PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) :

I. Train the students to posses good scientific and engineering knowledge in the field of biomedical engineering.
II. To understand the principles and recent trends in physiological measurements, diagnosis and therapy procedures followed in hospital.
III. To introduce the concepts of hospital architecture, planning and organization.
IV. To impart knowledge on the management of equipments, finance, human resource and waste related to hospital.
V. Ability to practice engineering in biological, medical and health care system related fields and excel as biomedical professionals in hospitals.

PROGRAMME OUTCOMES (POs):

On successful completion of the programme, graduates will demonstrate an ability to

1. Apply principles of mathematics, biology, human physiology and engineering in the field of biomedical applications.
2. Design and conduct experiments for biomedical data acquisition, analysis and interpretation
3. To understand and apply computational techniques for applications in biomedical engineering.
4. Identify, formulate and solve problems related to biomedical engineering.
5. Understand the professional and ethical responsibilities.
6. Communicate effectively and work in multi-disciplinary groups.
7. Design hospital architecture and gain experience in procurement, monitoring, quality maintenance and management of equipments in hospital.
8. Understand the impact of biomedical engineering solutions in global, economic, environmental and social context.
10. Pursue research in the field of Biomedical Engineering.
A broad relation between the programme objective and the outcomes is given in the following table

<table>
<thead>
<tr>
<th>PROGRAMME EDUCATIONAL OBJECTIVES</th>
<th>PROGRAMME OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>PO2</td>
</tr>
<tr>
<td>I</td>
<td>✓</td>
</tr>
<tr>
<td>II</td>
<td>✓</td>
</tr>
<tr>
<td>III</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>YEAR</td>
<td>SEM</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>YEAR 2</td>
<td>Professional Elective III</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>SEM 3</td>
<td>Professional Elective VI</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM 4</td>
<td>Project Work (Phase II)</td>
</tr>
</tbody>
</table>
Semester - I

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA7152</td>
<td>Advanced Applied Mathematics</td>
<td>FC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MD7151</td>
<td>Human Anatomy and Physiology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>BO7101</td>
<td>Biomedical Sensors and Instrumentation</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BO7102</td>
<td>Diagnostic and Therapeutic Equipments</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>BO7103</td>
<td>Medical Imaging Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Elective I</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PRACTICALS

| 7. | BO7111 | Clinical Instrumentation Laboratory | PC | 4 | 0 | 0 | 4 | 2 |

TOTAL 23 19 0 4 21
II SEMESTER

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BO7251</td>
<td>Bio Mechanics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>BO7202</td>
<td>Rehabilitation Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>BO7201</td>
<td>Clinical Sciences</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Elective II</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Elective III</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Elective IV</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>BO7211</td>
<td>Hospital Information System Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>BO7212</td>
<td>Technical Seminar and Report Writing</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td>24</td>
<td>18</td>
<td>0</td>
<td>6</td>
<td>21</td>
</tr>
</tbody>
</table>

III SEMESTER

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Elective V</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Elective VI</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Elective VII</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>BO7311</td>
<td>Hospital Training</td>
<td>EEC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>BO7312</td>
<td>Project Work Phase I</td>
<td>EEC</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td>25</td>
<td>9</td>
<td>0</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>
IV SEMESTER

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BO7411</td>
<td>Project Work Phase II</td>
<td>EEC</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
</tbody>
</table>

TOTAL NO. OF CREDITS: 71

ANNA UNIVERSITY, CHENNAI
UNIVERSITY DEPARTMENTS
M.E BIOMEDICAL ENGINEERING
REGULATIONS 2015
CHOICE BASED CREDIT SYSTEM
CURRICULA AND SYLLABI

SEMESTER - I

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA7152</td>
<td>Advanced Applied Mathematics</td>
<td>FC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>BO7101</td>
<td>Biomedical Sensors and Instrumentation</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MD7151</td>
<td>Human Anatomy and Physiology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

II SEMESTER

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>BO7251</td>
<td>Bio Mechanics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>BO7202</td>
<td>Rehabilitation Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>BO7201</td>
<td>Clinical sciences</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>
III SEMESTER

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BO7102</td>
<td>Diagnostic and Therapeutic Equipments</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>BO7103</td>
<td>Medical Imaging Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Elective I</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>BO7111</td>
<td>Clinical Instrumentation Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>9</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

IV SEMESTER

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Elective II</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Elective III</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Elective IV</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>BO7211</td>
<td>Technical Seminar and Report Writing</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>BO7212</td>
<td>Hospital Information System Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>9</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

V SEMESTER

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Elective V</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Elective VI</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Elective VII</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>BO7312</td>
<td>Project Work Phase I</td>
<td>EEC</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>9</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>
VI SEMESTER

<table>
<thead>
<tr>
<th>SL.NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BO7311</td>
<td>Hospital Training</td>
<td>EEC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>BO7411</td>
<td>Project Work Phase II</td>
<td>EEC</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>14</td>
</tr>
</tbody>
</table>

TOTAL NO. OF CREDITS: 71

FOUNDATION COURSES (FC)

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>Advanced Applied Mathematics</td>
<td>FC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

PROFESSIONAL CORE (PC)

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>Biomedical Sensors and Instrumentation</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Diagnostic and Therapeutic Equipments</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Medical Imaging Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Human Anatomy and Physiology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Bio Mechanics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Rehabilitation Aids</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Clinical sciences</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>Clinical Instrumentation Laboratory</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>Hospital Information System Laboratory</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>SL. No</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>CONTACT PERIODS</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.</td>
<td>BO7001</td>
<td>Bio Statistics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>BO7002</td>
<td>Finance Management in Hospital</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>BO7003</td>
<td>Finite Element Analysis For Biomedical Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BO7004</td>
<td>Health Informatics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>BO7005</td>
<td>Health Policy and Equipment Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>BO7006</td>
<td>Hospital Architecture</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>BO7007</td>
<td>Hospital Planning, Organization and Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>BO7008</td>
<td>Hospital Waste Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>BO7009</td>
<td>Human Resource Management in Hospital</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>BO7010</td>
<td>Physics in Medicine</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>BO7011</td>
<td>Quality Assurance and Safety in Hospitals</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>BO7012</td>
<td>Signal Processing and Image processing Techniques Applied to Biological Systems</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>BO7071</td>
<td>Bio Materials</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>MD7071</td>
<td>Advanced Neural Computing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>MD7072</td>
<td>Advanced Neural Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>MD7073</td>
<td>Bio MEMS</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>MD7074</td>
<td>Computer Based Medical Instrumentation</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>MD7075</td>
<td>Medical Ethics and Standards</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19.</td>
<td>MD7076</td>
<td>Medical Optics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>MD7077</td>
<td>Nanomedicine Principles and Applications</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SL. NO</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>CONTACT PERIODS</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---</td>
<td>----------</td>
<td>----------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1.</td>
<td>MD7078</td>
<td>Pattern Recognition Techniques and Applications</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>22.</td>
<td>MD7079</td>
<td>Physiological Systems Modeling And Simulation</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>23.</td>
<td>MD7080</td>
<td>Principles of Genetic Analysis</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>24.</td>
<td>MD7081</td>
<td>Tele Health Technology</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>25.</td>
<td>MD7082</td>
<td>Tissue Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>26.</td>
<td>MD7083</td>
<td>Ultrasound Principles and Applications in Medicine</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>Technical Seminar and Report Writing</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Hospital Training</td>
<td>EEC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Project Work (Phase I)</td>
<td>EEC</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Project Work (Phase II)</td>
<td>EEC</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
</tbody>
</table>
MA7152 ADVANCED APPLIED MATHEMATICS

OBJECTIVES:

- To encourage students to develop a working knowledge of the central ideas of linear algebra;
- To study and understand the concepts of probability and random variable of the various functions;
- understand the notion of a Markov chain, and how simple ideas of conditional probability and matrices can be used to give a thorough and effective account of discrete-time Markov chains;
- To formulate and construct a mathematical model for a linear programming problem in real life situation;
- Introduce the Fourier Transform as an extension of Fourier techniques on periodic functions and to solve partial differential equations;

UNIT I LINEAR ALGEBRA 9+3

UNIT II ONE DIMENSIONAL RANDOM VARIABLES 9+3

UNIT III RANDOM PROCESSES 9+3
Classification – Auto correlation - Cross correlation - Stationary random process – Markov process — Markov chain - Poisson process – Gaussian process.

UNIT IV LINEAR PROGRAMMING 9+3
Formulation – Graphical solution – Simplex method – Two phase method - Transportation and Assignment Models

UNIT V FOURIER TRANSFORM FOR PARTIAL DIFFERENTIAL EQUATIONS 9+3

TOTAL: 45+15=60 PERIODS

OUTCOME:

- On successful completion of this course, all students will have developed knowledge and understanding in the fields of linear algebra, probability, stochastic process, linear programming problem and fourier transform.
TEXT BOOKS:

REFERENCES:

MD7151 HUMAN ANATOMY AND PHYSIOLOGY L T P C
3 0 0 3

OBJECTIVES:
• To understand basics of Human Anatomy and Physiology.
• To study the organs and systems involved in body functions.
• To apply this knowledge into biomedical engineering field.

UNIT I INTRODUCTION

UNIT II MUSCULOSKELETAL SYSTEM

UNIT III RESPIRATION, NUTRITION AND EXCRETORY SYSTEM

UNIT IV CARDIOVASCULAR AND ENDOCRINE SYSTEM
UNIT V NERVOUS SYSTEM AND SPECIAL SENSES

TOTAL: 45 PERIODS

OUTCOMES:
By successfully completing this course, students will be able to:
- Describe and explain specific parts and key terms applied in anatomy and physiology
- Describe important physiological mechanisms involved in cell, tissue, and organ
- Understand organisation and functions of each organs and systems in human body

REFERENCES:

BO7101 BIOMEDICAL SENSORS AND INSTRUMENTATION L T P C
3 0 0 3

OBJECTIVES:
- To study the basic characteristics of measurement system.
- To study the different types of transducers, electrodes and signal conditioning circuits.
- To study the techniques used for measurement of various non electrical physiological parameters.
- To know the different types of display and recording devices.

UNIT I TRANSDUCERS
Characteristics- Static, Dynamic, Errors in the measurements, Classification of transducers - Resistive, Capacitive, Inductive, Photoelectric, piezoelectric and mechanoelectronics.

UNIT II ELECTRODES & AMPLIFIERS

UNIT III CHEMICAL AND OPTICAL TRANSDUCERS
PH, PO2, PCO2, HCO3 electrodes, Ion sensor, Anion and Cation sensor, Liquid and solid ion exchange membrane electrode, Enzyme electrode, Principle of fiber optic cable, fiber optic sensors, Photo acoustic sensors, PPG sensors.

UNIT IV NON ELECTRICAL PARAMETERS MEASUREMENTS
Measurements of Respiration Rate, Temperature, Pulse rate, Blood pressure Measurements - Direct, Indirect, Blood flow Measurements – Invitro, Invivo, Gas flow measurements.
UNIT V RECORDERS AND DISPLAY

Types of recorders, Ink jet, heated stylus, Photographic recorder, Multicolor dot scanners, CRO, storage type, long persistence, digital scope, magnetic tape recorders.

TOTAL: 45 PERIODS

OUTCOMES:
- Students will get the clear domain knowledge about various measurement systems.
- Students will be able to develop measurement systems by selecting different types of sensors, electrodes, signal conditioning circuits for acquiring and recording various physiological parameters.

REFERENCES:

BO7102 DIAGNOSTIC AND THERAPEUTIC EQUIPMENTS

OBJECTIVES:
- To know the various biopotential recordings so as to enable students to record various biosignals.
- To know the various functional blocks present in cardiac care units so that the students can handle these equipments with care and safety.
- To develop an understanding of the physiotherapy and diathermy equipment so that the student can learn to operate.

UNIT I BIO POTENTIAL RECORDING

ECG, EEG, EMG, PCG, EOG, lead system and recording methods, typical waveform, frequency spectrum, abnormal waveforms. Evoked response.

UNIT II CARDIAC CARE UNITS

Pace makers - different types, batteries for pace makers. DC defibrillators, asynchronous and synchronous types, patient monitoring system, principles of bio telemetry.

UNIT III DIATHERMY AND STIMULATOR

Physiological effects of HF radiation, Depth of Penetration, short wave, Ultrasonic and microwave diathermy, Surgical diathermy, Galvani, Faradic stimulators, Interferential therapy, Electrical safety-Leakage current, Micro and macro electric shock, GFI units, Earthing Scheme, Electrical safety Analyser.
UNIT IV ASSIST DEVICES

UNIT V RECENT TRENDS
Principles and application of thermography, Detection circuits, Principles of cryogenic Technique and application, principles of Fiber optics cables, Endoscopy, Laparoscopy, principles of Lithotripsy.

OUTCOMES:
By successfully completing this course, students will be able to:
- Develop measurement systems by selecting different types of electrodes, signal conditioning circuits for acquiring and recording various biopotential.
- Describe and explain specific parts in Cardiac care units. Describe important working mechanisms of assist devices.
- Get clear domain knowledge about various types of Medical stimulators, and recently developed equipments.

REFERENCES:
1. Albert M Cook and Webster J G – Therapeutic medical devices Prentice Hall Nee York 1982
5. Leslie Cromwell , Fred J.Weibell and Erich A.Pfeiffer - Biomedical Instrumentation Prentice Hall New Delhi 2000

BO7103 MEDICAL IMAGING SYSTEMS

OBJECTIVES:
- To Study the Production of X-rays and its applications to different medical Imaging techniques
- To study the different types of Radio diagnostic techniques.
- To study the special imaging techniques used for visualizing the cross sections of the body. To study the imaging of soft tissues using ultrasound technique

UNIT I PRINCIPLES OF RADIOGRAPHIC EQUIPMENT
X-Ray tubes, cooling systems, removal of scatters, Fluoroscopy- construction of image Intensifier tubes, angiographic setup, mammography, digital radiology, DSA.
UNIT II COMPUTED TOMOGRAPHY 10
Need for sectional images, Principles of sectional scanning, CT detectors, Methods of
reconstruction, Iterative, Back projection, convolution and Back-Projection. Artifacts, Principle of
3D imaging

UNIT III RADIO ISOTOPIC IMAGING 9
Alpha, Beta and Gamma radiation, Radiation detectors, Radio isotopic imaging equipments,
Radio nuclides for imaging, Gamma ray camera, scanners, Positron Emission tomography,
SPECT, PET/CT.

UNIT IV ULTRASONIC SYSTEMS 9
Wave propagation and interaction in Biological tissues, Acoustic radiation fields, continuous and
pulsed excitation, Transducers and imaging systems, Scanning methods, Imaging Modes,
Principles and theory of image generation.

UNIT V MAGNETIC RESONANCE IMAGING 9
NMR, Principles of MRI, Relaxation processes and their measurements, Pulse sequencing and
MR image acquisition, MRI Instrumentation, Functional MRI.

TOTAL: 45 PERIODS

OUTCOMES:
- Students will get the clear domain knowledge about the various Medical Imaging techniques.
- Students will be able to explain the various diagnostic applications of the medical imaging
techniques.

REFERENCES:
4. Donald W.McRobbice, Elizabeth A.Moore, Martin J.Grave and Martin R.Prince MRI from
5. Jerry L.Prince and Jnathan M.Links,” Medical Imaging Signals and Systems”- Pearson
Education Inc. 2006.

BO 7111 CLINICAL INSTRUMENTATION LABORATORY L T P C
0 0 4 2

OBJECTIVES:
- To study the various aspects of bio signals and amplifiers
- To understand the performance of surgical diathermy.
- To study practically the concepts of audiometer

LIST OF EXPERIMENTS
1. Operational Amplifier-various amplifier configurations
2. Respiratory analysis using spirometer
3. Design and testing of Bio-Amplifiers
4. Recording of Electromyogram.
5. Study of ECG machine.
6. Study of EEG machine
7. Study of Patient monitoring system and biotelemetry
8. Bio-chemical measurements
9. Performance and testing of surgical diathermy unit using diathermy analyzer
11. Study of Multi parameter simulator
12. Electrical safety testing of medical equipment.

TOTAL: 60 PERIODS

OUTCOME:
- Students will get the clear practical knowledge about the various basic amplifiers and their characteristics.

BO7251 BIO MECHANICS

OBJECTIVES:
- To get the clear understanding of application of mechanics in medicine.
- To study the properties of blood, bone and soft tissues like articular cartilage tendons and ligaments.
- To gain necessary knowledge about accident and injuries.

UNIT I INTRODUCTION
Introduction to bio-mechanics, relation between mechanics and Medicine, Newton's laws, stress, strain, shear rate, viscosity, visco elasticity, non Newtonian viscosity, soft tissue mechanics, mechanical properties of soft biological tissues. biofluid mechanics.

UNIT II MECHANICS OF CIRCULATION
Flow properties of blood, effect of shear rate, hematocrit, temperature and protein Content of blood, rheology of blood and micro vessels, dynamics of circulatory system, turbulence flow around prosthetic heart valves.

UNIT III MECHANICS APPLIED TO ORTHOPAEDICS
Orthopedic biomechanics, mechanical properties of bones, stress induced bone growth, kinematics and kinetics of joints, lubrication of joints, and analysis of force in orthopedic implants.

UNIT IV MECHANISM OF BIOLOGICAL SYSTEMS
Skeletal muscles servo mechanism, Cardio vascular control mechanism, respiratory control mechanism

UNIT V BIO MECHANICAL ASPECT OF ACCIDENT INVESTIGATION
Experimental and Analytical method of analysis, Clinical evaluation, Head Injury tolerance, rotational injury, spine injury – Accident reconstruction, Analysis of impact, skid analysis – Damage analysis.

TOTAL: 45 PERIODS

OUTCOME:
The study of mechanical properties of biological tissues and the properties of blood give us a wide understanding about its structure and when it undergo wear and when it fails so many precautions can be given by ourselves to elders. The knowledge gained will be helpful in doing research in properties of hard tissues like bones and to generate a mathematical mode of bone structure etc.
REFERENCES:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>REHABILITATION ENGINEERING</th>
</tr>
</thead>
<tbody>
<tr>
<td>L T P C</td>
<td>3 0 0 3</td>
</tr>
</tbody>
</table>

OBJECTIVES:
- To develop an understanding of the various rehabilitation aid principle and its working.
- To give various information about rehabilitation medicine and Advocacy.

UNIT I PROSTHETIC AND ORTHOTIC DEVICES
Hand and arm replacement, different types of models for externally powered limb prosthetics, Lower limb, Upper limb orthotics, and material for prosthetic and orthotic devices, mobility aids, wheelchair.

UNIT II AUDITORY AND SPEECH ASSIST DEVICES
Types of deafness, hearing aids, application of DSP in hearing aids, Cochlear implants, Voice synthesizer, speech trainer.

UNIT III VISUAL AIDS
Ultra sonic and laser canes, Intra ocular lens, Braille Reader, Tactile devices for visually challenged, Text voice converter, screen readers.

UNIT IV MEDICAL STIMULATOR
Muscle and nerve stimulator, Location for Stimulation, Functional Electrical Stimulation, Sensory Assist Devices, Design issues.

UNIT V REHABILITATION MEDICINE AND ADVOCACY
Physiological aspects of Function recovery, Psychological aspects of Rehabilitation therapy, Legal aspect available in choosing the device and provision available in education, job and in day-to-day life.

TOTAL: 45 PERIODS

OUTCOMES:
- By the end of this course the student will be able to design rehabilitation aid and apply them with confidence, to help the challenged people.

REFERENCES:
3. Levine, S.N. Editor, Advances in Bio Medical Engineering and Medical Physics, Inter University Publication, New York 1968.
OBJECTIVES:

- To focus on the underlying concepts and mechanism in basic science.
- To enhance student's knowledge and critical thinking about the development of drugs based on basic biological science and medicine.
- To improve students' skills in knowing the strategies of drug development for human diseases from basic to application level.
- To provide an underlying cause of the health issues that pose unique challenges in society.

UNIT I PRINCIPLES OF BIOCHEMISTRY 9

UNIT II INTRODUCTION OF IMMUNOLOGY 9
Development of the immune system, cellular and molecular mechanisms of immune recognition, effectors response against pathogens. Innate immunity and adaptive immune responses. Immunological memory and vaccines. Human diseases including allergy, autoimmunity, cancer, immunodeficiency and HIV.

UNIT III BIOANALYTICAL TECHNIQUES 9
Principle, instrumentation and applications of electrophoresis, spectrophotometry, fluorimetry and NMR studies in medical sciences. Clinical enzymology - isoenzymes and their significance in diagnosis, enzymes pattern in health and diseased conditions, techniques in screening isoenzymes. Biosensors and its types, RIA and ELISA, biological hazards, safety measurements in handling isotopes and disposal of labelled compounds and dosimetry.

UNIT IV REGENERATIVE MEDICINE 9
Introduction to regeneration in different tissues, role of biomolecules in tissue regeneration, stem cells and its types, isolation procedures and applications of stem cells. Biomaterials - types, biocompatibility, characterisation, fabrication, modification and applications of biomaterials in different tissues.

UNIT V NANOSCIENCE AND NANOTECHNOLOGY 9
Introduction to nanoscience and nanotechnology, Preparation, modification and characterization methods. Nanoparticles as carriers in drug delivery- design, manufacture and physiochemical properties. Diagnostic applications- targeted drug and gene delivery, bone treatment, nanoparticles for oral vaccination and skin diseases. Use of materials in diagnostic and therapeutic applications and its future directions.

TOTAL PERIODS: 45 PERIODS

OUTCOMES:

- The students know the basic components and architecture of the immune system.
- Acquire the underlying knowledge in the molecular mechanism of disease development.
- Able to design the molecular targets of new drugs for various diseases.

TEXT BOOKS:

OBJECTIVES:
- To study about the basics of Java programming, web designing and to develop a hospital information system.
- To study about signal and image processing applications using MATLAB

LIST OF EXPERIMENTS:
1. HTML, XHTML, XML programming
2. Java Script programming for hospital information system
3. Study of medical standards-HL7, DICOM, LOINC, Medical data formats
4. Processing of BioSignals
5. Medical image analysis techniques.
6. Study of Data acquisition systems
7. Spectrometric analysis of blood parameter
8. Histological image analysis by image processing
9. Identification of pathogens by image processing
10. Design of protein and docking with ligand
11. Phylogenetic tree construction and primer designing

TOTAL: 60 PERIODS

OUTCOME:
- Students gain the programme based knowledge to design a hospital information system

OBJECTIVES:
- To introduce strengths and limitations of measures of central tendency and measures of variability.
- Classify common statistical tests and tools.
- Distinguish between p-values and confidence intervals as measures of statistical significance.
- Interpret commonly used regression analysis.
- Evaluate commonly used statistical and epidemiologic measures.

UNIT I INTRODUCTION 9
Introduction to probability, likelihood & odds, distribution variability.

UNIT II STATISTICAL PARAMETERS 6
Statistical parameters p-values, computation and level chi square test and distribution.

UNIT III REGRESSION ANALYSIS 6
Regression, correction use of regression, multiple regression.

UNIT IV INTERPRETING DATA 12
Interpreting life tables clinical trials, epidemiical reading and interpreting of epidemiical studies, application in community health.
UNIT V META ANALYSIS 12
META analysis for research activities, purpose and reading of META analysis, kind of data used for META analysis

TOTAL: 45 PERIODS

OUTCOME:
• The student is able to explain the techniques used in statistical & regression analysis. Also the student is able to compare the various parameters used in statistical significance.

REFERENCE:
1. Joseph A. Ingelfinger, Frederick Mosteller, Lawrence A. Thibodeau, James H. Ware

BO7002 FINANCE MANAGEMENT IN HOSPITALS L T P C
3 0 0 3

OBJECTIVES :
• The objective of this subject is to expose the students to decision making by corporate board in the areas of finance function.
• To provide an understanding of the basic principles and processes involved in the accounting system of a hospital.

UNIT I INTRODUCTION 4

UNIT II ACCOUNTING TECHNIQUES 10

UNIT III COSTING IN HOSPITALS 10
Nature & Scope of Cost Accounting – Cost analysis & Classification - Cost Calculation, significance of internal billing in Hospital - Necessary for internal & external controlling cost, cost unit calculation.

UNIT IV MANAGEMENT ACCOUNTING 11
Budgeting & Budgetary control – Cost – Volume – Profit analysis.

UNIT V FINANCING DECISIONS 10

TOTAL: 45 PERIODS

OUTCOMES:
• The students is equipped with concepts, technical and analytical tools for optimal management of financial resources.
• Also the course helps to develop skills in analyzing accounting statements for decision-making in a hospital setting and practice the preparation of final accounts
REFERENCES:
 First Revised edition

BO7003 FINITE ELEMENT ANALYSIS FOR BIOMEDICAL ENGINEERING

OBJECTIVES:
- To introduce the basic concepts of finite element analysis
- To study about the application to Field Problems in Bio mechanics
- To gain ideas about the materials used in the field of biomedical engineering

UNIT I GENERAL INTRODUCTION
Historical Background – Mathematical Modeling of field problems in Engineering – Governing
Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems –
Variational Formulation of Boundary Value Problems – Ritz Technique – Natural and Essential
Boundary conditions - Basic concepts of the Finite Element Method. One Dimensional Second
Order Equations – Discretization – element types- Linear and Higher order Elements – Derivation
of Shape functions and Stiffness matrices and force vectors - Assembly of Matrices - solution of
problems from solid and bio mechanics- Structural, stress, and strain analysis of the human body
and/or artificial implants.

UNIT II BEAM ELEMENTS AND SCALAR PROBLEM IN 2D
Fourth Order Beam Equation –Transverse deflections - Natural frequencies of beams and
Longitudinal vibration. Second Order 2D Equations involving Scalar Variable – Variational
formulation – Finite Element formulation – Triangular elements – Shape functions and element
matrices and vectors. Application to Field Problems in Bio mechanics - Quadrilateral elements

UNIT III APPLICATIONS TO FIELD PROBLEMS
Higher Order Elements. Natural co-ordinate systems – Isoparametric elements – Shape functions
for isoparametric elements – One, two and three dimensions – Serendipity elements – Numerical
integration and application to plane stress problems transformation in and coordinates-Jacobian
of transformation-order of convergence- numerical integration –example problems-shape
functions in natural coordinates- rectangular elements- Lagrange family- Serendipity family-
rectangular prisms- tetrahedral elements

UNIT IV ISOPARAMETRIC FORMULATION AND MISCELLANEOUS TOPICS
Introduction to elasticity equations – stress strain relations – plane problems of elasticity –
element equations Plane stress, plane strain and axisymmetric problems – stress-strain-time or
constitutive equations for soft connective tissue components Modelling and force analysis of
musculoskeletal systems- Stress calculations - Plate and shell elements – Introduction to flow
problems- solution of problems in fluid mechanics- numerical examples -plates and shells
UNIT V NON-LINEAR ANALYSIS 9
Introduction to Non-linear problems - some solution methods- computational procedure- simple material nonlinearity, stress stiffening, contact interfaces- problems of gaps and contact- geometric non-linearity- modeling considerations- Impact analysis. Mechanical properties of biological and commonly used biomedical engineering materials -. Critical reviews of finite element analysis in biomechanical research.

OUTCOME:
• At the end of this course the students would have developed a thorough understanding of the basic principles of the finite element analysis techniques with an ability to effectively use the tools of the analysis for solving problems in Bio-mechanical Engineering

TEXT BOOKS:

BO7004 HEALTH INFORMATICS L T P C 3 0 0 3

OBJECTIVE:
To enable the students to gain knowledge in various aspects of informatics related to health and the techniques to apply these in proper health care delivery

UNIT I HEALTH INFORMATICS 9
Historical highlights and Evolution, Hospital Information System – its characteristics and functional online and offline modules, Health Informatics, Bioinformatics, Medical Informatics, Clinical Informatics, Nursing Informatics, Public Health Informatics, e – health services, Evidence Based Medicine, Bioethics, Virtual Hospital

UNIT II ELECTRONICS PATIENT RECORDS AND STANDARDS 9
Electronic Patient Record, Medical data formats, – Medical Standards – HL7 – DICOM - IRMA - LOINC - PACS - Medical Standards for Vocabulary - ICD 10, DRGs, MeSH, UMLS, SNOMED - Healthcare Standards - JCAHO, HIPAA

UNIT III BIOINFORMATICS AND TECHNOLOGIES 9
Bio-information technologies, Semantic web and Bioinformatics, Genome projects - Education and Training - Nano technology in Healthcare - Nanomedicine, Nanopharma, CNT based Nano sensor, BioCom chip, Medical Nanorobo - Virtual Reality and Multimedia Applications in Medicine

UNIT IV JAVA PROGRAMMING 9
Design and Development of Hospital Information Systems – Developing front-end, back-end and Client – Server interface programs in Java Environment – SQL

UNIT V INTERNET AND WEB 9
Medical Networks - Java script programming - Web Design and programming - Design of Web portal services in medicine.

TOTAL: 45 PERIODS
OUTCOME:
- The student discuss the various aspects of informatics applied in health industry so that quality of health care is improved.

REFERENCES:
8. H M Dietel, Internet and World Wide Web, AB Goldberg publishers, New Delhi, 2007

BO7005 HEALTH POLICY AND EQUIPMENT MANAGEMENT L T P C
3 0 0 3

OBJECTIVES:
- To expose the students for planning and operation of hospitals in a detailed manner which will include all facts of hospital planning activities covering every department that is involved both in clinical care as well as supportive services.
- To introduce the equipment maintenance management skills and how to protect equipment from electromagnetic interferences.

UNIT I HEALTH SYSTEM
Health organization of the country, the state and cities, health financial system, teaching cum research hospitals, General Hospital, PHC reference system, Ambulataory Care.

UNIT II NATIONAL HEALTH POLICY
Need for evaluating a health policy, need for providing primary health care, Health education, health insurance, health legislation, inter sectoral cooperation.

UNIT III EQUIPMENT MAINTENANCE MANAGEMENT
Organizing the maintenance operation, biomedical equipment procurement procedure, proper selection, compatibility, testing and installation, purchase and contract procedure, trained medical staff, on proper use of equipment and operating instructions. Maintenance job planning, preventive maintenance, maintenance budgeting, contract maintenance.

UNIT IV LOGISTIC SUPPORT & RELIABILITY
Maintenance equipment and Tools, failure analysis, spare parts and maintenance materials. Reliability fundamentals.
UNIT V EMI IN HOSPITAL EQUIPMENTS 9
Principles of EMI, computation of EMI, Method of suppressing and isolating the unit from interference.

TOTAL: 45 PERIODS

OUTCOMES:
The student becomes an expert in
- Explaining the various health policies
- Planning activities at health care centres.
- Equipment installation, service & calibration needs

REFERENCES:

BO7006 HOSPITAL ARCHITECTURE L T P C
3 0 0 3

OBJECTIVES:
To expose the students to planning and operation of hospitals in a detailed manner which will include all facets of hospital planning activities covering every department that is involved both in clinical care as well as supportive services.

UNIT I INTRODUCTION TO HEALTH CARE SYSTEM 9
International and National level policy framework for healthcare facilities – Types of healthcare facilities based on public and private ownership, bed size and type of health care services based on outpatient, inpatient and diagnostic care - Organizational, function and structure of the hospital.

UNIT II HOSPITAL PLANNING 9
Principles of planning, regionalization, hospital planning team, planning process, size of the hospital, site selection, hospital architect, architect report, equipping a hospital, interiors & graphics, construction & commissioning, planning for preventing injuries, electrical safety.

UNIT III PLANNING & DESIGNING OF DIFFERENT SERVICES IN HOSPITALS 9
Planning and designing of administrative services, medical and ancillary services, nursing services, supportive services, public areas and staff services, hospital services

UNIT IV STANDARDS AND NORMS FOR HOSPITALS 9

UNIT V FACILITIES FOR SUPPORTIVE SERVICES 9
Transport, Information system, Communication, Food services, Mortuary, Heating Ventilation and Air Conditioning, Medical gases, House Keeping, Laundry.

TOTAL: 45 PERIODS
OUTCOMES:
The student will be able to follow the newest findings in the area of hospital planning, health consultancy, hospital waste and implement the perspectives in constructing hospital standards.

REFERENCES:
3. Sa Tabish," Hospital and Nursing Homes planning, Organisation and Management", , Jaypee Brothers-Medical publishers, New Delhi, 2003

BO 7007 HOSPITAL PLANNING, ORGANIZATION AND MANAGEMENT L T P C 3 0 0 3

OBJECTIVES:
• With an objective of imbibing a professional approach amongst students towards hospital management.
• The subject encompasses management principles, staffing and marketing processes, discussing their significance and role in effective and efficient management of health care organizations.

UNIT I FORMS OF ORGANISATION 8
Sole proprietorship, Partnership, Company-public and private sector enterprises, Principles of management, Evolution of management.

UNIT II PRINCIPLE OF HOSPITAL MANAGEMENT: 10
Importance of management and Hospital, Management control systems. Forecasting techniques decision-making process

UNIT III STAFFING 6
Staffing pattern in hospitals, Selection, Recruiting process, Training of staff, Organizational structures, Career development

UNIT IV MARKETING AND MANAGEMENT 10
Basic concepts marketing, Principles of social marketing, Social marketing in health sector, Consumer behavior and research health, Advertising in Health Sector, Relevance of e-marketing of Health care services

UNIT V COMPUTER IN HOSPITAL 11
System Development life cycle, Reasons to use computers in hospital, main categories of information systems in hospitals

TOTAL :45 PERIODS

OUTCOME:
• The student acquires knowledge of the principles and practices essential for managing a hospital organization.
REFERENCES:

REFERENCES:
OBJECTIVES:
- This subject acquaints the students with major functions of HRM aligned with the business strategy.
- The subject encompasses the concept of best fit employee, training & executive development, sustaining employee interest and performance appraisal.

UNIT I PERSPECTIVES OF HUMAN RESOURCE MANAGEMENT

UNIT II THE CONCEPT OF BEST FIT EMPLOYEE

UNIT III TRAINING & EXECUTIVE DEVELOPMENT
Types of Training methods and their benefits - Executive development Programme - common practices - Benefits, self-development - knowledge Management.

UNIT IV SUSTAINING EMPLOYEE INTEREST

UNIT V PERFORMANCE APPRAISAL

OUTCOME:
Upon the completion of this course, the student is well acquainted with the knowledge about the significance and role in effective and efficient management of human resources in health care organizations.

REFERENCES:

OBJECTIVE:
To develop an understanding of physics involved in various imaging modalities and the effect of radiation on human body.
UNIT I PRINCIPLES OF NUCLEAR PHYSICS 9

UNIT II PHYSICS OF INFRARED , MICROWAVE AND RADIO FREQUENCY 9
Production and properties - interaction mechanism of RF and mirocwaves with biological systems: Thermal and non-thermal effects on whole body, lens and cardiovascular systems - tissue characterization and Hyperthermia and other applications. Biomagnetism - Effects – applications-Infrared detectors—thermographic equipments—quantitative medical thermography— pyroelectric video camera—applications of thermography.

UNIT III LASER PHYSICS AND PHOTOMEDICINE 9
Characteristics of laser radiation , Laser speckle, biological effects, laser safety management
Synthesis of vitamin D in early and late cutaneous effects, Phototherapy, photo hemotherapy, exposure level, hazards and maximum permissible exposures. Optical characteristics of biomolecules from the point of spectroscopy – principles of UV – Visible absorption – IR and FTIR absorption – Raman and Fluorescence spectroscopy – application with regard to characterization of biomolecules – blood oxygen, glucose measurements, monitoring drug concentration, cancer

UNIT IV DIAGNOSTIC ULTRASOUND 9
Ultrasonic waves – generation and detection of ultrasound –Beam characteristics—attenuation of ultrasound –specific acoustic impedance—reflection at body interfaces---Coupling medium --- interaction ultrasound with tissues—deleterious effects of Ultrasound- Safety levels of Ultrasound- real time scanners image clarity---Resolution ---axial and lateral resolution ---- Artifacts---Pulse echo imaging ----Obsterics abdominal investigations- Echo cardiograph (UCG) – The Doppler Effect-Doppler Shift---continuous wave Doppler system ---Pulsed wave Doppler systems - duplex scanning-display devices for ultrasonic imaging

UNIT V RADIOBIOLOGICAL EFFECT OF RADIATION 9
Target theory, single hit and multi target theory, cellular effects of radiation, DNA damage, chromosomal damage, Somatic effect : Radio sensitivity protocol of different tissues in human ,LD 50/30 effect, Genetic effect: Threshold of linear dose effect, relationship factors affecting frequency of radiation induced mutation, biological effect of microwave, Rf wave and UV radiation.

OUTCOME:
The students analyse the physics behind radiation used in medical techniques and acquires in-depth knowledge about optics & ultrasound along with their effects of radiation

REFERENCES:
3. Glasserr .O.Medical Physics Vol.1, 2,3 year Book Publisher Inc Chicago, 1980
6. Diagnostic Ultrasound applied to OBG-Sabbagehaga-Maryland -1980
8. MRI in Practice-Catherine Westbrrok
9. The essential Physics for Medical Imaging – Jerrold T Bushberg
OBJECTIVES:
- To provide basic knowledge on the concept of Healthcare Quality management towards continuous improvement of patient care.
- To make the students aware of the role of biomedical engineer in hospitals, especially in the management of electrical supply, maintenance of electrical safety.

UNIT I STANDARDIZATION OF QUALITY MEDICAL CARE IN HOSPITALS 9
Define Quality - Need for Standardization & Quality Management, TQM in Health care organization-Quality assurance methods ,QA in (Medical Imaging & Nuclear medicine) Diagnostic services – Classification of equipments

UNIT II REGULATORY REQUIREMENT FOR HEALTH CARE 9
FDA regulations, Accreditation for hospitals - JCI, NABH and NABL, Other regulatory Codes.

UNIT III HOSPITAL SAFETY 9
Security & Safety of Hospital -Property, Staff & Patients, Radiation safety, Safety precautions, hazardous effects of radiation, allowed levels of radiation, ICRP regulations for radiation safety, Disposal of Biological waste.

UNIT IV ELECTRICAL & FIRE SAFETY 9
Sources of shocks, macro & micro shocks -Hazards, monitoring and interrupting the Operation from leakage current- Elements of fire, causes of fire, Action to be taken in case of fire in a Hospital.

UNIT V ASSESSING QUALITY HEALTH CARE 9
Patient Safety Organization- Governmental & Independent, Measuring Quality care – Evaluation of hospital services – six sigma way, Quality Assurance in Hospitals Sop’s – Patient Orientation for Total Patient Satisfaction. 5S techniques

TOTAL :45 PERIODS

OUTCOMES:
The purpose of this course is to help students to develop knowledge and insight into the procedures used in quality control and assurance activities as well as safety measures to be followed in hospitals.

REFERENCES:
3. B.M.Sakharkar, Principles of Hospital administration and Planning, JAYPEE Brothers, Medical Publishers (P) Ltd.
6. Sharon Myers “Patient Safety & Hospital Accreditation - A Model for Ensuring Success” Springer Publishers 2012
OBJECTIVES:
- To introduce the basics of signal processing and its application to biological systems.
- To make the students to understand the fundamentals of image processing and its applications.

UNIT I DISCRETE – TIME SIGNALS AND SYSTEMS 9
Review of discrete – time signals and systems, DTFT, Frequency response, Analysis of LTI systems using Z transform, DFT and its properties, FFT algorithms and its applications to convolution.

UNIT II DESIGN OF INFINITE AND FINITE IMPULSE RESPONSE FILTERS 9

UNIT III FILTERING FOR REMOVAL OF ARTIFACTS 9

UNIT IV IMAGE FUNDAMENTALS AND PREPROCESSING 9
Image perception, Image model, Image sampling and quantization, 2D DFT, DCT, KL and SVD transform. Image enhancement- Histogram modeling, spatial operations, Image restoration-Image degradation model, Wiener filtering

UNIT V IMAGE ANALYSIS AND OTHER APPLICATIONS 9
Image segmentation, Image representation and analysis, feature extraction, Image classification, Medical Image Fusion, Image visualization and Image compression.

TOTAL: 45 PERIODS

OUTCOME:
- The student acquire thorough knowledge about the various image & signal processing techniques that can be applied to biomedical engineering principles.

REFERENCES:
OBJECTIVES:
- To introduce concepts of materials, surface and tissue placement in biomaterial functions
- To understand diverse elements controlling biological responses to materials
- To provide contemporary biomaterial principles

UNIT I INTRODUCTION
Definition of biomaterials, mechanical properties, surface chemistry of materials, surface modification, Tissue Reaction, Wound Kinetics, Bio Compatibility.

UNIT II MATERIALS IN MEDICAL DEVICES
Metals, Ceramics, Polymers and Biomimetic Materials, Composites. Material preparation, chemical composition, Properties, uses in medicine and biosciences and failure mechanisms.

UNIT III STERILIZATION OF BIOMATERIALS

UNIT IV TESTING OF MATERIALS

UNIT V HARD AND SOFT REPLACEMENT
Cardiac Implants, Orthopedic Implants, Neuro Muscular Implants, Transcutaneous Implants, Intraocular lenses.

TOTAL: 45 PERIODS

OUTCOMES:
- Widen rational design approaches to biomaterials engineering
- Identify significant gap required to overcome challenges and further development
- Develop critical analyses of biomaterials through proposal writing and review.

REFERENCES:
OBJECTIVES:
The course will teach a variety of contemporary approaches to neural networks and introduce the theory underlying these approaches. The approaches to be covered will include such things as biological and statistical foundations of neural networks, Perception, MLPs, RBFN, SVM and competitive learning. Additionally, a brief introduction to optimization techniques using Genetic algorithm and its applications will be given.

UNIT I INTRODUCTION TO ARTIFICIAL NEURAL SYSTEMS 8
Biological Neurons and their Artificial models, Models of Artificial Neural Networks, Learning and Adaptation, Neural Network Learning Rules, Single Layer Perceptron Classifiers.

UNIT II BPN AND BAM 9

UNIT III OTHER NETWORKS 10

UNIT IV GENETIC ALGORITHMS & IMPLEMENTATION TECHNIQUES 8
The Appeal of Evolution, Search Spaces and Fitness Landscapes, Elements of Genetic Algorithms, Data Structures, Adaptive Encoding. Selective Methods, Genetic Operators, Fitness Scaling, GA applications

UNIT V ADVANCES AND APPLICATIONS 10
Support Vector Machines, RBF Network, Neocognitron. Evolving neural networks using GA, Applications of ANN in biomedical signal analysis and Medical image analysis

TOTAL: 45 PERIODS

OUTCOME:
Upon completion of this course student gains knowledge about various neural networks that can be used for biomedical signal analysis and Medical image analysis. Also about the genetic algorithms as well as techniques used in its implementation.

REFERENCES:
OBJECTIVES:
- Neural engineering and rehabilitation research applies neuroscience and engineering methods to analyze central and peripheral nervous system function and to design clinical solutions to neurological disorders or injury.
- To study the basics of Nervous system
- To understand the development and arrangement of neural tissue To study the neuronal disorders and injuries
- To study the repairing and reconstruction mechanism of nervous system.

UNIT I BASICS OF NERVE 9

UNIT II BRAIN, BRAIN STEM AND SPINAL CORD 9

UNIT III NEURON TRACING 9

UNIT IV NERVE INJURY AND DISORDERS 9

UNIT V NEURAL ENGINEERING 9

OUTCOMES:
Through this course of study application of basic science and engineering techniques, neural engineers can develop methods to record from and exert control over the nervous system and associated organ systems.

REFERENCES:
OBJECTIVES:
To understand
- Various MEMS fabrication techniques.
- Different types of sensors and actuators and their principles of operation at the micro scale level.
- Application of MEMS in different field of medicine.

UNIT I MEMS MATERIALS AND FABRICATION
Typical MEMs and Microsystems, materials for MEMS - active substrate materials- Silicon and its compounds, Silicon piezoresistors, Gallium Arsenide, quartz, polymers. Micromachining- photolithography, thin film deposition, doping, etching, bulk machining, wafer bonding, LIGA

UNIT II MECHANICAL AND THERMAL SENSORS AND ACTUATORS
Mechanics for MEMs design- static bending of thin plates, mechanical vibration, thermomechanics, fracture and thin film mechanics. Mechanical sensors and actuators – beam and cantilever – microplates, strain, pressure and flow measurements, Thermal sensors and actuators- actuator based on thermal expansion, thermal couples, thermal resistor, Shape memory alloys- Inertia sensor, flow sensor

UNIT III ELECTROSTATIC AND PIEZOELECTRIC SENSORS AND ACTUATORS
Parallel plate capacitor, pull in effect, Electrostatic sensors and actuators- Inertia sensor, Pressure sensor, flow sensor, tactile sensor, comb drive. Properties of piezoelectric materials, Piezoelectric sensor and actuator – inchworm motor, inertia sensor, flow sensor. Case study: Design of electrostatic actuator

UNIT IV MICROFLUIDIC SYSTEMS
Fluid dynamics, continuity equation, momentum equation, equation of motion, laminar flow in circular conduits, fluid flow in microconduits, in submicrometer and nanoscale. Microscale fluid, expression for liquid flow in a channel, fluid actuation methods, dielectrophoresis, microfluid dispenser, microneedle, micropumps-continuous flow system, micromixers , Case study: Design of electrophoretic microcapillary network system.

UNIT V APPLICATIONS OF MEMS IN MEDICINE
CAD for MEMs, Biological MEMS materials, polymer based gas sensor, micro total analysis systems (MicroTAS) detection and measurement methods, microsystem approaches to polymerase chain reaction (PCR),DNA sensor, Drug delivery- Types of reservoirs, Case study: Design of BP sensor.

TOTAL: 45 PERIODS

OUTCOMES:
- Ability to specify the design issues related to different types of sensors and actuators at micro scale level
- Capability to specify the choice of the material for any application
- Capable of applying the concepts to the design of different types of micro systems with the help of CAD tools

REFERENCES:

MD7074 COMPUTER BASED MEDICAL INSTRUMENTATION

OBJECTIVES:
- To teach PC hardware and its related interfacing
- To give a complete overview of 80186, 80286, 80386 and 80486 microprocessors.
- To understand the basics of computerized data acquisition and programming.
- To enrich the students knowledge with biometrics and network security.

UNIT I PC HARDWARE AND OVERVIEW
System Unit - Overview of Mother Boards - Processors, Memory, Adapter cards, Ports, Power supply - BIOS – DOS interaction, POST, Functional and Architecture Block diagram of a PC, Mother Board logics - Memory and I/O map

UNIT II PERIPHERAL INTERFACING AND CONTROLLERS
Keyboard and Mouse Interfaces - Memory types - RAM - SDRAM and RDRAM, Cache memory, ROM and its types, Flash memory, CMOS semiconductor memory - Adapter Cards - Sound Card, Modem card, Video card, Network Card - I/O slots - ISA, PCI and AGP bus slots - Ports - Serial and Parallel ports, USB, FireWire port, MIDI, SCSI, IrDA, Bluetooth – Connectors - System Bus, ISA, EISA, PCI, AGP and PCI bus - Disk controllers

UNIT III PROCESSORS AND MEMORY
80X86 Processors - Architectures and Memory management - Overview of 80X86 based Mother boards

UNIT IV COMPUTERISED DATA ACQUISITION AND PROGRAMMING
Plug-in- Data acquisition and Control Boards, - Data acquisition using GPIB and Serial Interfaces and Programming in C - DSP in Medical applications

UNIT V CAD IN MEDICAL INSTRUMENTATION
FPGA Design Logics - Virtual Bio- Instrumentation in LABview - Multisim Simulation with bio-amplifiers - Mixed signal SoC applications in biomedical applications

TOTAL: 45 PERIODS

OUTCOME:
- Exposed to PC hardware as well as various microprocessor family
- Hardware behind data acquisition
- Scope of virtual reality in health care
- Develop an insight knowledge about the biometrics and network security

REFERENCES:
8. H M Dietel, Internet and World Wide Web, AB Goldberg publishers, New Delhi, 2007

MD7075 MEDICAL ETHICS AND STANDARDS L T P C
3 0 0 3

OBJECTIVES:
- Achieve familiarity with some basic ethical framework & understand how these ethical frameworks can help us to think through contemporary questions in medical ethics.
- Students will be able to know about the legal and ethical principles and application of these principles in health care settings & gain knowledge about the medical standards that to be followed in hospitals.

UNIT I INTRODUCTION TO MEDICAL ETHICS
Definition of Medical ethics, Scope of ethics in medicine, American medical Association code of ethics, CMA code of ethics - Fundamental Responsibilities, The Doctor And The Patient, The Doctor And The Profession, Professional Independence, The Doctor And Society.

UNIT II ETHICAL THEORIES & MORAL PRINCIPLES

UNIT III HOSPITAL ACCREDITATION STANDARDS

UNIT IV HOSPITAL SAFETY STANDARDS

UNIT V MEDICAL EQUIPMENT SAFETY STANDARDS
General requirements for basic safety & essential performance of medical equipments. IEC 60601 standards- Base Standard-general requirement of electrical medical devices, Collateral Standards-EMC radiation protection & programmable medical device system, Particular Standards-type of medical device

TOTAL : 45 PERIODS
OUTCOMES:
Upon completion of this course the student should be able to demonstrate a measurable increase in their knowledge, skills and abilities related to:

- Legal and professional guidelines for the health professions
- Public duties and consent
- Guidelines to obtain medical standards in hospitals.

REFERENCES:
4. Physical Environment Online: A Guide to The Joint Commission’s Safety Standards is published by HCPro, Inc. 2010

MD7076 MEDICAL OPTICS L T P C 3 0 0 3

OBJECTIVE:
The objectives of this course are to: (i) provide a possibility for the student to acquire knowledge about the physical properties of light and its impact and interaction with biological tissue in terms of optical properties, instrumentation in photonics, through the use and design of appropriate optical components; (ii) understand the engineering and practical applications of optics related to diagnostics, sensing and therapeutics of the human body

UNIT I OPTICAL PROPERTIES OF THE TISSUES 9
Refraction, Scattering, absorption, light transport inside the tissue, tissue properties, Light interaction with tissues, opto-thermal interaction, fluorescence.

UNIT II INSTRUMENTATION IN PHOTONICS 9
Instrumentation for absorption, scattering and emission measurements, excitation light sources – high pressure arc lamp, solid state LEDs, Lasers, optical filters, solid state detectors - optical detectors - time resolved and phase resolved detectors.

UNIT III SURGICAL APPLICATIONS OF LASERS 9
Laser in tissue welding, lasers in dermatology, lasers in ophthalmology, otolaryngology, urology.

UNIT IV DIAGNOSTIC APPLICATIONS 9
Optical coherence tomography, Elastography, Fluorescence Imaging, Raman Imaging, FLIM.

UNIT V THERAPEUTIC APLICATIONS 9
Phototheraphy, Photodynamic therapy (PDT) - Principle and mechanism - Oncological and non-oncological applications of PDT - Biostimulation effect – applications.

TOTAL : 45 PERIODS

OUTCOME:
Able to know the various optical properties of tissue as well as application of lasers in medical fields
TEXT BOOKS:

REFERENCES:

MD7077 NANOMEDICINE PRINCIPLES AND APPLICATIONS L T P C
3 0 0 3

OBJECTIVES:
• To know basic nanotechnological principles and characterization methods
• To understand the essential features of biology and nanotechnology that are converging to create the new areas of bionanotechnology and nanomedicine.

UNIT I INTRODUCTION OF NANOPARTICLES
Overview of nanotechnology from medical perceptive, different types of nanobiomaterials and nanostructure interactions. Synthesis, characterization, and properties smart nanomaterials, Surface modification, biofunctionalization of nanomaterials. Nanocarriers (e.g. liposomes, polymer capsules, polymer nanoparticles, porous materials, nanogels, dendrimers, microemulsions, inorganic nanoparticles, carbon nanotubes, lipoproteins, solid lipid nanoparticles).

UNIT II PROTEIN AS NANOSTRUCTURES
Protein based nanostructures building blocks and templates – Proteins as transducers and amplifiers – nanobioelectronic devices and polymer nanocontainers – microbial production of inorganic nanoparticles – magnetosomes.

UNIT III DNA AS NANOSTRUCTURES
DNA based nanostructures – Topographic and Electrostatic properties of DNA – Hybrid conjugates of gold nanoparticles – DNA oligomers – use of DNA molecules in nanomechanics.

UNIT IV NANOPARTICLES IN DIAGNOSIS
Introduction to nanoparticles in diagnostics— nuclear imaging, optical imaging, PET, Micro PET, cardiovascular disease studies, imaging and therapy of thrombosis, emerging Ethical issues and toxicology of nano materials.

UNIT V NANOTHERAPEUTICS
Nanoparticles as carriers in drug delivery- design, manufacture and physiochemical properties transport across biological barriers, nanotechnology in Cancer therapy, lung infectious disease bone treatment, nano particles for oral vaccination and skin disease.

OUTCOME:
• The student will be able to follow the newest findings in the area of Nano medicine and implement the perspectives in own research.
REFERENCES:

MD7078 PATTERN RECOGNITION TECHNIQUES AND APPLICATIONS L T P C 3 0 0 3

OBJECTIVES:
• The objective of this course is to enable the students to understand the fundamentals of Pattern recognition.
• The students should learn to choose an appropriate feature, pattern classification algorithm for a pattern recognition problem, properly implement the algorithm.
• To enrich the students knowledge with fuzzy systems and its applications

UNIT I OVERVIEW OF PATTERN RECOGNITION

UNIT II UNSUPERVISED CLASSIFICATION
Clustering for unsupervised learning and classification, clustering concepts hierarchical clustering, Partitional clustering, k- means algorithm - Validity of clustering solutions.

UNIT III FEATURE EXTRACTION AND STRUCTURAL PATTERN RECOGNITION

UNIT IV FUZZY SYSTEMS

UNIT V RECENT ADVANCES AND APPLICATIONS
Principle of neuro fuzzy techniques, Application of PR in image segmentation – CAD system in Breast cancer detection, ECG signal analysis, Fingerprint identification - Cell cytology classification

TOTAL : 45 PERIODS

OUTCOMES:
• Develop an idea about the fundamentals of Pattern recognition.
• Acquire the knowledge of fuzzy systems & its applications.
• Recent advancements in life science & technology using Fuzzy techniques
REFERENCES:

MD7079 PHYSIOLOGICAL SYSTEMS MODELING AND SIMULATION

OBJECTIVES:
- To understand the fundamental engineering aspects of modelling Physiological systems
- To utilize concepts derived from biomedical research to aid in the design of engineering systems.
- To apply system techniques and methods to biomedical problems.

UNIT I INTRODUCTION TO SYSTEM CONCEPTS

UNIT II TRANSFER FUNCTION
System as an Operator, Transfer Function of First and Second Order system, Transfer Function and Concept of Impedance – Circuits into transfer function, Circuit Analog from transfer function.

UNIT III SYSTEM RESPONSE CHARACTERISTICS

UNIT IV FEEDBACK
Feedback and Homeostasis, Review of system stability concepts, Hypophysis – Adrenal Feedback Control System, Thermoregulation, Pupil Control System.

UNIT V SIMULATION OF BIOLOGICAL SYSTEMS
Introduction to Simulation, Simulation of Respiratory mechanics, Cardiovascular Control System, Skeletal muscle servo mechanism, Oculomotor System, Hodgkin Huxley Model.

TOTAL: 45 PERIODS
OUTCOME:
- Provides an insight into and explain the utilization of models, system analysis and analog simulation in the field of bioengineering.

REFERENCES

MD7080 PRINCIPLES OF GENETIC ANALYSIS

OBJECTIVE:
Completion of this subject is expected to enhance a student’s ability to understand the fundamental principles of genetics and to describe the experiments used to establish them. Students will develop skills to apply these principles to solve genetic problems and demonstrate how genetic analysis can be used to investigate aspects of biology.

UNIT I GENETIC INHERITANCE
Organisation of DNA, Chromosomal inheritance, Eukaryotic genomes – repetitive and non repetitive sequence, Genetic mapping - restriction cleavage, RFLP and SNPs.

UNIT II DNA AND PHENOTYPE
DNA structure and replication, DNA sequencing, amplification and hybridisation. DNA Polymorphism, RNA transcription and processing, translation and its post translation modification. Regulation of gene expression.

UNIT III ENGINEERING OF GENES
Gene isolation and manipulation, mutations, repair and recombination, site directed mutagenesis, in vivo techniques of genetic manipulation, tools for analysing gene expression and genetically modified organisms.

UNIT IV HUMAN GENOME PROJECT
Human Genome Project (HGP) – an overview of the project, goals of the project, major scientific strategies & approaches used in HGP, physical mapping, gene ontology, gene annotation, techniques in HGP – microsatellite markers, STS, EST, DNA sequencing and DNA microarray, scientific & medical benefits of this project.

UNIT V IMPACT OF GENETIC VARIATION
Population Genetics, Quantitative Genetics, Evolution Genetics.

TOTAL: 45 PERIODS
OUTCOMES:
- Interpret different forms of inheritance patterns and identify them in genetic data
- Acquire in depth knowledge in evolutionary analysis of genetic sequence
- Interpret and critically evaluate the outcomes of statistical analysis associated with the research project
- Exploit relevant molecular genetic information with skill and confidence to conduct a research project involving the analysis of real molecular genetic data with minimal supervision

REFERENCES:

MD7081 TELEHEALTH TECHNOLOGY

OBJECTIVES:
- To teach the key principles for telemedicine and health.
- To enable the students with the knowledge of telemedical standards, mobile telemedicine and its applications.

UNIT I TELEMEDICINE AND HEALTH
History and Evolution of telemedicine, Functional diagram of telemedicine system, Telemedicine, Telehealth, Tele care, Organs of telemedicine, Global and Indian scenario, Ethical and legal aspects of Telemedicine - Confidentiality, Social and legal issues, Safety and regulatory issues, Advances in Telemedicine.

UNIT II TELEMEDICAL TECHNOLOGY

UNIT III TELEMEDICAL STANDARDS

Attended
D I R E C T O R
Centre For Academic Courses
Anna University, Chennai-600 025
UNIT IV MOBILE TELEMEDICINE

Tele radiology: Definition, Basic parts of teleradiology system: Image Acquisition system Display system, Tele pathology, multimedia databases, color images of sufficient resolution, Dynamic range, spatial resolution, compression methods, Interactive control of color, Medical information storage and management for telemedicine- patient information medical history, test reports, medical images diagnosis and treatment. Hospital information system - Doctors, paramedics, facilities available. Pharmaceutical information system.

UNIT V TELEMEDICAL APPLICATIONS

Telemedicine access to health care services – health education and self care. · Introduction to robotics surgery, telesurgery. Telecardiology, Teleoncology, Telemedicine in neurosciences, Electronic Documentation, e-health services security and interoperability., Telemedicine access to health care services– health education and self care, Business aspects - Project planning and costing, Usage of telemedicine

OUTCOMES:
The student is exposed to the
- Technologies applied in multimedia using telemedicine
- Protocols behind encryption techniques for secure transmission of data.
- Applications of telehealth in healthcare

REFERENCES:

MD7082 TISSUE ENGINEERING

OBJECTIVES:
- To understand basics of Tissue Engineering
- To understand fundamentals of cell mechanisms
- To teach the Physical & biological principles that serve as the scientific basis for understanding the interactions of biological molecules and cells with biomaterials employed for the fabrication of permanent implantable prostheses and as matrices for tissue engineering.
- To understand application of Tissue Engineering

UNIT I BASICS OF TISSUE ENGINEERING

UNIT II FUNDAMENTALS OF CELL MECHANISMS

UNIT III BIOMATERIALS IN TISSUE ENGINEERING

UNIT IV STEM CELLS IN TISSUE ENGINEERING
Introduction of Stem cells – Hemopoetic Stem cells - Embryonic Stem cells - Adult stem cells – Cancer Stem cells – Cord Blood cells – Induced Pluripotent Stem cells - Stem cell identification - Surface markers & FACS analysis – Differentiation, Dedifferentiation and Immortalization – Application of stem cells in tissue Engineering.

UNIT V TISSUE ENGINEERING APPLICATIONS

TOTAL : 45 PERIODS

OUTCOMES:
By successfully completing this course, students will be able to:
- Discuss the importance of tissue engineering in the field of biomedical engineering
- Explain the mechanisms involved in interaction of different materials with cells and tissues
- Explain different methods involved in characterization and preparation of biomaterials in tissue engineering.
- Apply the knowledge in creating new models in drug delivery systems using synthetic and natural scaffolds
- Explain different types of stem cells and its application in tissue engineering
- Develop new approaches to build new tissues using tissue engineering techniques

REFERENCES:
5. Develop new approaches to build new tissues using tissue engineering techniques
OBJECTIVES:
- To teach the principles of ultrasonic’s and its interaction with tissue.
- Students will be able to know about the scanning techniques and real time scanners principles and application of these principles in health care settings & gain knowledge about the various applications of ultrasound in medicine.

UNIT I PRINCIPLES OF ULTRASONICS

UNIT II TISSUE-ULTRASOUND INTERACTION
Introduction, Absorption in biological tissues, Tissue-Ultrasound interaction cross sections, Theory of mechanisms for the absorption of ultrasonic longitudinal waves, Measurement of attenuation and Absorption Coefficients in tissues, Acoustic properties reflecting different levels of tissue organization, Molecular aspects of soft tissue mechanics, Structural contribution to bulk and shear acoustic properties of tissues. Relevance to tissue characterization, Ultrasound quantitation and tissue characterization

UNIT III SCANNING TECHNIQUES

UNIT IV REAL TIME ULTRASONIC SCANNERS
Different modes of display-A mode, B mode, M mode, B-scan System, The Principles of Ultrasound Motion Detection, Techniques for Measuring Target Velocity, Phase Fluctuation (Doppler Methods), Envelope Fluctuation Methods, Phase Tracking Methods, Envelope Tracking Techniques, Ultrasound Imaging Systems, Considerations Specific To Color Flow Imaging, Angle Independent Velocity Motion Imaging, Tissue Elasticity & Echo Strain Imaging, Performance Criteria, Use of Contrast Media, Real Time Echo, 2-D and 3-D Scanners, Color Doppler.

UNIT V ULTRASONIC APPLICATIONS
Ultrasonic diagnosis in Abdomen, Breast, Thyroid, Heart, Chest, Eye, Kidney, Skull, Pregnant and Non Pregnant uterus, 3-Dimensional Ultrasonic Imaging of The Fetus, Advantages And Limitations of 3-Dimensional Ultrasound.

TOTAL: 45 PERIODS

OUTCOMES:
- In-depth knowledge about the Ultrasound imaging systems and its interaction with living systems.
- Ability to specify method of ultrasonic scanning method for imaging different organs
- Proficient knowledge about Real time Scanners and their applications.
REFERENCES: