PROGRAM EDUCATIONAL OBJECTIVES

Bachelor of Mining Engineering curriculum is designed to prepare the graduates having attitude and knowledge to:

1. Function ethically in a variety of professional roles such as mine planner, designer, production manager, consultant, technical support representative, regulatory specialist academicians and research with emphasis on the mineral industries.

2. Advance in their careers in the mineral industry, adapting to new situations and emerging problems.

3. Demonstrate an understanding of the importance of mining to the society and for working in a contemporary society in which safety and health, responsibility to the environment, and ethical behavior are required without exception.

4. Possess professional skills such as effective communication, teamwork, and leadership.

5. Pursue advanced degrees in mineral-related fields and also those fields that support the mineral industries.

PROGRAM OUTCOME

a) an ability to apply knowledge of mathematics, science, and engineering

b) an ability to design and conduct experiments, as well as to analyze and interpret data

c) an ability to design a system, component, or process to meet desired needs

d) an ability to function on multi-disciplinary teams

e) an ability to identify, formulate, and solve engineering problems

f) an ability to understand ethical and professional responsibilities

g) an ability to control and communicate effectively

h) an ability to review, understand and analyze the technological development
Mapping PEO with POs:

<table>
<thead>
<tr>
<th>PEO/PO</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sem</td>
<td>Subject</td>
<td>PO1</td>
<td>PO2</td>
<td>PO3</td>
<td>PO4</td>
<td>PO5</td>
<td>PO6</td>
<td>PO7</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>I</td>
<td>Mathematics - I</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Chemistry</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Physics</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Mechanics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Graphics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foundational English</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic Sciences Laboratory</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Practices Laboratory</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Mathematics-II</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry for Mining Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic of Electronics Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computing Techniques</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basics of Electrical Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical English</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Practices Laboratory</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical and Electronics Engineering Laboratory</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Geology</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strength of Materials</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials Science</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical Drives and Control</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drilling and Blasting</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mine Development</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical Training – I</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester IV</td>
<td>Subject</td>
<td>PO1</td>
<td>PO2</td>
<td>PO3</td>
<td>PO4</td>
<td>PO5</td>
<td>PO6</td>
<td>PO7</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>Strength of Materials Laboratory</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Seminar</td>
<td></td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluid Mechanics and Machinery</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic Mechanical Engineering for Mining</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plane and Geodetic Surveying</td>
<td>√</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mineral Processing</td>
<td></td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mining Geology</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mining Machinery-I</td>
<td>√</td>
<td></td>
<td>√</td>
<td></td>
<td>√</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Fluid Mechanics and Machinery Laboratory.</td>
<td>√</td>
<td></td>
<td>√</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geological Field Work</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geology Laboratory.</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mineral Processing Laboratory.</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester V</td>
<td>Mining Machinery-II</td>
<td></td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mine Surveying</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock Mechanics and Ground Control – I</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mine Environmental Engineering –I</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface Mining</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic Mechanical Engineering for Mining Laboratory.</td>
<td>√</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plane and Geodetic Surveying Laboratory</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical Training – II</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester VI</td>
<td>Environmental Science and Engineering</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Underground Mining Methods (Coal)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester VII</td>
<td>Rock Mechanics and Ground Control - II</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Industrial Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication Skills and Soft Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mining Machinery Laboratory</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock Mechanics and Ground Control Laboratory - I</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Survey Camp</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester VII</td>
<td>Underground Mining Methods - Metal</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mine Legislation and Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mining Environmental Engineering – II</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Applications in Mining Laboratory</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mine Environmental Engineering Laboratory</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mini Project</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical Training - III</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock Mechanics and Ground Control Laboratory - II</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester VIII</td>
<td>Project Work</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Choice Based Credit System Curricula and Syllabi for I - VIII Semesters

Semester I

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA7151</td>
<td>Mathematics – I</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CY7151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PH7151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>GE7153</td>
<td>Engineering Mechanics</td>
<td>ES</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>GE7152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>HS7151</td>
<td>Foundational English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>BS7161</td>
<td>Basic Sciences Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>GE7162</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td>21</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

Semester II

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA7251</td>
<td>Mathematics – II</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CY7254</td>
<td>Chemistry for Mining Engineering</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EE7152</td>
<td>Basic of Electronics Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>GE7151</td>
<td>Computing Techniques</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EE7252</td>
<td>Basics of Electrical Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>HS7251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE7161</td>
<td>Computer Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>EE7261</td>
<td>Electrical and Electronics Engineering Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>20</td>
<td>8</td>
<td>24</td>
</tr>
</tbody>
</table>
SEMESTER III

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>AG7307</td>
<td>Geology</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CE7251</td>
<td>Strength of Materials</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EE7304</td>
<td>Electrical Drives and Control</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MI7301</td>
<td>Drilling and Blasting</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>MI7302</td>
<td>Mine Development</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>PH7251</td>
<td>Materials Science</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CE7261</td>
<td>Strength of Materials Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>MI7311</td>
<td>Practical Training - I#</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>MI7312</td>
<td>Technical Seminar*</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>24</td>
<td>18</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

SEMESTER IV

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>AG7402</td>
<td>Mining Geology</td>
<td>PC</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CE7352</td>
<td>Fluid Mechanics and Machinery</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CE7353</td>
<td>Plane and Geodetic Surveying</td>
<td>ES</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>ME7403</td>
<td>Basic Mechanical Engineering for Mining</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>MI7401</td>
<td>Mineral Processing</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>MI7402</td>
<td>Mining Machinery-I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>AG7413</td>
<td>Geology Laboratory.</td>
<td>BS</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>AG7412</td>
<td>Geological Field Work*</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>CE7361</td>
<td>Fluid Mechanics and Machinery Laboratory.</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>MI7411</td>
<td>Mineral Processing Laboratory.</td>
<td>ES</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>28</td>
<td>18</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>
SEMESTER V

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MI7501</td>
<td>Mine Environmental Engineering - I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MI7502</td>
<td>Mine Surveying</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MI7503</td>
<td>Mining Machinery-II</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MI7504</td>
<td>Rock Mechanics and Ground Control-I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>MI7505</td>
<td>Surface Mining</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective - I</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CE7362</td>
<td>Plane and Geodetic Surveying Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>ME7512</td>
<td>Basic Mechanical Engineering for Mining Laboratory.</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>MI7511</td>
<td>Practical Training - II*</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>26</td>
<td>18</td>
<td>0</td>
<td>8</td>
<td>24</td>
</tr>
</tbody>
</table>

SEMESTER VI

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>ME7554</td>
<td>Industrial Management</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MI7601</td>
<td>Environmental Science for Mining Engineering</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MI7602</td>
<td>Rock Mechanics and Ground Control-II</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MI7603</td>
<td>Underground Mining Methods - Coal</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective - II</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective - III</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>HS7561</td>
<td>Communication Skills and Soft Skills</td>
<td>HS</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>MI7611</td>
<td>Mining Machinery Laboratory.</td>
<td>PC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>MI7612</td>
<td>Rock Mechanics and Ground Control Laboratory.-I</td>
<td>PC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10.</td>
<td>MI7613</td>
<td>Survey Camp #</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>25</td>
<td>19</td>
<td>0</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>
SEMESTER VII

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MI7701</td>
<td>Mine Environmental Engineering -II</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MI7702</td>
<td>Mine Legislation and Safety</td>
<td>PC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>MI7703</td>
<td>Underground Mining Methods - Metal</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>Professional Elective - IV</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>Professional Elective - V</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>Open Elective – I*</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>MI7711</td>
<td>Computer Applications in Mining Laboratory.</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>MI7712</td>
<td>Mine Environmental Engineering Laboratory</td>
<td>PC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>MI7713</td>
<td>Rock Mechanics and Ground Control Laboratory.-II</td>
<td>PC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>MI7714</td>
<td>Practical Training - III *</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>11.</td>
<td>MI7715</td>
<td>Mini Project*</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>19</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

SEMESTER VIII

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Professional Elective – VI</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Open Elective – II*</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>MI7811</td>
<td>Project Work</td>
<td>EEC</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>6</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

TOTAL NO. OF CREDITS: 186

*Course from the curriculum of other UG Programmes
The contact periods will not appear in the slot time table
HUMANITIES AND SOCIAL SCIENCES (HS)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS7151</td>
<td>Foundational English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>HS7251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>ME7554</td>
<td>Industrial Management</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>HS7561</td>
<td>Communication Skills and Soft Skills</td>
<td>HS</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

BASIC SCIENCES (BS)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA7151</td>
<td>Mathematics – I</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CY7151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PH7151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BS7161</td>
<td>Basic Sciences Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>MA7251</td>
<td>Mathematics – II</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>CY7254</td>
<td>Chemistry for Mining Engineering</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>PH7251</td>
<td>Materials Science</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>AG7307</td>
<td>Geology</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>AG7413</td>
<td>Geology Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>MI7601</td>
<td>Environmental Science for Mining</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

ENGINEERING SCIENCES (ES)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GE7153</td>
<td>Engineering Mechanics</td>
<td>ES</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>GE7152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>GE7162</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>GE7151</td>
<td>Computing Techniques</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EE7252</td>
<td>Basic of Electrical Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE7161</td>
<td>Computer Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>EE7261</td>
<td>Electrical and Electronics Engineering</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CE7251</td>
<td>Strength of Materials</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>EE7152</td>
<td>Basic of Electronics Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>EE7304</td>
<td>Electrical Drives and Control</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SL. NO.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>CONTACT PERIODS</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>----------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>11.</td>
<td>CE7261</td>
<td>Strength of Materials Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>12.</td>
<td>MI7411</td>
<td>Mineral Processing Laboratory</td>
<td>PC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>13.</td>
<td>CE7352</td>
<td>Fluid Mechanics and Machinery</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>CE7361</td>
<td>Fluid Mechanics and Machinery Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>15.</td>
<td>CE7362</td>
<td>Plane and Geodetic Surveying Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

PROFESSIONAL CORE (PC)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MI7301</td>
<td>Drilling and Blasting</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MI7302</td>
<td>Mine Development</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MI7401</td>
<td>Mineral Processing</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>ME7403</td>
<td>Basic Mechanical Engineering for Mining</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>MI7512</td>
<td>Basic Mechanical Engineering for Mining Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>AG7402</td>
<td>Mining Geology</td>
<td>PC</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>MI7402</td>
<td>Mining Machinery – I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>MI7503</td>
<td>Mining Machinery – II</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>MI7502</td>
<td>Mine Surveying</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>MI7504</td>
<td>Rock Mechanics and Ground Control – I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>MI7501</td>
<td>Mine Environmental Engineering – I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>MI7603</td>
<td>Underground Mining Methods - Coal</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>MI7611</td>
<td>Mining Machinery Laboratory</td>
<td>PC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>14.</td>
<td>MI7612</td>
<td>Rock Mechanics and Ground Control Laboratory – I</td>
<td>PC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>15.</td>
<td>MI7505</td>
<td>Surface Mining</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>MI7602</td>
<td>Rock Mechanics and Ground Control – II</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>MI7703</td>
<td>Underground Mining Methods - Metal</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>MI7713</td>
<td>Rock Mechanics and Ground Control Laboratory – II</td>
<td>PC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>19.</td>
<td>MI7702</td>
<td>Mine Legislation and Safety</td>
<td>PC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>20.</td>
<td>MI7701</td>
<td>Mine Environmental Engineering – II</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>21.</td>
<td>MI7711</td>
<td>Computer Application in Mining Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>22.</td>
<td>MI7712</td>
<td>Mine Environmental Engineering Laboratory</td>
<td>PC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
PROFESSIONAL ELECTIVES (PE)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GE7071</td>
<td>Disaster Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>GE7074</td>
<td>Human Rights</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>GE7351</td>
<td>Engineering Ethics and Human Values</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MI7001</td>
<td>Advanced Coal Mining and Mechanization</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>MI7002</td>
<td>Advanced Metal Mining and Mechanization</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>MI7003</td>
<td>Advanced Rock Blasting Technology</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>MI7004</td>
<td>Advanced Surface Mining</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>MI7005</td>
<td>Computer Application in Mining</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>MI7006</td>
<td>Longwall Mining</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>MI7007</td>
<td>Material Handling</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>MI7008</td>
<td>Mine Economics and Investment</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>MI7009</td>
<td>Mine Planning and Design</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>MI7010</td>
<td>Mine Safety Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>MI7011</td>
<td>Mineral Exploration</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>MI7012</td>
<td>Numerical Methods in Mining Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>MI7013</td>
<td>Petroleum Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>MI7014</td>
<td>Rock Excavation Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>MI7015</td>
<td>Rock Reinforcement</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19.</td>
<td>MI7016</td>
<td>Rock Slope Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>MI7017</td>
<td>Small Scale Mining and Marine Mining</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>21.</td>
<td>MI7018</td>
<td>Subsidence Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>22.</td>
<td>MI7019</td>
<td>Systems Engineering in Mining</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>23.</td>
<td>MI7020</td>
<td>Underground Space Technology</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>24.</td>
<td>GE7072</td>
<td>Foundation Skills in Integrated Product Development</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MI7311</td>
<td>Practical Training - I</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>MI7312</td>
<td>Technical Seminar</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>AG7412</td>
<td>Geological Field Work</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>MI7511</td>
<td>Practical Training - II</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>MI7613</td>
<td>Survey Camp</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>MI7714</td>
<td>Practical Training - III</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td>MI7715</td>
<td>Mini Project</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>MI7811</td>
<td>Project Work</td>
<td>EEC</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>
SUMMARY

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>SUBJECT AREA</th>
<th>CREDITS AS PER SEMESTER</th>
<th>CREDITS TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1.</td>
<td>HS</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>BS</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>ES</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>4.</td>
<td>PC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>PE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>OE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>8.</td>
<td>Non Credit / Mandatory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 186
MA7151 MATHEMATICS – I L T P C
(Common to all branches of B.E. / B.Tech. Programmes in 4 0 0 4
I Semester)

OBJECTIVES:
- The goal of this course is for students to gain proficiency in calculus computations. In calculus, we use three main tools for analyzing and describing the behavior of functions: limits, derivatives, and integrals. Students will use these tools to solve application problems in a variety of settings ranging from physics and biology to business and economics.
- To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.

UNIT I DIFFERENTIAL CALCULUS
Representation of functions - New functions from old functions - Limit of a function - Limits at infinity - Continuity - Derivatives - Differentiation rules - Polar coordinate system - Differentiation in polar coordinates - Maxima and Minima of functions of one variable.

UNIT II FUNCTIONS OF SEVERAL VARIABLES

UNIT III INTEGRAL CALCULUS
Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT IV MULTIPLE INTEGRALS

UNIT V DIFFERENTIAL EQUATIONS
Method of variation of parameters – Method of undetermined coefficients – Homogenous equation of Euler’s and Legendre’s type – System of simultaneous linear differential equations with constant coefficients.

OUTCOMES:
- Understanding of the ideas of limits and continuity and an ability to calculate with them and apply them.
- Improved facility in algebraic manipulation.
- Fluency in differentiation.
- Fluency in integration using standard methods, including the ability to find an appropriate method for a given integral.
- Understanding the ideas of differential equations and facility in solving simple standard examples.

TOTAL: 60 PERIODS
TEXT BOOKS:

REFERENCES:

CY7151 ENGINEERING CHEMISTRY

OBJECTIVES
- To develop an understanding about fundamentals of polymer chemistry.
- Brief elucidation on surface chemistry and catalysis.
- To develop sound knowledge photochemistry and spectroscopy.
- To impart basic knowledge on chemical thermodynamics.
- To understand the basic concepts of nano chemistry.

UNIT I POLYMER CHEMISTRY

Introduction: Functionality-degree of polymerization. Classification of polymers- natural and synthetic, thermoplastic and thermosetting. Types and mechanism of polymerization: addition (free radical, cationic, anionic and living); condensation and copolymerization. Properties of polymers: Tg, tacticity, molecular weight-weight average, number average and polydispersity index. Techniques of polymerization: Bulk, emulsion, solution and suspension.

UNIT II SURFACE CHEMISTRY AND CATALYSIS

UNIT III PHOTOCHEMISTRY AND SPECTROSCOPY

[Signature]
[Stamp]
Director
UNIT IV Chemical Thermodynamics
Second law: Entropy-entropy change for an ideal gas, reversible and irreversible processes; entropy of phase transitions; Free energy and work function: Helmholtz and Gibbs free energy functions; Criteria of spontaneity; Gibbs-Helmholtz equation; Claudius Clapeyron equation; Maxwell relations-Van't Hoff isotherm and isochore. Chemical potential; Gibbs-Duhem equation- variation of chemical potential with temperature and pressure.

UNIT V Nanochemistry

TOTAL: 45 PERIODS

OUTCOMES
- Will be familiar with polymer chemistry, surface chemistry and catalysis.
- Will know the photochemistry, spectroscopy and chemical thermodynamics.
- Will know the fundamentals of nano chemistry.

TEXT BOOKS

REFERENCES

PH7151 ENGINEERING PHYSICS (Common to all branches of B.E / B.Tech programmes) 3 0 0 3

OBJECTIVE:
- To introduce the concept and different ways to determine moduli of elasticity and applications.
- To instill the concept of sound, reverberation, noise cancellation, and ultrasonic generation, detection and applications
- To inculcate an idea of thermal properties of materials, heat flow through materials and quantum physics
- To promote the basic understanding of interferometers, principles and applications of lasers, optical fibers and sensors
- To establish a sound grasp of knowledge on the basics, significance and growth of single crystals

UNIT I Properties of Matter
UNIT II ACOUSTICS AND ULTRASONICS

UNIT III THERMAL AND MODERN PHYSICS

UNIT IV APPLIED OPTICS

UNIT V CRYSTAL PHYSICS
Single crystalline, polycrystalline and amorphous materials – Single crystals: unit cell, crystal systems, Bravais lattices, ditections and planes in a crystal, Miller indices - interplanar distance for a cubic crystal - coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures - structure and significance of NaCl, CsCl, ZnS and graphite - crystal imperfections: point defects, line defects – Burger vectors, dislocations and stacking faults – Growth of single crystals: Bridgman and Czochralski methods.

OUTCOME:
- The students will understand different moduli of elasticity, their determination and applications.
- The students will gain knowledge on the properties of sound, noise cancellation, and production, detection and applications of ultrasonics
- The students will acquire sound knowledge on thermal expansion and thermal conductivity of materials. Further they will gain an idea of quantum physics.
- The students will gain knowledge on interferometers, lasers and fiber optics
- The students will secure knowledge on the basics of crystal structures and their significance. Further they gain basic ideas of growing single crystals.

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
- The objective of this course is to inculcate in the student the ability to analyze any problem in a simple and logical manner and to predict the physical phenomena and thus lay the foundation for engineering applications.

UNIT I STATICS OF PARTICLES
12

UNIT II EQUILIBRIUM OF RIGID BODIES
12

UNIT III DISTRIBUTED FORCES
16
Centroids of lines and areas – symmetrical and unsymmetrical shapes, Determination of Centroids by Integration, Theorems of Pappus-Guldinus, Distributed Loads on Beams, Center of Gravity of a Three-Dimensional Body, Centroid of a Volume, Composite Bodies, Determination of Centroids of Volumes by Integration.
Moments of Inertia of Areas and Mass - Determination of the Moment of Inertia of an Area by Integration, Polar Moment of Inertia, Radius of Gyration of an Area, Parallel-Axis Theorem, Moments of Inertia of Composite Areas, Moments of Inertia of a Mass - Moments of Inertia of Thin Plates, Determination of the Moment of Inertia of a Three-Dimensional Body by Integration.

UNIT IV FRICTION
8

UNIT V DYNAMICS OF PARTICLES
12

OUTCOMES:
- Upon completion of this course, students will be able to construct meaningful mathematical models of physical problems and solve them.

TEXT BOOK

REFERENCES
OBJECTIVE

- To develop in students, graphic skills for communication of concepts, ideas and design of engineering products and expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (NOT FOR EXAMINATION)

Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREE HANDSKETCHING

Basic Geometrical constructions, Curves used in engineering practices-Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves. Visualization concepts and Free Hand sketching: Visualization principles – Representation of Three Dimensional objects – Layout of views- Free hand sketching of multiple views from pictorial views of objects

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES

Orthographic projection- principles-Principal planes-First angle projection-Projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes- Determination of true lengths and true inclinations by rotating line method and trapezoidal method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to both the principal planes by rotating object method and auxiliary plane method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes.

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS

Principles of isometric projection – isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems. Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method and vanishing point method.

COMPUTER AIDED DRAFTING (DEMONSTRATION ONLY)

Introduction to drafting packages and demonstration of their use.
OUTCOMES:
On completion of the course the student will be able to
- Perform freehand sketching of basic geometrical shapes and multiple views of objects.
- Draw orthographic projections of lines, planes and solids
- Obtain development of surfaces.
- Prepare isometric and perspective views of simple solids.

TEXT BOOK:

REFERENCES:

Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
4. The examination will be conducted in appropriate sessions on the same day.

HS7151 FOUNDATIONAL ENGLISH L T P C
4 0 0 4

COURSE DESCRIPTION:
This course aims at developing the language skills necessary for the first year students of Engineering and Technology.

OBJECTIVES:
- To develop the four language skills – Listening, Speaking, Reading and Writing.
- To improve the students’ communicative competence in English.
- To teach students the various aspects of English language usage.
CONTENTS

UNIT I GREETING AND INTRODUCING ONESELF 12
Listening - Types of listening – Listening to short talks, conversations; Speaking – Speaking about one’s place, important festivals etc. – Introducing oneself, one’s family/ friend; Reading – Skimming a passage– Scanning for specific information; Writing- Guided writing - Free writing on any given topic (My favorite place/ Hobbies/ School life, writing about one’s leisure time activities, hometown, etc.); Grammar – Tenses (present and present continuous) -Question types - Regular and irregular verbs; Vocabulary – Synonyms and Antonyms.

UNIT II GIVING INSTRUCTIONS AND DIRECTIONS 12
Listening – Listening and responding to instructions; Speaking – Telephone etiquette - Giving oral instructions/ Describing a process – Asking and answering questions; Reading – Reading and finding key information in a given text - Critical reading - Writing –Process description(non-technical)- Grammar – Tense (simple past& past continuous) - Use of imperatives – Subject – verb agreement – Active and passive voice; Vocabulary – Compound words – Word formation – Word expansion (root words).

UNIT III READING AND UNDERSTANDING VISUAL MATERIAL 12
Listening- Listening to lectures/ talks and completing a task; Speaking –Role play/ Simulation – Group interaction; Reading – Reading and interpreting visual material; Writing- Jumbled sentences – Discourse markers and Cohesive devices – Essay writing (cause & effect/narrative); Grammar – Tenses (perfect), Conditional clauses –Modal verbs; Vocabulary –Cause and effect words; Phrasal verbs in context.

UNIT IV CRITICAL READING AND WRITING 12
Listening- Watching videos/ documentaries and responding to questions based on them; Speaking Informal and formal conversation; Reading –Critical reading (prediction & inference);Writing–Essay writing (compare & contrast/ analytical) – Interpretation of visual materials; Grammar – Tenses (future time reference);Vocabulary – One word substitutes (with meanings) – Use of abbreviations & acronyms – Idioms in sentences.

UNIT V LETTER WRITING AND SENDING E-MAILS 12
Listening- Listening to programmers/broadcast/ telecast/ podcast; Speaking – Giving impromptu talks, Making presentations on given topics- Discussion on the presentation; Reading –Extensive reading; Writing- Poster making – Letter writing (Formal and E-mail) ;Grammar – Direct and Indirect speech – Combining sentences using connectives; Vocabulary –Collocation;

TEACHING METHODS:
Interactive sessions for the speaking module.
Use of audio – visual aids for the various listening activities.
Contextual Grammar Teaching.

EVALUATION PATTERN:
Internals – 50%
End Semester – 50%
TOTAL: 60 PERIODS

OUTCOMES:
• Students will improve their reading and writing skills
• Students will become fluent and proficient in communicative English
• Students will be able to improve their interpersonal communication

TEXT BOOK:
REFERENCES:
3. Redston, Chris & Gillies Cunningham Face2Face (Pre-intermediate Student’s Book& Workbook) Cambridge University Press, New Delhi: 2005

BS7161 BASIC SCIENCES LABORATORY
(Common to all branches of B.E. / B.Tech Programmes) 0 0 4 2

PHYSICS LABORATORY: (Any Seven Experiments)

OBJECTIVE:
- To inculcate experimental skills to test basic understanding of physics of materials including properties of matter, thermal and optical properties.
- To induce the students to familiarize with experimental determination of velocity of ultrasonic waves, band gap determination and viscosity of liquids.

1. Torsional pendulum - Determination of rigidity modulus of wire and moment of inertia of disc
2. Non-uniform bending - Determination of young’s modulus
3. Uniform bending – Determination of young’s modulus
4. Lee’s disc Determination of thermal conductivity of a bad conductor
5. Potentiometer-Determination of thermo e.m.f of a thermocouple
6. Laser- Determination of the wave length of the laser using grating
7. Air wedge - Determination of thickness of a thin sheet/wire
8. a) Optical fibre - Determination of Numerical Aperture and acceptance angle
 b) Compact disc- Determination of width of the groove using laser.
10. Ultrasonic interferometer – determination of the velocity of sound and compressibility of liquids
11. Post office box - Determination of Band gap of a semiconductor.
13. Viscosity of liquids - Determination of co-efficient of viscosity of a liquid by Poiseuille’s flow

OUTCOME:
- To determine various moduli of elasticity and also various thermal and optical properties of materials.
- To determine the velocity of ultrasonic waves, band gap determination and viscosity of liquids.

CHEMISTRY LABORATORY:
(Minimum of 8 experiments to be conducted)

1. Estimation of HCl using Na₂CO₃ as primary standard and Determination of alkalinity in water sample.
2. Determination of total, temporary & permanent hardness of water by EDTA method.
3. Determination of DO content of water sample by Winkler’s method.
4. Determination of chloride content of water sample by argentometric method.
5. Estimation of copper content of the given solution by iodometry.
6. Determination of strength of given hydrochloric acid using pH meter.
7. Determination of strength of acids in a mixture of acids using conductivity meter.
8. Estimation of iron content of the given solution using potentiometer.
9. Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthroline/thiocyanate method).
10. Estimation of sodium and potassium present in water using flame photometer.
14. Determination of CMC.
15. Phase change in a solid.

TOTAL: 60 PERIODS

TEXTBOOKS

GE7162 ENGINEERING PRACTICES LABORATORY (Common to all Branches of B.E. / B.Tech. Programmes) L T P C 0 0 4 2

OBJECTIVES
To provide exposure to the students with hands-on experience on various Basic Engineering Practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP – A (CIVIL & ELECTRICAL)

1. CIVIL ENGINEERING PRACTICES 15
PLUMBING
Basic pipe connections involving the fittings like valves, taps, coupling, unions, reducers, elbows and other components used in household fittings. Preparation of plumbing line sketches.
• Laying pipe connection to the suction side of a pump.
• Laying pipe connection to the delivery side of a pump.
• Practice in connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK
Sawing, planning and making joints like T-Joint, Mortise and Tenon joint and Dovetail joint.

STUDY
• Study of joints in door panels and wooden furniture
• Study of common industrial trusses using models.

2. ELECTRICAL ENGINEERING PRACTICES 15
• Basic household wiring using Switches, Fuse, Indicator and Lamp etc.,
• Stair case light wiring
• Tube – light wiring
• Preparation of wiring diagrams for a given situation.
• Study of Iron-Box, Fan Regulator and Emergency Lamp
GROUP – B (MECHANICAL AND ELECTRONICS)

3. MECHANICAL ENGINEERING PRACTICES

WELDING
- Arc welding of Butt Joints, Lap Joints, and Tee Joints
- Gas welding Practice.
- Basic Machining - Simple turning, drilling and tapping operations...
- Study and assembling of the following:
 a. Centrifugal pump
 b. Mixie
 c. Air Conditioner.

DEMONSTRATION ON FOUNDRY OPERATIONS.

4. ELECTRONIC ENGINEERING PRACTICES

- Soldering simple electronic circuits and checking continuity.
- Assembling electronic components on a small PCB and Testing.
- Study of Telephone, FM radio and Low Voltage Power supplies.

TOTAL: 60 PERIODS

OUTCOMES
- Ability to fabricate carpentry components and to lay pipe connections including plumbing works.
- Ability to use welding equipments to join the structures
- Ability to do wiring for electrical connections and to fabricate electronics circuits.

MA7251
MATHEMATICS - II
(Common to all branches of B.E. / B.Tech. Programmes in II Semester)

OBJECTIVES:
- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To acquaint the student with the concepts of vector calculus, needed for problems in all engineering disciplines.
- To develop an understanding of the standard techniques of complex variable theory so as to enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow of the electric current.
- To make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

UNIT I
MATRICES
12

UNIT II
VECTOR CALCULUS
12
Gradient and directional derivative – Divergence and Curl – Irrotational and Solenoidal vector fields – Line integral over a plane curve – Surface integral - Area of a curved surface - Volume integral - Green’s, Gauss divergence and Stoke’s theorems – Verification and application in evaluating line, surface and volume integrals.
UNIT III ANALYTIC FUNCTION 12
Analytic functions – Necessary and sufficient conditions for analyticity - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by functions \(w = z + c, \ az, \ \frac{1}{z}, \ z^2 \) - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION 12

UNIT V LAPLACE TRANSFORMS 12

TOTAL: 60 PERIODS

OUTCOMES:
- Upon successful completion of the course, students should be able to:
- Evaluate real and complex integrals using the Cauchy integral formula and the residue theorem
- Appreciate how complex methods can be used to prove some important theoretical results.
- Evaluate line, surface and volume integrals in simple coordinate systems
- Calculate grad, div and curl in Cartesian and other simple coordinate systems, and establish identities connecting these quantities
- Use Gauss, Stokes and Greens theorems to simplify calculations of integrals and prove simple results.

TEXT BOOKS:

REFERENCES:
OBJECTIVES

- To make the students conversant with
- Treatment of water for domestic and industrial purpose
- Applications of different kinds of polymers, lubricants and adhesives.
- Types and mechanism of corrosion and control measures
- Application of different types of abrasives and chemical nature of building materials and composites
- Chemistry of different types of fuels and explosives

UNIT I WATER TREATMENT

Different types of impurities in water-disadvantages of hard water in industries-conditioning methods-external treatment methods-zeolite and ion exchange methods-internal treatment (colloidal, phosphate, calgon, carbonate methods)-desalination (reverse osmosis and electrodialysis)-requisites of drinking water-treatment of domestic water (screening, sedimentation, coagulation, filtration, disinfection-by chlorination, UV treatment and ozonization).

UNIT II POLYMERS, LUBRICANTS AND ADHESIVES

Thermosetting and thermoplastics resins-properties and applications of polythene, polypropylene, TEFLON, polystyrene, polyvinyl chloride, PMMA, polyamides, polyesters, bakelite, vulcanization of rubber- rubber blended plastics-laminated glass-thermocole. Lubricants and lubrication-functions-classification with examples properties (viscosity index, flash and fire point, oiliness, carbon residue, aniline point, cloud and pour point)-greases (calcium based, sodium based, lithium based only)-solid lubricants graphite and molybdenum sulphide. Adhesives-adhesive action-development of adhesive strength-physical and chemical factors influencing adhesive action-bonding process of adhesives-phenol formaldehyde resins, polyurethane, epoxy resins, urea formaldehyde.

UNIT III CORROSION AND CORROSION INHIBITION

UNIT IV ABRASIVES AND CHEMISTRY OF BUILDING MATERIALS

UNIT V FUELS AND EXPLOSIVES

Classification of fuels (solid, liquid and gases) comparison-coal varieties-analysis of coal, proximate analysis and ultimate analysis-significance-coke manufacture (Beehive coke oven and Otto-Hoffman by product coke oven method)-characteristics of metallurgical coke. Petrol-knocking-Octane Number-improvement of antiknock characteristics-diesel engine fuel-Cetane Number-gaseous fuels-composition and uses of producer gas, water gas and natural gas-combustion-gross and net calorific values-theoretical calculation of calorific value (Dulong’s formula)-calculation of minimum requirement of air (simple calculations)-explosive range, spontaneous ignition temperature-flue gas analysis-Orsat apparatus. Chemistry of different types of industrial explosives like-gun powder, dynamite, nitroglycerin based explosives, Ammonium.
nitrate based explosives, ammonium nitrate fuel oil, PETN, TNT, liquid oxygen, slurry explosives and emulsion explosives.

TOTAL: 45 PERIODS

OUTCOMES
- Will be familiar with corrosion and its control.
- Will know the characterization techniques.
- Will know the water quality analysis for industrial applications.

TEXT BOOKS

REFERENCES

EE7152 BASIC OF ELECTRONICS ENGINEERING

OBJECTIVES:
- To provide knowledge in the basic concepts of Electronics Engineering including semiconductors, transistors, electronic devices, signal generators and digital electronics.

UNIT I SEMICONDUCTORS AND RECTIFIERS
Classification of solids based on energy band theory, Intrinsic semiconductors, Extrinsic semiconductors – P-type and N-type, P-N junction, VI Characteristics of PN junction diode, Half and Full wave rectifiers, Zener effect, Zener diode, Zener diode Characteristics, Zener diode as a regulator.

UNIT II TRANSISTOR AND AMPLIFIERS
Bipolar junction transistors – CB, CE, CC configurations and characteristics, Biasing circuits – Fixed bias, Voltage divider bias, CE amplifier, Concept of feedback, Negative feedback, voltage series feedback amplifier, Current series feedback amplifier.

UNIT III FET AND POWER ELECTRONIC DEVICES
FET – Configuration and characteristics, FET amplifier, Characteristics and simple applications of SCR, Diac, Triac and UJT.

UNIT IV SIGNAL GENERATORS AND LINEAR ICS

UNIT V DIGITAL ELECTRONICS
Boolean algebra, Logic Gates, , Half and Full adders, Decoder, Encoder, Multiplexer, Demultiplexer, Flip flops, Digital to Analog converters - R-2R and weighted resistor types, Analog to Digital converters - Successive approximation and Flash types.

TOTAL: 45 PERIODS
OUTCOMES:
- Ability to identify electronics components and use them to design circuits.

TEXT BOOK:

REFERENCES:

GE7151 COMPUTING TECHNIQUES (Common to all branches of Engineering and Technology)

OBJECTIVES
- To learn programming using a structured programming language.
- To provide C programming exposure.
- To introduce foundational concepts of computer programming to students of different branches of Engineering and Technology.

UNIT I INTRODUCTION
Introduction to Computers – Computer Software – Computer Networks and Internet - Need for logical thinking – Problem formulation and development of simple programs - Pseudo code - Flow Chart and Algorithms.

UNIT II C PROGRAMMING BASICS

UNIT III ARRAYS AND STRINGS

UNIT IV POINTERS
Macros - Storage classes –Basic concepts of Pointers– Pointer arithmetic - Example Problems - Basic file operations

UNIT V FUNCTIONS AND USER DEFINED DATA TYPES

TOTAL : 45 PERIODS

OUTCOMES
At the end of the course, the student should be able to:
- Write C program for simple applications
- Formulate algorithm for simple problems
- Analyze different data types and arrays
- Perform simple search and sort.
- Use programming language to solve problems.
TEXT BOOKS:

REFERENCES:

EE7252 BASICS OF ELECTRICAL ENGINEERING

OBJECTIVES:
• To introduce the relevance of this course to the existing technology through demonstrations, case studies, simulations, contributions of scientist, national/international policies with a futuristic vision
• To introduce Magnetic circuits, principle and application of transformers
• To teach principle of operation of DC motors and AC machines
• To teach principle of special electrical machines

UNIT I MAGNETIC CIRCUITS AND ENERGY CONSERVATION

UNIT II TRANSFORMER

UNIT III DC MACHINES
Construction of DC machines – Theory of operation of DC generators – EMF and torque equations-Characteristics of DC generators- Applications, Operating principle of DC motors – Types of DC motors and their characteristics – Speed control of DC motors- Applications

UNIT IV INDUCTION MACHINES AND SYNCHRONOUS MACHINES

UNIT V SPECIAL ELECTRICAL MACHINES
Switched reluctance motor, stepper motor, servo motor, BL DC motor- working principles, speed-torque characteristics and applications.

TOTAL: 45 PERIODS
OUTCOMES:
• Ability to comprehend and appreciate the significance and role of this course in the present contemporary world
 At the end of the course the students will be able to
• Describe magnetic circuits, principles of operation of transformers, DC machines.
• Explain the working of AC machines and special electrical machines

TEXT BOOKS:

REFERENCES:

HS7251 TECHNICAL ENGLISH L T P C
4 0 0 4

OBJECTIVES
• To enable students acquire proficiency in technical communication.
• To enhance their reading and writing skills in a technical context.
• To teach various language learning strategies needed in a professional environment.

CONTENTS
UNIT I ANALYTICAL READING
Listening- Listening to informal and formal conversations; Speaking – Conversation Skills (opening, turn taking, closing)-explaining how something works-describing technical functions and applications; Reading –Analytical reading, Deductive and inductive reasoning; Writing- vision statement-structuring paragraphs.

UNIT II SUMMARISING
Listening- Listening to lectures/ talks on Science & Technology; Speaking –Summarizing/ Oral Reporting, Reading – Reading Scientific and Technical articles; Writing- Extended definition –Lab Reports – Summary writing.

UNIT III DESCRIBING VISUAL MATERIAL
Listening- Listening to a panel discussion; Speaking – Speaking at formal situations; Reading – Reading journal articles - Speed reading; Writing-data commentary-describing visual material-writing problem-process- solution-the structure of problem-solution texts- writing critiques

UNIT IV WRITING/ E-MAILING THE JOB APPLICATION
Listening- Listening to/ Viewing model interviews; Speaking –Speaking at different types of interviews – Role play practice (mock interview); Reading – Reading job advertisements and profile of the company concerned; Writing- job application – cover letter –Résumé preparation.

UNIT V REPORT WRITING
Listening- Viewing a model group discussion; Speaking –Participating in a discussion -Presentation; Reading – Case study - analyses -evaluate – arrive at a solution; Writing– Recommendations- Types of reports (feasibility report)- designing and reporting surveys- – Report format.- writing discursive essays.
TEACHING METHODS:
Practice writing
Conduct model and mock interview and group discussion.
Use of audio – visual aids to facilitate understanding of various forms of technical communication.
Interactive sessions.

EVALUATION PATTERN:
Internals – 50%
End Semester – 50%

TOTAL: 60 PERIODS

OUTCOMES
- Students will learn the structure and organization of various forms of technical communication.
- Students will be able to listen and respond to technical content.
- Students will be able to use different forms of communication in their respective fields.

TEXT BOOK:

REFERENCES:

GE7161 COMPUTER PRACTICES LABORATORY

OBJECTIVES
- To understand the basic programming constructs and articulate how they are used to develop a program with a desired runtime execution flow.
- To articulate where computer programs fit in the provision of computer-based solutions to real world problems.
- To learn to use user defined data structures.

LIST OF EXPERIMENTS
1. Search, generate, manipulate data using MS office/ Open Office
2. Presentation and Visualization – graphs, charts, 2D, 3D
3. Problem formulation, Problem Solving and Flowcharts
4. C Programming using Simple statements and expressions
5. Scientific problem solving using decision making and looping.
6. Simple programming for one dimensional and two dimensional arrays.
7. Solving problems using String functions
8. Programs with user defined functions
9. Program using Recursive Function
10. Program using structures and unions.

TOTAL: 60 PERIODS

OUTCOMES
At the end of the course, the student should be able to:
- Write and compile programs using C programs.
- Write program with the concept of Structured Programming
- Identify suitable data structure for solving a problem
- Demonstrate the use of conditional statement.

LABORATORY REQUIREMENTS FOR BATCH OF 30 STUDENTS
30 Systems with C compiler

EE7261 ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY

OBJECTIVE:
- To train the students in performing various tests on electrical drives, sensors and circuits.

LIST OF EXPERIMENTS:
1. Load test on separately excited DC shunt generator
2. Load test on DC shunt motor
3. Load test on S Transformer
4. Load test on Induction motor
5. Regulation of 3 Alternator
6. Study of CRO
7. Logic gates
8. Operational amplifiers
9. Time constant of RC circuit
10. Characteristics of LVDT
11. Calibration of Rotometer
12. RTD and Thermistor
13. Flapper Nozzle system

OUTCOMES:
- Ability to perform speed characteristic of different electrical machine
- Ability to use of diodes, transistors for rectifiers
- Ability to use of operational amplifier

TOTAL: 60 PERIODS
OBJECTIVES:

- To lay emphasis on the study of minerals, rocks and structures.
- Understanding the sciences of ores and minerals.

UNIT I PHYSICAL GEOLOGY

UNIT II STRATIGRAPHY
Geological time scale – mineral resource distributions and economic importance of Archean, Paleozoic, Mesozoic and Cenozoic rocks of India.

UNIT III MINERALOGY
Classification of minerals – Physical properties of minerals – Properties of quartz, feldspar, pyroxene, amphibole, mica, olivine and garnet group of minerals and calcite.

UNIT IV PETROLOGY
Classification of rocks – Description of igneous, sedimentary and metamorphic rocks – forms and mode of occurrence of rocks – Engineering properties of rocks: field and laboratory tests.

UNIT V STRUCTURAL GEOLOGY

TOTAL: 45 PERIODS

OUTCOME:

- The students will know about minerals, rocks and geological structures. They will also learn about stratigraphy and groundwater exploration.

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
- To understand the stresses developed in bars, compounds bars, beams, shafts, cylinders and spheres.

UNIT I STRESS, STRAIN AND DEFORMATION OF SOLIDS

UNIT II TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM

UNIT III TORSION
Torsion formulation stresses and deformation in circular and hollows shafts – Stepped shafts – Deflection in shafts fixed at the both ends – Stresses in helical springs – Deflection of helical springs, carriage springs.

UNIT IV DEFLECTION OF BEAMS
Double Integration method – Macaulay’s method – Area moment Theorems for computation of slopes and deflections in beams - Conjugate beam and strain energy – Maxwell’s reciprocal theorems.

UNIT V THIN CYLINDERS, SPHERES AND THICK CYLINDERS
Stresses in thin cylindrical shell due to internal pressure circumferential and longitudinal stresses and deformation in thin cylinders – spherical shells subjected to internal pressure – Deformation in spherical shells – Lamé’s theory – Application of theories of failure.

OUTCOMES:
- Upon completion of this course, the students can able to apply mathematical knowledge to calculate the deformation behavior of simple structures.
- Critically analyse problem and solve the problems related to mechanical elements and analyse the deformation behavior for different types of loads.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
To impart knowledge on
- Basics of electric drives
- Different speed control methods
- Various motor starters and controllers
- Applications

UNIT I INTRODUCTION

UNIT II SPEED CONTROL OF DC MACHINES
Thyristor based bridge rectifier circuits – chopper circuits - DC shunt motors and series motor: typical and modified speed torque characteristics - Ward Leonard method – applications of modified characteristics - solid state DC drives – electrical braking.

UNIT III SPEED CONTROL OF AC MACHINES
Induction motor – speed torque characteristics – pole changing, stator frequency variation – stator voltage variations - slip-ring induction motor: rotor resistance variation, slip power recovery scheme – basic inverter circuits- variable voltage frequency control - constant torque and constant power mode of operation.

UNIT IV MOTOR STARTERS AND CONTROLLERS
DC motor starters using voltage sensing relays, current sensing relays and time delay relays - wound rotor induction motor starters – starters using frequency sensing relays -DOL–starter

UNIT V HEATING AND POWER RATING OF DRIVE MOTORS
Load diagram, overload capacity, insulating materials, heating and cooling of motors, service condition of electric drive – classes of duty – industrial application.

OUTCOME:
- Upon completion of this subject, the student can able to explain different types of electrical machines and their performance in various applications.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To understand the principles and mechanism of different drilling methods, novel drilling techniques.
- To learn the basic mechanism of rock fragmentation by blasting.
- To know the various types of explosives and accessories used in blasting.
- To learn the different methods of blasting adopted in surface and underground coal / non-coal mines including adverse effects of blasting & their control.
- To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars related to this course.

UNIT I EXPLORATION AND PRODUCTION DRILLING 11
Exploratory drilling – drills, core recovery and interpretation of borehole data; Production drilling; Operating variables; Various methods of drilling - percussive, rotary, rotary percussive; mechanics of different methods of drilling; Down-the-hole drilling & Top hammer drilling; Inclined Drilling; Factors affecting drilling & drillability studies - micro-bit drilling; selection of drilling equipment; different types of bit & selection of drill bits; bits wear; Introduction to novel and special drilling techniques. Estimation of cost of drilling, economics of drilling.

UNIT II EXPLOSIVES, ACCESSORIES AND TOOLS 9
Various type of explosives and Blasting Agents - ANFO, slurry, emulsion, permitted explosives, properties of explosives and their development; Bulk explosives; Selection of explosives; Initiation systems, Blasting accessories, Testing of explosives; Storage, transportation and handling of explosives; Destruction of explosives and accessories. Mechanics of rock fragmentation by explosives.

UNIT III BLAST DESIGN IN SURFACE MINES 10
Methods of blasting in surface mines - Primary and secondary blasting, Blast design for surface mines; Introduction to blasting software; Rock fragmentation studies, Controlled blasting techniques. Estimation of cost of blasting.

UNIT IV BLASTING IN UNDERGROUND MINES 7

UNIT V ADVERSE EFFECTS OF BLASTING AND INSTRUMENTATION 8
Dangers associated with blasting in opencast mines and underground mines – misfires, blown out shots, incomplete detonation, fly rock, ground vibrations, air blast and air & water pollution and its controlling measures; Introduction to instrumentation in blasting –V.O.D probe, vibration monitoring, high speed video camera, etc; Introduction to blasting concepts related to road constructions, trench cutting, demolition of buildings, dimensional stone quarries, underwater blasting; Alternatives to blasting.

OUTCOME:
- The students will have knowledge on drilling and blasting operations in surface and underground mines. They will also learn to understand and design blasting pattern for surface mines, dimensional stones, road constructions, oil and ground water.

TEXT BOOKS:
2. Jimeno, C.L., Jimeno, E.L, Carcedo, E.J. Drilling and Blasting of Rocks, A.A.Balkema, Rotterdam,
REFERENCES:

OBJECTIVES:
- To demonstrate the importance of mining in national economy, understand the terminology associated with the discipline and be familiar with the available regulatory mechanism to enable safe & sustainable mining operations.
- To know the history of mining and describe the correlation between the development of mining and cultural progress.
- To introduce the field of mining and provide basic input about mining unit operations.
- To learn the various modes of access and study the methods of designing the access.

UNIT I INTRODUCTION TO MINING
Historical overview of mining, role of the mining industry in the modern world and contribution to national economy; Positive and negative aspects of Mining Industry / Economical, Social, Environmental and Health impacts of Mining; Role of mining engineers in industry. Statute related to Mining Industry; Evaluation of Mining and Mining machinery; Present and future trends of mining industry. Mineral deposit – different types and their classification; Indian mineral resources and world status, Stages in the life of a mine.

UNIT II ACCESS TO DEPOSIT
Choice, location and size of mine entries – adit, shaft, incline and combined mode; Sinking methods through soft, strong and water bearing strata, support system, ventilation, lighting and drainage arrangements during sinking, material handling and safety in sinking shafts. Introduction to piling, caisson and freezing methods - cementation method - widening and deepening of shafts. Modern techniques of shaft sinking – shaft boring, design of shaft insets, pit bottom excavation and shaft raising. Recent developments in shaft sinking.

UNIT III DRIFTING AND TUNNELING
Drivage of drifts, organisation and cycle of operations; support system, ventilation, lighting and drainage arrangements during development; modern methods of drifting, continuous miners, tunnelling, road heading and tunnel boring, recent developments in tunneling and drifting.

UNIT IV INTRODUCTION TO MINING METHODS
Introduction to mining methods – selection criteria & comparison. Overview of surface mining: Types of surface mines, unit operations, basic bench geometry, applicability & limitations and advantages & disadvantages. Overview of underground mining: Different coal mining methods and their applicability & limitations; Different metal mining methods and their
applicability & limitations; Introduction to various aspects of mining – ventilation, illumination, rock mechanics, mine management and mine economics.

UNIT V ADVANCES IN MINING TECHNOLOGY 8
Sustainability Practices in Mining. Computer applications in mining; Impacts of globalization on mining. Status with respect to sea bed mining. Introduction to novel mining methods. Challenges being faced by mining industry; Role of statutory bodies like DGMS, IBM, PESO, MoEF, etc in mining industry.

OUTCOME:
• The students will have introductory knowledge on role of mining industry on national economics and overview of mining operations in underground and surface mines.

TEXT BOOKS:

REFERENCES:
2. Universal Mining School - Lecture notes, cardiff, U.K

PH7251 MATERIALS SCIENCE
(Common to Manufacturing, Industrial, Mining, Aeronautical, Automobile and Production Engineering) L T P C 3 0 0 3

OBJECTIVE:
• To impart knowledge on the basics of binary phase diagrams and their applications
• To learn the phase diagram, effect of alloying elements and various transformations in the Fe-C system, and also the heat treatment of steels.
• To introduce various strengthening methods of materials, and also various mechanical properties and their measurement
• To instill the types, properties and applications of magnetic, dielectric and superconducting materials.
• To introduce the preparation, properties and applications of various new materials.

UNIT I PHASE DIAGRAMS 9
Solid solutions - Hume Rothery’s rules - The phase rule - single component system – one component system of iron - binary phase diagrams - isomorphous systems - the tie-line rule – the lever rule - application to isomorphous system - eutectic phase diagram - peritectic phase diagram - other invariant reactions – free energy composition curves for binary systems – microstructural change during cooling.

UNIT II FERROUS ALLOYS AND HEAT TREATMENT 9
UNIT III MECHANICAL PROPERTIES

UNIT IV MAGNETIC, DIELECTRIC AND SUPERCONDUCTING MATERIALS

UNIT V NEW MATERIALS

TOTAL: 45 PERIODS

OUTCOME:
Upon completion of this course, the students will
• gain knowledge on the basics of binary phase diagrams and the use of lever rule
• learn about the Fe-C phase diagram, effect of alloying elements, TTT in the Fe-C system, and also the heat treatment of steels.
• understand the significance of dislocations, strengthening mechanisms, and tensile, creep, hardness and fracture behavior of materials
• acquire knowledge on the types, properties and applications of magnetic, dielectric and superconducting materials.
• get adequate understanding on the preparation, properties and applications of ceramics, composites, metallic glasses, shape-memory alloys and nanomaterials.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To study the mechanical properties of materials subjected to different types of loading.

LIST OF EXPERIMENTS
1. Tension test on mild steel rod
2. Compression test on wood
3. Double shear test on metal
4. Torsion test on mild steel rod
5. Impact test on metal specimen (Izod and Charpy)
6. Hardness test on metals (Rockwell and Brinell Hardness Tests)
7. Deflection test on metal beam
8. Compression test on helical spring
9. Deflection test on carriage spring

OUTCOMES:
- The students will have the knowledge in the area of testing of materials

REFERENCES:
2. IS 432(Part I) -1992 – Specification for mild steel and medium tensile steel bars and hard drawn steel wire for concrete reinforcement

OBJECTIVE:
To impart practical experience to the student for gaining deeper understanding of the various activities and principles of mining.

Gaining practical experience is an important aspect of the mining engineering programme. It has many characteristic features of its own. The students have to undergo training in mining / allied industry / research institute during the summer vacation at the end of the II Semester for a period of 2-3 weeks and obtain a valid certificate from the competent authority of the organization providing training. The students have to submit a report on the training which would be evaluated during the ensuing III Semester. This carries a total of one credit during the III Semester. Evaluation would be done by a faculty or a group of faculty on different marking heads such as training, viva-voce, report, etc., or other approved evaluation systems.

Normally a student is not permitted to withdraw from the practical training. In case of any unforeseen circumstances / valid reasons if he could not undergo the training as scheduled, on the recommendation of the Head of the Department and approval by the competent authority the student may be permitted to undergo Practical Training - I in subsequent years before undergoing practical training - II. The decision of the competent authority is final in this regards.

OUTCOME:
The students will understand various activities and principles of surface mining and its importance.
MI7312 TECHNICAL SEMINAR L T P C 0 0 2 1

OBJECTIVE:
To overcome the stage fear and face questions. The technical seminar topic(s) must be selected either from published lists or the students themselves may propose suitable topics in consultation with their faculty in charge. The aim of the technical seminar is to deliver the topic in a structured way with effective communication manner. The progress of the mini project is evaluated by the faculty in charge who is assigned by the Head of the Department to assess the students’ presentation skills.

TOTAL: 30 PERIODS

OUTCOME:
The students will be able to exhibit the skills of presentations such structure, uses of visual aid, content preparation, delivery and facing the critical questions.

AG7402 MINING GEOLOGY L T P C 2 2 0 3

OBJECTIVE:
To familiarize the students with the economic mineral deposits and the techniques used to explore mineral and fossil fuel deposits.

UNIT I ECONOMIC GEOLOGY 6+6
Ore forming process, mineral deposits formed from magmatic, hydrothermal and volcanic process: mechanical concentration, oxidation and supergene enrichment.

UNIT II ECONOMIC INDIAN MINERAL DEPOSITS 6+6
Metallic, non-metallic deposits, study of graphite, copper, zinc, lead, gold, iron, manganese, radioactive minerals, asbestos, mica, gemstone-origin, mode of occurrence and distribution in India. Origin and occurrence of industrial minerals-ceramic, refractory, abrasive, glass and paint industry.

UNIT III COAL AND PETROLEUM GEOLOGY 6+6
Origin, physical properties, processes, occurrence of coal and its types, petroleum deposits. Fossil fuel distribution in sedimentary basins of India.

UNIT IV GEOPHYSICS 6+6
Geophysical prospecting methods – seismic, electrical, magnetic and gravity methods of mineral prospecting, Location of ore body, coal and petroleum reserves, subsurface litho-log and 3-D models.

UNIT V REMOTE SENSING AND GIS 6+6
Introduction to aerial and satellite remote sensing, identification of photo recognition elements; applications of remote sensing and GIS in geological mapping and mineral exploration.

TOTAL: 60 PERIODS

OUTCOME:
- The students will be familiar in economic geology and Indian mineral deposits. They will have exposure on geophysics, remote sensing and GIS.

TEXT BOOKS:
REFERENCES:

CE7352 FLUID MECHANICS AND MACHINERY L T P C
3 0 0 3

OBJECTIVE:
• The applications of the conservation laws to flow through pipes and hydraulic machines are studied. To understand the importance of dimensional analysis. To understand the importance of various types of flow in pumps and turbines.

UNIT I FLUID PROPERTIES AND FLOW CHARACTERISTICS
Units and dimensions- Properties of fluids- mass density, specific weight, specific volume, specific gravity, viscosity, compressibility, vapor pressure, capillarity and surface tension. Flow characteristics – concept of control volume - application of control volume to continuity equation, energy equation and momentum equation.

UNIT II FLOW THROUGH CIRCULAR CONDUITS

UNIT III DIMENSIONAL ANALYSIS
Need for dimensional analysis – methods of dimensional analysis – Similitude – types of similitude - Dimensionless parameters- application of dimensionless parameters – Model analysis.

UNIT IV PUMPS

UNIT V TURBINES

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course, the students will be able to:
• Apply mathematical knowledge to predict the properties and characteristics of a fluid.
• Critically analyse the performance of pumps and turbines.
TEXT BOOKS:

REFERENCES:

CE7353 PLANE AND GEODETIC SURVEYING L T P C
4 0 0 4

OBJECTIVES:
- To introduce the rudiments of plane surveying and geodetic principles to Geoinformatics Engineers.
- To learn the various methods of plane and geodetic surveying to solve the real world problems.
- To introduce the concepts of Control Surveying
- To introduce the basics of Astronomical Surveying

UNIT I FUNDAMENTALS OF CONVENTIONAL SURVEYING 12
Classifications and basic principles of surveying – Equipment and accessories for ranging and chaining – Methods of ranging – Chain traversing – Basic principles and applications of Plane Table and Compass - Levels and staves - Methods of levelling - Booking -Reduction - Curvature and refraction - Contouring.

UNIT II THEODOLITE SURVEYING 12
Horizontal and vertical angle measurements - Temporary and permanent adjustments – Heights and distances–Tacheometric surveying – Trigonometric levelling – Horizontal curves in route surveying – classification, functions and requirements - methods of setting out simple curves - setting out transition curves by offsets and angles

UNIT III CONTROL SURVEYING AND ADJUSTMENT 12

UNIT IV ASTRONOMICAL SURVEYING 12
Astronomical terms and definitions - Motion of sun and stars - Celestial coordinate systems – different time systems - Nautical Almanac - Apparent altitude and corrections - Field observations and determination of time, longitude, latitude and azimuth by altitude and hour angle method

UNIT V MODERN SURVEYING 12
Total Station : Advantages - Fundamental quantities measured – Parts and accessories – working principle – On board calculations –Field procedure - Errors and Good practices in using Total Station
GPS: System components – Signal structure – Selective availability and antispooﬁng – receiver components – Planning and data acquisition – Data processing - Errors in GPS - Applications

TOTAL : 60 PERIODS
OUTCOMES:
At the end of the course the student will be able to understand
- The use of various surveying instruments in mapping
- The error and adjustments procedures associated with surveying and mapping
- The methods used for establishment of horizontal and vertical control
- Concepts of astronomical surveying and methods to determine time, longitude, latitude and azimuth

TEXT BOOKS:

REFERENCES:

ME7403 BASIC MECHANICAL ENGINEERING FOR MINING L T P C
3 0 0 3

OBJECTIVE:
- To give an overall understanding on prime areas of mechanical engineering like Thermodynamics, Heat transfer, IC engines, Power Transmission and Machine elements for Mining Engineering students.

UNIT I BASIC CONCEPTS OF THERMODYNAMICS AND HEAT TRANSFER

UNIT II IC ENGINES AND AIR CONDITIONING

UNIT III POWER TRANSMISSION
Friction in screw threads, bearings, mechanical and hydraulic clutches. Rope, belt and chain. Gears – nomenclature, laws of gearing, types of gears including rack and pinion, interference, gear trains, power calculation in couplings, clutches and brakes.
UNIT IV KINEMATICS OF MACHINES

UNIT V ROTODYNAMIC AND VIBRATORY MACHINES

* Approved HEAT and Mass Transfer and PSG Design Data Book is permitted to use in the examinations.

TOTA L: 45 PERIODS

TEXT BOOKS:

REFERENCES:

MI7401 MINERAL PROCESSING L T P C
3 0 0 3

OBJECTIVE:
This course enables the students to choose suitable parameters and appropriate methodology & machinery for processing various types of minerals.

UNIT I INTRODUCTION

UNIT II COMMINUTION
Introduction to comminution, reduction ratio, primary/secondary/tertiary crushing, purpose, duty, theory of crushing, types of crushers and comparison, general crushing flow sheet, wet/dry grinding, mechanism and various affecting parameters. Power consumption for crushing & grinding.

UNIT III LABORATORY & INDUSTRIAL SIZING AND SAMPLING
Collecting sample on site (mine face); Purpose, factors governing particle behaviour, laboratory and industrial screens, trommels, vibrating screens, etc. wet and dry screening, classification, classifiers. Metallurgical accounting and control - Sampling and weighing the ore, moisture and assay sampling, on stream analysis, automatic control in mineral processing.
UNIT IV SEPARATION/CONCENTRATION 12
Newton’s and Stoke’s Laws of particle settlement, different sampling techniques and their comparison, different concentration techniques – gravity, chemical froth flotation, wet & dry magnetic separation, electromagnetic, amalgamation, heavy media, jigging, shaking tables, sluicing, spirals, thickeners, filtration, etc., Colour based sorting of minerals – optical sorter; Coal washing.

UNIT V SPECIAL METHODS 10
Chemical extraction, cyanide process, leaching, use of ion exchange, solvent extraction, pilot plant studies on ores, tailing dams – mode of disposal, construction and design & other solid-waste (other than overburden) management in mines; generalised plant practice/flow sheets for coal and other important ores – copper, aluminum, lead, zinc, gold, uranium, iron, limestone, magnesite and beach sand minerals.

TOTAL: 45 PERIODS

OUTCOME:
• The students will have knowledge on processing of minerals / ores / coal, comminution, sampling, industrial sizing, different techniques for separation/concentration and special methods to process the minerals.

TEXT BOOKS

REFERENCES
2. Maurice C. Fuerstenau (Editor), Kenneth N. Han (Editor), Principles of Mineral Processing, Society for Mining, Metallurgy, and Exploration, 573p, 2003.
UNIT II ROPE HAULAGE
Rail Track and tubs— gauge; layout, curves, turnouts and cross-over, track maintenance, main features of rolling stock like tubs, mine cars man riding cars and tipplers; Types of rope haulages – merits, demerits and fields of application, constructional features, safety appliances and rope haulage calculations.

UNIT III OTHER TRANSPORT SYSTEMS
Locomotives – diesel, trolley-wire, battery locomotives, constructional features and safety devices and comparison of different types; underground and surface battery charging stations and safety measures, locomotive calculations; shuttle cars, underground trucks, load-haul- dumpers, SDL vehicles, aerial rope ways, gravity transport, principles of hydraulic& pneumatic transportation and their fields of application, electric layouts, man-riding systems.

UNIT IV PUMPING & CONVEYING
Different types of drives, installation and maintenance of pumps and pipes in shafts and roadways, electrical layouts, various sources of water in mines, design of sumps.
Face haulage and conveyors – Various types of conveyors, Scraper chain conveyors, AFCs, belt conveyors, cable belt conveyor, shaking and vibrating conveyors, armoured flexible conveyors, high angle conveying, electrical layouts. Numerical problems in conveyors

UNIT V MINE ELECTRICAL ENGINEERING
Distribution of electric power in mines, types of mine cables and their fields of applications, mining switch gears and their installation in hazardous atmosphere, flame proof enclosures, intrinsically safe circuits, (examples) safety aspects and signalling. Mine telephone system and latest development in mine communications.

OUTCOME:
- The students will have basic knowledge on motive power used in mines, pumping, rope haulage and face haulage & conveying transport systems. They also will know about mine electrical engineering in all statutory aspects.

TEXT BOOKS

REFERENCES:
5. Universal Mining School - Lecture notes, cardiff, U.K

AG7413 GEOLOGY LABORATORY

OBJECTIVES:
- To identify minerals, rocks, ores and geological structures
- To learn geological mapping, remote sensing techniques and geophysical methods

UNIT I MINEROLOGY
Identification of physical properties of quartz and feldspar varieties, hypersthene hornblende, augite, mica, asbestos, barite, calcite, fluorite, tourmaline, beryl, corundum, kyanite, garnet, silimanite. Study of Moh’s scale of hardness.
UNIT II PETROLOGY
Identification and description of igneous rocks – important plutonic, hypabyssal and volcanic type of rocks: Sedimentary rocks – rudites, arenites, argillites and carbonates, metamorphic rocks – gneiss, marble, slate, schist, quartzite.

UNIT III STRUCTURAL GEOLOGY
Exercises on structural maps of geological site and interpretation of geological conditions; 3 point and 4 point bore hole problems to decipher the subsurface geological conditions for mining of resources.

UNIT IV ORE GEOLOGY
Identification of ores of iron, manganese, lead, zinc, copper, chromium, aluminum, graphite and Ore reserve estimation.

UNIT V REMOTE SENSING & GEOPHYSICS
Study of aerial photographs and satellite imageries. Preparation of geological and structural maps. Electrical resistivity survey, seismic survey – 2 and 3 layer problems.

UNIT VI GEOLOGICAL MAPPING METHODS
Topo sheets, Map scale – types, preparation and interpretation of contour maps, drainage maps, symbols, rock and geological structures, use of clinometers, Brunton compass and knowledge on GPS.

TOTAL: 30 PERIODS

OUTCOME
- The students will have knowledge on ore reserve estimation, ore assaying, remote sensing, geological mapping and identification of geological structures.

TEXT BOOKS:

AG7412 GEOLOGICAL FIELD WORK
Five days field visit to different quarries, mines and important geological formations during IV Semester.

OBJECTIVE:
To impart practical experience to the student for gaining deeper understanding of the geological principles.

Field work is compulsory for ALL the students.
- Identification of minerals, rocks and ores in the field
- Recognition of geological structures like faults, folds, joints etc. in the field
- Measurement of strike and dip using Brunton compass and Clinometer
- Learning geological mapping techniques

The students have to submit a report on the training which would be evaluated during the ensuing IV Semester. This carries a total of one credit during the IV Semester. Evaluation would be done by a faculty or a group of faculties on different marking heads such as training, viva voce report etc., or other approved evaluation systems.

Normally a student is not permitted to withdraw from the geological field work. In case of any unforeseen circumstances / valid reasons if he could not undergo the training as scheduled, on the recommendation of the Head of the Department and approval by the competent authority the
student may be permitted to undergo geological field work with the subsequent batch of students. The decision of the competent authority is final in this regard.

OUTCOME:
The students will be able to identify mineral, rock and various geological features and knowledge of geological mapping.

CE7361 FLUID MECHANICS AND MACHINERY LABORATORY

OBJECTIVE:
- Students should be able to verify the principles studied in theory by performing the experiments in lab.

LIST OF EXPERIMENTS
1. Flow Measurement
 1. a. Calibration of Rotometer
 2. Flow through a circular Orifice
 3. Determination of mean velocity by Pitot tube
 4. Verification of Bernoulli’s Theorem
 5. a. Flow through a Triangular Notch
 b. Flow through a Rectangular Notch

2. Losses in Pipes
 6. Determination of friction coefficient in pipes
 7. Determination of losses due to bells, fittings and elbows

3. Pumps
 8. Characteristics of Centrifugal pumps
 9. Characteristics of Submersible pump
 10. Characteristics of Reciprocating pump

4. Determination of Metacentric height
 Demonstration Only

TOTAL: 60 PERIODS

OUTCOMES:
- The students will be able to measure flow in pipes and determine frictional losses.
- The students will be able to develop characteristics of pumps and turbines

REFERENCES:

MI7411 MINERAL PROCESSING LABORATORY

OBJECTIVE:
To study various mineral processing technique to enrich minerals.

1. Study of grab sampling and different sample division techniques like coning and Quartering, riffle sampling techniques, etc.
2. Determination of crushing characteristics of a given mineral sample using jaw crusher.
Determination of the grinding characteristics of a given mineral sample using ball mill
4. Sieve analysis of a given sample and to calculate (a) percentage sample retained on screens (b) average size of sample material and (c) to plot sizing curves
5. Concentration of a given mineral sample using mineral jig
6. Concentration of a given mineral using Wilfley table
7. Concentration of a given mineral using froth flotation cell
8. Concentration of a given mineral using magnetic separator
10. Study of sedimentation characteristics of a given sample
11. Study of flowsheets for various mineral concentration techniques.
12. Study of various pollution control measures adopted in the beneficiation plants.

TOTAL: 30 PERIODS

OUTCOME:
The student will be able to understand the various techniques of mineral processing.

REFERENCES:

MI7501 MINE ENVIRONMENTAL ENGINEERING – I L T P C
3 0 0 3

OBJECTIVES:
- To understand the behavior of mine gases and their movement in underground mine
- To understand the functions of various devices and fans used
- To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars related to this course.

UNIT I MINE GASES & CLIMATE
Occurrences, properties, physiological effects, permissible limits, detection – types of instruments, instruction, principle and limitations, measurement and analysis, methane formation & storage in coal, Ventilation Air Methane (VAM), methane layering, Coward’s diagram, methane drainage
Psychrometric properties of air, Sources of heat and humidity in mines and their effects, heat stress estimation, cooling power of mine air and methods of improving cooling power. Psychrometric surveys, Flame safety lamps

UNIT II PRINCIPAL LAWS OF AIR MOVEMENT IN UNDERGROUND
Fundamentals of fluid flow and its application in mine ventilation with special reference to Bernoulli’s Equation, Reynolds number, Poiseuille’s equation, Atkinson’s equation, Karman-Prandtl equation for rough flows, resistance of mine roadways, friction and shock resistance, etc.

UNIT III NATURAL VENTILATION AND AIR CURRENT DISTRIBUTION IN MINES
Natural ventilation, effect of depth, temperature, pressure, etc. thermodynamic treatment, distribution of air current in mines – splitting, stoppings, regulators, ventilation doors, air crossings, controlled recirculation, etc. Retrograde and boundary, ascensional, decensional, homotrop and antitrop ventilation systems, Ventilation in deep and hot mines, remedial measures including air cooling and air conditioning. Numerical problems.
UNIT IV MECHANICAL VENTILATION
Main mechanical ventilators, booster fans and auxiliary fans, and their selection, installation, various ventilation layouts, fan performance, characteristics and testing, fans in series and parallel, fan drifts and evasees, reversal of air current, forcing versus exhaust ventilation, ventilation of long headings including overlap systems, coursing of air.

UNIT V VENTILATION PLANNING
Calculation of pressure and quantity requirements, permissible minimum and maximum air velocities in different parts of underground mines, economic analysis, ventilation standards, network analysis, monitoring of mine environment. principles and computer applications. Method of ventilation surveys and surveying instrument.

OUTCOME:
The students will be able to understand the various properties of mine gases, control measures using different ventilation methods and control devices.

TEXT BOOKS:

REFERENCES:

MI7502 MINE SURVEYING

OBJECTIVES:
• To study methods of underground traversing and surveys.
• To study the various modern surveying techniques and instrumentation.
• To study methods of contouring and curves layouts.
• To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars related to this course.

UNIT I UNDERGROUND SURVEY
Special features of Underground Mining surveying, Mine correlation of mine surveys to national grid. Underground traversing and its constraints. Correlation of underground and surface surveys by different methods, by traversing through shafts, assumed bearing, Weiss quadrilateral, Weiss triangle methods, estimation of errors.; Illustrative examples: Measurement of shaft depth..

UNIT II ALIGNMENT SURVEY AND TACHOMETRY
Alignment / Gradient control of vertical and inclined shafts sinking and raising shafts; gradient control in development openings; Holing surveys; Fixing centre lines for shafts, Alignment in Headgears, machinery foundation etc. Illustrative examples: Tachometry –principles, equipment, methods (stadia, substance, tangent), accuracy of stadia work, booking, computations. Transfer of levels to different horizons.
Dip/ Strike / Fault interpretation from inclined angle vertical borehole data in dipping and plunging formations; interpretations of borehole maps; borehole deviation; calculation of plunge in folded terrain.
UNIT III STOPE & SUBSIDENCE SURVEYS AND MINE PLANS 8
Stope survey – objectives, methods- Tape triangulation, Tying In, Traversing, Radiation, preparation of stope plan, preparation of mine plan subsidence survey, guidelines for subsidence in laying out monitoring stations, methods of subsidence survey, statutory provisions and circulars, Preparation of Mine plans and sections; stepped plan; Allay plan; Joint Survey, Offset survey, extension of centerlines, determination of partition thickness between the sections. Duties and responsibilities of mine surveyor under Mines Act and connected legislations.

UNIT IV CONTOURING AND CURVE SETTING 8
Methods of Contouring; contour gradient; uses of contours; Reservoir / Catchment area calculations Illustrative examples: setting out underground of curves; need for curves; types of curves; methods of curve setting.

UNIT V MODERN SURVEYING METHODS 7
Application of Remote sensing and photogrammetry in exploration and mining; EDM; Electronic theodolite, Electronic Tachometer (Total station); Laser Theodolite; GPS; GIS; DTM Applicability and limitations, GPR application in surveying, Laser Scanning, introduction to surveying softwares and use.

TOTAL: 45 PERIODS
OUTCOME:
The students will have knowledge on methods of underground traversing, alignment of survey, methods of stope and subsidence surveys. They will have a confident about preparation of mine plans and section and also contouring and curve setting.

TEXT BOOKS:

REFERENCES
1. Winniberg, F., Metalliferous Mine Surveying
UNIT I WINDING ENGINES
Winding systems, drum winders, drives, mechanical braking of winders, safety devices in winding, overwind and overspeed protection, Koepe and multi-rope friction winding, electrical layouts. Duty cycles of drum winders of different drum cross-sections. Special problems of deep shaft winding.

UNIT II WINDING ACCESSORIES AND LAYOUTS
Head gear and their design, head sheave, cages and skips, suspension gear, shaft fittings and appliances – guides, keps, etc., signalling systems, winding calculations relating to rope size & numbers, capacity & power requirement for cages, skips, drum and Koepe winding systems. Surface and Pit-bottom layouts - Mine car circuits at the surface and pit bottom, creepers, skip winding – loading and discharge arrangements. Case studies, railway sidings and layouts.

UNIT III COAL FACE MACHINERY
Construction, salient mechanical and electrical features and operations of coal drills and their control panels, coal cutters, different types of mechanical loaders coal ploughs, cutter loaders and continuous miners; development road headers in face mechanisation, longwall mining equipment, electrical and hydraulic layouts; condition monitoring of mining machinery for underground and opencast mines and ore handling plants, modern concepts in underground mine mechanisation.

UNIT IV EXCAVATION AND LOADING MACHINERY IN SURFACE MINES

UNIT V OTHER MACHINERY IN SURFACE MINES
Classification of transport equipments; Understanding of construction and technical specifications of Dumpers of different types including multi-axial dumpers, Tractors, trailers, dump trucks, Rippers (types), Motor Graders, Bull Dozers, Rock breakers, Road Compactors, Water Tankers.

OUTCOME:
• The students will have the knowledge on functions of winding engines, winding accessories, pit-top and bottom mine circuits. They will also know about working of various coal face machinery, and design & constructional details of excavating and other prominent machinery used in surface mines.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:

- To study about application of Rock Mechanics in mining and allied engineering.
- To study Physico-Mechanical properties of rocks, non-destructive testing methods, time dependent properties of rock
- To study different types of underground supports, etc.
- To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars related to this course.

UNIT I INTRODUCTION
Definition of some important terms used in rock mechanics, application of rock mechanics in mining, introduction to stress analysis, stresses in two and three dimensions, Mohr’s circle.

UNIT II PHYSICAL PROPERTIES OF ROCKS AND ROCK INDICES
Physical properties of rocks — density, porosity, moisture content, permeability, water absorption various indices of rocks like swell index, slake durability index, impact strength index, protodynakov index, etc., thermal conductivity, hardness, durability, rock mass classification.

UNIT III MECHANICAL PROPERTIES OF ROCKS
Preparation of test specimens, laboratory determination of mechanical properties of rocks — compressive strength, tensile strength, flexural strength, shear and triaxial strength, modulus of elasticity, Poisson’s ratio, Mohr’s envelope, effect of various parameters on the strength of rocks, in-situ strength, post failure behaviour of rocks.

UNIT IV NON-DESTRUCTIVE TESTING METHODS AND TIME DEPENDENT PROPERTIES OF ROCKS
Dynamic wave velocities, dynamic elastic constants, their determination in the laboratory, application in mining, time dependent properties of rocks, creep, mechanism of creep of rocks — different stages, rheological models.

UNIT V UNDERGROUND SUPPORTS
Various methods of roof examination, objectives and limitations of supports, ground forces and in situ stresses, pressure arch theory, evolution of supports, conventional supports — timber and steel supports, arches, yielding supports; rock and cable bolting, shotcreting, roof stitching, support of shaft bottoms, galleries, junctions and places of roof falls, freshly exposed roof supports, design of supports, longwall powered supports. Design of systematic support rules for B & P and longwall - development, depillaring, etc.

TOTAL : 45 PERIODS

OUTCOME:
- The students will have fundamental knowledge on application of rock mechanics, physico-mechanical properties of rocks and different types of underground supports.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- The objective of this course is to provide students in mining engineering with the necessary knowledge to design safe, efficient and environmentally responsible surface mining operations.
- To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars related to this course.

UNIT I INTRODUCTION
Status of surface mining, types of surface mines, applicability and limitations, concept of stripping ratio, stripping economics, concept of ultimate pit limits, design of haul roads, elements of surface mine planning - selection of site for box cut, selection of operating parameters like bench height, width, slope, etc.

UNIT II LAYOUT AND DESIGN OF SURFACE MINES
Slopes in surface mines – Highwall and waste dumps; Working pit slope and ultimate pit slope, common modes of slope failures, factors influencing stability of slopes, Development of opencast mine layouts for various shapes of deposits. Conversion of Underground mine to opencast mine vis-a-vis open cast mine to underground mine related problems and probable solutions.

UNIT III GROUND PREPARATION METHODS
Preparation of the site – Ripping, Drilling and Blasting; Types, operation, selection, applications and limitations of ground preparation equipments – Rippers, Dozers, Blasthole drills and rock breakers, Determining number of drill machines, dozers and rippers for planned production. Concept of rippability, Blasting in Opencast Mines over Developed Galleries.

UNIT IV EXCAVATION SYSTEM IN SURFACE MINES
Selection criteria for excavation / loading and material transport equipment used in surface mines. Classification, application and limitations of different types of excavating / loading equipment used in surface mining projects; Cycle time and productivity calculation for excavating & loading equipments; Dragline - calculation of required bucket capacity for a given handling requirement, Method and cycle of operations of Draglines, Front end loaders, Scrapers, Bucket wheel and bucket chain excavators, Surface miners. Introduction to dredgers of different types. Determining the capacity and number of shovels and dumpers for planned production.

UNIT V TRANSPORT AND WASTE DUMPS
Scope and application of different modes of transport system in surface mines – Trucks, Synchronization of shovel and dumper capacity for required production; Locomotives; Conveyors (shiftable and high-angle) – mode of operation, applicability and limitations, Scope and application of in-pit crushers in surface mines. Illumination in surface mines. Types of waste dump – internal and external; dump formation methods and corresponding equipment; Dump stability and stabilisation measures.

OUTCOME:
- The students will have ability to classify and select the suitable surface mining methods and equipment based on site conditions. They will also have a concept of waste dump formations and slope failures in surface mines

TEXT BOOKS:

REFERENCES:
CE7362 PLANE AND GEODETIC SURVEYING LABORATORY L T P C
 0 0 4 2

OBJECTIVE:
• To familiarize with the various surveying instruments and methods.

EXERCISES:
1. Determination of area of polygon by base line method using chain
2. Chain traversing
3. Fly levelling
4. Check levelling
5. Study of theodolite and its accessories
6. Measurement of horizontal and vertical angles using theodolite
7. Determination of tacheometric constants
8. Determination of elevation of an object using single plane method when base is accessible/inaccessible
9. Determination of distance and difference in elevation between two inaccessible points using double plane method.
10. Heights and distances by stadia tacheometry
11. Heights and distances by tangential tacheometry
12. Study of Total station and GPS(demonstration only)

TOTAL : 60 PERIODS

OUTCOMES:
• At the end of the course the student will be able to use various surveying instruments like chain, level and theodolite for mapping.

REFERENCES:
OBJECTIVE:
Students should be able to verify the principles studied in thermal and engineering design courses by performing experiments in the laboratory.

THERMAL EXPERIMENTS
1. Study of I.C. engines and components
2. Performance test on 4 S diesel engine
3. Performance test on reciprocating air-compressor
4. Study of refrigeration system
5. Natural and forced convection studies

ENGINEERING DESIGN
1. Cam displacement and velocity analysis
2. Whirling of shaft-determination of critical speed of shaft with concentrated loads
4. Vibrating system – spring mass system – determination of damping co-efficient of single degree of freedom system.
5. Transverse vibration – free – beam, determination of natural frequency and deflection of beam.
6. Study of Gears and linkage mechanisms

TOTAL : 60 PERIODS

OUTCOMES:
• Ability to use of thermal experiments related to IC and refrigeration and air conditioning
• Ability to use of various engineering design experiments

REFERENCES:

OBJECTIVE:
The objective is to impart practical exposure to the students for gaining deeper understanding of various activities and principles of underground mining.

Gaining practical experience is an important aspect of the mining engineering programme having many characteristic features of its own. The students have to undergo training in mining / allied industry / research institute during the summer vacation at the end of the IV Semester for a period of 4 weeks and obtain a valid certificate from the competent authority of the organisation providing training. The students have to submit a report on the training which would be evaluated during the ensuing V Semester. This carries a total of two credits during the V Semester. Evaluation would be done by one or more faculty on different marking heads such as training, viva voce report etc., or other approved evaluation system.

Normally a student is not permitted to withdraw from the practical training. In case of any unforeseen circumstances / valid reasons if he/she could not undergo the training as scheduled, on the recommendation of the Head of the Department and approval by the competent authority the student may be permitted to undergo practical training – II subsequently before undergoing practical training - III. The decision of the competent authority is final in this regards.
OUTCOME:
The students will understand various activities and principles of mining / allied engineering
/research method and its importance

ME7554 INDUSTRIAL MANAGEMENT

OBJECTIVE

- To develop modern concepts of Industrial Management

UNIT I INTRODUCTION

Technology Management - Definition – Functions – Evolution of Modern Management – Scientific
management Development of management Thought. Approaches to the study of
management, Forms of organization – Individual Ownership- partnership – Joint Stock companies
– co-operative Enterprises- Public sector Undertakings, Corporate frame Work – Share
Holdners- Board of Directors- Committees – Chief Executive – Line and functional Managers,
Constraints – Environmental – Financial – Legal- Trade Union

UNIT II FUNCTIONS OF MANAGEMENT

Planning – nature and purpose – objectives – strategies – policies and planning premises –
and staff – Decentralization – organizational culture, Staffing – selection and training –
placement – performance appraisal – career strategy – organizational development. Leading
managing human factor – Leadership – communication, Controlling – process of Controlling –
Controlling Techniques – productivity and inventory management systems-Tools of Techniques –
Prevention control, industrial safety

UNIT III ORGANIZATIONAL BEHAVIOUR

Definition – Organization – Managerial Role and functions – organizational approaches, individual
behavior – causes – Environmental Effect – Behavior and performance, perception –
organizational Implications. Personality – Contributing factors – Dimension – Need Theories –
process Theories – Job satisfaction, Learning and Behavior- Learning Curves, work design and
approaches

UNIT IV GROUP DYNAMICS

Barriers to communication – Effective Communication, leadership- Formal and informal
characteristics- Managerial Grid – Leadership Styles – Group Decision making – Leadership
Role in Group Decision, Group Conflicts – Types – Causes – Conflict Resolution – Inter group
relations and conflict, Organizational centralization and decentralization – Formal and informal –
organizational structures – organizational change and development – Change process –
Resistance to change – culture and ethics

UNIT V MODERN CONCEPTS

Management by objectives (MBO) – Strategic Management – SWOT analysis – Evolving
development strategies, information technology in management – Decision support system –
Management Games – Business Process Re-engineering (BPR) – supply chain management
(SCM) –Global Perspective – Principles and Steps – Advantages and Disadvantages

TOTAL: 45 PERIODS

OUTCOME

- The course will enable student preparedness to technology management and the forms of
organisation in an industry. This course also enables the student to understand the functions
of Management and also the organisational behaviour. It also gives some knowledge on the
modern concepts such as Strategic management, SWOT analysis, Business Process Re-
engineering (BPR) and supply chain management (SCM).
TEXTBOOKS

REFERENCES

MI7601 ENVIRONMENTAL SCIENCE FOR MINING ENGINEERING L T P C
3 0 0 3

OBJECTIVES:
- To study the various environmental pollution occurring in mineral industry.
- To study various methods of managing environmental pollution.
- To study various statute related to environment.

UNIT I ENVIRONMENT & ECOLOGY

UNIT II ENVIRONMENTAL POLLUTION - I
Environmental Pollutants due to surface and underground mining – Air, Water, Noise, Sources and Classification of pollutants including dust and their effect on human health, Sources, hazards, sampling and analysis, standards, instrumentation and measurement of pollutants including dust, Control and preventive measures for air pollution including for dust, Structure of the atmosphere – ozone layer depletion – Acid rain – Green house gases and global warming Ambient Air quality and emission standards, Air quality Sampling and monitoring, Dispersion of air pollutants,

UNIT III ENVIRONMENTAL POLLUTION - II
Environmental Pollution due to Water – Sources, Classification and measurements of pollutants and their effect on human health, hazards, sampling and analysis, Water pollution, measurement standards, Noise standards – Measurement – Noise Impact Index assessment, Control and preventive measures for water, noise pollution. Pollution due to equipment vibrations & their monitoring, prevention and control, Land pollution, land for alternation dealing with mind out land , re-vegetation, land use plan, Textural classification and properties of soil. Impact of pollution on human health,

UNIT IV ENVIRONMENTAL MANAGEMENT
UNIT V ENVIRONMENTAL LEGISLATIONS

TOTAL: 45 PERIODS

OUTCOME:
• The students will have knowledge on, pollution its control and ecological systems along with related laws

TEXT BOOKS:

REFERENCES:
4. Manahan S.E. Environmental Science and Technology.

MI7602 ROCK MECHANICS AND GROUND CONTROL – II L T P C 3 0 0 3

OBJECTIVES:
• Introducing the various instrumentation and measurement methods.
• To study the theories of failure and approaches used for open pit and underground designs.
• To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars related to this course.

UNIT I ROCK MECHANICS INSTRUMENTATION 6
Convergence indicators, load cells, strain gauges, flat jacks, LVDT, dial gauges, pressure cells and recorder, anchorage testing equipment, laboratory and in situ measurements, hydraulic fracturing rock mechanics instrumentation for B & P and longwall workings
UNIT II PIT SLOPE STABILITY & SUBSIDENCE
Approach to slope stability, slope parameters, different types of slope failures, factors affecting slope stability, introduction to methods of failure, analysis, determination of factor of safety. Introduction to different rock slope stabilisation techniques. Theories of subsidence, factors affecting subsidence, subsidence surveys, subsidence prediction techniques, subsidence control – surface and underground measures, pseudo- mining damage.

UNIT III THEORIES OF FAILURE OF ROCKS & PILLAR DESIGN AND ROCK BURST
Different theories of failure of rocks, modes of failure - Griffith, Coulumb-Navier, Mohr’s, Hoek-Brown, empirical criteria, etc. and their field of applications. Strength of pillars, barrier and shaft pillar design – load estimation, factor of safety, various formulae, rock burst and bumps — phenomena, causes, prediction, monitoring and control, gas outbursts.

UNIT IV DESIGN OF UNDERGROUND WORKINGS
Stress distribution in underground workings including bord and pillar and longwall workings, rock load assessment, introduction to numerical methods of geomechanics; scaled model studies – principles of modeling.

UNIT V STOWING / FILLING
Selection and preparation of stowing materials, principal methods of stowing, collection, fields of application and limitations, preparation and transport of materials, surface, underground and face arrangements, design of stowing plants.

OUTCOME:
- The students will have knowledge on rock mechanics instrumentation, approach to pit slope stability, theories of subsidence and failure of rocks. They will also know about design of underground openings and methods of stowing.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To study the development of panels and extraction of coal in Bord and Pillar method
- To study the Longwall advancing and retreating methods
- To study the various special methods of winning coal
- To study and update of the mine criteria as per various legislation of India.
- To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars related to this course.

UNIT I INTRODUCTION
Status of coal industry and deposit, factors affecting choice of mining methods, classification of mining methods, grading and analysis of coal.

UNIT II BORD AND PILLAR METHOD-DEVELOPMENT
Design and development of a district / panel, sizes and shapes of galleries and pillars, bord and pillar, room and pillar methods, with conventional and continuous mining techniques with various equipment.

UNIT III BORD AND PILLAR METHOD – EXTRACTION
Pillar extraction by caving and stowing methods; mechanised extraction of pillars, shaft pillar extraction, systematic supports, surface, underground and face arrangements for stowing. Partial extraction.

UNIT IV LONGWALL METHOD
Advance and retreat methods, continuous and cyclic systems, extraction with different machines-ploughs, shearsers, design of longwall workings, optimum length of face, size of panel, gates, support system, personnel, organisation and safety measures, salvaging and relocations of equipment, Punch longwall.

UNIT V SPECIAL METHODS OF WORKING
Problems of working thick & thin seams, multi slices, sublevel caving, horizon mining, gallery blasting method, contiguous seam working, working steeply inclined seams, working under surface structures and seams liable to spontaneous heating, outburst and bumps, etc. hydraulic mining, Wongawalli, shortwall, highwall mining, underground coal gasification, coal bed methane, shield mining.

TOTAL: 45 PERIODS

OUTCOME:
- The students will gain knowledge on development and depillaring of coal by Bord and Pillar and advancing and retreating in Longwall methods. They will also know about methods of winning of coal seams which have special features.

TEXT BOOKS:

REFERENCES
3. Das S.K., Modern Coal Mining technology, Lovely Prakashan, Dhanbad 1994.
7. Internet: www.miningindia.com
HS7561 COMMUNICATION SKILLS AND SOFT SKILLS L T P C 1 0 2 2

COURSE DESCRIPTION
This course aims to help engineering students acquire the employability skills necessary for the workplace. It also attempts to meet the expectations of the employers by giving special attention to presentation skills, group discussion skills and soft skills. This aim will be achieved through expert guidance and teaching activities focusing on the above listed skills and language skills in the Language Laboratory.

OBJECTIVES
- To enhance the employability skills of students with a special focus on presentation skills, group discussion skills and interview skills and soft skills.
- To help them improve their writing skills necessary for the workplace situation.

CONTENTS

UNIT I WRITING SKILLS
Preparing job applications – writing the cover letter and resume – applying for jobs online – e-mail etiquette – writing reports – collecting, analyzing and interpreting data.

UNIT II SOFT SKILLS

UNIT III PRESENTATION SKILLS
Preparing slides using the computer– structuring the content (parts of a presentation)- body language – answering questions – individual presentation practice — mini presentation (practice sessions)

UNIT IV GROUP DISCUSSION SKILLS
Participating in group discussions – understanding group dynamics – brainstorming – questioning and clarifying – GD strategies (expressing opinions, accepting or refusing others opinions, turn taking) – activities to improve GD skills – viewing recorded GD – mock GD.

UNIT V INTERVIEW SKILLS
Interview etiquette–technical Interview/HR Interview/body language – mock interview – attending job interviews – Types of interviews- telephone/skype interview – stress interview, one to one/panel interview – FAQs related to job interview.

TOTAL: 45 PERIODS

OUTCOMES:
- Students will be able to make presentations and participate in group discussions with confidence.
- Students will be able to perform well in interviews.
- They will have adequate writing skills.

REFERENCES:

EXTENSIVE READERS

WEB RESOURCES
1. www.humanresources.about.com
2. www.careerride.com

MI7611
MINING MACHINERY LABORATORY
L T P C
0 0 2 1

OBJECTIVE:
- To study the various mining machineries, ropes, conveyors and different types of machines used in underground mines
1. Study and construction of different types of wire ropes and types of rope cappels used for rope haulages & winding, safety hooks used in winding.
2. Construction of compressed air operated drill
3. Tensioning arrangement in endless haulage and different types of haulage clips and other means of attachment of tubs to the rope.
4. Study of haulage track, curves, diamond crossing, construction of mine tubs and cars along with their couplings.
5. Study of safety devices provided on rope haulage roads and locomotives, roadways - Exhaust conditioner and flame traps & underground battery charging station layout
6. Electrical power distribution in mines, electrical layout for rope haulages and pumps, Electrical and hydraulic layouts for longwall faces
7. Study of aerial rope ways – driving/tensioning/loading/unloading and angle stations their carriages and tightness
8. Study of various types of head gear, fleet angle, study of shaft fittings, suspension gear, safety dogs and protective roofing, study of guides– methods of support and tensioning arrangements.
9. Construction of cages, skips & their fittings and brakes of winders & haulers
10. Study of different types of conveyors (components & safety devices) like armoured face conveyors, belt conveyors, gate belt conveyors, shaker & vibrating conveyors, high angle conveyors
11. Study of coal drill and its electrical panel/gate end box
12. Study of pit top & pit bottom layouts in shaft and inclines.
13. Study of different types of loading machines
14. Study of cool plough and shearer.
15. Study of continuous miner and road headers.

TOTAL: 30 PERIODS

OUTCOME:
The students will be able to understand the underground machineries, ropes, pit-top and pit-bottom layouts.

REFERENCES:
OBJECTIVES:
- To study the various methods to determine the properties of rocks
- To study the operation of various instruments and equipment.

DETERMINATION OF
1. RQD of rocks.
2. Protodyaknov index of rocks.
3. Point load index strength of rocks
4. Porosity of rocks.
5. Water absorption of rocks.
7. Hardness of rocks by different methods.
8. Uni-axial compressive strength of dry and water saturated rock samples.
10. Flexural Strength of rocks.
11. Shear strength of rocks.
12. Tri-axial strength of rock and drawing of Mohr’s envelope.
13. Slake durability index of rocks.
14. Determination of longitudinal wave velocities of rocks using NDT.

TOTAL: 30 PERIODS

OUTCOME:
The students will have knowledge on strength and deformation characteristics of rock using different methods.

REFERENCES:

MI7613 SURVEY CAMP

OBJECTIVE:
The course of mine surveying is sharply demarcated into general principles and surveying practices in mines. The subject of Surveying is applied in nature and is best learnt in an operating mine. This is done during the mine survey camp organised in a mine or suitable place as part of the curriculum.

The students have to undergo the survey camp during the winter holidays at the end of the V semester or during the VI semester depending on the permission granted by the respective mining companies for a period of 10 days and submit a report which will be evaluated during the ensuing VI semester. This carries one credit in during VI semester. Evaluation would be done by one or more faculty of different aspects surveying in mines.

Normally a student is not permitted to withdraw from the survey camp. In case of any unforeseen circumstances / valid reasons if he / she could not undergo the survey camp as scheduled, on the recommendation of the Head of the Department and approval by the competent authority the student may be permitted to undergo survey camp along with subsequent batch(es) of students when organized. The decision of the competent authority is final in this regard.
OUTCOME:
The students will be able to understand the difficulties of carrying out survey practice in the field.

MI7701 MINE ENVIRONMENTAL ENGINEERING – II L T P C
3 0 0 3

OBJECTIVES:
- To study about spontaneous heating, mine fires, inundation and explosions
- To study about mine rescue, first aid and illumination.
- To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars related to this course.

UNIT I SPONTANEOUS HEATING AND FIRES 12
Causes, detection, incubation period, precautions against spontaneous heating in underground and surface coalmines including coal benches, surface coal stocks, and dumps. Detection, prevention and control of underground fires, fire fighting, study of atmosphere behind sealed-off fire areas for reopening, methods of reopening sealed-off fire areas.

UNIT II EXPLOSIONS 8
Causes, prevention and control of underground fire-damp and coal dust explosions including stone dusting, stone dust barriers, water barriers and triggered barriers, investigation after an explosion.

UNIT III INUNDATION 9
Surface and underground inundation, their causes and preventive measures, precautions to be taken while approaching old waterlogged workings, safety boring apparatus, design and construction of water dams and barriers, recovery of flooded mines, dewatering of old workings, layout of drainage systems and sumps.

UNIT IV MINE RESCUE AND FIRST AID SAFETY 9
Classification of mine rescue apparatus including self-rescuer, various types of rescue and escape apparatus, rescue organisation of a mining company, layout of a modern rescue station including personnel, first aid to the persons injured in mine-accidents, electric shock, asphyxiation, different methods of artificial respiration, rescue and recovery work in mines including through boreholes.

UNIT V MINE ILLUMINATION 7
Electric safety lamps, their maintenance and examination, lamp room design and organisation, lighting from mains, lighting on mechanised longwall faces and gassy mines, photometry and illumination survey, legislations related to illumination survey.

OUTCOME:
- The students will have knowledge on spontaneous heating, mine fires, inundation and explosions. They will also know about mine rescue and first aid.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To study various acts, rules and regulations relating to the mineral industry
- To study accidents, diseases and mine safety

UNIT I INTRODUCTION TO MINING LAWS AND LEGISLATION 10
General principles of mining laws, development of mining legislation of India. Enactment of various statutes and by-laws.

UNIT II ACTS, RULES APPLICABLE TO MINING - I 15
Mines Act, Mines Rules, Bye-laws, and standing orders (Except the ones which are related to in courses Drilling & Blasting, Surface Mining, Mining Machinery I & II, Mine Environmental Engineering I & II, Underground Mining methods (Coal & Metal) and Rock Mechanics and Ground Control I & II, Mine surveying.

UNIT III ACTS, RULES APPLICABLE TO MINING - II 15

UNIT IV ACCIDENTS AND DISEASES 10
Classification of accidents, causes and prevention of accidents, accident enquiry reports, cost of accidents, occupational and miner’s diseases and their social effects.

UNIT V MINE SAFETY 10
Role of management, labour and government, Safety audit, instrumentation, Safety management system – risk identification and management; organisation for disaster management in mines, safety conferences.

OUTCOME:
- The students will have knowledge on various acts, rules and regulations relating to the mineral industry. They will also know about accidents, diseases and mine safety.

TEXT BOOKS:

REFERENCES
OBJECTIVES:
- To introduce concepts of metal mining and metal mining terminology.
- To study development and operations of metal mines.
- To study about special methods of metal mining methods.
- To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars related to this course.

UNIT I BASICS
Metal Mining Terminology; Typical modern metal mine features; exploration, estimation of block wise and mine wise reserves and actual production, typical pre-stopping ore block constructional features; classification of mining/ stoping methods;

UNIT II GENERAL MINE DESIGN
Mode of mine and stope entry; Layouts; Determination of optimum production level; sequence of extraction, production scheduling; Basic design – Level Intervals, ore pass, common ore pass, size of blocks ore handling in stope and other openings, overview of constructional features – X cuts, Raises, Winzes etc.

UNIT III STOPING – GENERAL CONCEPTS
Techno-economic characteristics impacting choice of method; typical unit cost parameters; optimum size of a mine and stope, stope layout, design, equipment selection; preparing a stoping block; sequence of stoping; organization; production cycle; unit cost calculation; comparison of methods and costs

UNIT IV STOPING METHODS
Unsupported methods – Stope and pillar, room and pillar, shrinkage, sublevel stoping etc. supported stoping – cut and fill, stull, square set, rill, etc. caving methods – Top slicing, sublevel caving, block caving. case studies of Indian and foreign underground metal mines. comparison of various methods of stoping and costs.

UNIT V NOVEL & INNOVATIVE TECHNIQUES AND SPECIAL APPLICATIONS
Hydraulic mining, slurry mining, solution mining, nuclear mining; Rapid excavation; Radial – axial splitter; Thermal fragmentation; shock wave breaking; Deep mining; narrow contiguous veins; shaft and remnant pillars; VCR; Ring drilling; Large Blast hole stoping.

TOTAL: 45 PERIODS

OUTCOME:
- The students will have basic concept on metal mining methods, mine design, development and operations of metal mines. They will also know about novel methods of metal mining and its applications.

TEXT BOOKS:

REFERENCES:
MI7711 COMPUTER APPLICATIONS IN MINING LABORATORY

OBJECTIVE:
To study the computer programming for mining problems, mine ventilation network analysis, modeling of surface and underground workings using various software.
1. Design of pillars
2. Blast design
3. Subsidence prediction.
5. Modelling of airflow through underground workings using CFD.
6. Ore body modeling.
7. Slope stability analysis in soil and rocks.
8. Fragmentation Analysis
9. Truck dispatch system optimization
10. Digital Terrain and Wire-frame modelling
11. Surface Mine Design using MPD Software
12. Underground Mine Design using MPD Software
13. Pit optimization using MPD Software
14. Production Scheduling for grade control
15. Design of experiments.

TOTAL: 60 PERIODS

OUTCOME:
- The students will able use the planning software for surface and underground mining methods.

REFERENCES:
2. MPD Software Manual.
3. Fragalyst Software Manual

MI7712 MINE ENVIRONMENTAL ENGINEERING LABORATORY

OBJECTIVES:
- To determine the psychrometric properties, gas percentage in atmosphere.
- To study the principles and characteristics governing mine fans.
- To understand lamp design and perform underground illumination surveys.

EXCERCISES:
1. Study of flame safety lamp, gas testing with flame safety lamp.
2. Mine air sampling and detection of various mine gasses, like, methane, carbon monoxide (CO), High volume air samplers etc.
3. Determination of psychrometric properties of air, measurement of cooling power by Kata thermometer.
4. Study of air-reversal arrangement for mine fans.
5. Study of pressure survey and quantity survey in mines using velometer, anemometer and barometer.
6. Determination of air- borne dust by gravimetric dust sampler, personal dust sampler and by high volume sampler.
8. Determination of crossing point temperature of coal
9. Determination of inflammamibility index of coal
10. Study of self rescuers of different types.
11. Study of self contained breathing apparatus
12. Proximate analysis of coal
13. Illumination survey.
15. Determination of organic carbon of soil sample

TOTAL: 30 PERIODS

OUTCOME:
- The students will get practical knowledge about underground mine ventilation equipment’s functions, usage and interpretation of data.

REFERENCES:

MI7713 ROCK MECHANICS AND GROUND CONTROL LABORATORY – II L T P C 0 0 2 1

OBJECTIVE:
To study the physico-mechanical properties of rock, ground vibration monitoring, stowing characteristics, etc.
1. Time dependent properties of rocks
2. Drillability index of rocks.
3. Stress and fracture patterns around underground model openings
4. Young’s Modulus of Elasticity and Poisson’s ratio.
5. Rock anchorage capacity of a rock bolt
6. Roof convergence and other ground control instruments
7. Post Failure Behaviour of Rocks
8. Angle of Internal Friction
9. Measurement of vibration generated by blasting and operation of machines
10. Stowing/ shrinkage Characteristics
11. Study of flat Jack.
12. Study of creep of rocks.
13. Study of strata monitoring instruments.
14. Determination of shear strength of soil
15. Determination of tri-axial strength of soil.

TOTAL : 30 PERIODS

OUTCOME:
The students will have knowledge on time dependent properties of rock, subsidence, ground vibration monitoring, stowing characteristics various aspects of strata monitoring and strength of soil.

REFERENCES:
MI7714 PRACTICAL TRAINING - III

OBJECTIVE:
To impart practical exposure to the students for gaining deeper understanding of various activities and principles of underground mining.

Gaining practical experience is an important aspect of the mining engineering programme and its has many characteristic features of its own. The students have to undergo practical training in mines / allied industry / research institute during the summer vacation at the end of the VI Semester for a period of 4 weeks and obtain a valid certificate from the competent authority of the organisation providing training. The students have to submit a report on the training which would be evaluated during the ensuing VII Semester. This carries a total of two credits during the VII Semester. Evaluation would be done by one or more faculty on different marking heads such as training, viva-voce, report etc., or other approved evaluation system.

Normally a student is not permitted to withdraw from the practical training. In case of any unforeseen circumstances / valid reasons if he/she could not undergo the training as scheduled, on the recommendation of the Head of the Department and approval by the competent authority the student may be permitted to undergo Practical Training-III subsequently. The decision of the competent authority is final in this regard.

OUTCOME:
The students will understand various activities and principles of mining / allied engineering / research and its importance.

MI7715 MINI PROJECT

OBJECTIVE:
To carry out a study or to solve a practical problem of the mining industry.

A project topic must be selected either from published lists or the students themselves may propose suitable topics in consultation with their guides. The aim of the mini project work is to comprehend the principles by applying them to a new problem which may be a design and manufacture of a device, a research investigation, a computer or management project or a design problem.

The progress of the mini project is evaluated based on minimum of three reviews. The review committee may be constituted by the Head of the Department to monitor the progress of the project.

A mini project report is required to be submitted at the end of the semester. The mini project work is evaluated jointly by external and internal examiners constituted by the Head of the Department based on oral presentation and the project report.

OUTCOME:
The students will be able to carry out a project and write a report related to mining or allied field of engineering.
OBJECTIVE:
To carry out a study or to solve a practical problem of the mining industry

A project topic must be selected either from published lists or the students themselves may propose suitable topics in consultation with their guides. The aim of the project work is to deepen comprehension of principles by applying them to a new problem which may be a design and manufacture of a device, a research investigation, a computer or management project or a design problem.

The progress of the project is evaluated based on minimum of three reviews. The review committee may be constituted by the Head of the Department to monitor the progress of the project.

A project report is required to be submitted at the end of the semester. The project work is evaluated jointly by external and internal examiners constituted by the Head of the Department based on oral presentation and the project report.

OUTCOME:
The students will be able to carry out a project and write a report related to mining or allied field of engineering.

GE7071 DISASTER MANAGEMENT

OBJECTIVES:
- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

UNIT I INTRODUCTION TO DISASTERS
Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don’ts during various types of Disasters.

UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR)
Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stakeholders- Institutional Processes and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.
UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc. - Climate Change Adaptation - IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation - Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

OUTCOMES:
The students will be able to
- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarios in the Indian context,
- Disaster damage assessment and management.

TEXT BOOKS:

REFERENCES
1. Govt. of India: Disaster Management Act , Government of India, New Delhi, 2005
UNIT II

UNIT III
Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV
Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V

TOTAL : 45 PERIODS

OUTCOME :
• Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

GE7351 ENGINEERING ETHICS AND HUMAN VALUES

OBJECTIVES
• To emphasise into awareness on Engineering Ethics and Human Values.
• To understand social responsibility of an engineer.
• To appreciate ethical dilemma while discharging duties in professional life.

UNIT I HUMAN VALUES

UNIT II ENGINEERING ETHICS

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION
Engineering as experimentation - engineers as responsible experimenters - codes of ethics – Importance of Industrial Standards - a balanced outlook on law – anticorruption- occupational crime -the challenger case study.

UNIT IV ENGINEER’S RIGHTS AND RESPONSIBILITIES ON SAFETY
UNIT V GLOBAL ISSUES
Multinational corporations - Environmental ethics - computer ethics - weapons development - engineers as managers-consulting engineers-engineers as expert witnesses and advisors -moral leadership-Sample code of conduct.

OUTCOME
- Students will have the ability to perform with professionalism, understand their rights, legal, ethical issues and their responsibilities as it pertains to engineering profession with engaging in life-long learning with knowledge of contemporary issues.

TEXT BOOKS

REFERENCES

MI7001 ADVANCED COAL MINING AND MECHANIZATION L T P C
3 0 0 3

OBJECTIVES:
- To introduce the recent trends of level of mechanisation for coal face
- To understand the various advanced methods of coal mining

UNIT I COAL FACE MECHANISATION 8
Recent Trends, mechanised bord and pillar mining, case studies.

UNIT II MINING OF THICK SEAMS 8
Problems, past experiences in India, current methods, mining of thick, contiguous, and steep seams

UNIT III HYDRAULIC MINING 9
Applicability, operating parameters, equipment, layouts, Indian experience. Computer applications such as remote control and environmental monitoring in hydraulic mining.

UNIT IV LONGWALL MINING 10
Powered supports, development of powered supports, their types and designs, selection for different conditions, last drivages for longwall panelling, remotely operated powered support and longwall faces, Indian experiments, salvaging in longwall.

UNIT V UNDERGROUND COAL GASSIFICATION 10
Scope, application, methods of gasification, design of gasification plants, coal bed methane. Environmental monitoring techniques and computer applications in coal gasification techniques.

TOTAL: 45 PERIODS
OUTCOME:
- The students will have good knowledge about the various advanced methods of metal mining and special mining techniques to overcome the field issues.

TEXT BOOKS:

REFERENCES:
1. Mathur, S.P., Mining Planning for Coal, M G Consultants, Bilaspur, 1993
2. Peng S.S. and Chiang, H.S., Longwall Mining, John Willey and Sons, New York, 1992
REFERENCES:

MI7003 ADVANCED ROCK BLASTING TECHNOLOGY

OBJECTIVE:
- The course enables the students to be familiar with the recent developments in various blasting technology used in surface & underground mines and construction projects across the world.

UNIT I EXPLOSIVES AND ACCESSORIES
Emerging trends in explosives, initiating system and blasting techniques; Bulk Blasting agents & Mode of Bulk Delivery System; Performance testing of explosives and accessories; Scattering in Delay timing of delay detonator.

UNIT II TRENDS IN SURFACE AND UNDERGROUND BLASTING TECHNIQUES
Theories of rock breakage - Mechanics of rock fragmentation due to blasting; Recent advances in blasting techniques in both underground and surface mines; Cast blasting for improved mine economics; Blast optimization in surface mines. Blasting in opencast coal mines of developed galleries. Economic evaluation of blasting operations. Tunnel blast designs, Tunnel breakthrough under water.

UNIT III INSTRUMENTATION FOR BLAST PERFORMANCE MONITORING
Fragmentation prediction and assessment, Instrumentation and software application for design of blast round, Deep hole blasting and Hot hole blasting. Instrumentation in Blasting – V.O.D probe, Laser Profiler, Vibration monitoring, High speed video camera, Stemming plug etc.

UNIT IV ENVIRONMENTAL CONTROL AND SAFETY IN BLASTING
Blasting damages – Micro and macro level damages due to blasting; Ground vibrations, flyrock and air over pressure. Influence of Blasting on surface structures and underground workings; Safety during blasting

UNIT V EMERGING BLASTING TECHNIQUES
Special Blasting techniques – Road Construction, Dimension stone blasting, Underwater Blasting; Air-Decking & Baby-decking techniques; Novel Blasting Techniques in Surface and underground construction; Demolition blasting; Shaft sinking in Populated area (City), Underground storage construction. Intelligent blast design, blast economics, computer applications in blasting.

TOTAL: 45 PERIODS

OUTCOME:
- The students will be familiar with the recent developments in various rock blasting technology being adopted in mining and construction areas.

TEXT BOOKS:
REFERENCES:

MI7004 ADVANCED SURFACE MINING L T P C 3 0 0 3

OBJECTIVES:
- To introduce the various techniques for mine planning, geotechnical investigation and equipment management.
- To appreciate the modern trends in opencast mines, safety and environment

UNIT I PIT PLANNING 10
Development of economic block model; Pit cut-off grade and its estimation; Ultimate pit configuration and its determination – hand method, floating cone technique, Lerchs-Grossmann algorithm, and computer assisted hand method. Addition of haulroad on pit plan; Pit layouts. Open-pit optimisation techniques for mine geometry and output, mine development phases, quality control Output and manpower planning; calendar planning, mine scheduling, production scheduling, truck dispatch system; Feasibility Report, DPR-contents and preparation.

UNIT II GEOTECHNICAL PARAMETERS 7
Influence of pit slope on mine economics; Highwall slope stability analysis and design methodology; stability analysis and design methodology for waste dumps; Application of geotechnical investigation for design of ultimate pit slope and other design parameters. Numerical problems on slope stability analysis including mine waste rock dumps and tailing dumps.

UNIT III PRODUCTION AND EQUIPMENT PLANNING 10
Determination of mine size and sequencing by nested pits; Cash flow calculations; Mine and mill plant sizing; Production scheduling. Stockpiling and blending, Spreaders and Reclaimers; computerized truck dispatch. Selection of mining system vis-à-vis equipment system; Computations for the capacity and number of machines vis-à-vis mine production. Machine availability, productivity, maintenance scheduling, preventive maintenance, control and monitoring inventory. Workshops for HEMM. Power supply arrangements in opencast mines.

UNIT IV HEALTH, SAFETY AND ENVIRONMENTAL MANAGEMENT 9
Occupational health hazards due to mine dust, poor lighting and ventilation, noise and vibration, radioactive emission; Impact of surface subsidence; Accidents in Surface mining and their prevention; Sources of water, assessment of drainage requirements, sump design and drainage patterns - pumping systems. Pre-drainage through diversion channels and boreholes; Water pollution, Methods of reclamation of mined out areas, dumps and tailing ponds, environmental audit. Socio-economic factors in surface mines.

UNIT V MODERN TRENDS IN OPENCAST MINES 9
Recent developments in mining methods and layouts. In pit crushing & conveying, continuous surface mining. Selective extraction and dumping. Extraction of seams developed/extracted by underground methods. Deep Open pit Mining; Placer mining and solution mining – scope of applicability, sequence of development and machinery; Closure of surface mines.

TOTAL:45 PERIODS
OUTCOME:
- The students will have insight about the advanced techniques for mine planning, geotechnical investigation and equipment management and also will understand the modern trends in opencast mines, safety and environment.

TEXT BOOKS

REFERENCES
3. Das, S.K., Modern Coal Mining Technology, Lovely Prakashan, Dhanbad, 1994

MI7005 COMPUTER APPLICATION IN MINING
L T P C
3 0 0 3

OBJECTIVES:
- To impart knowledge on hardware and software issues concerned with computers in mining industry.
- To develop algorithms and programs on various mining related problems
- To impart knowledge on high-end simulation methodologies
- To study modern techniques on solving mining problems.

UNIT I INTRODUCTION TO COMPUTERS
9
Configuration of computers and servers, evolution of operating systems; Networking Concepts, MIS Concepts – Cloud computing / grid computing in mining, Big Data analytics.

UNIT II PROGRAMMING & DBMS CONCEPTS
9
Algorithm, flow charts and Programming of mining application like pillar design, blast design, subsidence, - Database and Relational database - development of software packages for mining companies – forms, queries and reports, Enterprise resource planning for material managements

UNIT III COMPUTERISED MINE PLANNING
9
Introduction of Geostatistics, Reserve Estimation, kriging, block modeling and orebody modelling, Optimization and mine design, mine scheduling.

UNIT IV PROBLEM SOLVING – APPLICATIONS IN MINING
10
Ventilation network analysis; support design. Applications of CAD in mining, GIS in Mining, online and offline monitoring and control, TDS, FEM and CFD Concepts and basics of modeling and simulation.

UNIT V RECENT TRENDS &MINING SOFTWARE
8
Artificial intelligence, expert system, neural networks, robotics and their applications in mining. Functionalities of mine planning software, fragmentation software, and numerical software applicable to mining. Case studies of mining applications

TOTAL: 45 PERIODS
OUTCOME:
- The students will have basic programming knowledge and its applications on various mining related problems and familiarity with hardware and software issues during development of programs. They will also have a perspective on high-end simulation methodologies and modern techniques to solve mining problems.

TEXT BOOKS:

REFERENCES:

MI7006
OBJECTIVES:
- To pioneer the history of longwall mining and its development stages
- To understand the extraction, support and transport on a longwall face
- To learn ventilation methods and strata monitoring instruments

UNIT I
PLANNING
History of longwall mining and its development, techno-economic consideration of the modified longwall retreat panels, longwall advance panels with caving method and stowing method, design of gate roadways and their size disposition, layout of panels, production and manpower planning, sublevel caving systems for thick seams, caving system in thin seams, multi-slice longwall mining, application of longwall mining for steep seams, longwall caving in metal mines.

UNIT II
SUPPORTS
Types of supports used in longwall mining in the past and present, design of powered supports for different situations, longwall face end problems, supports in longwall gate roadways during drivage and extraction, pressure distribution around a moving longwall face, caving of thick seams and thin seams. Main roof fall, local fall and induced roof wall, floor heaving, precautions during main fall and surface subsidence.

UNIT III
EXTRACTION AND TRANSPORT ON A LONGWALL FACE
Methods of mining coal on longwall faces, machines – shearsers, ploughs etc., methods of cutting and face advancement, stables and sumping, gate road pillar extension. Mode of transporting coal or ore in longwall face and machinery used. Shortwall Mining – a modified longwall mining. Remotely operated longwall faces. Shifting of longwall equipment.

UNIT IV
DEVELOPMENT AND WORKING OF LONGWALL FACES
Methods of driving gate roadways, choice of selection of machinery, road headers and dinters, special problems associated with working of longwall faces - faults, roof caving, face spalling, overburden movement, subsidence control, hydraulic stowing, dealing with spontaneous heating while working thick seams in coal.
UNIT V ENVIRONMENT AND ANCILLARY

OUTCOME:
- The students will have better understanding about mine planning, methods of working, development of longwall face, support systems, methods of ventilating longwall faces and transport system on a longwall face

TEXT BOOKS:

REFERENCES:
1. Mathur, S.P., Mining Planning for Coal, M.G. Consultants, Bilaspur, 1999

MI7007 MATERIAL HANDLING

OBJECTIVES:
- To introduce the basic principles in material handling and its equipment
- To study the conveyor system and its advancement

UNIT I BULK HANDLING SYSTEMS
Basic principles in material handling exclusive to mining industry and its benefits. Classification of material handling equipments. Current state of art of bulk handling materials in mining in the world and Indian scenario; Selection of suitable types of systems for application. Stacking, blending, reclaiming and wagon loading, machinery and systems used at the stack yards; stock piles, silos, bunkers – their design, reclamation from them, various types of weigh bridges. Segregation - size wise and grade wise, Railway sidings.

UNIT II SHORT CONVEYORS AND HAULAGE SYSTEMS
Roller conveyors, overhead conveyors, screw conveyors, auger conveyors, apron feeders, bucket elevators, scraper haulage conveyors in steep gradient, Armoured face conveyors, Off-highway Trucks, haul roads, In-pit crushers and modular conveyors, electric trolley assisted haulage, shuttle cars, skip hoists, winders, LHD’s, pneumatic conveying, hydraulic transport.

UNIT III BELT CONVEYOR SYSTEM
Design, capacity, calculations with respect to the size, speed, troughing, power requirement, tension requirement, belt selection, factor of safety; developments in the design, of various components of belt conveyor systems such as; structures, rollers, gear boxes and motors, drums and pulleys, belting, ancillary components and safety gadgets.

UNIT IV NEW TYPES OF BELT CONVEYOR SYSTEMS
Curved conveyors, cable belts, pipe conveyors, rock belts – mine-run-rock conveyor, steel belt conveyors, steel slot conveyors, chain belt conveyors, etc., and other new developments, stackers and reclaimers, High Angle Conveyors (HAC); New inventions in HAC, Mobile or fixed installations; Woven wire belts, En Masse conveyor, Vibrating conveyor, gravity bucket conveyor.
UNIT V MATERIAL HANDLING IN MINES, PLANTS AND WORKSHOPS

Mobile cranes, derrick cranes, pillar cranes, tower cranes, radial cranes, bridge cranes, fork lifters, overhead gantry material handling in workshops. Mineral handling in dimensional stone quarries, Mineral handling plants (coal, etc.,) Locomotives, rail tracks, rail cars, railways wagons; Aerial ropeways, gravity ropeways; Containers and shipping; Rope haulage - different types.

OUTCOME:
- The students will get exposure towards the material handling methods and systems and its principle to convey the minerals or materials from mines, plants and workshops.

TEXT BOOKS:

REFERENCES:

MI7008 MINE ECONOMICS AND INVESTMENT

OBJECTIVES:
- Study of estimation and valuation of mineral deposits
- Study of project appraisal
- Study of finance and accounting

UNIT I INTRODUCTION
Mineral industry and its role in national economy; world and national mineral resources; Mining - A unique investment environment; special risk factors in mine investment and evaluation; national mineral policy.

UNIT II ORE RESERVE ESTIMATION
Methods of sampling, sampling frequency; analysis of sampling data, estimation of reserves, introduction to geo-statistical methods, classification of reserves.

UNIT III MINE VALUATION
Time value of money; annuity; redemption of capital, net present value; depletion allowance; depreciation; inflation; escalation; rates of return; Hoskold’s Two rate method; capital and operating cost including wages, incentives, material, etc.; assets; liabilities; cash flows and discounted cash flow; profitability index – their implications in mine economic evaluation.
UNIT IV PROJECT APPRAISAL
Methods of project evaluation – pay back, annual value, benefit/cost ratio, ERR and IRR, etc., evaluation of exploratory mining areas and operating mines; mine project financing, its risks and constraints; mine taxation; critical impact of depreciation, depletion, type of funding, reserves, life, etc. on mine profitability.

UNIT V FINANCE AND ACCOUNTING
Sources of mine funds – shares, debentures, fixed deposit, sinking fund, capital gearing, P & L account, balance sheet, typical case studies of mine feasibility. Cost estimation of individual mining operations and overall mining cost, cost control methods.

OUTCOME:
- The students will have knowledge on estimation and valuation of mineral deposits. They will possess about project appraisal, finance and accounting.

TEXT BOOKS:

REFERENCES
3. Park, R.J., Examination and Valuation of mineral property

MI7009 MINE PLANNING AND DESIGN L T P C
3 0 0 3

OBJECTIVES:
- To understand the planning of opencast & underground mines and equipment utilization
- To study project implementation and monitoring

UNIT I INTRODUCTION
Technical factors in mine planning, methodology of mine planning, short range & long range, Optimization Techniques in Mine Planning; mine plan preparation; Choice between surface and underground mining.

UNIT II OPENCAST MINING
Development of Ultimate Pit Configuration (open pit limits) and its determination – hand method, floating cone technique, Lerchs-Grossmann algorithm and computer assisted hand method; Selection of initial mine cuts and geometrical considerations; location of surface structures, division of mining area into blocks, mine design, Impact of various parameters like depth, dip, stripping ratio, geology and strength of mineral and overburden on mine planning; Selection of Mining Systems; Determination of optimum mine size and sequencing by nested pits; Lanes algorithm for estimation of optimum mill grade and production planning; calendar plan, production scheduling, economic productivity indices. Quality Control-Ore Blending; Planning for mine closure.

UNIT III UNDERGROUND MINING
Design of mine entries – shafts, inclines, design of stopes – size, level interval, etc, design of coal mining district, mine boundaries; design of shaft pillars and protective pillars, planning of production capacity , optimization of mine size – mine production capacity, layout of development drives / raises / winzes etc, length of faces, etc, planning of support systems.
ventilation, layout of drainage system; Production planning & Production scheduling, selection of depillaring / stoping method, manpower management economic/ productivity indices, Productivity and quality control; Techno- economic analysis, Planning for mine closure.

UNIT IV EQUIPMENT PLANNING
Latest technological developments in increase in both types and capacities of equipment used in mining operations. Planning and selection of equipment, their capacities and population for different mining conditions. Maintenance planning and scheduling including spare management; Equipment information – performance monitoring and expert systems.

UNIT V PROJECT IMPLEMENTATION AND MONITORING
Pre-project activities – feasibility report, environmental clearance, detailed project report, sources of funds, import of technology, selection of contracts and contract administration, time management, cost control material management system, project quality assurance, social responsibility, government orders and guidelines. Environmental impact assessment and preparation of environmental management plan.

TOTAL : 45 PERIODS

OUTCOME:
- The students will have knowledge on planning of opencast mining, underground mining and equipment utilization. They will also know about project implementation and monitoring methods.

TEXT BOOKS:

REFERENCES

MINE SAFETY ENGINEERING

OBJECTIVES:
- To learn the level of risk associated with mining, risk assessment and management
- To know the occupational diseases, mine disasters and mitigation

UNIT I MINE ACCIDENTS
Accident in mines:- different types, accident investigations; accident analysis; accident prevention and corrective action, accident proneness, creating and maintaining safety awareness, ZAP and MAP, job safety analysis, safety meeting and committee.
UNIT II HEALTH AND MINE SAFETY 8
Definition of health and safety, management’s role – function; evolution of management involvement, management’s training, responsibility, cost of health and safety, role of labour organizations – Union impact and involvement; role of government – statutory controls and directions, spot and regular inspections, enforcement of standards, penalties for violations, collection and distribution of statistical data.

UNIT III FAULT TREE ANALYSIS 8
Introduction – methodology, symbols and Boolean techniques, qualitative analysis, computerized methods, statistical analysis, safety information, systems design.

UNIT IV RISK ASSESSMENT AND DISASTER MANAGEMENT 11
Principles, risk and hazard control, risk and hazard evaluation and data collection for identified health risks, exposure assessment and risk characterization, probabilistic risk analysis, risk management, safety culture, human factors, reliability evaluation, safety audit. Identification of causes of mine disasters, preventive action, disaster management and mitigation, typical cases of mine disasters in India

UNIT V MINER’S OCCUPATIONAL DISEASES AND ENQUIRY COMMITTEE 10
Miner’s occupational health and diseases, preventive medical examinations, various types of injuries, compensable diseases, medical attention and removable of causative factors in the mines. Recommendations of inquiry committee carried out for safety and health issues in India.

OUTCOME:
- The students will have deep knowledge about the mine accidents, disaster, disease and mine safety with risk assessment, mitigation and management.

TEXT BOOKS:

REFERENCES
5 Mine Disasters of India, NCSM Publication.

MI7011 MINERAL EXPLORATION L T P C 3 0 0 3

OBJECTIVES:
- To know the mineral resources and prospecting techniques
- To understand exploration techniques and strategy
- To study the prefeasibility and feasibility reports and its evaluation methods

UNIT I MINERAL RESOURCES AND PROSPECTING 10
Introduction to important mineral resources in India and world wide, surface and aerial prospecting, reconnaissance, application of geochemical, geophysical and geostatistical methods
UNIT II EXPLORATION 9
Preliminary and detailed exploration by boring, exploratory mining by shafts, drifts, cross-cuts, collection and compilation of data for computer processing.

UNIT III EXPLORATION STRATEGY 8
Exploration investment decision, exploration techniques and strategies, exploration targets.

UNIT IV EXPLORATION GROUPS AND THEIR ROLE 8
Strategy and structure of the exploration group, government policies, aspects of exploration, role of exploration in the mining company.

UNIT V PREPARATION AND EVALUATION OF PROJECT REPORTS 10
Evaluation of exploration and development projects, study of typical pre-feasibility and feasibility reports.

TOTAL : 45 PERIODS

OUTCOME:
The students will have knowledge about the available mineral resources, exploration techniques and its stagey. They will know about the methods of preparation of feasibility reports and its evaluation techniques.

TEXT BOOKS:

REFERENCES:

MI7012 NUMERICAL METHODS IN MINING ENGINEERING L T P C
3 0 0 3

OBJECTIVES:
• To study the finite element methods, finite difference methods and boundary element methods
• To understand the practical applications of numerical methods in mining field

UNIT I INTRODUCTION TO ELASTIC AND PLASTIC MODELS 9
Fundamentals, elastic, plastic, homogeneous and isotropic, non-linear elastic and elasto-plastic models.

UNIT II FINITE DIFFERENCE METHODS 9
Concept, formation of mesh element, finite difference patterns, solutions, application to mining
UNIT III FINITE ELEMENT METHODS
Concept, discretisation, element configuration, element stiffness, assemblage and solutions, two and three dimensional solutions, linear and non-linear analysis, applications in geomechanics; simulation of joints in strata.

UNIT IV BOUNDARY ELEMENT METHOD
Concept, discretisation, different methods of solution for isotropic and infinite media.

UNIT V PRACTICAL APPLICATIONS IN MINING AND ROCK MECHANICS
Practical Applications in stress analysis, slope stability, subsidence prediction, pillar design, rock burst, etc.

TOTAL: 45PERIODS

OUTCOME:
- The students will get the concept about finite element models, methods and boundary elements method and its practical applications in mining and rock mechanics

TEXT BOOKS:

REFERENCES

MI7013 PETROLEUM ENGINEERING L T P C 3 0 0 3

OBJECTIVES:
- To learn the exploration methods and reserve estimation in petroleum industry
- To know the drilling and production methods in petroleum industry

UNIT I EXPLORATION METHODS AND RESERVE ESTIMATION
Concept of Petroleum Engineering; Regional petroleum prospecting – magnetic and gravity methods, procedures for data collection, corrections, Interpretation; Seismic reflection method data acquisition, seismic processing, display of seismic data interpretation, hot spots for oil and gas, 3D surveying Volumetric oil and gas reserve estimation – deterministic methods – Monte Carlo method, parametric methods, Three point estimates – uncertainty of input to estimation.

UNIT II DRILLING OPERATIONAL PRACTICES
Rotary oil well rig, rotary drilling, basic operations for brakes, Betties Protector, drill-pipe wiper, tong pull back, making-up joints, breaking up joints, connecting and disconnecting Kelly & Hook, checking conditions of rotary ships and master Busting – operational practices for spudding-in-dril-color and pipe connection, pulling out, running in stabilization tools and operation, fitting of well head, installation of blow-out preventor (BOP) and testing drill stem assembly, failure of drill pipes, drill stem design, tension loading, external fluid pressure- height on bit, drill collar bending, strength ratio, transition zone, quick guide to solve drill stem failures – directional drilling, inclinometer survey, horizontal drilling
UNIT III HYDRAULIC (MUD) PROGRAMME

Drilling fluid, function, classification of drilling fluid, drilling complication and mud importance, designing hydraulic programme for drilling operations, equations used in hydraulic programme, pump characteristics, calculation of system processor losses, selection of nozzle size, optimization of hydraulic programme

UNIT IV CASING AND CEMENTATION

Tensile requirements for casing, API casing list, casing performance properties, types of casings, casing policy, casing and lines, calculation of fracture pressure gradient, casing settings depth selection, casing design, specialization of casing, collapses pressure, tensile load, burst pressure, tension on collapse strength of casing, design factors, casing design, cementation, cement properties, types procedures and purposes.

UNIT V WELL COMPLETION AND PRODUCTION

Logging operations, logging methods, interpretation calculation of saturation, gas saturation, water saturation, porosity, permeability, oil and gas findings, performance techniques, well completion, production tubing, well head x'mas tree fittings – transportation - oil to gas and water separator – oil to stockyard Reservoir Engineering – concept and approach, oil recovery – primary, secondary, enhanced oil recovery techniques. Offshore drilling technology, rigs of offshore drilling, general jacking procedures, drilling from a floating vessel. International oil business, management and economics.

OUTCOME:
- The students will get knowledge about exploration techniques, drilling operations, casing, cementation, well completion and production in petroleum industry.

TEXT BOOKS:

REFERENCES:

MI7014 ROCK EXCAVATION ENGINEERING L T P C 3 0 0 3

OBJECTIVES:
- To understand the rock mechanics, rock cutting technology, rock cutting tools and rock excavating machine

UNIT I INTRODUCTION

Concepts, historical developments in rock excavation systems, factors affecting the rock fragmentation, mechanism of rock breakage and fracture; their application to rock fragmentation methods– explosive action, cutting, ripping and impacts.
UNIT II ROCK PROPERTIES
Rock properties related to excavation process; application of compressive, tensile and tri-axial strengths, index tests and abrasivity, anisotropy, elasticity, porosity, laminations, bedding and jointing in rock fragmentation process.

UNIT III ROCK CUTTING TECHNOLOGY
Mechanism of drilling – rotary, percussive, rotary percussive, mechanics of rock cutting, theory of single tool rock cutting, crack initiation and propagation, breakage pattern, rock excavation by cutting action – picks, discs, roller cutters, water jet cutting, methods of evaluation of drillability and cuttability index of rocks.

UNIT IV ROCK CUTTING TOOLS
Rock cutting tool materials, different types, relative applications and their choice, tool shape and size, specific energy consumption, tool wear, effect of operational parameters on tool performance, maintenance and replacement of cutting tools of excavating machines.

UNIT V ROCK EXCAVATING MACHINES
Excavating machines, principles, operation, applicability and technical indices of road headers, TBM’S coalface machines and bucket wheel excavators.

TOTAL: 45 PERIODS

OUTCOME:
- The students will have knowledge about mechanism of rock excavation process, influences of rock properties in excavation, rock cutting technology and types of excavating machines

TEXT BOOKS:

REFERENCES

MI7015 ROCK REINFORCEMENT L T P C 3 0 0 3

OBJECTIVES:
- To introduce the rockmass classification and mechanism of rock reinforcement
- To learn the typical and special methods of rock reinforcement

UNIT I ROCKMASS CLASSIFICATION
Basic concepts of rockmass classification; Rock Quality Designation (RQD); Norwegian Geomechanics Classification i.e. Q-system; Rock Mass Rating (RMR); CMRI system; Application of rockmass classification in assessing the support requirement for underground caverns.

UNIT II GROUTING, GUNITING AND SHOTCRETING
Mechanisms of rock reinforcement by grouting; selection of optimum pressure and water-cement ratio for grouting; layout for grouting, working principle and field of application for grouting; Guniting and shotcreting operations and their field of application; fibre reinforced shotcreting.
UNIT III ROCK BOLTS
Elements of rock bolts; types of rock bolts and their fields of application; rock bolting machines and installation of rock bolts; pre-tensioning of rock bolts; principles of rock bolting; anchorage test and factors affecting anchorage strength of bolts; modes of failure; Design of rock bolting system for underground excavation i.e. determination of bolt length and bolt pattern.

UNIT IV CABLE BOLTS AND ROCK ANCHORS
Classification of cable bolts; installation and testing; modes of failure; different type of grouting materials; types of anchors; use of anchors for stabilising rock slope, dam etc. ; testing of anchors.

UNIT V SPECIAL METHODS OF ROCK REINFORCEMENT
Ground freezing for slope stabilisation; berms for slope stabilisation; fore-poling; resin grouted rock bolts of fibre glass; geo-textiles and it's area of application; water drainage and rock reinforcement; dump stabilisation by vegetation.

TOTAL: 45 PERIODS

OUTCOME:
• The students will have the concept about the rockmass classification, mechanism of rock reinforcement, existing and special methods of rock reinforcement.

TEXTBOOKS:

REFERENCES:

MI7016 ROCK SLOPE ENGINEERING

OBJECTIVES:
• To introduce the basic mechanics of rock slope failures
• To learn the types of rock failure and its influencing parameters

UNIT I BASIC MECHANICS OF ROCK SLOPE FAILURE
Rock slope economics; continuum mechanics approach to slope stability; slope parameters; effect of water pressure; factor of safety of slopes; slope height vs slope angle; design of slopes.

UNIT II GEOLOGICAL AND ROCK STRENGTH PROPERTIES
Geological parameters affecting slope stability; graphical representation of geological data; plotting and analysis of field measurements; physico-mechanical properties affecting slope stability, shearing on incline plane, determination of shear strength of rock and rock discontinuities; Ground water flow in rock masses; field measurement of permeability; measurement of water pressure.

UNIT III PLANE FAILURE AND WEDGE FAILURE
Plane failure analysis; graphical analysis of stability; influence of ground water on stability; influence of tension crack; analysis of failure on a rough plane; rock reinforcement of slopes; Analysis of wedge failure; wedge analysis including cohesion and water pressure; Wedge stability charts for friction only; case studies. Numerical problems.
UNIT IV CIRCULAR AND TOPPLING FAILURE

Conditions for circular failure; derivation of circular failure analysis; effect of ground water; circular failure charts; Bishop’s and Janbu’s methods of failure analysis; case studies. Types of toppling failure; secondary toppling modes; analysis of toppling failure; limit equilibrium analysis of toppling failures; Influence of slope curvature on stability; slope depressurisation; protection of slopes; control of rock falls; measurement and monitoring and interpretation of slope displacements. Numerical problems.

UNIT V ROCK SLOPE FAILURE MONITORING AND SLOPE STABILIZATION

Types of slope movement, Surface and Sub-surface monitoring methods including instrumentation and techniques & Guidelines for monitoring programs. Causes of rock falls; Rock slope stabilization programs – stabilization by rock reinforcement & rock removal; protection measures against rock falls.

OUTCOME:
- The students will know the fundamental mechanics of rock slope failure, types of failure and its influencing parameters

TEXT BOOKS:

REFERENCES

MI7017 SMALL SCALE MINING AND MARINE MINING

OBJECTIVES:
- To introduce the small scale mining methods with case studies
- To introduce the marine geology and its exploitation techniques

UNIT I INTRODUCTION TO SMALL SCALE MINING

Concept of small scale mining, small scale mines – world wide, Indian Policy in small scale mines – practices, policies and perspectives, problems of small scale mines – finance, legislative support, technical expertise, environmental obligations, safety, health and training, environmental impacts and protection.

UNIT II SMALL SCALE MINING METHODS

Classification and mode of occurrence of granite and other minor minerals, physical, mechanical and chemical properties, geological aspects of mining, granite and dimensional stone mining – manual, semi-mechanised and mechanised mining methods, conventional & novel techniques, recent trends, processing, finishing, quality control, marketing & export of minerals. Case studies of mining of other minerals like sandstone, marble, beach sands, alluvial mining, mica, barytes, diamond and gemstones, etc.
UNIT III INTRODUCTION TO MARINE MINING

Introduction to marine environment, development & status of ocean resources of mining in India and other parts of the world, Ocean profile, ocean floor topography, economic exclusive zone & fundamentals of law of the sea, coastal zone & its characteristics.

UNIT IV MARINE GEOLOGY AND RESOURCES

Physical and chemical properties of seawater, overview of marine mineral deposits, deep-sea bed mineral resources, polymetallic nodules, sulphate nodules, chemicals from the ocean, dissolved and undisolved mineral deposits, sea water as resource and beach placers.

UNIT V EXPLOITATION OF MARINE DEPOSITS

Shallow and deep sea bed, oceanographic instruments, mining of manganese nodules, deep sea drilling methods, ocean bottom samplers, drag buckets, grab buckets, coring systems, ocean bathymetry, temperature measurement systems, water samplers, ocean dynamic analysis, beach placer mining, underwater photographs, vehicles and transportation, offshore oil platforms.

OUTCOME:
- The students will have insight about small scale mining methods and marine techniques.

TEXT BOOKS:

REFERENCES

MI7018 SUBSIDENCE ENGINEERING L T P C 3 0 0 3

OBJECTIVES:
- To know the basic subsidence mechanics and its influencing parameters
- To study the control measures of subsidence and its impact on structure

UNIT I INTRODUCTION

Strata movement at the mining horizon, convergence in mine working, factors influencing convergence in mine workings.

UNIT II SUBSIDENCE MECHANISM

Zones of movement in the overlying beds, vertical and horizontal movement, subsidence trough, angle of draw, angle of break, sub-surface subsidence.

UNIT III SUBSIDENCE PREDICTION

Different methods of surface subsidence prediction – graphical, analytical, profile function, empirical and theoretical models.
UNIT IV TIME INFLUENCE AND IMPACT ON STRUCTURES 9
Influence of time on subsidence, example from longwall and bord and pillar workings. Calculation of ground movement over time. Types of stress on structures, stress-strain behaviour of soils, mining damage to buildings, industrial installations, railway lines, pipes, canals, etc.

UNIT V SUBSIDENCE CONTROL, GOVERNING LAWS AND STANDARDS 9
Measures to reduce mining damage, mining methods to minimise damage, laws governing mining damage, different standards suggested for mining and building ground in respect of subsidence.

OUTCOME:
• The students will have knowledge about the subsidence mechanism, prediction and influencing parameters. They will know about subsidence control, governing norms and regulations.

TEXT BOOKS:
1 Kratzsch, H., Mining Subsidence Engineering, Springer Verlag Publications, Berlin, 1983

REFERENCES
UNIT V MISCELLANEOUS
Inventory of mineral resources, basic models and optimisation, introduction to statistical decision theory and its application in mineral industry.

OUTCOME:
The students will learn the concept of system engineering and applicability in mining field.

TEXT BOOKS:

REFERENCES

MI7020 UNDERGROUND SPACE TECHNOLOGY L T P C
3 0 0 3

OBJECTIVE:
The course enables the students to be familiar with the recent developments in various technologies used in underground spaces includes tunnelling and cavern projects across the world.

UNIT I INTRODUCTION
Scope and application, historical developments, art of tunnelling, tunnel engineering, future tunnelling considerations. Types of Underground Excavations: Tunnel, adit, decline, shaft; parameters influencing location, shape and size; geological aspects; planning and site investigations.

UNIT II UNDERGROUND EXCAVATIONS
Tunnelling Methods: Types and purpose of tunnels; factors affecting choice of excavation technique; Methods - soft ground tunnelling, hard rock tunnelling, shallow tunnelling, deep tunnelling; Shallow tunnels – cut and cover, cover and cut, pipe jacking, jacked box excavation techniques, methods of muck disposal, supporting, problems encountered and remedial measures.

UNIT III DRILLING AND BLASTING IN UNDERGROUND SPACE
Drilling - drilling principles, drilling equipment, drill selection, specific drilling, rock drillability factors; Blasting - explosives, initiators, blasting mechanics, types of cuts- fan, wedge and others; blast design, tunnel blast performance - powder factor, parameters influencing, models for prediction; mucking and transportation equipment selection.

UNIT IV UNDERGROUND SPACE MECHANISATION
UNIT V UNDERGROUND SPACE SERVICES
Supports in Tunnels: Principal types of supports and applicability. Ground Treatment in Tunnelling: Adverse ground conditions and its effect on tunnelling; Excavation of large and deep tunnels, caverns. Tunnel Services: Ventilation, drainage and pumping; Tunnelling hazards.

TOTAL: 45 PERIODS

OUTCOME:
- The students will have practical knowledge on design, construction and monitoring, maintenance and rehabilitation of tunnels and large underground earth-sheltered structures.

TEXT BOOKS:

REFERENCES:

GE7072 FOUNDATION SKILLS IN INTEGRATED PRODUCT DEVELOPMENT

OBJECTIVES:
- To understand the global trends and development methodologies of various types of products and services
- To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
- To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them in to design specification
- To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
- To develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer

UNIT I FUNDAMENTALS OF PRODUCT DEVELOPMENT

UNIT II REQUIREMENTS AND SYSTEM DESIGN
UNIT III DESIGN AND TESTING 9

UNIT IV SUSTENANCE ENGINEERING AND END-OF-LIFE (EOL) SUPPORT 9

UNIT V BUSINESS DYNAMICS – ENGINEERING SERVICES INDUSTRY 9

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Define, formulate and analyze a problem
- Solve specific problems independently or as part of a team
- Gain knowledge of the Innovation & Product Development process in the Business Context
- Work independently as well as in teams
- Manage a project from start to finish

TEXTBOOKS:
1. Book specially prepared by NASSCOM as per the MoU.

REFERENCES: