PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

- To prepare students to excel in research and to succeed in Structural engineering profession through global, rigorous post graduate education
- To provide students with a solid foundation in mathematical, scientific and engineering fundamentals required to solve structural engineering problems
- To train students with good scientific and engineering knowledge so as to comprehend, analyze, design, and create novel products and solutions for the real life problems
- To inculcate students in professional and ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate structural engineering issues to broader social context.
- To provide student with an academic environment aware of excellence, leadership, written ethical codes and guidelines, and the life-long learning needed for a successful professional career

PROGRAMME OUTCOMES (POs):

On successful completion of the programme,

1. Graduates will demonstrate knowledge of mathematics, science and engineering.
2. Graduates will demonstrate an ability to identify, formulate and solve engineering problems.
3. Graduate will demonstrate an ability to design and conduct experiments, analyze and interpret data.
4. Graduates will demonstrate an ability to design a system, component or process as per needs and specifications.
5. Graduates will demonstrate an ability to visualize and work on laboratory and multidisciplinary tasks.
6. Graduate will demonstrate skills to use modern engineering tools, software and equipment to analyze problems.
7. Graduates will demonstrate knowledge of professional and ethical responsibilities.
8. Graduate will be able to communicate effectively in both verbal and written form.
9. Graduate will show the understanding of impact of engineering solutions on the society and also will be aware of contemporary issues.
10. Graduate will develop confidence for self education and ability for life-long learning.
<table>
<thead>
<tr>
<th>Programme Educational Objectives</th>
<th>Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>I</td>
<td>✓</td>
</tr>
<tr>
<td>II</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>✓</td>
</tr>
<tr>
<td>YEAR 1</td>
<td>SEM 1</td>
</tr>
<tr>
<td>YEAR 1</td>
<td>SEM 2</td>
</tr>
<tr>
<td>YEAR 2</td>
<td>SEM 1</td>
</tr>
<tr>
<td>YEAR 2</td>
<td>SEM 2</td>
</tr>
</tbody>
</table>
Professional Electives (PE)

<table>
<thead>
<tr>
<th>Course Name</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of Steel Concrete Composite Structures</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repair and Rehabilitation of Structures</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefabricated Structures</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Structures</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanics of Composite Materials</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability of Structures</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory of Plates</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind and Cyclone Effects on Structures</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Analysis and Design of Tall Buildings</td>
<td>✓</td>
</tr>
<tr>
<td>Design of Bridges</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design of Shell and Spatial Structures</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinear Analysis Structures</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore Structures</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization of Structures</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-stressed Concrete</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNA UNIVERSITY, CHENNAI
UNIVERSITY DEPARTMENTS
M.E. STRUCTURAL ENGINEERING
REGULATIONS – 2015
CHOICE BASED CREDIT SYSTEM
CURRICULA AND SYLLABI

SEMESTER I

<table>
<thead>
<tr>
<th>S.No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA7161</td>
<td>Advanced Mathematical Methods</td>
<td>FC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>ST7101</td>
<td>Advanced Concrete Structures</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>ST7102</td>
<td>Dynamics of Structures</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>ST7103</td>
<td>Theory of Elasticity and Plasticity</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>Elective I</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Elective II</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>19</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>19</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>S.No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>ST7201</td>
<td>Advanced Steel Structures</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>ST7202</td>
<td>Earthquake Analysis and Design of Structures</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>ST7203</td>
<td>Experimental Techniques</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>ST7204</td>
<td>Finite Element Analysis of Structures</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>Elective III</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Elective IV</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>ST7211</td>
<td>Advanced Structural Engineering Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>22</td>
<td>18</td>
<td>0</td>
<td>4</td>
<td>20</td>
</tr>
</tbody>
</table>

5
SEMESTER III

<table>
<thead>
<tr>
<th>S.No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Elective V</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Elective VI</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Elective VII</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>ST7311</td>
<td>Practical Training</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>ST7312</td>
<td>Seminar</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>ST7313</td>
<td>Project Work (Phase I)</td>
<td>EEC</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>9</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>

SEMESTER IV

<table>
<thead>
<tr>
<th>S.No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>ST7411</td>
<td>Project Work (Phase II)</td>
<td>EEC</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
</tbody>
</table>

TOTAL NO. OF CREDITS: 68
FOUNDATION COURSES (FC)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>Advanced Mathematical Methods</td>
<td>FC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

PROFESSIONAL CORE (PC)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>Advanced Concrete Structures</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Advanced Steel Structures</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Advanced Structural Engineering</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Dynamics of Structures</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Earthquake Analysis and Design of</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Structures</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Finite Element Analysis of Structures</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>Theory of Elasticity and Plasticity</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVES (PE)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ST7001</td>
<td>Analysis and Design of Tall Buildings</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>ST7002</td>
<td>Design of Bridges</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>ST7003</td>
<td>Design of Shell and Spatial Structures</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>ST7004</td>
<td>Design of Steel Concrete Composite</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>ST7005</td>
<td>Industrial Structures</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>ST7006</td>
<td>Maintenance and Rehabilitation of</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>ST7007</td>
<td>Mechanics of Composite Materials</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>ST7008</td>
<td>Nonlinear Analysis of Structures</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>ST7009</td>
<td>Offshore Structures</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>ST7010</td>
<td>Optimization of Structures</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>S.No.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>CONTACT PERIODS</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---</td>
<td>----------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>ST7011</td>
<td>Pre stressed Concrete</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>ST7012</td>
<td>Prefabricated Structures</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>ST7013</td>
<td>Stability of Structures</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>ST7014</td>
<td>Theory of Plates</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>ST7015</td>
<td>Wind and Cyclone Effects on Structures</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Practical Training (2 weeks)</td>
<td>EEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Project Work (Phase I)</td>
<td>EEC</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Seminar</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Project Work (Phase II)</td>
<td>EEC</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
</tbody>
</table>
OBJECTIVE:

- To familiarize the students in the field of differential equations to solve boundary value problems associated with engineering applications.
- To expose the students to calculus of variation, conformal mappings and tensor analysis.

UNIT I LAPLACE TRANSFORM TECHNIQUES FOR PARTIAL DIFFERENTIAL EQUATIONS

Laplace transform: Definitions, properties - Transform of error function, Bessel's function, Dirac Delta function, Unit Step functions – Convolution theorem – Inverse Laplace Transform: Complex inversion formula – Solutions to partial differential equations: Heat equation, Wave equation

UNIT II FOURIER TRANSFORM TECHNIQUES FOR PARTIAL DIFFERENTIAL EQUATIONS

UNIT III CALCULUS OF VARIATIONS

Concept of variation and its properties – Euler’s equation – Functional dependant on first and higher order derivatives – Functionals dependant on functions of several independent variables – Variational problems with moving boundaries – Problems with constraints – Direct methods – Ritz and Kantorovich methods.

UNIT IV CONFORMAL MAPPING AND APPLICATIONS

UNIT V TENSOR ANALYSIS

Summation convention – Contravariant and covariant vectors – Contraction of tensors – Innerproduct – Quotient law – Metric tensor – Chrístoffel symbols – Covariant differentiation – Gradient, divergence and curl.

TOTAL : 60 PERIODS

OUTCOME:

- This subject helps to develop the mathematical methods of applied mathematics and mathematical physics with an emphasis on calculus of variation and integral transforms.

TEXTBOOKS:

REFERENCES:

ST7101 ADVANCED CONCRETE STRUCTURES

OBJECTIVE:
- To make the students be familiar with the limit state design of RCC beams and columns
- To design special structures such as Deep beams, Corbels, Deep beams, and Grid floors
- To make the students confident to design the flat slab as per Indian standard, yield line theory and strip method.
- To design the beams based on limit analysis and detail the beams, columns and joints for ductility.

UNIT I DESIGN PHILOSOPHY
Limit state design - beams, slabs and columns according to IS Codes. Calculation of deflection and crack width according to IS Code.

UNIT II DESIGN OF SPECIAL RC ELEMENTS

UNIT III FLAT SLABS AND YIELD LINE BASED DESIGN
Design of flat slabs and flat plates according to IS method – Check for shear - Design of spandrel beams - Yield line theory and Hillerborg’s strip method of design of slabs.

UNIT IV INELASTIC BEHAVIOUR OF CONCRETE BEAMS AND COLUMNS
Inelastic behaviour of concrete beams and Baker’s method, moment - rotation curves,

UNIT V DUCTILE DETAILING

OUTCOME:
- On completion of this course the students will have the confidence to design various concrete structures and structural elements by limit state design and detail the same for ductility as per codal requirements.

REFERENCES:
OBJECTIVE:
- To expose the students the principles and methods of dynamic analysis of structures and to prepare them for designing the structures for wind, earthquake and other dynamic loads.

UNIT I PRINCIPLES OF VIBRATION ANALYSIS 9
Mathematical models of single degree of freedom systems - Free and forced vibration of SDOF systems, Response of SDOF to special forms of excitation, Effect of damping, Transmissibility.

UNIT II TWO DEGREE OF FREEDOM SYSTEMS 9
Mathematical models of two degree of freedom systems, free and forced vibrations of two degree of freedom systems, normal modes of vibration, applications.

UNIT III DYNAMIC RESPONSE OF MULTI-DEGREE OF FREEDOM SYSTEMS 9
Mathematical models of Multi-degree of freedom systems, orthogonality of normal modes, free and forced vibrations of multi degree of freedom systems, Mode superposition technique, Applications.

UNIT IV DYNAMIC RESPONSE OF CONTINUOUS SYSTEMS 9

UNIT V DIRECT INTEGRATION METHODS FOR DYNAMIC RESPONSE 9
Damping in MDOF systems, Nonlinear MDOF systems, step-by-step numerical integration algorithms, substructure technique.

TOTAL : 45 PERIODS

OUTCOME:
- After completion of the course the students will have the knowledge of vibration analysis of systems/structures with different degrees of freedom and they know the method of damping the systems.

REFERENCES:

OBJECTIVE:
- To understand the concept of 3D stress, strain analysis and its applications.

UNIT I ELASTICITY 9
UNIT II 2D STRESS STRAIN PROBLEMS 9
Plane stress and plane strain - Simple two dimensional problems in Cartesian and Polar Co-
ordinates.

UNIT III TORSION OF NON-CIRCULAR SECTION 9
St.Venant’s approach - Prandtl’s approach – Membrane analogy - Torsion of Thin Walled- Open
and Closed sections.

UNIT IV BEAMS ON ELASTIC FOUNDATIONS 9
Beams on Elastic foundation – Methods of analysis – Elastic line method – Idealization of soil
medium – Winkler model – Infinite beams – Semi infinite and finite beams – Rigid and flexible –
Uniform Cross Section – Point load and UDL – Solution by Finite Differences.

UNIT V PLASTICITY 9
Physical Assumptions – Yield Criteria – Failure Theories – Applications of Thick Cylinder – Plastic
Stress Strain Relationship. Elasto-Plastic Problems in Bending and Torsion.

TOTAL: 45 PERIODS

OUTCOME:
- On completion of this course the students will be familiar to the concept of elastic analysis
of plane stress and plane strain problems, beams on elastic foundation and torsion on non-
circular section.
- They will also have sufficient knowledge in various theories of failure and plasticity.

REFERENCES:
 2007.
 2010.

ST7201 Advanced Steel Structures

OBJECTIVE:
- To study the behaviour of members and connections, analysis and design of Industrial
buildings and roofs, chimneys. Study the design of with cold formed steel and plastic
analysis of structures.

UNIT I GENERAL 9
Design of members subjected to combined forces – Design of Purlins, Louver rails, Gable column
and Gable wind girder – Design of simple bases, Gusseted bases and Moment Resisting Base
Plates.

UNIT II DESIGN OF CONNECTIONS 9
Types of connections – Welded and Bolted – Throat and Root Stresses in Fillet Welds – Seated
Connections – Unstiffened and Stiffened seated Connections – Moment Resistant Connections –
Clip angle Connections – Split beam Connections – Framed Connections.
UNIT III ANALYSIS AND DESIGN OF INDUSTRIAL BUILDINGS 9
Analysis and design of different types of trusses – Analysis and design of industrial buildings – Sway and non sway frames – Aseismic design of steel buildings.

UNIT IV PLASTIC ANALYSIS OF STRUCTURES 9

UNIT V DESIGN OF LIGHT GAUGE STEEL STRUCTURES 9

TOTAL: 45 PERIODS

OUTCOME:
- At the end of this course students will be in a position to design bolted and welded connections in industrial structures.
- They also know the plastic analysis and design of light gauge steel structures.

REFERENCES:

ST7202 EARTHQUAKE ANALYSIS AND DESIGN OF STRUCTURES L T P C
3 0 0 3

OBJECTIVE:
- To study the effect of earthquakes, analysis and design of earthquake resistant Structures.

UNIT I EARTHQUAKE GROUND MOTION 9
Engineering Seismology (Definitions, Introduction to Seismic hazard, Earthquake Phenomenon), Seismotectonics and Seismic Zoning of India, Earthquake Monitoring and Seismic Instrumentation, Characteristics of Strong Earthquake Motion, Estimation of Earthquake Parameters, Microzonation.

UNIT II EFFECTS OF EARTHQUAKE ON STRUCTURES 9
Dynamics of Structures SDOFS MDOFS - Response Spectra - Evaluation of Earthquake Forces as per codal provisions - Effect of Earthquake on Different Types of Structures - Lessons Learnt From Past Earthquakes

UNIT III EARTHQUAKE RESISTANT DESIGN OF MASONRY STRUCTURES 9
UNIT IV EARTHQUAKE RESISTANT DESIGN OF RC STRUCTURES

UNIT V VIBRATION CONTROL TECHNIQUES
Vibration Control - Tuned Mass Dampers – Principles and application, Basic Concept of Seismic Base Isolation – various Systems- Case Studies, Important structures.

OUTCOME:
• At the end of this course the students will be able to understand the causes and effect of earthquake.
• They will be able to design masonry and RC structures to the earthquake forces as per the recommendations of IS codes of practice.

REFERENCES:

ST7203 EXPERIMENTAL TECHNIQUES

OBJECTIVE:
• To learn the principles of measurements of static and dynamic response of structures and carryout the analysis of results.

UNIT I FORCES AND STRAIN MEASUREMENT

UNIT II MEASUREMENT OF VIBRATION AND WIND FLOW

UNIT III DISTRESS MEASUREMENTS AND CONTROL
UNIT IV NON DESTRUCTIVE TESTING METHODS 9

UNIT V MODEL ANALYSIS 9

OUTCOME:
• At the end of this course students will know about measurement of strain, vibrations and wind blow.
• They will be able to analyze the structure by non-destructive testing methods and model analysis.

REFERENCES:

ST7204 FINITE ELEMENT ANALYSIS OF STRUCTURES L T P C
3 0 0 3

OBJECTIVE:
• To study the basics of the Finite Element Technique, a numerical tool for the solution of different classes of problems.

UNIT I INTRODUCTION 9
Approximate solutions of boundary value problems - Methods of weighted residuals, approximate solution using variational method, Modified Galerkin method, Boundary conditions and general comments.
Basic finite element concepts - Basic ideas in a finite element solution, General finite element solution procedure, Finite element equations using modified Galerkin method.

UNIT II APPLICATION : AXIAL DEFORMATION OF BARS, AXIAL SPRING ELEMENT 9
UNIT III ANALYSIS OF FRAMED STRUCTURES

UNIT IV PLATES AND SHELLS
Introduction to Plate Bending Problems - Finite Element Analysis of Thin Plate - Finite Element Analysis of Thick Plate - Finite Element Analysis of Skew Plate - Introduction to Finite Strip Method - Finite Element Analysis of Shell.

UNIT V APPLICATIONS

TOTAL : 45 PERIODS

OUTCOME:
- On completion of this course, the students will know the concept of finite element analysis and enable to analyze framed structure, Plate and Shells and modify using recent softwares.

REFERENCES:

ST7211 ADVANCED STRUCTURAL ENGINEERING LABORATORY

LIST OF EXPERIMENTS
1. Fabrication, casting and testing of simply supported reinforced concrete beam for strength and deflection behaviour.
2. Testing of simply supported steel beam for strength and deflection behaviour.
3. Fabrication, casting and testing of reinforced concrete column subjected to concentric and eccentric loading.
4. Dynamic Response of cantilever steel beam
 a. To determine the damping coefficients from free vibrations.
 b. To evaluate the mode shapes.
5. Static cyclic testing of single bay two storied steel frames and evaluate
 a. Drift of the frame.
 b. Stiffness of the frame.
 c. Energy dissipation capacity of the frame.
6. Non-Destructive Test on concrete
 i) Rebound hammer and ii) Ultrasonic Pulse Velocity Tester.

LIST OF EQUIPMENTS
1. Strong Floor
2. Loading Frame
3. Hydraulic Jack
4. Load Cell
5. Proving Ring
6. Demec Gauge
7. Electrical Strain Gauge with indicator
8. Rebound Hammer
9. Ultrasonic Pulse Velocity Tester
10. Dial Gauges
11. Clinometer
12. Vibration Exciter
13. Vibration Meter
14. FFT Analyser

TOTAL: 60 PERIODS

OUTCOME:
• On completion of this laboratory course students will be able to cast and test RC beams for strength and deformation behaviour.
• They will be able to test dynamic testing on steel beams, static cyclic load testing of RC frames and non-destruction testing on concrete.

REFERENCES:

ST7311 PRACTICAL TRAINING (2 Weeks) L T P C 0 0 0 1

OBJECTIVE:
• To train the students in the field work so as to have a firsthand knowledge of practical problems related to Structural Engineering in carrying out engineering tasks.
• To develop skills in facing and solving the field problems.

SYLLABUS:
The students individually undertake training in reputed Industries during the summer vacation for a specified period of four weeks. At the end of training, a detailed report on the work done should be submitted within ten days from the commencement of the semester. The students will be evaluated through a viva-voce examination by a team of internal staff.

OUTCOME:
• They are trained in tackling a practical field/industry orientated problem related to Structural Engineering.
ST7312

OBJECTIVE:
- To work on a specific technical topic in Structural Engineering and acquire the skills of written and oral presentation.
- To acquire writing abilities for seminars and conferences.

SYLLABUS:
The students will work for two hours per week guided by a group of staff members. They will be asked to give a presentation on any topic of their choice related to Structural Engineering and to engage in discussion with the audience. A brief copy of their presentation also should be submitted. Similarly, the students will have to present a seminar of not less than fifteen minutes and not more than thirty minutes on the technical topic. They will defend their presentation. Evaluation will be based on the technical presentation and the report and also on the interaction shown during the seminar.

TOTAL: 30 PERIODS

OUTCOME:
- The students will be trained to face an audience and to tackle any problem during group discussion in the Interviews.

ST7313

PROJECT WORK (PHASE I)

OBJECTIVE:
- To identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature.
- To develop the methodology to solve the identified problem.
- To train the students in preparing project reports and to face reviews and viva-voce examination.

SYLLABUS:
The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

TOTAL: 180 PERIODS

OUTCOME:
- At the end of the course the students will have a clear idea of his/her area of work and they are in a position to carry out the remaining phase II work in a systematic way.
ST7411 PROJECT WORK (PHASE II) L T P C 0 0 24 12

OBJECTIVE:
- To solve the identified problem based on the formulated methodology.
- To develop skills to analyze and discuss the test results, and make conclusions.

SYLLABUS:
The student should continue the phase I work on the selected topic as per the formulated methodology. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated through based on the report and the viva-voce examination by a panel of examiners including one external examiner.

TOTAL: 360 PERIODS

OUTCOME:
- On completion of the project work students will be in a position to take up any challenging practical problem and find better solutions.

ST7001 ANALYSIS AND DESIGN OF TALL BUILDINGS L T P C 3 0 0 3

OBJECTIVE:
- To study the behaviour, analysis and design of tall structures.

UNIT I LOADING AND DESIGN PRINCIPLES 9
Loading- sequential loading, Gravity loading, Wind loading, Earthquake loading, - Equivalent lateral force, modal analysis - combination of loading, – Static and Dynamic approach - Analytical and wind tunnel experimental methods - Design philosophy - working stress method, limit state method and plastic design.

UNIT II BEHAVIOUR OF VARIOUS STRUCTURAL SYSTEMS 9
Factors affecting growth, height and structural form. High rise behaviour, Rigid frames, braced frames, In filled frames, shear walls, coupled shear walls, wall-frames, tubulars, cores, outrigger-braced and hybrid mega systems.

UNIT III ANALYSIS AND DESIGN 9
Modeling for approximate analysis, Accurate analysis and reduction techniques, Analysis of buildings as total structural system considering overall integrity and major subsystem interaction, Analysis for member forces, drift and twist - Computerized three dimensional analysis – Assumptions in 3D analysis – Simplified 2D analysis.

UNIT IV STRUCTURAL ELEMENTS 9
Sectional shapes, properties and resisting capacity, design, deflection, cracking, prestressing, shear flow, Design for differential movement, creep and shrinkage effects, temperature effects and fire resistance.
UNIT V STABILITY ISSUES 9
Overall buckling analysis of frames, wall-frames, Approximate methods, second order effects of gravity of loading, P-Delta analysis, simultaneous first-order and P-Delta analysis, Translational, Torsional instability, out of plumb effects, stiffness of member in stability, effect of foundation rotation.

TOTAL: 45 PERIODS

OUTCOME:
• On completion of this course students will be able to know the behavior of tall buildings due to various types of loads.
• They will be able to analyze and design such buildings by approximate, accurate and simplified methods.

REFERENCES:

ST7002 DESIGN OF BRIDGES L T P C 3 0 0 3

OBJECTIVE:
• To study the loads, forces on bridges and design of several types of bridges.

UNIT I GENERAL INTRODUCTION AND SHORT SPAN RC BRIDGES 9
Types of bridges and loading standards - Choice of type - I.R.C. specifications for road bridges – Design of RCC solid slab bridges - analysis and design of slab culverts , Tee beam and slab bridges.

UNIT II LONG SPAN RC BRIDGES 9
Design principles of continuous girder bridges, box girder bridges, balanced cantilever bridges – Arch bridges – Box culverts – Segmental bridges.

UNIT III PRESTRESSED CONCRETE BRIDGES 9

UNIT IV STEEL BRIDGES 9

UNIT V BEARINGS AND SUBSTRUCTURES 9

TOTAL: 45 PERIODS
OUTCOME:
- At the end of this course students will be able to design different types of RCC bridges, Steel bridges and pre-stressed concrete bridges with the bearings and substructures.

REFERENCES:

ST7003 DESIGN OF SHELL AND SPATIAL STRUCTURES

OBJECTIVE:
- Study the behaviour and design of shells, folded plates, space frames and application of FORMIAN software.

UNIT I CLASSIFICATION OF SHELLS

UNIT II FOLDED PLATES
Folded Plate structures, structural behaviour, types, design by ACI - ASCE Task Committee method – pyramidal roof.

UNIT III INTRODUCTION TO SPACE FRAME
Space frames - configuration - types of nodes - Design Philosophy - Behaviour.

UNIT IV ANALYSIS AND DESIGN
Analysis of space frames – Design of Nodes – Pipes - Space frames – Introduction to Computer Aided Design.

UNIT V SPECIAL METHODS
Application of Formex Algebra, FORMIAN for generation of configuration.

OUTCOME:
- On completion of this course students will be able to analyze and design various types of shells, folded plates and space frames manually and also using computer Aided design and software packages.

REFERENCES:
OBJECTIVE:
- To develop an understanding of the behaviour and design concrete composite elements and structures.

UNIT I INTRODUCTION
Introduction to steel-concrete composite construction – Codes – Composite action – Serviceability and Construction issues in design.

UNIT II DESIGN OF COMPOSITE MEMBERS
Design of composite beams, slabs, columns, beam – columns - Design of composite trusses.

UNIT III DESIGN OF CONNECTIONS

UNIT IV COMPOSITE BOX GIRDER BRIDGES
Introduction - behaviour of box girder bridges - design concepts.

UNIT V CASE STUDIES
Case studies on steel-concrete composite construction in buildings - seismic behaviour of composite structures.

OUTCOME:
- At the end of this course students will be in a position to design composite beams, columns, trusses and box-girder bridges including the related connections.
- They will get exposure on case studies related to steel-concrete constructions of buildings.

REFERENCES:

OBJECTIVE:
- To study the requirements, planning and design of Industrial structures.

UNIT I PLANNING AND FUNCTIONAL REQUIREMENTS

UNIT II INDUSTRIAL BUILDINGS
Steel and RCC - Gantry Girder, Crane Girders - Design of Corbels and Nibs – Design of Staircase.
UNIT III POWER PLANT STRUCTURES 9
Types of power plants – Containment structures - Cooling Towers - Bunkers and Silos - Pipe
supporting structures

UNIT IV TRANSMISSION LINE STRUCTURES AND CHIMNEYS 9
Analysis and design of steel monopoles, transmission line towers – Sag and Tension calculations,
Methods of tower testing – Design of self supporting and guyed chimney, Design of Chimney
bases.

UNIT V FOUNDATION 9
Design of foundation for Towers, Chimneys and Cooling Towers - Machine Foundation - Design of
Turbo Generator Foundation.

TOTAL: 45 PERIODS

OUTCOME:
• On completion of this course student will be able to plan industrial structures for functional
requirements.
• They will be able to design various structures such as Bunkers, Silos, Cooling Towers,
Chimneys, and Transmission Towers with required foundations.

REFERENCES:
1. Jurgen Axel Adam, Katharria Hausmann, Frank Juttner, Klauss Daniel, Industrial Buildings:
 1976.

ST7006 MAINTENANCE AND REHABILITATION OF STRUCTURES L T P C
3 0 0 3

OBJECTIVE:
• To study the damages, repair and rehabilitation of structures.

UNIT I INTRODUCTION 9
General Consideration – Distresses monitoring – Causes of distresses – Quality assurance –
Defects due to climate, chemicals, wear and erosion – Inspection – Structural appraisal –
Economic appraisal.

UNIT II BUILDING CRACKS 9
Causes – diagnosis – Thermal and Shrinkage cracks – unequal loading – Vegetation and trees –
Chemical action – Foundation movements – Remedial measures - Techniques for repair – Epoxy
injection.

UNIT III MOISTURE PENETRATION 9
Sources of dampness – Moisture movement from ground – Reasons for ineffective DPC – Roof
leakage – Pitched roofs – Madras Terrace roofs – Membrane treated roofs - Leakage of Concrete
slabs – Dampness in solid walls – condensation – hygroscopic salts – remedial treatments – Ferro
cement overlay – Chemical coatings – Flexible and rigid coatings.
UNIT IV DISTRESSES AND REMEDIES

Masonry Structures: Discoloration and weakening of stones – Biotical treatments – Preservation – Chemical preservatives – Brick masonry structures – Distresses and remedial measures.

UNIT V STRENGTHENING OF EXISTING STRUCTURES

OUTCOME:

- At the end of this course students will be in a position to point out the causes of distress in concrete, masonry and steel structures and also they will be able to suggest the remedial measures.

REFERENCES:

UNIT III ANALYSIS OF LAMINATED COMPOSITES

UNIT IV FAILURE AND FRACTURE OF COMPOSITES
Netting Analysis, Failure Criterion, Maximum Stress, Maximum Strain, Fracture Mechanics of Composites, Sandwich Construction.

UNIT V APPLICATIONS AND DESIGN
Metal and Ceramic Matrix Composites, Applications of Composites, Composite Joints, Design with Composites, Review, Environmental Issues

TOTAL: 45 PERIODS

OUTCOME:
• On completion of this course students will have sufficient knowledge on behavior of various composite materials and will have an idea of failure and fracture mechanisms.

REFERENCES:

ST7008 NONLINEAR ANALYSIS OF STRUCTURES

OBJECTIVE:
• To study the concept of nonlinear behaviour and analysis of elements and simple structures.

UNIT I INTRODUCTION TO NONLINEAR ANALYSIS
Material nonlinearity, geometric nonlinearity; statically determinate and statically indeterminate bar systems of uniform and variable thickness.

UNIT II INELASTIC ANALYSIS OF FLEXURAL MEMBERS
Inelastic analysis of uniform and variable thickness members subjected to small deformations; inelastic analysis of bars of uniform and variable stiffness members with and without axial restraints

UNIT III VIBRATION THEORY AND ANALYSIS OF FLEXURAL MEMBERS
Vibration theory and analysis of flexural members; hysteretic models and analysis of uniform and variable stiffness members under cyclic loading
UNIT IV ELASTIC AND INELASTIC ANALYSIS OF PLATES 9
Elastic and inelastic analysis of uniform and variable thickness plates

UNIT V NONLINEAR VIBRATION AND INSTABILITY 9
Nonlinear vibration and Instabilities of elastically supported beams.

TOTAL: 45 PERIODS

OUTCOME:
- At the end of this course student will have enough knowledge on inelastic and vibration analysis of Flexural members.
- Also they will know the difference between elastic and inelastic analysis of plates and Instabilities of elastically supported beams.

REFERENCES:

ST7009 OFFSHORE STRUCTURES L T P C
3 0 0 3

OBJECTIVE:
- To study the concept of wave theories, forces and design of jacket towers, pipes and cables.

UNIT I WAVE THEORIES 9
Wave generation process, small, finite amplitude and nonlinear wave theories.

UNIT II FORCES OF OFFSHORE STRUCTURES 9
Wind forces, wave forces on small bodies and large bodies - current forces - Morison equation.

UNIT III OFFSHORE SOIL AND STRUCTURE MODELLING 9
Different types of offshore structures, foundation modeling, fixed jacket platform structural modeling.

UNIT IV ANALYSIS OF OFFSHORE STRUCTURES 9
Static method of analysis, foundation analysis and dynamics of offshore structures.

UNIT V DESIGN OF OFFSHORE STRUCTURES 9
Design of platforms, helipads, Jacket tower, analysis and design of mooring cables and pipelines.

TOTAL: 45 PERIODS

OUTCOME:
- On completion of this course students will be able to determine the forces due to ocean waves and analyze and design offshore structures like platform, helipads, jackets, towers etc.,

REFERENCES:

ST7010 OPTIMIZATION OF STRUCTURES L T P C
3 0 0 3

OBJECTIVE:
• To study the optimization methodologies applied to structural engineering

UNIT I BASIC PRINCIPLES AND CLASSICAL OPTIMIZATION TECHNIQUES 9

UNIT II LINEAR AND NON-LINEAR PROGRAMMING 9

UNIT III GEOMETRIC PROGRAMMING 9
Posynomial - degree of difficulty - reducing G.P.P to a set of simultaneous equations - Unconstrained and constrained problems with zero difficulty - Concept of solving problems with one degree of difficulty.

UNIT IV DYNAMIC PROGRAMMING 9
Bellman’s principle of optimality - Representation of a multistage decision problem - concept of sub-optimization problems using classical and tabular methods.

UNIT V STRUCTURAL APPLICATIONS 9
Methods for optimal design of structural elements, continuous beams and single storied frames using plastic theory - Minimum weight design for truss members - Fully stressed design - Optimization principles to design of R.C. structures such as multistorey buildings, water tanks and bridges.

TOTAL: 45 PERIODS
OUTCOME:
- On completion of this course students will have sufficient knowledge on various optimization techniques like linear programming, non-linear programming, geometric and dynamic programming and they will also be in a position to design various structural elements for minimum weight.

REFERENCES:

ST7011 PRESTRESSED CONCRETE

OBJECTIVE:
- Principle of prestressing, analysis and design of prestressed concrete structures.

UNIT I PRINCIPLES OF PRESTRESSING 9
Basic concepts of Prestressing - Types and systems of prestressing - Need for High Strength materials, Analysis methods, losses of prestress – Short and Long term deflections – Cable layouts.

UNIT II DESIGN OF FLEXURAL MEMBERS 9
Behaviour of flexural members, determination of ultimate flexural strength – Various Codal provisions - Design of flexural members, Design for shear, bond and torsion. Transfer of prestress – Box girders.

UNIT III DESIGN OF CONTINUOUS AND CANTILEVER BEAMS 9
Analysis and design of continuous beams - Methods of achieving continuity - concept of linear transformations, concordant cable profile and gap cables – Analysis and design of cantilever beams.

UNIT IV DESIGN OF TENSION AND COMPRESSION MEMBERS 9
Design of tension members - application in the design of prestressed pipes and prestressed concrete cylindrical water tanks - Design of compression members with and without flexure - its application in the design piles, flag masts and similar structures.

UNIT V DESIGN OF COMPOSITE MEMBERS 9
Composite beams - analysis and design, ultimate strength - their applications. Partial prestressing - its advantages and applications.

TOTAL: 45 PERIODS

OUTCOME:
- On completion of this course students will have sufficient knowledge on various methods of prestressing and the concepts of partial pre-stressing.
- They will be in a position to design beams, pipes, water tanks, posts and similar structures.
REFERENCES:

ST7012 PREFABRICATED STRUCTURES L T P C
3 0 0 3

OBJECTIVE:
• To Study the design principles, analysis and design of elements.

UNIT I DESIGN PRINCIPLES 9
General Civil Engineering requirements, specific requirements for planning and layout of prefabrication plant. IS Code specifications. Modular co-ordination, standardization, Disuniting of Prefabricates, production, transportation, erection, stages of loading and code provisions, safety factors, material properties, Deflection control, Lateral load resistance, Location and types of shear walls.

UNIT II REINFORCED CONCRETE 9
Prefabricated structures - Long wall and cross-wall large panel buildings, one way and two way prefabricated slabs, Framed buildings with partial and curtain walls, -Connections – Beam to column and column to column.

UNIT III FLOORS, STAIRS AND ROOFS 9
Types of floor slabs, analysis and design example of cored and panel types and two-way systems, staircase slab design, types of roof slabs and insulation requirements, Description of joints, their behaviour and reinforcement requirements, Deflection control for short term and long term loads, Ultimate strength calculations in shear and flexure.

UNIT IV WALLS 9
Types of wall panels, Blocks and large panels, Curtain, Partition and load bearing walls, load transfer from floor to wall panels, vertical loads, Eccentricity and stability of wall panels, Design Curves, types of wall joints, their behaviour and design, Leak prevention, joint sealants, sandwich wall panels, approximate design of shear walls.

UNIT V INDUSTRIAL BUILDINGS AND SHELL ROOFS 9
Components of single-storey industrial sheds with crane gantry systems, R.C. Roof Trusses, Roof Panels, corbels and columns, wind bracing design. Cylindrical, Folded plate and hyper-prefabricated shells, Erection and jointing, joint design, hand book based design.

TOTAL: 45 PERIODS

OUTCOME:
• At the end of this course student will have good knowledge about the prefabricated elements and the technologies used in fabrication and erection.
• They will be in a position to design floors, stairs, roofs, walls and industrial buildings, and various joints for the connections.
REFERENCES:

ST7013

STABILITY OF STRUCTURES

L T P C
3 0 0 3

OBJECTIVE:
• To study the concept of buckling and analysis of structural elements.

UNIT I BUCKLING OF COLUMNS

UNIT II BUCKLING OF BEAM-COLUMNS AND FRAMES
Theory of beam column - Stability analysis of beam column with single and several concentrated loads, distributed load and end couples Analysis of rigid jointed frames with and without sway – Use of stability function to determine the critical load.

UNIT III TORSIONAL AND LATERAL BUCKLING

UNIT IV BUCKLING OF PLATES
Governing differential equation - Buckling of thin plates, various edge conditions -Analysis by equilibrium and energy approach – Finite difference method.

UNIT V INELASTIC BUCKLING
Double modulus theory - Tangent modulus theory - Shanley’s model - Eccentrically loaded inelastic column. Inelastic buckling of plates - Post buckling behaviour of plates.

TOTAL: 45 PERIODS

OUTCOME:
• On completion of this course student will know the phenomenon of buckling and they are in a position to calculate the buckling load on column, beam – column, frames and plates using classical and approximate methods.

REFERENCES:
ST7014 THEORY OF PLATES

OBJECTIVE:
- To study the behaviour and analysis of thin plates and the behaviour of anisotropic and thick plates.

UNIT I INTRODUCTION TO PLATES THEORY 9
Thin Plates with small deflection. Laterally loaded thin plates, governing differential equation, various boundary conditions.

UNIT II RECTANGULAR PLATES 9
Rectangular plates. Simply supported rectangular plates, Navier solution and Levy’s method, Rectangular plates with various edge conditions, plates on elastic foundation.

UNIT III CIRCULAR PLATES 9
Symmetrical bending of circular plates.

UNIT IV SPECIAL AND APPROXIMATE METHODS. 9
Energy methods, Finite difference and Finite element methods.

UNIT V ANISOTROPIC PLATES AND THICK PLATES 9
Orthotropic plates and grids, moderately thick plates.

OUTCOME:
- At the end of this course students will be able to analyze different types of plates (rectangular and circular) under different boundary connections by various classical methods and approximate methods.
- They will also know behavior of orthotropic and thick plates and grids.

REFERENCES:
OBJECTIVE:
- To study the concept of wind and cyclone effects for the analysis and design of structures.

UNIT I INTRODUCTION

UNIT II WIND TUNNEL STUDIES
Wind Tunnel Studies, Types of tunnels, - Prediction of acceleration – Load combination factors – Wind tunnel data analysis – Calculation of Period and damping value for wind design - Modeling requirements, Aero dynamic and Aero-elastic models.

UNIT III EFFECT OF WIND ON STRUCTURES
Classification of structures – Rigid and Flexible – Effect of wind on structures - Static and dynamic effects on Tall buildings – Chimneys.

UNIT IV DESIGN OF SPECIAL STRUCTURES

UNIT V CYCLONE EFFECTS

OUTCOME:
- On completion of this course, students will be able to design high rise structures subjected wind load, even structures exposed to cyclone.
- Students will be conversant with various code provisions for the design of structures for wind load.

REFERENCES: