OPEN ELECTIVES I, SEMESTER V

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OCE551</td>
<td>Air Pollution and Control Engineering</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OME551</td>
<td>Energy Conservation and Management</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OCY553</td>
<td>Industrial Chemistry</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>OMF551</td>
<td>Product Design and Development</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>ORO551</td>
<td>Renewable Energy Sources</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>OME552</td>
<td>Vibration and Noise Control</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OIM551</td>
<td>World Class Manufacturing</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

OPEN ELECTIVES II, SEMESTER VII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OBM751</td>
<td>Basics of Human Anatomy and Physiology</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OME751</td>
<td>Design of Experiments</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OML752</td>
<td>Electronics Materials</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>OCE751</td>
<td>Environmental and Social Impact Assessment</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>OEN751</td>
<td>Green Building Design</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>OME754</td>
<td>Industrial Safety</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OMF751</td>
<td>Lean Six Sigma</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>OAN751</td>
<td>Low Cost Automation</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>OCS752</td>
<td>Introduction to C Programming</td>
<td>OE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
OBJECTIVE:
- To impart knowledge on the principle and design of control of Indoor/ particulate/ gaseous air pollutant and its emerging trends.

UNIT I INTRODUCTION 7
Structure and composition of Atmosphere – Definition, Scope and Scales of Air Pollution – Sources and classification of air pollutants and their effect on human health, vegetation, animals, property, aesthetic value and visibility - Ambient Air Quality and Emission standards.

UNIT II METEOROLOGY 6

UNIT III CONTROL OF PARTICULATE CONTAMINANTS 11

UNIT IV CONTROL OF GASEOUS CONTAMINANTS 11

UNIT V INDOOR AIR QUALITY MANAGEMENT 10
Sources, types and control of indoor air pollutants, sick building syndrome and Building related illness- Sources and Effects of Noise Pollution – Measurement – Standards –Control and Preventive measures.

TOTAL: 45 PERIODS

OUTCOMES:
The students completing the course will have
- an understanding of the nature and characteristics of air pollutants, noise pollution and basic concepts of air quality management
- ability to identify, formulate and solve air and noise pollution problems
- ability to design stacks and particulate air pollution control devices to meet applicable standards.
- Ability to select control equipments.
- Ability to ensure quality, control and preventive measures.

TEXTBOOKS:

REFERENCES:

OME551 ENERGY CONSERVATION AND MANAGEMENT
L T P C 3 0 0 3

OBJECTIVES:
At the end of the course, the student is expected to
- understand and analyse the energy data of industries
- carryout energy accounting and balancing
- conduct energy audit and suggest methodologies for energy savings and
- utilise the available resources in optimal ways

UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems – Cooling Towers – D.G. sets

UNIT V ECONOMICS Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course, the students can able to analyse the energy data of industries.
- Can carryout energy accounting and balancing
- Can suggest methodologies for energy savings

TEXT BOOKS:

REFERENCES:
OBJECTIVES

- To get introduced to high polymers such as rubber and plastics and to industrial importance of cementing materials.
- To get introduction on the chemistry of various industrial processes such as sugar and leather processing.

UNIT I INORGANIC CEMENTING MATERIALS

UNIT II FUELS AND COMBUSTION

UNIT III RUBBER AND PLASTICS

Introduction to rubber - latex - processing latex - mastication - compounding of rubber - vulcanizations of rubber - engineering polymers thermoforming - degradation stability and environment- synthetic rubbers - preparation and applications of SBR - butyl rubber - nitrile rubber - neoprene and silicone rubber- plastic materials - classification of plastics (or resins) - moulding constituents of a plastic - fabrication techniques used for thermoplastic resin (moulding process)-important thermoplastic resins- natural resins - celluloses - polyethylene – PVC.

UNIT IV PAINTS, PIGMENTS AND INSULATING MATERIALS

UNIT V SUGAR AND LEATHER CHEMISTRY

Sugar Chemistry - introduction - manufacture of cane sugar - recovery of sugar from molasses - preparation of celotex - manufacture of sucrose from beat root - testing and estimation of sugar-leather chemistry - introduction - manufacture of leather preparation of hides for tanning - vegetable, chrome and oil tanning - byproduct.
OUTCOMES

- Will have knowledge about adsorption and oxidation process.
- Will gain idea about various methods available for water treatment.
- Will appreciate the necessity of water and acquire knowledge of preliminary treatment.

TEXTBOOKS:

REFERENCES:

OMF551 PRODUCT DESIGN AND DEVELOPMENT

L T P C
3 0 0 3

OBJECTIVE:
- The course aims at providing the basic concepts of product design, product features and its architecture so that student can have a basic knowledge in the common features a product has and how to incorporate them suitably in product.

UNIT I INTRODUCTION

UNIT II CONCEPT GENERATION AND SELECTION

UNIT III PRODUCT ARCHITECTURE

UNIT IV INDUSTRIAL DESIGN
UNIT V DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT 9

OUTCOME:
- The student will be able to design some products for the given set of applications; also the knowledge gained through prototyping technology will help the student to make a prototype of a problem and hence product design and development can be achieved.

TEXT BOOK:

REFERENCES:

ORO551 RENEWABLE ENERGY SOURCES L T P C
3 0 0 3

OBJECTIVES:
- To get exposure on solar radiation and its environmental impact to power.
- To know about the various collectors used for storing solar energy.
- To know about the various applications in solar energy.
- To learn about the wind energy and biomass and its economic aspects.
- To know about geothermal energy with other energy sources.

UNIT I PRINCIPLES OF SOLAR RADIATION 10
Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.

UNIT II SOLAR ENERGY COLLECTION 8
Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

UNIT III SOLAR ENERGY STORAGE AND APPLICATIONS 7
Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applications- solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.
UNIT IV WIND ENERGY 10

UNIT V GEOTHERMAL ENERGY: 9
Resources, types of wells, methods of harnessing the energy, potential in India. OCEAN ENERGY: OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics. DIRECT ENERGY CONVERSION: Need for DEC, Carnot cycle, limitations, principles of DEC.

TOTAL: 45 PERIODS

OUTCOMES:
- Understanding the physics of solar radiation.
- Ability to classify the solar energy collectors and methodologies of storing solar energy.
- Knowledge in applying solar energy in a useful way.
- Knowledge in wind energy and biomass with its economic aspects.
- Knowledge in capturing and applying other forms of energy sources like wind, biogas and geothermal energies.

TEXT BOOKS:

REFERENCES:

OME552 VIBRATION AND NOISE CONTROL L T P C
3 0 0 3

OBJECTIVES:
The student will be able to understand
- Basic about the noise and its control methods
- the sources of vibration and noise in automobiles and make design modifications to reduce the vibration and noise and improve the life of the components
- About the noise in the automotive sources
- Various control techniques in controlling noise and vibrations.
- Know about the source of noise

UNIT I BASICS OF VIBRATION 9
Introduction, classification of vibration: free and forced vibration, undamped and damped vibration, linear and non linear vibration, response of damped and undamped systems under harmonic
force, analysis of single degree and two degree of freedom systems, torsional vibration, determination of natural frequencies.

UNIT II BASICS OF NOISE
Introduction, amplitude, frequency, wavelength and sound pressure level, addition, subtraction and averaging decibel levels, noise dose level, legislation, measurement and analysis of noise, measurement environment, equipment, frequency analysis, tracking analysis, sound quality analysis.

UNIT III AUTOMOTIVE NOISE SOURCES

UNIT IV CONTROL TECHNIQUES
Vibration isolation, tuned absorbers, un-tuned viscous dampers, damping treatments, application dynamic forces generated by IC engines, engine isolation, crank shaft damping, modal analysis of the mass elastic model shock absorbers.

UNIT V SOURCE OF NOISE AND CONTROL
Methods for control of engine noise, combustion noise, mechanical noise, predictive analysis, palliative treatments and enclosures, automotive noise control principles, sound in enclosures, sound energy absorption, sound transmission through barriers

TOTAL: 45 PERIODS

OUTCOMES:
- Understand the basic of noise and vibrations.
- Understanding causes, source and types of vibrations in machineries
- Gaining knowledge in sources and measurement standard of noise
- Ability to design and develop vibrations and noise control systems.
- Ability to know techniques in controlling the noise and vibrations.

TEXT BOOK:

REFERENCES:
OBJECTIVES

- Understanding of the concept and importance of strategy planning for manufacturing industries
- To apply principles and techniques in the identifiable formulation and implementation of manufacturing strategy for competitive in global context.

UNIT I INDUSTRIAL DECLINE AND ASCENDANCY 9
Manufacturing excellence - US Manufacturers - French Manufacturers - Japan decade – American decade - Global decade

UNIT II BUILDING STRENGTH THROUGH CUSTOMER – FOCUSED PRINCIPLES 9
Customer - Focused principles - General principles - Design - Operations - Human resources - Quality and Process improvement - Promotion and Marketing

UNIT III VALUE AND VALUATION 9
Product Costing - Motivation to improve - Value of the enterprises QUALITY - The Organization: Bulwark of stability and effectiveness - Employee stability – Quality Individuals Vs. Teams - Team stability and cohesiveness - Project cohesiveness and stability

UNIT IV STRATEGIC LINKAGES 9
Product decisions and customer service - Multi-company planning - Internal manufacturing planning - Soothing the demand turbulence

UNIT V IMPEDIMENTS 9
Bad plant design - Mismanagement of capacity - Production Lines - Assembly Lines – Whole Plant Associates - Facilitators - Teamsmanship - Motivation and reward in the age of continuous Improvement

TOTAL : 45 PERIODS

OUTCOMES:

- Able to understand the concept and the importance of manufacturing strategy for industrial enterprise competitiveness.
- Apply appropriate techniques in the analysis an devaluation of company’s opportunities for enhancing competitiveness in the local regional and global context.
- Identify formulation and implement strategies for manufacturing and therefore enterprise competitiveness.

TEXT BOOKS:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBM751</td>
<td>Basics of Human Anatomy and Physiology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

OBJECTIVES

- To learn the basic components of formation of systems
- To identify all the organelles of an animal cell and their function.
- To understand structure and functions of the various types of systems of human body.
- To demonstrate their knowledge of importance of anatomical features and physiology of human systems

UNIT I

INTRODUCTION

UNIT II

BASIC STRUCTURE AND FUNCTION OF ANIMAL CELL

- Structure of Cell – Structure and Function of Cell Membrane and Sub organelles. Cellular Transport Mechanism – Cell Division – Mitosis and Meiosis

UNIT III

TISSUES, MEMBRANE AND SKELETAL SYSTEM

- Epithelial tissue – Connective tissue – Muscle tissue – Nerve tissue – Membrane. Types of Bone tissue - Classification of Bones – Functions of the Skeleton system – Skull, Vertebral Column. Joint - Articulation

UNIT IV

NERVOUS AND CARDIOVASCULAR SYSTEMS

UNIT V

DIGESTIVE AND URINARY SYSTEMS

OUTCOMES

At the end of the course

- Students would be familiar with the requirements for formation of systems
- Students would understand the basic structural and functional elements of human body
- Students would have knowledge on Skeletal and muscular systems
- Students would be able to comprehend circulatory and nervous systems and their components
- Students would study importance of digestive and urinary systems in Human body

TEXT BOOKS:
REFERENCES:

COURSE OUTCOMES

<table>
<thead>
<tr>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students would be familiar with the requirements for formation of systems</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Students would be understand the basic structural and functional elements of human body</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Students would have knowledge on Skeletal and muscular systems</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Students would be able to comprehend circulatory and nervous systems and their components</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Students would study importance of digestive and urinary systems in Human body</td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

OME751 DESIGN OF EXPERIMENTS

OBJECTIVE:
- To impart knowledge on various types of experimental designs conduct of experiments and data analysis techniques.

UNIT I FUNDAMENTALS OF EXPERIMENTAL DESIGNS
Hypothesis testing – single mean, two means, dependant/ correlated samples – confidence intervals, Experimentation – need, Conventional test strategies, Analysis of variance, F-test, terminology, basic principles of design, steps in experimentation – choice of sample size – Normal and half normal probability plot – simple linear and multiple linear regression, testing
using Analysis of variance.

UNIT II SINGLE FACTOR EXPERIMENTS
Completely Randomized Design- effect of coding the observations- model adequacy checking-estimation of model parameters, residuals analysis- treatment comparison methods-Duncan’s multiple range test, Newman-Keuel’s test, Fisher’s LSD test, Tukey’s test- testing using contrasts- Randomized Block Design – Latin Square Design- Graeco Latin Square Design – Applications.

UNIT III FACTORIAL DESIGNS
Main and Interaction effects - Two and three factor full factorial designs- Fixed effects and random effects model - Rule for sum of squares and Expected Mean Squares- 2^K Design with two and three factors- Yate’s Algorithm- fitting regression model- Randomized Block Factorial Design - Practical applications.

UNIT IV SPECIAL EXPERIMENTAL DESIGN
Blocking and Confounding in 2^K Designs- blocking in replicated design- 2^K Factorial Design in two blocks- Complete and partial confounding- Confounding 2^K Design in four blocks- Two level Fractional Factorial Designs- one-half fraction of 2^K Design, design resolution, Construction of one-half fraction with highest design resolution, one-quarter fraction of 2^K Design

UNIT V TAGUCHI METHODS
Design of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments-Response Graph Method, ANOVA- attribute data analysis- Robust design- noise factors, Signal to noise ratios, Inner/outer OA design.

OUTCOME:
- Able to apply experimental techniques to practical problems to improve quality of processes / products by optimizing the process / product parameters.

TEXT BOOK:

REFERENCES:

OML752 ELECTRONIC MATERIALS

OBJECTIVE:
- Understanding the various materials and its properties contribution towards electrical and electronics field. This course covers the properties of materials behind the electronic applications.

UNIT I INTRODUCTION
UNIT II CONDUCTING MATERIALS 9
Introduction, factors affecting the conductivity of materials, classification based on conductivity of materials, temperature dependence of resistivity, Low resistivity materials (graphite, Al, Cu and steel) and its applications, high resistivity materials (manganin, constantin, nichrome, tungsten) and their applications. Superconductors: Meissner effect, classification and applications.

UNIT III SEMICONDUCTING AND MAGNETIC MATERIALS 10

UNIT IV DIELECTRIC AND INSULATING MATERIALS 9

UNIT V OPTOELECTRONIC AND NANO ELECTRONIC MATERIALS 10

TOTAL : 45 PERIODS

OUTCOME:
• With the basis, students will be able to have clear concepts on electronic behaviors of materials

TEXT BOOKS:

REFERENCES:
2. Eugene A. Irene, Electronic Materials Science, Wiley, 2005

OCE751 ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT

OBJECTIVE:
To impart the knowledge and skills to identify, assess and mitigate the environmental and social impacts of developmental projects

UNIT I INTRODUCTION 9

UNIT II ENVIRONMENTAL ASSESSMENT 9
Screening and Scoping in EIA – Drafting of Terms of Reference,Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – Networks – Checklist Methods - Mathematical models for Impact prediction.

UNIT III ENVIRONMENTAL MANAGEMENT PLAN 9

UNIT IV SOCIO ECONOMIC ASSESSMENT 9
Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis-

UNIT V CASE STUDIES 9

TOTAL: 45 PERIODS

OUTCOMES:
The students completing the course will have ability to

- carry out scoping and screening of developmental projects for environmental and social assessments
- explain different methodologies for environmental impact prediction and assessment
- plan environmental impact assessments and environmental management plans
- evaluate environmental impact assessment reports

TEXTBOOKS:

REFERENCES:

OEN751 GREEN BUILDING DESIGN

UNIT I ENVIRONMENTAL IMPLICATIONS OF BUILDINGS

UNIT II IMPLICATIONS OF BUILDING TECHNOLOGIES EMBODIED ENERGY OF BUILDINGS

UNIT III COMFORTS IN BUILDING

UNIT IV UTILITY OF SOLAR ENERGY IN BUILDINGS

UNIT V GREEN COMPOSITES FOR BUILDINGS

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
3. Fundamentals of Integrated Design for Sustainable Building By Marian Keeler, Bill Burke

OME754 INDUSTRIAL SAFETY

OBJECTIVES:
To impart knowledge on safety engineering fundamentals and safety management practices.

UNIT I INTRODUCTION
Evolution of modern safety concepts – Fire prevention – Mechanical hazards – Boilers, Pressure vessels, Electrical Exposure.

UNIT II CHEMICAL HAZARDS
Chemical exposure – Toxic materials – Ionizing Radiation and Non-ionizing Radiation - Industrial Hygiene – Industrial Toxicology.

UNIT III ENVIRONMENTAL CONTROL
Industrial Health Hazards – Environmental Control – Industrial Noise - Noise measuring instruments, Control of Noise, Vibration, - Personal Protection.

UNIT IV HAZARD ANALYSIS
System Safety Analysis –Techniques – Fault Tree Analysis (FTA), Failure Modes and Effects Analysis (FMEA), HAZOP analysis and Risk Assessment

UNIT V SAFETY REGULATIONS

TOTAL : 45 PERIODS

OUTCOMES:
- Students must be able to identify and prevent chemical, environmental mechanical, fire hazard through analysis and apply proper safety techniques on safety engineering and management.

TEXT BOOK:

REFERENCES:

OMF751 LEAN SIX SIGMA L T P C 3 0 0 3

OBJECTIVE:
- To gain insights about the importance of lean manufacturing and six sigma practices.

UNIT I LEAN & SIX SIGMA BACKGROUND AND FUNDAMENTALS
Historical Overview – Definition of quality – What is six sigma -TQM and Six sigma - lean manufacturing and six sigma- six sigma and process tolerance – Six sigma and cultural changes – six sigma capability – six sigma need assessments - implications of quality levels, Cost of Poor Quality (COPQ), Cost of Doing Nothing – assessment questions
UNIT II THE SCOPE OF TOOLS AND TECHNIQUES

UNIT III SIX SIGMA METHODOLOGIES

Design For Six Sigma (DFSS), Design For Six Sigma Method - Failure Mode Effect Analysis (FMEA), FMEA process - Risk Priority Number (RPN)- Six Sigma and Leadership, committed leadership – Change Acceleration Process (CAP)- Developing communication plan – Stakeholder

UNIT IV SIX SIGMA IMPLEMENTATION AND CHALLENGES

Tools for implementation – Supplier Input Process Output Customer (SIPOC) – Quality Function Deployment or House of Quality (QFD) – alternative approach –implementation – leadership training, close communication system, project selection – project management and team – champion training – customer quality index – challenges – program failure, CPQ vs six sigma, structure the deployment of six sigma – cultural challenge – customer/internal metrics

UNIT V EVALUATION AND CONTINUOUS IMPROVEMENT METHODS

Evaluation strategy – the economics of six sigma quality, Return on six Sigma (ROSS), ROI, poor project estimates – continuous improvement – lean manufacturing – value, customer focus, Perfection, focus on waste, overproduction – waiting, inventory in process (IIP), processing waste, transportation, motion, making defective products, underutilizing people – Kaizen – 5S

TOTAL: 45 PERIODS

OUTCOME:
• The student would be able to relate the tools and techniques of lean sigma to increase productivity

REFERENCES:
3. Fred Soleimannejed , Six Sigma, Basic Steps and Implementation, AuthorHouse, 2004

OAN751 LOW COST AUTOMATION L T P C
3 0 0 3

OBJECTIVES
• To give basic knowledge about automation
• To understand the basic hydraulics and pneumatics systems for automation
• To understand the assembly automation
UNIT I AUTOMATION OF ASSEMBLY LINES
Concept of automation - mechanization and automation - Concept of automation in industry - mechanization and automation - classification, balancing of assembly line using available algorithms - Transfer line-monitoring system (TLMS) using Line Status - Line efficiency - Buffer stock Simulation in assembly line

UNIT II AUTOMATION USING HYDRAULIC SYSTEMS
Design aspects of various elements of hydraulic systems such as pumps, valves, filters, reservoirs, accumulators, actuators, intensifiers etc. - Selection of hydraulic fluid, practical case studied on hydraulic circuit design and performance analysis - Servo valves, electro hydraulic valves, proportional valves and their applications.

UNIT III AUTOMATION USING PNEUMATIC SYSTEMS

UNIT IV AUTOMATION USING ELECTRONIC SYSTEMS
Introduction - various sensors – transducers - signal processing - servo systems - programming of microprocessors using 8085 instruction - programmable logic controllers

UNIT V ASSEMBLY AUTOMATION
Types and configurations - Parts delivery at workstations - Various vibratory and non vibratory devices for feeding - hopper feeders, rotary disc feeder, centrifugal and orientation - Product design for automated assembly.

OUTCOMES:
- Upon completion of this course, the students can able to do low cost automation systems
- Students can do some assembly automation

TEXT BOOKS:

REFERENCES

OCS752 INTRODUCTION TO C PROGRAMMING
OBJECTIVES
- To develop C Programs using basic programming constructs
- To develop C programs using arrays and strings
• To develop applications in C using functions and structures

UNIT I INTRODUCTION 9
Structure of C program – Basics: Data Types – Constants – Variables - Keywords – Operators: Precedence and Associativity - Expressions - Input/Output statements, Assignment statements – Decision-making statements - Switch statement - Looping statements – Pre-processor directives - Compilation process – Exercise Programs: Check whether the required amount can be withdrawn based on the available amount – Menu-driven program to find the area of different shapes – Find the sum of even numbers
Text Book: Reema Thareja (Chapters 2,3)

UNIT II ARRAYS 9
Introduction to Arrays – One dimensional arrays: Declaration – Initialization - Accessing elements – Operations: Traversal, Insertion, Deletion, Searching - Two dimensional arrays: Declaration – Initialization - Accessing elements – Operations: Read – Print – Sum – Transpose – Exercise Programs: Print the number of positive and negative values present in the array – Sort the numbers using bubble sort - Find whether the given is matrix is diagonal or not.
Text Book: Reema Thareja (Chapters 5)

UNIT III STRINGS 9
Introduction to Strings - Reading and writing a string - String operations (without using built-in string functions): Length – Compare – Concatenate – Copy – Reverse – Substring – Insertion – Indexing – Deletion – Replacement – Array of strings – Introduction to Pointers – Pointer operators – Pointer arithmetic - Exercise programs: To find the frequency of a character in a string - To find the number of vowels, consonants and white spaces in a given text - Sorting the names.
Text Book: Reema Thareja (Chapters 6 & 7)

UNIT IV FUNCTIONS 9
Introduction to Functions – Types: User-defined and built-in functions - Function prototype - Function definition - Function call - Parameter passing: Pass by value - Pass by reference - Built-in functions (string functions) – Recursive functions – Exercise programs: Calculate the total amount of power consumed by ‘n’ devices (passing an array to a function) – Menu-driven program to count the numbers which are divisible by 3, 5 and by both (passing an array to a function) – Replace the punctuations from a given sentence by the space character (passing an array to a function)
Text Book: Reema Thareja (Chapters 4)

UNIT V STRUCTURES 9
Introduction to structures – Declaration – Initialization – Accessing the members – Nested Structures – Array of Structures – Structures and functions – Passing an entire structure – Exercise programs: Compute the age of a person using structure and functions (passing a structure to a function) – Compute the number of days an employee came late to the office by considering his arrival time for 30 days (Use array of structures and functions)
Text Book: Reema Thareja (Chapters 8)

TOTAL:45 PERIODS

OUTCOMES
Upon completion of this course, the students will be able to

• Develop simple applications using basic constructs
• Develop applications using arrays and strings
• Develop applications using functions and structures

TEXT BOOK

REFERENCES: