sigma - TQM and Six sigma - lean manufacturing and six sigma - six sigma and process tolerance – Six sigma and cultural changes – six sigma capability – six sigma need assessments - implications of quality levels, Cost of Poor Quality (COPQ), Cost of Doing Nothing – assessment questions

UNIT II THE SCOPE OF TOOLS AND TECHNIQUES

UNIT III SIX SIGMA METHODOLOGIES
Design For Six Sigma (DFSS), Design For Six Sigma Method - Failure Mode Effect Analysis (FMEA), FMEA process - Risk Priority Number (RPN)- Six Sigma and Leadership, committed leadership – Change Acceleration Process (CAP)- Developing communication plan – Stakeholder

UNIT IV SIX SIGMA IMPLEMENTATION AND CHALLENGES
Tools for implementation – Supplier Input Process Output Customer (SIPOC) – Quality Function Deployment or House of Quality (QFD) – alternative approach – implementation – leadership training, close communication system, project selection – project management and team – champion training – customer quality index – challenges – program failure, CPQ vs six sigma, structure the deployment of six sigma – cultural challenge – customer/internal metrics

UNIT V EVALUATION AND CONTINUOUS IMPROVEMENT METHODS
Evaluation strategy – the economics of six sigma quality, Return on six Sigma (ROSS), ROI, poor project estimates – continuous improvement – lean manufacturing – value, customer focus, Perfection, focus on waste, overproduction – waiting, inventory in process (IIP), processing waste, transportation, motion, making defective products, underutilizing people – Kaizen – 5S

OUTCOME:
- The student would be able to relate the tools and techniques of lean sigma to increase productivity

REFERENCES:
3. Fred Soleimannejed, Six Sigma, Basic Steps and Implementation, AuthorHouse, 2004
OBJECTIVES

• To give basic knowledge about automation
• To understand the basic hydraulics and pneumatics systems for automation
• To understand assembly automation

UNIT I AUTOMATION OF ASSEMBLY LINES 9
Concept of automation - mechanization and automation - Concept of automation in industry - mechanization and automation - classification, balancing of assembly line using available algorithms - Transfer line-monitoring system (TLMS) using Line Status - Line efficiency - Buffer stock Simulation in assembly line

UNIT II AUTOMATION USING HYDRAULIC SYSTEMS 9
Design aspects of various elements of hydraulic systems such as pumps, valves, filters, reservoirs, accumulators, actuators, intensifiers etc. - Selection of hydraulic fluid, practical case studied on hydraulic circuit design and performance analysis - Servo valves, electro hydraulic valves, proportional valves and their applications.

UNIT III AUTOMATION USING PNEUMATIC SYSTEMS 9

UNIT IV AUTOMATION USING ELECTRONIC SYSTEMS 9
Introduction - various sensors – transducers - signal processing - servo systems - programming of microprocessors using 8085 instruction - programmable logic controllers

UNIT V ASSEMBLY AUTOMATION 9
Types and configurations - Parts delivery at workstations - Various vibratory and non vibratory devices for feeding - hopper feeders, rotary disc feeder, centrifugal and orientation - Product design for automated assembly.

TOTAL : 45 PERIODS

OUTCOMES:
• Upon completion of this course, the students can able to do low cost automation systems
• Students can do some assembly automation

TEXT BOOKS:

REFERENCES:
OBJECTIVE
- To introduce students to the principles of Microbiology, to emphasize the structure and biochemical aspects of various microbes.

UNIT I INTRODUCTION TO MICROBIOLOGY
9
classification and nomenclature of microorganisms, microscopic examination of microorganisms: light, fluorescent, dark field, phase contrast, and electron microscopy.

UNIT II MICROBES- STRUCTURE AND REPRODUCTION
9
Structural organization and multiplication of bacteria, viruses (TMV, Hepatitis B), algae (cyanophyta, rhodophyta) and fungi (Neurospora), life history of actinomycetes (Streptomyces), yeast (Saccharomyces), mycoplasma (M. pneumoniae) and bacteriophages (T4 phage, λ phage)

UNIT III MICROBIAL NUTRITION, GROWTH AND METABOLISM
9
Nutritional classification of microorganisms based on carbon, energy and electron sources
Definition of growth, balanced and unbalanced growth, growth curve and different methods to quantify bacterial growth: (counting chamber, viable count method, counting without equipment, different media used for bacterial culture (defined, complex, selective, differential, enriched) the mathematics of growth - generation time, specific growth rate.

UNIT IV CONTROL OF MICROORGANISMS
9
Physical and chemical control of microorganisms
Definition of sterilization, dry and moist heat, pasteurization, tyndalization; radiation, ultrasonication, filtration. Disinfection, sanitation, antiseptics, sterilants and fumigation. Mode of action and resistance to antibiotics; clinically important microorganisms

UNIT V INDUSTRIAL MICROBIOLOGY
9
Microbes involved in preservation (Lactobacillus, bacteriocins), spoilage of food and food borne pathogens (E.coli, S.aureus, Bacillus, Clostridium). Industrial use of microbes (production of penicillin, alcohol, vitamin B-12); biogas; bioremediation (oil spillage leaching of ores by microorganisms, pollution control); biofertilizers, biopesticides. Biosensors.

TOTAL: 45 PERIODS

OUTCOMES:
- To provide to the students the fundamentals of Microbiology, the scope of microbiology and solve the problems in microbial infection and their control.

TEXT BOOKS:
OBJECTIVES:

- To enable the student to understand the importance of the backbone infrastructure for our present and future communication needs and familiarize them with the architectures and the protocol stack in use.
- To enable the student to understand the differences in the design of data plane and the control plane and the routing, switching and the resource allocation methods and the network management and protection methods in vogue.
- To expose the student to the advances in networking and switching domains and the future trends.

UNIT I OPTICAL SYSTEM COMPONENTS 9
Light Propagation in optical fibers – Loss & bandwidth, System limitations, Non Linear effects; Solitons; Optical Network Components – Couplers, Isolators & Circulators, Multiplexers & Filters, Optical Amplifiers, Switches, Wavelength Converters.

UNIT II OPTICAL NETWORK ARCHITECTURES 9
Introduction to Optical Networks; SONET / SDH, Metropolitan - Area Networks, Layered Architecture ; Broadcast and Select Networks – Topologies for Broadcast Networks, Media-Access Control Protocols, Wavelength Routing Architecture.

UNIT III WAVELENGTH ROUTING NETWORKS 9
The optical layer, Optical Network Nodes, Routing and wavelength assignment, Traffic Grooming in Optical Networks, Architectural variations- Linear Light wave networks, Logically Routed Networks.

UNIT IV PACKET SWITCHING AND ACCESS NETWORKS 9

UNIT V NETWORK DESIGN AND MANAGEMENT 9

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student would be able to:

- Use the backbone infrastructure for our present and future communication needs.
- Analyze the architectures and the protocol stack.
- Compare the differences in the design of data plane, control plane, routing, switching, resource allocation methods, network management and protection methods in vogue.

REFERENCES:
OBJECTIVE:

- To give an overview of various methods of process modeling, different computational techniques for simulation.

UNIT I INTRODUCTION
Introduction to modeling and simulation, classification of mathematical models, conservation equations and auxiliary relations.

UNIT II STEADY STATE LUMPED SYSTEMS
Degree of freedom analysis, single and network of process units, systems yielding linear and non-linear algebraic equations, flow sheeting – sequential modular and equation oriented approach, tearing, partitioning and precedence ordering, solution of linear and non-linear algebraic equations.

UNIT III UNSTEADY STATE LUMPED SYSTEMS
Analysis of liquid level tank, gravity flow tank, jacketed stirred tank heater, reactors, flash and distillation column, solution of ODE initial value problems, matrix differential equations, simulation of closed loop systems.

UNIT IV STEADY STATE DISTRIBUTED SYSTEM
Analysis of compressible flow, heat exchanger, packed columns, plug flow reactor, solution of ODE boundary value problems.

UNIT V UNSTEADY STATE DISTRIBUTED SYSTEM & OTHER MODELLING APPROACHES

TOTAL : 45 PERIODS

OUTCOME:

- Upon completing the course, the student should have understood the development of process models based on conservation principles and process data and computational techniques to solve the process models.

TEXT BOOKS:

REFERENCES:
OBJECTIVE

- To acquire the knowledge of pharmaceutical industry regulations and research

UNIT I REGULATORY CONCEPTS

Quality assurance – Quality control – Practice of cGMP – Schedule M – USFDA.

UNIT II REGULATORY ASPECTS

Pharmaceuticals: Bulk drug manufacture; Personnel, Buildings and Facilities, Process Equipment, Documentation and Records, Materials Management, Production and In-Process Controls, Packaging and Identification Labelling of API’s and Intermediates, Storage and distribution, – Biotechnology derived products; Principles, Personnel, Premises and equipments, Animal quarters and care, production, labelling, Lot processing records and distribution records, quality assurance and quality control.

UNIT III INTELLECTUAL PROPERTY RIGHTS

UNIT IV ICH GUIDELINES

Quality guidelines – Impurities in new drug substances (Q3A(R2)) – Impurities in newdrug products(Q3B(R2)) – Validation of analytical procedures text and methodology (Q2 (R1)).

UNIT V QUALITY AUDIT AND SELF INSPECTIONS

SOPs – Documentation – Loan license auditing – Common technical documentation (CTD) – Drug master file (DMF).

TOTAL: 45 PERIODS

OUTCOMES:

On completion of the course, the student will be able

- To be familiarise with the pharmaceutical industry manufacturing practices and regulatory aspects of pharmacy products.
- To know the process of patenting activities.
- To know the quality guidelines followed for pharmaceutical products and few of the aspects involved in document preparation for pharmaceutical product registration.

TEXT BOOKS:

REFERENCES:

OBJECTIVE:
- To provide an insight on the fundamentals of supply chain networks, tools and techniques.

UNIT I INTRODUCTION
Role of Logistics and Supply chain Management: Scope and Importance - Evolution of Supply Chain - Decision Phases in Supply Chain - Competitive and Supply chain Strategies – Drivers of Supply Chain Performance and Obstacles.

UNIT II SUPPLY CHAIN NETWORK DESIGN

UNIT III LOGISTICS IN SUPPLY CHAIN
Role of transportation in supply chain – factors affecting transportation decision – Design option for transportation network – Tailored transportation – Routing and scheduling in transportation.

UNIT IV SOURCING AND COORDINATION IN SUPPLY CHAIN
Role of sourcing supply chain supplier selection assessment and contracts - Design collaboration - sourcing planning and analysis - supply chain co-ordination - Bull whip effect – Effect of lack of co-ordination in supply chain and obstacles – Building strategic partnerships and trust within a supply chain.

UNIT V SUPPLY CHAIN AND INFORMATION TECHNOLOGY
The role IT in supply chain- The supply chain IT frame work Customer Relationship Management – Internal supply chain management – supplier relationship management – future of IT in supply chain – E-Business in supply chain.

TOTAL: 45 PERIODS

OUTCOME:
- The student would understand the framework and scope of supply chain networks and functions.

TEXTBOOK:

REFERENCES:
OBJECTIVES:

- To gain knowledge in modeling of different communication systems.
- To know the techniques involved in performance estimation of telecommunication systems.
- To learn the use of random process concepts in telecommunication system simulation.
- To study the modeling methodologies of a telecommunication system.
- To study about the QAM digital radio link environment.

UNIT I SIMULATION OF RANDOM VARIABLES RANDOM PROCESS

UNIT II MODELING OF COMMUNICATION SYSTEMS

Radio frequency and optical sources – Analog and Digital signals – Communication channel and model – Free space channels – Multipath channel and discrete channel noise and interference.

UNIT III ESTIMATION OF PERFORMANCE MEASURE FOR SIMULATION

Quality of estimator – Estimation of SNR – Probability density function and bit error rate – Monte Carlo method – Importance sampling method – Extreme value theory.

UNIT IV SIMULATION AND MODELING METHODOLOGY

Simulation environment – Modeling considerations – Performance evaluation techniques – Error source simulation – Validation.

UNIT V CASE STUDIES

Simulations of QAM digital radio link environment – Light wave communication link – Satellite system.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, students would be able to

- Apply the constituents of a telecommunication systems.
- Analyze various modeling methodologies and simulation techniques.
- Estimate the performance measures of telecommunication systems.
- Apply system modeling in telecommunication.
- Demonstrate light wave communication and satellite communication systems.

TEXTBOOKS:

REFERENCES:

OBJECTIVES:
- To understand how physical quantities are measured and how they are converted to electrical or other forms.
- To have an adequate knowledge in resistance, transducers.
- To develop the knowledge of inductance and capacitance transducers.
- To study the characteristics of Transducers.
- To impart knowledge on various types of transducers

UNIT I SCIENCE OF MEASUREMENTS AND CLASSIFICATION OF TRANSDUCERS 9

UNIT II CHARACTERISTICS OF TRANSDUCERS 9

UNIT III VARIABLE RESISTANCE TRANSDUCERS 9
Principle of operation, construction details, characteristics and applications of potentiometer, strain gauge, resistance thermometer, Thermistor, hot-wire anemometer, piezoresistive sensor and humidity sensor.

UNIT IV VARIABLE INDUCTANCE AND VARIABLE CAPACITANCE TRANSDUCERS 9
Induction potentiometer – Variable reluctance transducers – EI pick up – Principle of operation, construction details, characteristics and applications of LVDT – Capacitive transducer and types – Capacitor microphone – Frequency response.

UNIT V OTHER TRANSDUCERS 9
Piezoelectric transducer – Hall Effect transducer – Magneto elastic sensor - Digital transducers – Smart sensors - Fibre optic sensors- Film sensors- Introduction to MEMS and Nano sensors.

TOTAL : 45 PERIODS

OUTCOMES:
- Ability to model and analyze transducers.

TEXT BOOKS:

REFERENCES:
OBJECTIVES

- To make the student conversant with the water treatment methods including adsorption and oxidation process.
- To provide basic understandings about the requirements of water, its preliminary treatment.

UNIT I WATER QUALITY AND PRELIMINARY TREATMENT 9

UNIT II INDUSTRIAL WATER TREATMENT 9

UNIT III CONVENTIONAL TREATMENT METHODS 9

UNIT IV WASTEWATER TREATMENT 9

UNIT V ADSORPTION AND OXIDATION PROCESSES 9

TOTAL: 45 PERIODS

OUTCOMES

- Will have knowledge about adsorption and oxidation process.
- Will gain idea about various methods available for water treatment.
- Will appreciate the necessity of water and acquire knowledge of preliminary treatment.

TEXTBOOKS

REFERENCES