OUR VISION

To unveil the leadership qualities in students of mining engineering and impart knowledge of latest trends in mining and related industries to meet the present and future requirements of the industry embracing sustainability of the environment in order to produce well communicative, socially responsible and ethical mining engineers. To inculcate the habit of continuous learning, working in groups, safety at work, etc. for the overall development of the society in general, mining and related industries in particular adopting ethical means of profession.

OUR MISSION

- To improve the academic as well as co-curricular activities of the students.
- To organize activities for students in order to develop their soft skills which would aid them in their career prospects.
- To increase awareness of the students on the current state of affairs of the mining industry and to help them keep pace with the latest and emerging trends in the industry.
- To organize guest lectures by prominent personalities to update students constantly on the basic and latest terminologies related to mining and general issues.
- To promote active participation of students in sports activities for physical and mental fitness.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) :

I. The graduates acquire ability to create model, design, synthesize and analyze essential mining operational skills, mechanism and automation system.
II. The graduates use their talent, self-confidence, knowledge and engineering practice which facilitate them to presume position of scientific and/or managerial leadership in their career paths.
III. The graduates apply their consciousness of moral, professional responsibilities and motivation to practice life-long learning in a team work environment.

PROGRAMME OUTCOMES (POs):

After going through the four years of study, our Mining Engineering Graduates will exhibit ability to:

<table>
<thead>
<tr>
<th>PO #</th>
<th>Graduate Attribute</th>
<th>Programme Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering knowledge</td>
<td>Apply knowledge of mathematics, basic science and engineering science.</td>
</tr>
<tr>
<td>2</td>
<td>Problem analysis</td>
<td>Identify, formulate and solve engineering problems.</td>
</tr>
<tr>
<td></td>
<td>Design/development of solutions</td>
<td>Design a system or process to improve its performance, satisfying its constraints.</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>Conduct investigations of complex problems</td>
<td>Conduct experiments & collect, analyze and interpret the data.</td>
</tr>
<tr>
<td>5</td>
<td>Modern tool usage</td>
<td>Apply various tools and techniques to improve the efficiency of the system.</td>
</tr>
<tr>
<td>6</td>
<td>The Engineer and society</td>
<td>Conduct themselves to uphold the professional and social obligations.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and sustainability</td>
<td>Design the system with environment consciousness and sustainable development.</td>
</tr>
<tr>
<td>8</td>
<td>Ethics</td>
<td>Interact in industry, business and society in a professional and ethical manner.</td>
</tr>
<tr>
<td>9</td>
<td>Individual and team work</td>
<td>Function effectively on a multidisciplinary team by understanding team dynamics, communication, social norms and conflict management.</td>
</tr>
<tr>
<td>10</td>
<td>Communication</td>
<td>Proficiency in oral and written Communication.</td>
</tr>
<tr>
<td>11</td>
<td>Project management and finance</td>
<td>Implement cost effective and improved system.</td>
</tr>
<tr>
<td>12</td>
<td>Life-long learning</td>
<td>Continue professional development and learning as a life-long activity.</td>
</tr>
</tbody>
</table>

PROGRAMME SPECIFIC OUTCOMES (PSOs)

I. Find gainful employment and advance in their careers, in mining and related service sectors.
II. Function ethically in a variety of professional roles such as mines manager, mine planner, production manager, mineral processing engineer, technical support representative and regulatory specialist and lead the organization competitively.
III. Pursue advanced degrees in mineral-related fields both in post-graduate and research degrees.
IV. Utilize professional skills to become consultant and provide solutions to the practical problems of any organization.
V. Demonstrate an understanding of the critical role mining engineer’s play in society with respect to health, safety and the environment for ensuring sustainable development.

Mapping of PSOs and POs

<table>
<thead>
<tr>
<th>PROGRAMME SPECIFIC OUTCOMES</th>
<th>PROGRAMME OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>I</td>
<td>✔</td>
</tr>
<tr>
<td>II</td>
<td>✔</td>
</tr>
<tr>
<td>III</td>
<td>✔</td>
</tr>
<tr>
<td>IV</td>
<td>✔</td>
</tr>
<tr>
<td>V</td>
<td>✔</td>
</tr>
</tbody>
</table>
MAPPING OF COURSE OUTCOMES WITH PROGRAMME OUTCOMES:

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course Name</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Semester 1</td>
<td>Technical English</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Mathematics - I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Graphics</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic Sciences Laboratory</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Workshop Practices Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester 2</td>
<td>Engineering Mathematics - II</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem Solving and Python Programming</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basics of Electrical and Electronics Engineering</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Mechanics</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mine Development</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrical and Electronics Engineering Laboratory</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>Semester 3</td>
<td>Numerical and Statistical Methods</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechanics of Materials</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geology for Mining-I</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluid Mechanics and Machinery</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrical Drives and Control</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geology for Mining - II</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic Mechanical Engineering for Mining</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mining Machinery-I</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mine Environment and Ventilation</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plane and Geodetic Surveying</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>Semester 5</td>
<td>Surface Mining</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Underground Mining Methods - Coal</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock Mechanics and Ground Control</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mine Surveying</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Environmental Sciences*</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Underground Mining Methods - Metal</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mining Machinery-II</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mineral Processing</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective-I</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open Elective-I</td>
<td>✔️</td>
</tr>
<tr>
<td>Year 4</td>
<td>Semester 7</td>
<td>Mine Legislation and Safety</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mine Planning and Design</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mine Environmental Engineering</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective-II</td>
<td>✔️</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>Professional Elective-III</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open Elective-II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Elective-IV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Elective-V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Elective-VI</td>
<td></td>
</tr>
</tbody>
</table>
SEMESTER I

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS5151</td>
<td>Technical English</td>
<td>HSMC</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>MA5158</td>
<td>Engineering Mathematics - I</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>PH5151</td>
<td>Engineering Physics</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>CY5151</td>
<td>Engineering Chemistry</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>GE5151</td>
<td>Engineering Graphics</td>
<td>ESC</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>BS5161</td>
<td>Basic Sciences Laboratory</td>
<td>BSC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>GE5162</td>
<td>Workshop Practices Laboratory</td>
<td>ESC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA5252</td>
<td>Engineering Mathematics - II</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>GE5153</td>
<td>Problem Solving and Python Programming</td>
<td>ESC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>EE5251</td>
<td>Basics of Electrical and Electronics Engine</td>
<td>ESC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>GE5152</td>
<td>Engineering Mechanics</td>
<td>ESC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>MI5201</td>
<td>Mine Development</td>
<td>PCC</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>GE5161</td>
<td>Problem Solving and Python Programming</td>
<td>ESC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>EE5261</td>
<td>Electrical and Electronics Engineering</td>
<td>ESC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>
SEMESTER III

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA5352</td>
<td>Numerical and Statistical Methods</td>
<td>BSC</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>ML5352</td>
<td>Mechanics of Materials</td>
<td>ESC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>AG5306</td>
<td>Geology for Mining-I</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CE5251</td>
<td>Fluid Mechanics and Machinery</td>
<td>ESC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EE5305</td>
<td>Electrical Drives and Control</td>
<td>ESC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CE5313</td>
<td>Fluid Mechanics and Machinery Laboratory</td>
<td>ESC</td>
<td>0 0 4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>AG5313</td>
<td>Geology Laboratory - I</td>
<td>PCC</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>MI5311</td>
<td>Practical Training-I* (Surface Mine)</td>
<td>EEC</td>
<td>0 0 0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL 18 1 6 25 23

* The students have to undergo training in surface mines during summer vacation at the end of the II Semester for a period of 2 to 3 weeks and training report with certificate obtained from the organization shall be submitted.

SEMESTER IV

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>AG5401</td>
<td>Geology for Mining - II</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>ME5404</td>
<td>Basic Mechanical Engineering for Mining</td>
<td>PCC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MI5401</td>
<td>Mining Machinery-I</td>
<td>PCC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MI5402</td>
<td>Mine Environment and Ventilation</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CE5451</td>
<td>Plane and Geodetic Surveying</td>
<td>ESC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>Audit Course – I*</td>
<td>AC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>AG5412</td>
<td>Geology Laboratory-II and Field Work**</td>
<td>PCC</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>CE5461</td>
<td>Plane and Geodetic Surveying Laboratory</td>
<td>ESC</td>
<td>0 0 4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL 19 2 10 31 21

* Audit Course is optional.
**The students have to carry out the Geological Field Work covering metallic and non-metallic deposits during the IV Semester for a minimum period of 5 days.
SEMESTER V

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>GE5552</td>
<td>Engineering Management</td>
<td>HSMC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MI5501</td>
<td>Surface Mining</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MI5502</td>
<td>Underground Mining Methods - Coal</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MI5503</td>
<td>Rock Mechanics and Ground Control</td>
<td>PCC</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>MI5504</td>
<td>Mine Surveying</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Audit Course – II*</td>
<td>AC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>MI5511</td>
<td>Rock Mechanics and Ground Control Laboratory</td>
<td>PCC</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>MI5512</td>
<td>Mine Ventilation Laboratory</td>
<td>PCC</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>MI5513</td>
<td>Practical Training-II**</td>
<td>EEC</td>
<td>0 0 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>18 1 4</td>
<td>23</td>
<td>19</td>
</tr>
</tbody>
</table>

* Audit Course is optional.

**The students have to undergo training/internship in underground mines (coal or metal)/allied industry/research institute during summer vacation at the end of the IV Semester for a period of 2 to 3 weeks and training report with certificate obtained from the organization shall be submitted.

SEMESTER VI

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>GE5251</td>
<td>Environmental Sciences</td>
<td>BSC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MI5601</td>
<td>Underground Mining Methods – Metal</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MI5602</td>
<td>Mining Machinery-II</td>
<td>PCC</td>
<td>3 0 2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>MI5603</td>
<td>Mineral Processing</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective-I</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Open Elective-I</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>MI5611</td>
<td>Mineral Processing Laboratory</td>
<td>PCC</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>MI5612</td>
<td>Rock Blasting Laboratory</td>
<td>PCC</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>MI5613</td>
<td>Survey Camp**</td>
<td>EEC</td>
<td>0 0 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>18 0 6</td>
<td>24</td>
<td>22</td>
</tr>
</tbody>
</table>

**The students have to undergo the survey camp in underground mines/surface mines during winter vocation at the end of the V Semester (or) during VI Semester for a period of 10 days.
SEMESTER VII

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MI5701</td>
<td>Mine Legislation and Safety</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MI5702</td>
<td>Mine Planning and Design</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MI5703</td>
<td>Mine Environmental Engineering</td>
<td>PCC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>Professional Elective-II</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Professional Elective-III</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Open Elective-II</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>MI5711</td>
<td>Computer Aided Mine Planning and Design</td>
<td>PCC</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>MI5712</td>
<td>Practical Training-III*</td>
<td>EEC</td>
<td>0 0 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>MI5713</td>
<td>Project I</td>
<td>EEC</td>
<td>0 0 6</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL | 17 | 0 | 10 | 27 | 23 |

*The students have to undergo training/internship in underground mines (coal or metal)/allied industry/research institute during summer vacation at the end of the VI Semester for a period of **2 to 3 weeks** and training report with certificate obtained from the organization shall be submitted.

SEMESTER VIII

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Professional Elective-IV</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Professional Elective-V</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Professional Elective-VI</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>MI5811</td>
<td>Project II</td>
<td>EEC</td>
<td>0 0 16</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

TOTAL | 9 | 0 | 16 | 25 | 17 |

TOTAL CREDITS FOR THE PROGRAMME 167
HUMANITIES AND SOCIAL SCIENCES (HSMC) – MANAGEMENT AND OTHERS

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>1.</td>
<td>HS5151</td>
<td>Technical English</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>GE5451</td>
<td>Total Quality Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

HSMC– ELECTIVES – HUMANITIES I (ODD SEMESTER)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods per week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
</tr>
<tr>
<td>1.</td>
<td>HU5171</td>
<td>Language and Communication</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>HU5172</td>
<td>Values and Ethics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>HU5173</td>
<td>Human Relations at Work</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>HU5174</td>
<td>Psychological Processes</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>HU5175</td>
<td>Education, Technology and Society</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>HU5176</td>
<td>Philosophy</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>HU5177</td>
<td>Applications of Psychology in Everyday Life</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

HSMC– ELECTIVES – HUMANITIES II (EVEN SEMESTER)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods per week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
</tr>
<tr>
<td>1.</td>
<td>HU5271</td>
<td>Gender Culture and Development</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>HU5272</td>
<td>Ethics and Holistic Life</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>HU5273</td>
<td>Law and Engineering</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>HU5274</td>
<td>Film Appreciation</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>HU5275</td>
<td>Fundamentals of Language and Linguistics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>HU5276</td>
<td>Understanding Society and Culture through Literature</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
BASIC SCIENCE COURSE [BSC]

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>1.</td>
<td>MA5158</td>
<td>Engineering Mathematics - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>PH5151</td>
<td>Engineering Physics</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>CY5151</td>
<td>Engineering Chemistry</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>BS5161</td>
<td>Basic Sciences Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>MA5252</td>
<td>Engineering Mathematics- II</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>MA5352</td>
<td>Numerical and Statistical Methods</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>GE5251</td>
<td>Environmental Sciences</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ENGINEERING SCIENCE COURSE [ESC]

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>1.</td>
<td>GE5151</td>
<td>Engineering Graphics</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>GE5162</td>
<td>Workshop Practices Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>GE5153</td>
<td>Problem Solving and Python programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>EE5251</td>
<td>Basics of Electrical and Electronics Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>GE5152</td>
<td>Engineering Mechanics</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>EE5261</td>
<td>Electrical and Electronics Engineering Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>GE5161</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>ML5352</td>
<td>Mechanics of Materials</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9.</td>
<td>CE5251</td>
<td>Fluid Mechanics and Machinery</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.</td>
<td>CE5313</td>
<td>Fluid Mechanics and Machinery Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>11.</td>
<td>CE5451</td>
<td>Plane and Geodetic</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12.</td>
<td>CE5461</td>
<td>Plane and Geodetic Surveying Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>13.</td>
<td>EE5305</td>
<td>Electrical Drives and Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sl. No</td>
<td>Course Code</td>
<td>Course Title</td>
<td>Periods per week</td>
<td>Credits</td>
<td>Semester</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--</td>
<td>------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>1.</td>
<td>AG5306</td>
<td>Geology for Mining-I</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>EE5305</td>
<td>Electrical Drives and Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>AG5313</td>
<td>Geology Laboratory - I</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>AG5401</td>
<td>Geology for Mining - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>ME5404</td>
<td>Basic Mechanical Engineering for Mining</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>MI5401</td>
<td>Mining Machinery-I</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>MI5402</td>
<td>Mine Environment and Ventilation</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td>AG5412</td>
<td>Geology Laboratory-II and Field Work**</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>MI5501</td>
<td>Surface Mining</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.</td>
<td>MI5502</td>
<td>Underground Mining Methods - Coal</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11.</td>
<td>MI5503</td>
<td>Rock Mechanics and Ground Control</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12.</td>
<td>MI5504</td>
<td>Mine Surveying</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13.</td>
<td>MI5511</td>
<td>Rock Mechanics and Ground Control Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>14.</td>
<td>MI5512</td>
<td>Mine Ventilation Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>15.</td>
<td>MI5602</td>
<td>Underground Mining Methods – Metal</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16.</td>
<td>MI5603</td>
<td>Mining Machinery-II</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17.</td>
<td>MI5604</td>
<td>Mineral Processing</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18.</td>
<td>MI5611</td>
<td>Mineral Processing Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>19.</td>
<td>MI5612</td>
<td>Rock Blasting Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>20.</td>
<td>MI5701</td>
<td>Mine Legislation and Safety</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21.</td>
<td>MI5702</td>
<td>Mine Planning and Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22.</td>
<td>MI5703</td>
<td>Mine Environmental Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23.</td>
<td>MI5711</td>
<td>Computer Aided Mine Planning and Design (CAMPAD) Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Professional Electives Courses

Semester VI, Elective – I

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MI5001</td>
<td>Applied Rock Engineering (RMGC-II)</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MI5002</td>
<td>Subsidence Engineering</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MI5003</td>
<td>Rock Reinforcement Engineering</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GE5451</td>
<td>Total Quality Management</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester VII, Elective – II

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MI5004</td>
<td>Computer Applications in Mining</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MI5005</td>
<td>Numerical Methods in Mining Engineering</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MI5006</td>
<td>Engineering Materials, Fuels and Assaying</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester VII, Elective – III

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MI5007</td>
<td>System Engineering in Mining</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MI5008</td>
<td>Small Scale Mining and Marine Mining</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MI5009</td>
<td>Energy Conservation and Management</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester VIII, Elective – IV

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MI5010</td>
<td>Drilling and Blasting Engineering</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MI5011</td>
<td>Rock Excavation Engineering</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MI5012</td>
<td>Advanced Rock Blasting Technology</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
SEMESTER VIII, ELECTIVE – V

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>CONTACT Periods</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MI5013</td>
<td>Environmental Management for Sustainable Mining</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ME5751</td>
<td>Finite Element Analysis</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>MI5014</td>
<td>Non-destructive Testing</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>GE5003</td>
<td>Mine Economics and Investment</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VIII, ELECTIVE – VI

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>CONTACT Periods</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MI5015</td>
<td>Rock Slope Engineering</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>MI5016</td>
<td>Material Handling</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>MI5017</td>
<td>Advanced Surface Mining Technology</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

AUDIT COURSES (AC)

Registration for any of these courses is optional to students.

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course</th>
<th>Course Title</th>
<th>Periods per week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AD5091</td>
<td>Constitution of India</td>
<td>3 0 0</td>
<td>3 0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>AD5092</td>
<td>Value Education</td>
<td>3 0 0</td>
<td>3 0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>AD5093</td>
<td>Pedagogy Studies</td>
<td>3 0 0</td>
<td>3 0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>AD5094</td>
<td>Stress Management by Yoga</td>
<td>3 0 0</td>
<td>3 0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>AD5095</td>
<td>Personality Development Through Life Enlightenment Skills</td>
<td>3 0 0</td>
<td>3 0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>AD5096</td>
<td>Unnat Bharat Abhiyan</td>
<td>3 0 0</td>
<td>3 0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>AD5097</td>
<td>Essence of Indian Knowledge Tradition</td>
<td>3 0 0</td>
<td>3 0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>AD5098</td>
<td>Sanga Tamil Literature Appreciation</td>
<td>3 0 0</td>
<td>3 0</td>
<td>0</td>
</tr>
</tbody>
</table>
EMPLOYABILITY ENHANCEMENT COURSES (EEC)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MI5311</td>
<td>Practical Training-I* (Surface Mine)</td>
<td>0 0 0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MI5513</td>
<td>Practical Training-II*</td>
<td>0 0 0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>MI5613</td>
<td>Survey Camp**</td>
<td>0 0 2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>4.</td>
<td>MI5712</td>
<td>Practical Training-III*</td>
<td>0 0 0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>5.</td>
<td>MI5713</td>
<td>Project I</td>
<td>0 0 6</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>6.</td>
<td>MI5811</td>
<td>Project II</td>
<td>0 0 16</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

SUMMARY

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Subject Area</th>
<th>Credits per Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HSMC</td>
<td>I II III IV V VI VII VIII</td>
<td>13</td>
</tr>
<tr>
<td>2.</td>
<td>BSC</td>
<td>12 4 4 0 0 3 0 0</td>
<td>23</td>
</tr>
<tr>
<td>3.</td>
<td>ESC</td>
<td>5 14 8 5 0 0 0 0</td>
<td>32</td>
</tr>
<tr>
<td>4.</td>
<td>PCC</td>
<td>0 3 7 13 15 12 10 0</td>
<td>60</td>
</tr>
<tr>
<td>5.</td>
<td>PEC</td>
<td>0 0 0 0 0 3 6 9</td>
<td>18</td>
</tr>
<tr>
<td>6.</td>
<td>OEC</td>
<td>0 0 0 0 0 3 3 0</td>
<td>6</td>
</tr>
<tr>
<td>7.</td>
<td>EEC</td>
<td>0 0 1 0 1 1 4 8</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>21 21 23 21 19 22 23 17</td>
<td>167</td>
</tr>
</tbody>
</table>

Non-Credit / (Audit course) | - - - - - - - -
COURSE OBJECTIVES:
The first semester English course entitled ‘Technical English’ aims to,
- Familiarise first year students of engineering and technology with the fundamental aspects of technical English.
- Develop all the four language skills by giving sufficient practice in the use of the skills in real life contexts.
- Enhance the linguistic and communicative competence of first year engineering and technology students.

UNIT I INTRODUCING ONESELF
Listening: Listening and filling a form, listening to speeches by specialists from various branches of engineering and completing activities such as answering questions, identifying the main ideas of the listening text, style of the speaker (tone and tenor) – Speaking: Introducing oneself – introducing friend/ family
Reading: Descriptive passages (from newspapers / magazines) – Writing: Writing a paragraph (native place, school life)
Grammar: Simple present, present continuous – Vocabulary Development: One word substitution

UNIT II DIALOGUE WRITING
Listening: Listening to conversations (asking for and giving directions) – Speaking: making conversation using (asking for directions, making an enquiry), Role plays-dialogues
Reading: Reading a print interview and answering comprehension questions – Writing: Writing a checklist, Dialogue writing
Grammar: Simple past – question formation (Wh- questions, Yes or No questions, Tag questions) – Vocabulary Development: Stress shift, lexical items related to the theme of the given unit.

UNIT III FORMAL LETTER WRITING
Listening: Listening to speeches by famous people and identifying the central message of the speech – answering multiple-choice questions) – Speaking: Giving short talks on a given topic
Reading: Reading motivational essays on famous engineers and technologists (answering open-ended and closed questions) – Writing: Writing formal letters/ emails (Complaint letters)
Grammar: Future Tense forms of verbs, subject and verb agreement – Vocabulary Development: Collocations – Fixed expressions

UNIT IV WRITING COMPLAINT LETTERS
Listening: Listening to short talks (5 minutes duration and fill a table, gap-filling exercise) note taking/note making – Speaking: Small group discussion, giving recommendations
Reading: Reading problem – solution articles/essays drawn from various sources – Writing: Making recommendations – Writing a letter/ sending an email to the Editor

UNIT V WRITING DEFINITIONS AND PRODUCT DESCRIPTION
Listening: Listening to a product description (labeling and gap filling) exercises – Speaking: Describing a product and comparing and contrasting it with other products
Reading: Reading graphical material for comparison (advertisements) – Writing: Writing Definitions (short and long) – compare and contrast paragraphs
Grammar: Adjectives – Degrees of comparison - compound nouns
Vocabulary Development: Use of discourse markers – suffixes (adjectival endings).

TOTAL : 60 PERIODS
LEARNING OUTCOMES
At the end of the course the students will have gained,

- Exposure to basic aspects of technical English.
- The confidence to communicate effectively in various academic situations.
- Learnt the use of basic features of Technical English.

TEXT BOOK:

ASSESSMENT PATTERN
- Assessments will assess all the four skills through both pen and paper and computer based tests.
- Assessments can be pen and paper based, quizzes.

MA5158 ENGINEERING MATHEMATICS – I
(Common to all branches of B.E. / B.Tech. Programmes in I Semester)

COURSE OBJECTIVES:
- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

UNIT I MATRICES

UNIT II DIFFERENTIAL CALCULUS

UNIT III FUNCTIONS OF SEVERAL VARIABLES

UNIT IV INTEGRAL CALCULUS
Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.
UNIT V MULTIPLE INTEGRALS

TOTAL :60 PERIODS

COURSE OUTCOMES:
At the end of the course the students will be able to
- Use the matrix algebra methods for solving practical problems.
- Apply differential calculus tools in solving various application problems.
- Able to use differential calculus ideas on several variable functions.
- Apply different methods of integration in solving practical problems.
- Apply multiple integral ideas in solving areas, volumes and other practical problems.

TEXT BOOKS:

REFERENCES:

PH5151 ENGINEERING PHYSICS
L T P C
3 0 0 3

(Course common to all branches of B.E / B.Tech programmes)

COURSE OBJECTIVES:
- To make the students in understanding the importance of mechanics.
- To equip the students on the knowledge of electromagnetic waves.
- To introduce the basics of oscillations, optics and lasers.
- To enable the students in understanding the importance of quantum physics.
- To elucidate the application of quantum mechanics towards the formation of energy bands in crystalline materials.
UNIT I MECHANICS 9

UNIT II ELECTROMAGNETIC WAVES 9
Gauss’s law – Faraday’s law - Ampere’s law - The Maxwell’s equations - wave equation; Plane electromagnetic waves in vacuum, Conditions on the wave field - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - polarization - Producing electromagnetic waves - Energy and momentum in EM waves: Intensity, waves from localized sources, momentum and radiation pressure - Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

UNIT III OSCILLATIONS, OPTICS AND LASERS 9

UNIT IV BASIC QUANTUM MECHANICS 9
Photons and light waves - Electrons and matter waves - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Particle in a infinite potential well - Normalization, probabilities and the correspondence principle.

UNIT V APPLIED QUANTUM MECHANICS 9
The harmonic oscillator - Barrier penetration and quantum tunneling - Tunneling microscope - Resonant diode - Finite potential wells - particle in a three dimensional box - Bloch’s theorem for particles in a periodic potential, Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completion of this course, the students should able to
- Understanding the importance of mechanics.
- Express the knowledge of electromagnetic waves.
- Know the basics of oscillations, optics and lasers.
- Understanding the importance of quantum physics.
- Apply quantum mechanical principles towards the formation of energy bands in crystalline materials.

TEXT BOOKS

REFERENCES
COURSE OBJECTIVES:
- To introduce the basic concepts of polymers, their properties and some of the important applications.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To facilitate the understanding of the laws of photochemistry, photo processes and instrumentation & applications of spectroscopic techniques.
- To familiarize the operating principles and applications of energy conversion, its processes and storage devices.
- To inculcate sound understanding of water quality parameters and water treatment techniques.

UNIT I POLYMER CHEMISTRY

UNIT II NANOCHEMISTRY

UNIT III PHOTOCHEMISTRY AND SPECTROSCOPY

UNIT IV ENERGY CONVERSIONS AND STORAGE
Nuclear fission - controlled nuclear fission - nuclear fusion - differences between nuclear fission and fusion - nuclear chain reactions - nuclear energy - light water nuclear power plant – fast breeder reactor. Solar energy conversion - solar cells. Wind energy. Batteries - types of batteries – primary battery (dry cell), secondary battery (lead acid, nickel-cadmium and lithium-ion-battery). Fuel cells – H₂-O₂ and microbial fuel cell. Explosives – classification, examples: TNT, RDX, Dynamite; Rocket fuels and propellants – definition and uses.

UNIT V WATER TECHNOLOGY

TOTAL: 45 PERIODS
COURSE OUTCOMES:
- To recognize and apply basic knowledge on different types of polymeric materials, their general preparation methods and applications to futuristic material fabrication needs.
- To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- To identify and apply suitable spectroscopic technique for material analysis and study different forms of photochemical reactions.
- To recognize different forms of energy resources and apply them for suitable applications in energy sectors.
- To demonstrate the knowledge of water and their quality in using at different industries.

TEXT BOOKS:

REFERENCES:

GE5151 ENGINEERING GRAPHICS

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
1. Drawing free hand sketches of basic geometrical shapes and multiple views of objects.
2. Drawing orthographic projections of lines and planes.
3. Drawing orthographic projections of solids.
4. Drawing development of the surfaces of objects.
5. Drawing isometric and perspective views of simple solids.

CONCEPTS AND CONVENTIONS (NOT FOR EXAMINATION)
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREE HANDSKETCHING
Basic Geometrical constructions, Curves used in engineering practices-Conics – Construction of ellipse, parabola and hyperbola by different methods – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves. Visualization concepts and Free Hand sketching: Visualization principles – Representation of Three-Dimensional objects – Layout of views- Free hand sketching of multiple views from pictorial views of objects
UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES 15
Orthographic projection- principles-Principle planes-First angle projection-Projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes- Determination of true lengths and true inclinations by rotating line method and trapezoidal method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS 15
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to both the principal planes by rotating object method and auxiliary plane method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 15
Sectioning of solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes.

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 12
Principles of isometric projection – isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems. Perspective projection of simple solids-Prisms pyramids and cylinders by visual ray method and vanishing point method.

COMPUTER AIDED DRAFTING (DEMONSTRATION ONLY) 3
Introduction to drafting packages and demonstration of their use

TOTAL (L: 15 + P: 60)=75 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
1. Draw free hand sketching of basic geometrical shapes and multiple views of objects.
2. Draw orthographic projections of lines and planes
3. Draw orthographic projections of solids
4. Draw development of the surfaces of objects
5. Draw isometric and perspective views of simple solids.

TEXT BOOKS:

REFERENCES:

Publication of Bureau of Indian Standards:
Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only.
4. The students will be permitted to use appropriate scale to fit solution within A3 size.
5. The examination will be conducted in appropriate sessions on the same day.

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.6</td>
<td>0.9</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.9</td>
<td></td>
<td>0.9</td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.6</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.9</td>
<td>0.6</td>
<td>0.9</td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.6</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.6</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BS5161 BASIC SCIENCES LABORATORY
(Common to all branches of B.E. / B.Tech Programmes)

PHYSICS LABORATORY: (Any Seven Experiments)

COURSE OBJECTIVES:
- To inculcate experimental skills to test basic understanding of physics of materials including properties of matter, thermal and optical properties.
- To induce the students to familiarize with experimental determination of velocity of ultrasonic waves and band gap determination.

LIST OF EXPERIMENTS:
1. Torsional pendulum - Determination of rigidity modulus of wire and moment of inertia of disc
2. Non-uniform bending - Determination of Young’s modulus
3. Uniform bending – Determination of Young’s modulus
4. Lee’s disc Determination of thermal conductivity of a bad conductor
5. Potentiometer-Determination of thermo e.m.f of a thermocouple
6. Laser- Determination of the wave length of the laser using grating
7. Air wedge - Determination of thickness of a thin sheet/wire
8. a) Optical fibre - Determination of Numerical Aperture and acceptance angle
 b) Compact disc - Determination of width of the groove using laser.
10. Ultrasonic interferometer – determination of the velocity of sound and compressibility of liquids
11. Post office box - Determination of Band gap of a semiconductor.
13. Photoelectric effect
14. Michelson Interferometer.
16. Melde’s string experiment

TOTAL: 30 PERIODS
COURSE OUTCOMES:
Upon completion of the course, the students will be able
- To determine various moduli of elasticity and also various thermal and optical properties of materials.
- To determine the velocity of ultrasonic waves, band gap determination and viscosity of liquids.

CHEMISTRY LABORATORY: (Minimum of 8 experiments to be conducted)

COURSE OBJECTIVES:
- To inculcate experimental skills to test basic understanding of water quality parameters, such as, acidity, alkalinity, hardness, DO, chloride and copper.
- To induce the students to familiarize with electroanalytical techniques such as, pHmetry, potentiometry and conductometry in the determination of impurities in aqueous solutions.
- To demonstrate the analysis of metals and polymers by spectroscopy and viscometry methods.

LIST OF EXPERIMENTS:
1. Estimation of HCl using Na₂CO₃ as primary standard and Determination of alkalinity in water sample.
2. Determination of total, temporary & permanent hardness of water by EDTA method.
3. Determination of DO content of water sample by Winkler’s method.
4. Determination of chloride content of water sample by argentometric method.
5. Estimation of copper content of the given solution by iodometry.
6. Determination of strength of given hydrochloric acid using pH meter.
7. Determination of strength of acids in a mixture of acids using conductivity meter.
8. Estimation of iron content of the given solution using potentiometer.
9. Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthroline / thiocyanate method).
10. Estimation of sodium and potassium present in water using flame photometer.
12. Pseudo first order kinetics-ester hydrolysis.
14. Phase change in a solid.

TOTAL: 30 PERIODS

COURSE OUTCOMES:
- To analyse the quality of water samples with respect to their acidity, alkalinity, hardness and DO.
- To determine the amount of metal ions through volumetric and spectroscopic techniques.
- To determine the molecular weight of polymers by viscometric method.
- To quantitatively analyse the impurities in solution by electroanalytical techniques.
- To design and analyse the kinetics of reactions and corrosion of metals.

TEXT BOOKS:
COURSE OBJECTIVES:
The main learning objective of this course is to provide hands on training to the students in:

1. Drawing pipe line plan; laying and connecting various pipe fittings used in common household plumbing work; Sawing; planing; making joints in wood materials used in common household wood work.
2. Wiring various electrical joints in common household electrical wire work.
3. Welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipments; Making a tray out of metal sheet using sheet metal work.
4. Soldering and testing simple electronic circuits; Assembling and testing simple electronic components on PCB.

GROUP – A (CIVIL & ELECTRICAL)

PART I CIVIL ENGINEERING PRACTICES 15

PLUMBING WORK:

a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in household.
b) Preparing plumbing line sketches.
c) Laying pipe connection to the suction side of a pump
d) Laying pipe connection to the delivery side of a pump.
e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK:

a) Sawing,
b) Planing and
c) Making joints like T-Joint, Mortise joint and Tenon joint and Dovetail joint.

Wood Work Study:

a) Studying joints in door panels and wooden furniture
b) Studying common industrial trusses using models.

PART II ELECTRICAL ENGINEERING PRACTICES 15

WIRING WORK:

a) Wiring Switches, Fuse, Indicator and Lamp etc. such as in basic household,
b) Wiring Stair case light.
c) Wiring tube – light.
d) Preparing wiring diagrams for a given situation.

Wiring Study:

a) Studying an Iron-Box wiring.
b) Studying a Fan Regulator wiring.
c) Studying an Emergency Lamp wiring.
GROUP – B (MECHANICAL AND ELECTRONICS)

PART III MECHANICAL ENGINEERING PRACTICES

WELDING WORK:
 a) Welding of Butt Joints, Lap Joints, and Tee Joints using arc welding.
 b) Practicing gas welding.

BASIC MACHINING WORK:
 a) (simple) Turning.
 b) (simple) Drilling.
 c) (simple) Tapping.

ASSEMBLY WORK:
 a) Assembling a centrifugal pump.
 b) Assembling a household mixer.
 c) Assembling an air conditioner.

SHEET METAL WORK:
 a) Making of a square tray

FOUNDRY WORK:
 a) Demonstrating basic foundry operations.

PART IV ELECTRONIC ENGINEERING PRACTICES

SOLDERING WORK:
 a) Soldering simple electronic circuits and checking continuity.

ELECTRONIC ASSEMBLY AND TESTING WORK:
 a) Assembling and testing electronic components on a small PCB.

ELECTRONIC EQUIPMENT STUDY:
 a) Studying a FM radio.
 b) Studying an electronic telephone.

TOTAL = 60 PERIODS

COURSE OUTCOMES: Upon completion of this course, the students will be able to:

1. Draw pipe line plan; lay and connect various pipe fittings used in common household plumbing work; Saw; plan; make joints in wood materials used in common household wood work.
2. Wire various electrical joints in common household electrical wire work.
3. Weld various joints in steel plates using arc welding work; Machine various simple processes like turning, drilling, tapping in parts; Assemble simple mechanical assembly of common household equipments; Make a tray out of metal sheet using sheet metal work.
4. Solder and test simple electronic circuits; Assemble and test simple electronic components on PCB.
COURSE OBJECTIVES:

- To acquaint the students with the concepts of vector calculus which naturally arises in many engineering problems.
- To develop an understanding of the standard techniques of complex variable theory in particular analytic function and its mapping property.
- To familiarize the students with complex integration techniques and contour integration techniques which can be used in real integrals.
- To acquaint the students with Differential Equations which are significantly used in Engineering problems.
- To make the students appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

UNIT I VECTOR CALCULUS 12

UNIT II ANALYTIC FUNCTION 12
Analytic functions – Necessary and sufficient conditions for analyticity - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by functions - Bilinear transformation \(w = c + z, \) \(az, \) \(1/z, \) \(z^2.\)

UNIT III COMPLEX INTEGRATION 12

UNIT IV DIFFERENTIAL EQUATIONS 12
Method of variation of parameters – Method of undetermined coefficients – Homogenous equations of Euler’s and Legendre’s type – System of simultaneous linear differential equations with constant coefficients.
UNIT V LAPLACE TRANSFORMS

TOTAL : 60 PERIODS

COURSE OUTCOMES:
Upon successful completion of the course, students will be able to:

- Calculate grad, div and curl and use Gauss, Stokes and Greens theorems to simplify calculations of integrals.
- Construct analytic functions and use their conformal mapping property in application problems.
- Evaluate real and complex integrals using the Cauchy’s integral formula and residue theorem.
- Apply various methods of solving differential equation which arise in many application problems.
- Apply Laplace transform methods for solving linear differential equations.

TEXT BOOKS:

REFERENCES:

GE5153 PROBLEM SOLVING AND PYTHON PROGRAMMING

COURSE OBJECTIVES:
- To know the basics of algorithmic problem solving.
- To develop Python programs with conditionals and loops.
- To define Python functions and use function calls.
- To use Python data structures - lists, tuples, dictionaries.
- To do input/output with files in Python.
UNIT I INTRODUCTION TO COMPUTING AND PROBLEM SOLVING 9

SUGGESTED ACTIVITIES:
- Developing Pseudocodes and flowcharts for real life activities such as railway ticket booking using IRCTC, admission process to undergraduate course, academic schedules during a semester etc.
- Developing algorithms for basic mathematical expressions using arithmetic operations.
- Installing Python.
- Simple programs on print statements, arithmetic operations.

SUGGESTED EVALUATION METHODS:
- Assignments on pseudocodes and flowcharts.
- Tutorials on Python programs.

UNIT II CONDITIONALS AND FUNCTIONS 9

SUGGESTED ACTIVITIES:
- Simple Python program implementation using Operators, Conditionals, Iterative Constructs and Functions.
- Implementation of a simple calculator.
- Developing simple applications like calendar, phone directory, to-do lists etc.
- Flow charts for GCD, Exponent Functions, Fibonacci Series using conditionals and iterative statements.
- External learning - Recursion vs. Iteration.

SUGGESTED EVALUATION METHODS:
- Tutorials on the above activities.
- Group discussion on external learning.

UNIT III SIMPLE DATA STRUCTURES IN PYTHON 10

SUGGESTED ACTIVITIES:
- Implementing python program using lists, tuples, sets for the following scenario:
 - Simple sorting techniques
 - Student Examination Report
 - Billing Scheme during shopping.
- External learning - List vs. Tuple vs. Set – Implementing any application using all the three data structures.

SUGGESTED EVALUATION METHODS:
- Tutorials on the above activities.
- Group Discussion on external learning component.
UNIT IV STRINGS, DICTIONARIES, MODULES

SUGGESTED ACTIVITIES:
- Implementing Python program by importing Time module, Math package etc.
- Creation of any package (student’s choice) and importing into the application.

SUGGESTED EVALUATION METHODS:
- Tutorials on the above activities.

UNIT V FILE HANDLING AND EXCEPTION HANDLING

Introduction to Files – File Path – Opening and Closing Files – Reading and Writing Files – File Position – Exception: Errors and Exceptions, Exception Handling, Multiple Exceptions.

SUGGESTED ACTIVITIES:
- Developing modules using Python to handle files and apply various operations on files.
- Usage of exceptions, multiple except blocks - for applications that use delimiters like age, range of numerals etc.
- Implementing Python program to open a non-existent file using exceptions.

SUGGESTED EVALUATION METHODS:
- Tutorials on the above activities.
- Case Studies.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On completion of the course, students will be able to:
CO1: Develop algorithmic solutions to simple computational problems.
CO2: Develop and execute simple Python programs.
CO3: Write simple Python programs for solving problems.
CO4: Decompose a Python program into functions.
CO5: Represent compound data using Python lists, tuples, dictionaries etc.
CO6: Read and write data from/to files in Python programs.

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
</tbody>
</table>

TEXT BOOKS:
REFERENCES:

EE5251 BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING L T P C
3 0 0 3

COURSE OBJECTIVES:
- To understand the basic concepts of electric circuits, magnetic circuits and wiring.
- To understand the operation of AC and DC machines.
- To understand the working principle of electronic devices and circuits.

UNIT I BASIC CIRCUITS AND DOMESTIC WIRING 9

UNIT II THREE PHASE CIRCUITS AND MAGNETIC CIRCUITS 9

UNIT III ELECTRICAL MACHINES 9

UNIT IV BASICS OF ELECTRONICS 9
Intrinsic semiconductors, Extrinsic semiconductors – P-type and N-type, P-N junction, VI Characteristics of PN junction diode, Zener effect, Zener diode, Zener diode Characteristics-Rectifier circuits-Wave shaping.

UNIT V CURRENT CONTROLLED AND VOLTAGE CONTROLLED DEVICES 9
Working principle and characteristics - BJT, SCR, JFET, MOSFET.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1 To be able to understand the concepts related with electrical circuits and wiring.
CO2 To be able to study the different three phase connections and the concepts of magnetic circuits.
CO3 Capable of understanding the operating principle of AC and DC machines.
CO4 To be able to understand the working principle of electronic devices such as diode and zener diode.
CO5 To be able to understand the characteristics and working of current controlled and voltage controlled devices.
<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
</tr>
</tbody>
</table>

TEXT BOOKS:

REFERENCES:

GE5152 ENGINEERING MECHANICS

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
1. Applying the various methods to determine the resultant forces and its equilibrium acting on a particle in 2D and 3D.
2. Applying the concept of reaction forces (non-concurrent coplanar and noncoplanar forces) and moment of various support systems with rigid bodies in 2D and 3D in equilibrium. Reducing the force, moment, and couple to an equivalent force - couple system acting on rigid bodies in 2D and 3D.
3. Applying the concepts of locating centroids center of gravity of various sections / volumes and to find out area moments of inertia for the sections and mass moment of inertia of solids.
4. Applying the concepts of frictional forces at the contact surfaces of various engineering systems.
5. Applying the various methods of evaluating kinetic and kinematic parameters of the rigid bodies subjected to concurrent coplanar forces.

UNIT I STATICS OF PARTICLES

UNIT II EQUILIBRIUM OF RIGID BODIES
UNIT III DISTRIBUTED FORCES (9+3)
Centroids of lines and areas – symmetrical and unsymmetrical shapes, Determination of Centroids by Integration , Theorems of Pappus-Guldinus, Distributed Loads on Beams, Centre of Gravity of a Three-Dimensional Body, Centroid of a Volume, Composite Bodies , Determination of Centroids of Volumes by Integration.
Moments of Inertia of Areas and Mass - Determination of the Moment of Inertia of an Area by Integration , Polar Moment of Inertia , Radius of Gyration of an Area , Parallel-Axis Theorem , Moments of Inertia of Composite Areas, Moments of Inertia of a Mass - Moments of Inertia of Thin Plates, Determination of the Moment of Inertia of a Three-Dimensional Body by Integration

UNIT IV FRICTION (9+3)

UNIT V DYNAMICS OF PARTICLES (9+3)

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
1. Apply the various methods to determine the resultant forces and its equilibrium acting on a particle in 2D and 3D.
2. Apply the concept of reaction forces (non-concurrent coplanar and noncoplanar forces) and moment of various support systems with rigid bodies in 2D and 3D in equilibrium. Reducing the force, moment, and couple to an equivalent force - couple system acting on rigid bodies in 2D and 3D.
3. Apply the concepts of locating centroids / center of gravity of various sections / volumes and to find out area moments of inertia for the sections and mass moment of inertia of solids.
4. Apply the concepts of frictional forces at the contact surfaces of various engineering systems.
5. Apply the various methods of evaluating kinetic and kinematic parameters of the rigid bodies subjected to concurrent coplanar forces.

TEXT BOOKS:

REFERENCES:
MI5201 MINE DEVELOPMENT

COURSE OBJECTIVES:
1. To demonstrate the importance of mining in national economy
2. To impart the terminology associated with the discipline and be familiar with the safe & sustainable mining operations.
3. To study the basic concepts involved in exploration & drilling, blasting and development of a mine.

UNIT I INTRODUCTION TO MINING
Historical overview of mining, role of the mining industry in the modern world and contribution to national economy; Role of mining engineers in industry. Statute related to Mining Industry; Present and future trends of mining industry. Mineral deposit – different types and their classification; Distribution of mineral deposits in India and other countries; Stages in the life of a mine—prospecting, exploration, development, exploitation and reclamation.

UNIT II ACCESS TO DEPOSIT
Choice, location and size of mine entries – adit, shaft, incline and combined mode; Sinking methods through soft, strong and water bearing strata, support system, ventilation, lighting and drainage arrangements during sinking, material handling and safety in sinking shafts. Introduction to piling, caisson and freezing methods - cementation method - widening and deepening of shafts. Modern techniques of shaft sinking – shaft boring, design of shaft insets, pit bottom excavation and shaft raising. Recent developments in shaft sinking.

UNIT III DRILLING AND BLASTING
Principles of drilling, Types of drilling methods and equipments, selection, applications and limitations, exploration and production drilling in surface and underground workings, Explosives and accessories, handling and storage, transportation of explosives; Mechanism of rock blasting, Overview of Environmental impacts due to blasting.

UNIT IV DRIFTING AND TUNNELING
Drivage of drifts, organisation and cycle of operations; support system, ventilation, lighting and drainage arrangements during development; modern methods of drifting, continuous miners, tunnelling, road heading and tunnel boring, recent developments in tunneling and drifting.

UNIT V MINING METHODS
Introduction to mining methods – selection criteria & comparison. Overview of surface mining: Types of surface mines - basic bench geometry, applicability & limitations. Overview of underground mining: Different coal mining methods and their applicability & limitations; Different metal mining methods and their applicability & limitations.

TOTAL: 60 PERIODS
The students will have ability

1. To understand the distribution of mineral deposits, and mining terminology
2. To analyze design requirement of approach to mineral deposits
3. To obtain fundamentals related to the drilling and blasting operations.
4. To acquire basic knowledge on drifting and tunnelling.
5. To learn the overview of mining operations in underground and surface mines.

TEXT BOOKS:

REFERENCES:
3. Universal Mining School - Lecture notes, cardiff, U.K

PRACTICAL:
1. To study the various aspects of rotary diamond drilling used in exploration.
2. To study the various aspects of percussive and rotary percussive drilling.
3. To study salient features of a mechanised shaft sinking operations.
4. To study different types of shaft lining & special methods of shaft sinking.
5. To study different types of explosives and accessories used in blasting.
6. To study different types of opencast and underground drilling and initiation patterns.
7. To study different types of alternatives to blasting.
8. To study the salient features of a tunnel boring machine.

GE5161 PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY

COURSE OBJECTIVES:
- To understand the problem solving approaches.
- To learn the basic programming constructs in Python.
- To articulate where computing strategies support in providing Python-based solutions to real world problems.
- To use Python data structures - lists, tuples, dictionaries.
- To do input/output with files in Python.
EXPERIMENTS:
1. Identification and solving of simple real life or scientific or technical problems, and developing flow charts for the same.
2. Python programming using simple statements and expressions.
3. Scientific problems using Conditionals and Iterative loops.
4. Implementing real-time/technical applications using Lists, Tuples.
5. Implementing real-time/technical applications using Sets, Dictionaries.
6. Implementing programs using Functions.
7. Implementing programs using Strings.
9. Implementing real-time/technical applications using File handling.
10. Implementing real-time/technical applications using Exception handling.
12. Developing a game activity using Pygame like bouncing ball, car race etc.

TOTAL: 60 PERIODS

COURSE OUTCOMES:
On completion of the course, students will be able to:
CO1: Develop algorithmic solutions to simple computational problems
CO2: Develop and execute simple Python programs.
CO3: Structure simple Python programs for solving problems.
CO4: Decompose a Python program into functions.
CO5: Represent compound data using Python data structures.
CO6: Apply Python features in developing software applications.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>❑</td>
<td>❑</td>
<td>❑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

EE5261 ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY L T P C
0 0 4 2

COURSE OBJECTIVES:
1. To impart hands on experience in verification of circuit laws and measurement of circuit parameters
2. To train the students in performing various tests on electrical motors.
3. It also gives practical exposure to the usage of CRO, power sources & function generators

LIST OF EXPERIMENTS
1. Verification of Kirchhoff’s Law.
2. Steady state response of AC and DC circuits (Mesh, Node Analysis)
3. Frequency response of RLC circuits.
5. Regulation of single phase transformer.
6. Performance characteristics of DC shunt generator.
7. Performance characteristics of single phase induction motor.
8. Characteristics of PN diode and Zener diode
9. Characteristics of Zener diode
10. Half wave and full wave Rectifiers
11. Application of Zener diode as shunt regulator.
12. Characteristics of BJT and JFET

TOTAL: 60 PERIODS

COURSE OUTCOMES:
1. To become familiar with the basic circuit components and know how to connect them to make a real electrical circuit;
2. Ability to perform speed characteristic of different electrical machines
3. Ability to use logic gates and Flip flops

MA5352 NUMERICAL AND STATISTICAL METHODS

COURSE OBJECTIVES:
1. To understand and apply numerical methods for solving systems of linear equations
2. To understand and apply numerical integration and differentiation
3. To solving initial value problems of ordinary differential equations numerically
4. To provide an understanding of the statistical methods and concepts by which real-life problems are analyzed
5. To analyze various datas by using Statistical Techniques.

UNIT I ROOT FINDING METHOD AND SYSTEM OF LINEAR EQUATIONS

UNIT II INTERPOLATION, NUMERICAL DIFFERENTIATION AND INTEGRATION
Difference table – Newton’s forward and backward interpolation for equal intervals – Newton’s divided differences – Lagrangian interpolation – Differentiation formulae – Trapezoidal and Simpson rules Gaussian-Quadrature formulae

UNIT III IVP FOR DIFFERENTIAL EQUATIONS

UNIT IV ESTIMATION THEORY

UNIT V TESTING OF HYPOTHESIS
Sampling distributions – Type I and Type II errors – Tests based on Normal, t, ² and F distributions for testing of mean, variance and proportions – Tests for Independence of attributes and Goodness of fit.

TOTAL: 60 PERIODS

COURSE OUTCOMES:
At the end of the course, students will be able to
- Develop a good understanding of the various methods used for the numerical solution of scientific problems.
- Solve system of linear equations and initial value problems of ordinary differential equations numerically.
- Understand the value of probability and Statistics in acquiring knowledge and making decisions.
- Develop an ability to apply statistical tests in experiments, as well as to analyze and interpret data.
- Use the statistical tools for their Project work and their future research.

TEXT BOOKS

REFERENCES

ML5352 MECHANICS OF MATERIALS

COURSE OBJECTIVES:

The main learning objective of this course is to prepare students for:

1. Applying the principle concepts behind stress, strain and deformation of solids for various engineering applications.
2. Analyzing the transverse loading on beams and stresses in beam for various engineering applications.
3. Analyzing the torsion principles on shafts and springs for various engineering applications.
4. Analyzing the deflection of beams for various engineering applications.
5. Analyzing the thin and thick shells and principal stresses in beam for various engineering applications

UNIT I STRESS, STRAIN AND DEFORMATION OF SOLIDS

Rigid bodies and deformable solids – Tension, Compression and Shear Stresses – Deformation of simple and compound bars – Thermal stresses – Elastic constants – Volumetric strains

UNIT II TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM

Beams – types transverse loading on beams – Shear force and bending moment in beams – Cantilevers – Simply supported beams and over – hanging beams. Theory of simple bending
– Bending stress distribution – Flitched beams – Shear stress distribution.

UNIT III
TORSION
9
Torsion formulation stresses and deformation in circular and hollows shafts – Stepped shafts – Deflection in shafts fixed at the both ends – Stresses in helical springs – Deflection of helical springs, carriage springs.

UNIT IV
DEFLECTION OF BEAMS
9
Double Integration method – Macaulay’s method – Area moment Theorems for computation of slopes and deflections in beams - Conjugate beam and strain energy – Maxwell’s reciprocal theorems.

UNIT V
THICK & THIN SHELLS & PRINCIPAL STRESSES
9
Stresses in thin cylindrical shell due to internal pressure, circumferential and longitudinal stresses and deformation in thin cylinders – spherical shells subjected to internal pressure – Deformation in spherical shells – Lame’s theory – Application of theories of failure – Stresses on inclined planes – principal stresses and principal planes – Mohr’s circle of stress.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
1. Apply the principle concepts behind stress, strain and deformation of solids for various engineering applications.
2. Analyze the transverse loading on beams and stresses in beam for various engineering applications.
3. Analyze the torsion principles on shafts and springs for various engineering applications.
4. Analyze the deflection of beams for various engineering applications.
5. Analyze the thin and thick shells and principal stresses in beam for various engineering applications.

TEXT BOOKS:

REFERENCES:

Table:

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

38
AG5306 GEOLOGY FOR MINING-I L T P C 3 0 0 3

COURSE OBJECTIVE:
To familiarize the students with the fundamental concepts of geology and its role in mining Engineering.

UNIT I GENERAL GEOLOGY 9

UNIT II LANDFORMS & STRATIGRAPHY 9
Fluvial, Marine, Glacial and Aeolian: processes and landforms – sea bottom profile and deposits in ocean - Introduction to Geological time scale – distribution of mineral resources and economic importance of Archaen, Paleozoic, Mesozoic and Cenozoic rocks in India. Geology of Tamil Nadu.

UNIT III MINERALOGY 9
Classification of minerals - Physical properties of minerals - properties, composition and uses of Quartz, Feldspar, Pyroxene, Amphibole, Mica, Olivine, Calcite and Garnet group of minerals -Clay minerals and their importance.

UNIT IV PETROLOGY 9
Classification of rocks – Origin and mode of occurrence of igneous, sedimentary and metamorphic rocks - Description of Igneous rocks: granite, syenite, dolerite, basalt, gabbro, anorthosite and dunite – Description of sedimentary rocks: conglomerate, breccia, sandstone, limestone and shale - Description of metamorphic rocks: slate, phyllite, quartzite, marble, charnockite, gneiss and schist. - Engineering properties of rocks: field and laboratory tests.

UNIT V STRUCTURAL GEOLOGY 9
Introduction to geological structures – attitudes of beds: strike and dip – Description and classifications of folds, faults, joints and unconformities - recognition of geological structures in the field and their significance in mineral occurrence and exploration.

TOTAL= 45 PERIODS

COURSE OUTCOME:
To lay emphasis on the study of minerals, rocks and structures. At the end of the course the students will have an understanding of geological formations and structural features.

REFERENCES:
COURSE OBJECTIVE:
To introduce the students about properties of the fluids, behaviour of fluids under static conditions and to impart basic knowledge of the dynamics of fluids and to expose to the applications of the conservation laws to a) flow measurements b) flow through pipes (both laminar and turbulent) and c) forces on pipe bends with an exposure to the significance of boundary layer theory and its thicknesses with expose to basic principles of working of hydraulic machineries and to design Pelton wheel, Francis and Kaplan turbine, centrifugal and reciprocating pumps.

UNIT I FLUID PROPERTIES AND FLOW CHARACTERISTICS 10
Properties of fluids- Pressure Measurements-Buoyancy and floatation-Flow characteristics- Eulerian and Lagrangian Principle of fluid flow– concept of control volume and system – Reynold’s transportation theorem- continuity equation, energy equation and momentum equation-Applications.

UNIT II FLOW THROUGH PIPES AND BOUNDARY LAYER 9

UNIT III DIMENSIONAL ANALYSIS AND MODEL STUDIES 7
Fundamental dimensions - Dimensional homogeneity - Rayleigh’s method and Buckingham Pi theorem - Dimensionless parameters - Similitude and model studies - Distorted and undistorted models.

UNIT IV TURBINES 10

UNIT V PUMPS 9
Classification of pumps- Centrifugal pumps– working principle - Heads and efficiencies– Velocity triangles- Work done by the impeller - performance curves - Reciprocating pump working principle – indicator diagram and it’s variations – work saved by fitting air vessels.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On completion of the course, the student is expected to be able to

CO1 Understand the difference between solid and fluid, its properties and behaviour in static conditions.

CO2 Understand the conservation laws applicable to fluids and its application through fluid kinematics and dynamics.

CO3 Formulate the relationship among the parameters involved in the given fluid phenomenon and to predict the performances of prototype by model studies.

CO4 Estimate losses in pipelines for both laminar and turbulent conditions and analysis of pipes connected in series and parallel.

CO5 Understand the concept of boundary layer and its application to find the drag force excreted by the fluid on the flat solid surface.
TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>Course Outcome</th>
<th>Overall Correlation of COs to POs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO1</td>
<td>CO2</td>
</tr>
<tr>
<td>PO1 Knowledge of Engineering Sciences</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>PO2 Problem analysis</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>PO3 Design / development of solutions</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>PO4 Investigation</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>PO5 Modern Tool Usage</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>PO6 Individual and Team work</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>PO7 Communication</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>PO8 Engineer and Society</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>PO9 Ethics</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>PO10 Environment and Sustainability</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>PO11 Project Management and Finance</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>PO12 Life Long Learning</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>PSO1 Knowledge of Civil Engineering discipline</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>PSO2 Critical analysis of Civil Engineering problems and innovation</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>PSO3 Conceptualization and evaluation of engineering solutions to Civil Engineering Issues</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
To impart knowledge on
- Basics of electric drives
- Different speed control methods
- Various motor starters and controllers
- Applications

UNIT I INTRODUCTION 9

UNIT II SPEED CONTROL OF DC MACHINES 9

UNIT III SPEED CONTROL OF AC MACHINES 9
Induction motor – speed torque characteristics – pole changing, stator frequency variation – stator voltage variations - slip-ring induction motor: rotor resistance variation, slip power recovery scheme – basic inverter circuits- variable voltage frequency control - constant torque and constant power mode of operation.

UNIT IV MOTOR STARTERS AND CONTROLLERS 9
DC motor starters using voltage sensing relays, current sensing relays and time delay relays - wound rotor induction motor starters – starters using frequency sensing relays -DOL –starter

UNIT V HEATING AND POWER RATING OF DRIVE MOTORS 9
Load diagram, over load capacity, insulating materials, heating and cooling of motors, service condition of electric drive – classes of duty – industrial application of DC and AC drives in mining.

COURSE OUTCOME:
- Upon completion of this subject, the student will be able to explain different types of electrical machines and their performance in various electric drives applications.

TEXT BOOKS:

REFERENCES:
COURSE OBJECTIVE:
To provide hands on experience on verification of energy and momentum conservation laws, calibration of flow meters, performance characteristics of pumps and turbines.

LIST OF EXPERIMENTS

A. FLOW MEASUREMENT
1. Verification of Bernoulli’s theorem
2. Flow through orifice/venturi meter
3. Friction factor for flow through pipes
4. Impact of jet on fixed plate

B. METACENTER
5. Determination of metacentric height

C. PUMPS
6. Characteristics of centrifugal pumps
7. Characteristics of gear pump
8. Characteristics of submersible pump
9. Characteristics of reciprocating pump

D. TURBINES
10. Characteristics of Pelton wheel turbine

TOTAL: 60 PERIODS

COURSE OUTCOMES:
On completion of the course, the student is expected to be able to

CO1 Verify and apply Bernoulli equation for flow measurement like orifice/venturi meter.

CO2 Measure friction factor in pipes and compare with Moody diagram and verify momentum conservation law.

CO3 Determine the performance characteristics of rotodynamic pumps.

CO4 Determine the performance characteristics of positive displacement pumps.

CO5 Determine the performance characteristics of turbine.

REFERENCES:
<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>Course Outcome</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>Overall Correlation of COs to POs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Knowledge of Engineering Sciences</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>PO2</td>
<td>Problem analysis</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>PO3</td>
<td>Design / development of solutions</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>PO4</td>
<td>Investigation</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>PO6</td>
<td>Individual and Team work</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>PO7</td>
<td>Communication</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>PO8</td>
<td>Engineer and Society</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>PO9</td>
<td>Ethics</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>PO10</td>
<td>Environment and Sustainability</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>PO11</td>
<td>Project Management and Finance</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>PO12</td>
<td>Life Long Learning</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>PSO1</td>
<td>Knowledge of Civil Engineering discipline</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>PSO2</td>
<td>Critical analysis of Civil Engineering problems and innovation</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>PSO3</td>
<td>Conceptualization and evaluation of engineering solutions to Civil Engineering Issues</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

L - Low, M – Medium, H - High
AG5313 GEOLOGY LABORATORY - I L T P C 0 0 2 1

COURSE OBJECTIVE:
To familiarize the students with practical techniques of geological mapping and field work

UNIT I IDENTIFICATION OF MINERALS 6
Identification and study of physical properties of quartz, feldspars, mica and their varieties, of talc, hornblende, augite, diopside, hypersthene, calcite, fluorite, topaz, tourmaline, corundum, gypsum, kyanite, and stilimanite. Study of minerals in Moh's scale of hardness.

UNIT II IDENTIFICATION OF ROCKS 6
Identification and description of igneous rocks - plutonic, hypabyssal and volcanic: granite, syenite, dolerite, basalt, gabbro and dunite – Sedimentary rocks: conglomerate, breccia, sandstone, limestone and shale - Metamorphic rocks: slate, phyllite, quartzite, marble, charnockite, gneiss and schist.

UNIT III STRUCTURAL GEOLOGY PROBLEMS 6
Strike dip and calculations - Exercises on structural maps of geological site and interpretation of geological conditions - 3 point and 4 point borehole problems to decipher the subsurface geological conditions for mining of resources - Determination of stratal thickness – true width calculations from borehole data.

UNIT IV GEOLOGICAL MAPPING TECHNIQUES 6

UNIT V GEOLOGICAL FIELD WORK 6
Measurement of Strike and Dip in the field using Brunton Compass and Clinometer. Visit to important geological sites and industries.

TOTAL = 30 PERIODS

COURSE OUTCOME:
At the end of the course the students will have an understanding of minerals and rocks, handling of geological field equipments and geological mapping.

REFERENCES:
COURSE OBJECTIVES:
1. To learn various unit operations carried out in the surface mine.
2. To expose the basic operations of different heavy earth moving machinery (HEMM) deployed in the surface mine.
3. To impart practical experience to the student for gaining deeper understanding of the various activities and principles of surface mining.

Gaining practical experience is an important aspect of the mining engineering programme having many characteristic features of its own. The students have to undergo training in surface coal mines/highly mechanized open pit mines of metalliferous deposits during the summer vacation at the end of the II Semester for a period of 2 to 3 weeks and obtain a valid certificate from the competent authority of the organization provide training. The students have to submit a report on the training which would be evaluated during the ensuing III Semester. This carries a total of one credit during the III Semester. Evaluation would be done by a faculty or a group of faculties on different marking heads such as training, viva voce report etc., or other approved evaluation systems as per the approved regulations.

Normally a student is not permitted to withdraw from the practical training. In case of any unforeseen circumstances / valid reasons if he could not undergo the training as scheduled, on the recommendation of the Head of the Department and approval by the competent authority the student may be permitted to undergo Practical Training-I subsequently without affecting the academic schedule before undergoing Practical Training-II. The decision of the competent authority is final.

COURSE OUTCOMES:
The students will be able to
1. Understand the geology of the deposit amenable for surface mining.
2. Learn the preparation of various plans and design of the surface mine.
3. Acquire adequate knowledge on bench geometry and other significant parameters associated with mine construction.
4. Comprehend the knowledge on working of various HEMM deployed for different unit operations in the surface mines.
5. Understand the methods of stockpiling, dumping and reclamation techniques, mine dewatering, processing facilities and safety aspects related to mining.
COURSE OBJECTIVE:
To study about the origin, distribution of economic mineral deposits and various techniques available for their exploration.

UNIT I FORMATION OF ORE DEPOSITS
Processes of formation of ore minerals: deposits formed from magmatic, hydrothermal, residual, volcanic, sedimentation, mechanical concentration, oxidation and supergene enrichment and evaporation processes – ore-suites and types.

UNIT II ORE GEOLOGY
Metallic deposits: Properties and varieties of iron ores, copper ores, lead ores, zinc ores, aluminum ores, chromium ores and manganese ores and their distribution in India. Gold, silver and molybdenum deposits and their distribution in India. Study of non-metallic and industrial minerals: minerals used in ceramic, refractory, abrasive, glass, fertilizer, paint and electric industries- study of gemstones and their occurrences.

UNIT III FUEL GEOLOGY
Origin, physical properties, process of formation of coal deposits – classification and rank of coal – origin and process of formation of petroleum deposits - migration and accumulation of oil and natural gas, different types of traps – Introduction to gas hydrates and nuclear mineral deposits - occurrence and distribution of coal, hydrocarbon and nuclear fuels in India.

UNIT IV GEOPROSPECTING
Exploration techniques: geological mapping, trenching, pitting, drilling and 3-D modeling - Geophysical prospecting methods – electrical, seismic, magnetic, gravity and radioactive methods of exploration – Subsurface logging and their importance in exploration: GPR surveying.

UNIT V REMOTE SENSING AND GIS
Introduction to aerial photography and satellite remote sensing: components of remote sensing and EMR - photo recognition elements and interpretation of satellite imagery for geological mapping – Geographical Information System: components, raster and vector GIS, overlay and buffering techniques for geological mapping and mineral exploration.

TOTAL = 45 PERIODS

COURSE OUTCOME
To familiarize the students with the economic mineral deposits, and the techniques used to explore such deposits.

REFERENCES
COURSE OBJECTIVES:
To give an overall understanding on prime areas of mechanical engineering like Thermodynamics, Heat transfer, IC engines, Power Transmission and Machine elements for Mining Engineering students.

UNIT I BASIC CONCEPTS OF THERMODYNAMICS AND HEAT TRANSFER 6

UNIT II IC ENGINES AND AIR CONDITIONING 6

UNIT III POWER TRANSMISSION 6
Friction in screw threads, bearings, mechanical and hydraulic clutches. Rope, belt and chain. Gears – nomenclature, laws of gearing, types of gears including rack and pinion, interference, gear trains, power calculation in couplings, clutches and brakes.

UNIT IV KINEMATICS OF MACHINES 6

UNIT V ROTODYNAMIC AND VIBRATORY MACHINES 6
* Approved HEAT and Mass Transfer and PSG Design Data Book is permitted to use in the examinations.

TOTAL: 30 PERIODS

COURSE OUTCOMES:
(i) ability to use of thermal experiments related to IC and refrigeration and airconditioning
(ii) ability to use of various engineering design experiments

TEXT BOOKS:
REFERENCES:

PRACTICALS:
THERMAL EXPERIMENTS
1. Study of I.C. engines and components
2. Performance test on 4 S diesel engine
3. Performance test on reciprocating air-compressor

ENGINEERING DESIGN
1. Cam displacement and velocity analysis
2. Whirling of shaft-determination of critical speed of shaft with concentrated loads
4. Vibrating system – spring mass system – determination of damping co-efficient of single degree of freedom system.
5. Transverse vibration – free – beam, determination of natural frequency and deflection of beam.

15 PERIODS
TOTAL (30 + 15): 45 PERIODS

OBJECTIVES:
1. To understand the electrical layouts and power distribution in mine.
2. To study the rope haulage layouts, technical details and applications.
3. To study the various modes of transport means and electrical circuits.
4. To study the types of pumps, installations and design calculations.

UNIT I INTRODUCTION
Different types of motive power used in mines – their fields of application, relative merits and demerits; transmission and distribution of compressed air in mines, compressed air drills. Elements of the transport system, classification and techno-economic indices.

UNIT II ROPE HAULAGE
Wire ropes – classification, construction, fields of application, rope capping and splicing; deterioration of rope in use and its prevention; testing of ropes, selection and maintenance, rope calculations. Rail Track and tubs– gauge; layout, curves, turnouts and cross-over, track maintenance, main features of rolling stock like tubs, mine cars man riding cars and tipplers; Types of rope haulages – merits, demerits and fields of application, constructional features, safety appliances and rope haulage calculations.

UNIT III OTHER TRANSPORT SYSTEMS
Locomotives – diesel, trolley-wire, battery locomotives, constructional features and safety devices and comparison of different types; underground and surface battery charging stations and safety measures, locomotive calculations; shuttle cars, underground trucks, load-haul- dumpers, SDL vehicles, aerial rope ways, gravity transport, principles of hydraulic & pneumatic transportation and their fields of application, electric layouts, man-riding systems.
UNIT IV PUMPING & CONVEYING

Different types of drives, installation and maintenance of pumps and pipes in shafts and roadways, electrical layouts, various sources of water in mines, design of sumps.
Face haulage and conveyors - Scraper chain conveyors, AFCs, belt conveyors, shaking and vibrating conveyors, armoured flexible conveyors, high angle conveying, electrical layouts.

UNIT V MINE ELECTRICAL ENGINEERING

Distribution of electric power in mines, types of mine cables and their fields of applications, mining switch gears and their installation in hazardous atmosphere, flame proof enclosures, intrinsically safe circuits, (examples) safety aspects and signalling. Mine telephone system and latest development in mine communications.

TOTAL: 60 Periods

COURSE OUTCOMES:
The students will be able to
1. Obtain basic knowledge on motive power used in mines, pumping,
2. Understand the basic concepts related to rope haulage and face haulage.
3. Learn the design and constructional features of primary equipments used for loading and transportation in the underground mines.
4. Enhance the knowledge on concepts related to pumping & conveying transport systems.
5. Learn fundamental knowledge about mine electrical engineering in all statutory aspects.

TEXT BOOKS

REFERENCES:

PRACTICALS
1. Study and construction of different types of wire ropes and types of rope cappels used for rope haulages & winding,
2. Study of Construction of compressed air operated drill.
3. Study of Tensioning arrangement in endless haulage and different types of haulage clips and other means of attachment of tubs to the rope.
4. Study of haulage track, curves, diamond crossing, construction of mine tubs and cars along with their couplings.
5. Study of safety devices provided on rope haulage roads and locomotives, roadways - Exhaust conditioner and flame traps & underground battery charging station layout
6. Study of Electrical power distribution in mines, electrical layout for rope haulages and pumps, Electrical and hydraulic layouts for longwall faces.
7. Study of aerial rope ways – driving/tensioning/loading/unloading and angle stations their carriages and tightness.
COURSE OBJECTIVES:
1. Introduce the components of underground mine atmosphere and measurement methods and instrumentation.
2. To impart knowledge on various factors affecting mine environment.
3. To deal with principal laws governing mine ventilation and various ventilation systems.
4. To study with various ventilation control systems

UNIT I MINE GASES 12
Occurrence, properties, physiological effects, detection – types of instruments, construction, measurement and analysis, methane layering, methane drainage. Methods of ventilation survey, Instruments required for ventilation survey,

UNIT II MINE CLIMATE AND CONTROL 9
Psychometric properties of air, Sources of heat and humidity in mines and their effects, cooling power of mine air and methods of improving cooling power including air conditioning.

UNIT III PRINCIPAL LAWS OF AIR MOVEMENT IN UNDERGROUND 9
Fundamentals of fluid flow and its application in mine ventilation with special reference to Bernoulli’s Equation, Reynolds number, Poiseuille’s equation, Atkinson’s equation, Karman-Brandt equation for rough flows, resistance of mine roadways, friction and shock resistance,

UNIT IV NATURAL VENTILATION AND AIR CURRENT DISTRIBUTION IN MINES 9
Natural ventilation, effect of depth, temperature, pressure, etc. distribution of air current in mines – splitting, stopping, regulators, ventilation doors, air crossings, controlled recirculation, etc. boundary, accessional, decensional, homotropal and antitropal ventilation systems, Ventilation in deep and hot mines, remedial measures.

UNIT V MECHANICAL VENTILATION & VENTILATION PLANNING 9
Main mechanical ventilators, booster fans and auxiliary fans, and their selection, installation, fan performance, characteristics and testing, fans in series and parallel, fan drifts and evasees, reversal of air current, forcing versus exhaust ventilation, ventilation of long headings including overlap systems. Calculation of pressure and quantity requirements, economic analysis, ventilation standards, network analysis, monitoring of mine environment.

TOTAL 45 PERIODS

COURSE OUTCOMES:
1. The students will obtain a basic knowledge about mine gases their properties and effects.
2. The students will have basic knowledge of underground mine atmosphere, ventilation methods, parameters influencing mine environment, measurement methods and instrumentation.
3. They will have knowledge about the principal laws governing mine ventilation systems.
4. The students will get adequate knowledge about natural ventilation and air distribution in mines.
5. The students will obtain a knowledge about ventilation monitoring and planning.

TEXT BOOKS:
REFERENCES:

CE5451 PLANE AND GEODETIC SURVEYING L T P C
 3 0 0 3

COURSE OBJECTIVE:
• To learn the various methods of plane and geodetic surveying for solving real world problems.

UNIT I FUNDAMENTALS OF SURVEYING 9
Classifications and basic principles of surveying – Equipment and accessories for ranging and chaining – Basic principles Compass surveying - Plane Table Surveying accessories and methods - Levels and staves - Methods of levelling - Booking - Reduction – Curvature and refraction correction – Contouring.

UNIT II THEODOLITE SURVEYING AND COMPUTATIONS 9
Horizontal and vertical angle measurements by Theodolite – Heights and distances– Tacheometric surveying – Trigonometric levelling - Computation of cross sectional areas and volumes - Earthwork calculations - Mass haul diagrams.

UNIT III CONTROL SURVEYING AND ADJUSTMENT 9

UNIT IV MODERN SURVEYING 9

UNIT V MISCELLANY 9

TOTAL: 45 PERIODS
COURSE OUTCOMES:

CO1 Introduce the rudiments of various surveying and its principles.
CO2 Imparts concepts of Theodolite Surveying and computation of area and volume calculation.
CO3 Understand the procedure for establishing horizontal and vertical control and its adjustment procedure.
CO4 Introduce the basics of Electronic Surveying
CO5 Initiate the knowledge in Route surveying, Hydrographic surveying and Field Astronomical surveying.

TEXT BOOKS:

REFERENCES:

CO – PO Mapping – Plane and Geodetic Surveying

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>Course Outcome</th>
<th>Overall Correlation of CO s to POs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO1</td>
<td>CO2</td>
</tr>
<tr>
<td>PO1</td>
<td>Knowledge of Engineering Sciences</td>
<td>M</td>
</tr>
<tr>
<td>PO2</td>
<td>Problem analysis</td>
<td>M</td>
</tr>
<tr>
<td>PO3</td>
<td>Design / development of solutions</td>
<td>L</td>
</tr>
<tr>
<td>PO4</td>
<td>Investigation</td>
<td>L</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td>M</td>
</tr>
<tr>
<td>PO6</td>
<td>Individual and Team work</td>
<td>M</td>
</tr>
<tr>
<td>PO7</td>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>PO8</td>
<td>Engineer and Society</td>
<td>M</td>
</tr>
<tr>
<td>PO9</td>
<td>Ethics</td>
<td></td>
</tr>
<tr>
<td>PO10</td>
<td>Environment and Sustainability</td>
<td></td>
</tr>
<tr>
<td>PO11</td>
<td>Project Management and Finance</td>
<td></td>
</tr>
<tr>
<td>PO12</td>
<td>Life Long Learning</td>
<td>L</td>
</tr>
<tr>
<td>PSO1</td>
<td>Knowledge of Civil Engineering discipline</td>
<td></td>
</tr>
<tr>
<td>PSO2</td>
<td>Critical analysis of Civil Engineering problems and innovation</td>
<td></td>
</tr>
<tr>
<td>PSO3</td>
<td>Conceptualization and evaluation of engineering solutions to Civil Engineering Issues</td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVE:
To familiarize the students with practical techniques of Ore mineral identification, ore reserve estimation.

UNIT I ORE GEOLOGY 6
Identification and description of various ores: iron ores, manganese ores, lead ores, zinc ores, copper ores, chrome ores and aluminum ores. Identification and description of non-metallic deposits: talc, magnesite, limestone, gypsum, asbestos, barite, beryl and coal.

UNIT II GEOPHYSICS AND APPLIED GEOLOGY 6

UNIT III REMOTE SENSING 6
Interpretation of aerial photographs and satellite imageries. Stereoscopes and their applications in interpretation - Preparation of lithological and structural maps.

UNIT IV ORE RESERVE ESTIMATION 6
Surface and sub-surface deposits - Ore reserve estimation – ore assaying & reserve calculations.

UNIT V GEOLOGICAL FIELD WORK 6
Recognition of geological structures such as faults, folds, joints, shear zones etc. in the field - Geological mapping in different geological terrains- Identification of Minerals, rocks and ores in the field site.– Report preparation and submission.

TOTAL: 30 PERIODS

COURSE OUTCOME:
At the end of the course the students will have an understanding of prospecting techniques for ores and minerals, their interpretation and geological mapping.

REFERENCES
COURSE OBJECTIVE:
- To familiarize with the various surveying instruments and methods.

EXERCISES
1. Finding Pace Value of Surveyor using Chaining and Ranging
2. Computation of Included Angle after adjustment of Local Attraction
3. Planimetric Mapping of an Area using Plane Table Surveying (Radiation, Intersection)
4. Fly leveling using dumpy level.
5. Fly leveling using tilting level.
6. Transfer of Bench Mark using Check Levelling.
7. Contour Mapping using Grid Levelling.
8. Study of Theodolite and Angle Observations by Repetition.
9. Observation of Angles by method of Reiteration and Station Adjustment.
10. Establishment of Horizontal Control Points by Traversing.
12. Determination of horizontal distance and height difference between two points by Tangential Tacheometry.
13. Estimation of Sun Rise/ Sun Set time using Sun Observations

COURSE OUTCOMES:
- On completion of the course, the student is expected to be able to
 CO1 use conventional surveying tools such as chain/tape, compass, plane table in the field of civil engineering applications
 CO2 Prepare planimetric map contour map
 CO3 Imparts knowledge in computation of Distance and Elevation using horizontal and vertical angles
 CO4 Establish horizontal and vertical control points.
 CO5 Determination of Azimuth by Astronomical observation.

REFERENCES:
CO – PO Mapping – PLANE AND GEODETIC SURVEYING LABORATORY

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>Course Outcome</th>
<th>Overall Correlation of COs to POs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO1</td>
<td>CO2</td>
</tr>
<tr>
<td>PO1 Knowledge of Engineering Sciences</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>PO2 Problem analysis</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>PO3 Design / development of solutions</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>PO4 Investigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO5 Modern Tool Usage</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>PO6 Individual and Team work</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>PO7 Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO8 Engineer and Society</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>PO9 Ethics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO10 Environment and Sustainability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO11 Project Management and Finance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO12 Life Long Learning</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>PSO1 Knowledge of Civil Engineering discipline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSO2 Critical analysis of Civil Engineering problems and innovation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSO3 Conceptualization and evaluation of engineering solutions to Civil Engineering Issues</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GE5552 ENGINEERING MANAGEMENT

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

1. Explaining basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.
2. Applying various functions of management in professional organization.
3. Applying organizational theory in professional organization.
4. Applying the principles of productivity and operations management in professional organization.
5. Applying modern concepts and marketing in management in professional organization.
UNIT I INTRODUCTION TO MANAGEMENT

Definition and functions of Management - Approaches to the study of Management – Mintzberg’s Ten Managerial Roles – Principles of Taylor; Fayol; Weber; Parker – Forms of Organization: Sole Proprietorship; Partnership; Company (Private and Public); Cooperative – Public Sector Vs Corporate Organization – Business Environment: Economic; Social; Political; Legal – Trade Union: Definition; Functions; Pros and cons.

UNIT II FUNCTIONS OF MANAGEMENT

Planning: Characteristics; Nature; Importance; Steps; Limitation – Organizing: Features; Process; Principles; Types – Departmentalization: Functional – Divisional (Product; Customer; Geographic) – Staffing: Systems Approach; Recruiting and Selection Process – Directing (Leading): Traits; Style; Managerial Grid (Blake-Mounton, Reddin) – Communication: Purpose; Model; Barriers – Controlling: Types; Audit (External, Internal, Merits) – Decision Making: Elements; Characteristics; Process; Classification – Controlling techniques.

UNIT III ORGANIZATION THEORY

Human Resource Development (HRD): Goals – Organizational Conflict: Positive Aspects; Individual; Role; Interpersonal; Intra Group; Inter Group; Conflict Management – Need and Motivation Theories: Maslow’s Hierarchy of Needs Theory; Herzberg’s Motivation-Hygiene Theory; McClelland’s Needs Theory of Motivation – Change Management: Concept of Change; Lewin’s Process of Change Model; Sources of Resistance; Overcoming Resistance; Guidelines to managing Conflict.

UNIT IV PRODUCTIVITY AND OPERATIONS MANAGEMENT

Productivity: Concept; Measurements; Affecting Factors; Methods to Improve – Operations Management Tools: (Simple problems in) Transportation Model (Balanced); Assignment Model (Hungarian); Network Model (Shortest path); Critical Path Method; Decision Trees.

UNIT V MODERN CONCEPTS AND MARKETING MANAGEMENT

Concept, features, merits and demerits of: SWOT Analysis; Business Process Re-engineering (BPR); Supply Chain Management (SCM) – Marketing: Concept; Functions; Importance; Segmentation; Mix; Problems of Marketing in Small Enterprise; Competitive Analysis and Advantage – E-marketing.

COURSE OUTCOMES: Upon completion of this course, the students will be able to:

1. Explain basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.
2. Apply various functions of management in professional organization.
3. Apply organizational theory in professional organization.
4. Apply the principles of productivity and operations management in professional organization.
5. Apply modern concepts and marketing in management in professional organization.

TEXT BOOKS:

REFERENCES:

MI5501 SURFACE MINING L T P C 3 0 0 3

COURSE OBJECTIVES:
1. To impart fundamental knowledge to design safe, efficient and environmentally responsible surface mining operations.
2. To enable students to the ground preparation techniques, excavation and transportation technology adopted in the surface mining.
3. To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars being covered under this course.

UNIT I INTRODUCTION
Surface mining – status, concept, applicability, advantages and disadvantages, Surface Mining Systems vis equipment system – classification, applicability, advantages and disadvantages; Stripping ratio – concepts, types and applicability; Concept of ultimate pit limits; Haul roads in surface mines – constructional and safety features.

UNIT II DESIGN AND DEVELOPMENT OF SURFACE MINES
Surface mine planning – Different systems of opening of deposits, Boxcut – objective, factors affecting the selection of boxcut site; Production benches – formation, parameters and factors affecting their selection. Slopes in surface mines – Highwall and waste dumps; Working pit slope and ultimate pit slope, common modes of slope failures, factors influencing stability of slopes, Slope protection, stabilization and monitoring. Development of opencast mine layouts for various mode of deposit with respect to its occurrence.

UNIT III GROUND PREPARATION METHODS
Preparation of the site – Ripping, Drilling and Blasting; Types, operation, selection, method and cycle of operation, applications of ground preparation equipments – Rippers-Dozers, Blasthole drills and rock breakers, Determining number of drill machines; Concept of Rippability, Estimation of ripper’s output, Design of blasts in surface mines.

UNIT IV EXCAVATION SYSTEM IN SURFACE MINES
Selection criteria for excavation and transport equipments used in surface mines. Classification, application and limitations of different types of excavating equipments used in surface mining projects; Cycle time and productivity calculation; Dragline - calculation of required bucket capacity for a given handling requirement, Method and cycle of operations of Draglines, Front end loaders, Scrapers, Bucket wheel and bucket chain excavators, Continuous Surface miners. Determining the capacity and number of shovels and dumpers for planned production.
UNIT V TRANSPORT AND WASTE DUMPS

Scope and application of different modes of transport system in surface mines – Trucks, Synchronization of shovel and dumper capacity for required production; Conveyors (shiftable and high-angle) – mode of operation, applicability and limitations, Scope and application of in-pit crushers in surface mines. Illumination and surface mine drainage in surface mines. Surface mining over underground workings.

Types of waste dump – internal and external; dump formation methods and corresponding equipment; Dump slope - stabilization and monitoring.

TOTAL: 60 PERIODS

COURSE OUTCOMES:
The students will have ability
1. To understand various modes of opening up of deposits amenable to surface mining.
2. To plan and design the basic components of a typical surface mine including benches and haulroads according to the deposit formation.
3. To identify the salient points that dictate which is the safest, most efficient, and most versatile extraction method to employ classify and select the suitable surface mining methods and equipment based on site conditions.
4. To understand the concept of waste dump formations and slope failures in surface mines.
5. To discuss the impacts that social and environmental issues have on surface mining from the pre-exploration phase to end-of-mine issues, and how to manage these two increasingly important factors to the benefit of both the mining company and the society.

TEXT BOOKS:

REFERENCES:
COURSE OBJECTIVES:
1. To study the conventional and advance systematic coal extraction methods
2. To study and update of the mine criteria as per various legislation of India.
3. To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars related to this course.

UNIT I INTRODUCTION
Global and national status of coal industry and energy demands, theories of coal formation, Indian coalfields and its reserves, factors affecting choice of mining methods, classification of coal mining methods, grading and analysis of coal.

UNIT II BORD AND PILLAR METHOD-DEVELOPMENT
Design and development of a district / panel, sizes and shapes of galleries and pillars, bord and pillar, room and pillar methods, with conventional and continuous mining techniques with various equipment.

UNIT III BORD AND PILLAR METHOD – EXTRACTION
Pillar extraction by caving and stowing methods; mechanised extraction of pillars, shaft pillar extraction, systematic supports, surface, underground and face arrangements for stowing, partial extraction.

UNIT IV LONGWALL METHOD
Advance and retreat methods, continuous and cyclic systems, extraction with different machines-ploughs, shearsers, design of longwall workings, optimum length of face, size of panel, gates, support system, personnel, organisation and safety measures, salvaging and relocations of equipment, Punch longwall.

UNIT V SPECIAL METHODS OF WORKING
Problems of working thick & thin seams, multi slices, sublevel caving, horizon mining, gallery blasting method, contiguous seam working, working steeply inclined seams, working under surface structures and seams liable to spontaneous heating, outburst and bumps, etc. hydraulic mining, Wongawalli, shortwall, highwall mining, underground coal gasification, coal bed methane, shield mining. Support designing and various types of support.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
The students will be able to
1. Gain exposure on Global and National level demand of coal production and reserves availability
2. Acquire the scientific design skill on coal district development of Bord and Pillar method
3. Get the safety manner of planning skill on coal district depillaring of Bord and Pillar method
4. Gain the knowledge continuous and cyclic manner of coal extraction with different capacity and cutting-edge technology machineries
5. Explore the novel methods of coal winning in order to tackle the problems associated with thick and thin seams extraction methods.

TEXT BOOKS:
REFERENCES
3. Das S.K., Modern Coal Mining technology, Lovely Prakashan, Dhanbad 1994.

MI5503 ROCK MECHANICS AND GROUND CONTROL

COURSE OBJECTIVES:
1. To study about application of Rock Mechanics in mining and allied engineering.
2. To study Physico-Mechanical properties of rocks, non-destructive testing methods, time dependent properties of rock.
3. To study different types of underground supports, etc.
4. To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars related to this course.

UNIT I INTRODUCTION
Definition of some important terms used in rock mechanics, application of rock mechanics in mining, introduction to stress analysis, stresses in two and three dimensions, Mohr’s circle.

UNIT II PHYSICAL PROPERTIES OF ROCKS AND ROCK INDICES
Physical properties of rocks — density, porosity, moisture content, permeability, water absorption various indices of rocks like swell index, slake durability index, impact strength index, protodynakov index, etc., thermal conductivity, hardness, durability, rock mass classification.

UNIT III MECHANICAL PROPERTIES OF ROCKS
Preparation of test specimens, laboratory determination of mechanical properties of rocks — compressive strength, tensile strength, flexural strength, shear and triaxial strength, modulus of elasticity, Poisson’s ratio, Mohr’s envelope, effect of various parameters on the strength of rocks, in-situ strength, post failure behaviour of rocks.

UNIT IV NON-DESTRUCTIVE TESTING METHODS AND TIME DEPENDENT PROPERTIES OF ROCKS
Dynamic wave velocities, dynamic elastic constants, their determination in the laboratory, application in mining, time dependent properties of rocks, creep, mechanism of creep of rocks — different stages, rheological models.

UNIT V UNDERGROUND SUPPORTS
Various methods of roof examination, objectives and limitations of supports, ground forces and in situ stresses, pressure arch theory, evolution of supports, conventional supports — timber and steel supports, arches, yielding supports; rock and cable bolting, shotcreting, roof stitching, support of shaft bottoms, galleries, junctions and places of roof falls, freshly exposed roof supports, design of supports, longwall powered supports. Design of systematic support rules for B & P and longwall - development, depillaring, etc.

TOTAL (45 + 15): 60 PERIODS
COURSE OUTCOMES:
1. The students will have fundamental knowledge on rock mechanics.
2. The students will have basic knowledge about physico-mechanical properties of rocks.
3. The students will obtain adequate knowledge about mechanical properties of rock.
4. Enhance the knowledge in non-destructive tests and creep mechanisms.
5. The students will learn about different types of underground supports.

TEXT BOOKS:

REFERENCES:

MI5504 MINE SURVEYING

COURSE OBJECTIVES:
1. To study methods of underground traversing and surveys.
2. To study the various modern surveying techniques and instrumentation.
3. To study methods of contouring and curves, layouts.
4. To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars related to this course.

UNIT I UNDERGROUND SURVEY
Special features of Underground Mining surveying, Mine correlation of mine surveys to national grid, Underground traversing and its constraints, Correlation of underground and surface surveys by different methods, by traversing through shafts, assumed bearing, Weiss quadrilateral, Weiss triangle methods, estimation of errors; Illustrative examples: Measurement of shaft depth.

UNIT II ALIGNMENT SURVEY AND TACHOMETRY
Alignment / Gradient control of vertical and inclined shafts sinking and raising shafts; gradient control in development openings; Holing surveys; Fixing centre lines for shafts, Alignment in Headgears, machinery foundation etc. Illustrative examples: Tachometry – principles, equipment, methods (stadia, substance, tangent), accuracy of stadia work, booking, computations. Transfer of levels to different horizons.
Dip/Strike / Fault interpretation from inclined angle vertical borehole data in dipping and plunging formations; interpretations of borehole maps; borehole deviation; calculation of plunge in folded terrain.
UNIT III STOPE & SUBSIDENCE SURVEYS AND MINEPLANS
Stope survey – objectives, methods- Tape triangulation, Tying In, Traversing, Radiation, preparation of stope plan, preparation of mine plan subsidence survey, guidelines for subsidence in laying out monitoring stations, methods of subsidence survey, statutory provisions and circulars, Preparation of Mine plans and sections; stepped plan; Allay plan; Joint Survey, Offset survey, extension of centerlines, determination of partition thickness between the sections. Duties and responsibilities of mine surveyor under Mines Act and connected legislations.

UNIT IV CONTOURING AND CURVE SETTING
Methods of Contouring; contour gradient; uses of contours; Reservoir / Catchment area calculations Illustrative examples: setting out underground of curves; need for curves; types of curves; methods of curve setting.

UNIT V MODERN SURVEYING METHODS
Application of Remote sensing and photogrammetry in exploration and mining; EDM; Electronic theodolite, Electronic Tachometer (Total station); Laser Theodolite; GPS; GIS; DTM Applicability and limitations, GPR application in surveying, Laser Scanning, introduction to surveying softwares and use.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
1. The students will have knowledge on methods of underground traversing.
2. The students will learn about alignment of survey and tachometry surveying.
3. The students will have knowledge about methods of stope and subsidence surveys. They will have a confident about preparation of mine plans and section.
4. The students will understand the methods of contouring and curve setting.
5. The students will have knowledge on EDM, GPS, DTM, Total station, etc.

TEXT BOOKS:

REFERENCES
1. Winniberg, F., Metalliferous Mine Surveying

63
COURSE OBJECTIVES:

1. To study the various of methods to determine the properties of rocks
2. To study the operation of various instruments and equipment used in rock mechanics.

DETERMINATION OF

1. Moisture content of rock sample by ISRM standard method
2. Protodyaknov index of rocks.
3. Point load index strength of rocks
4. Porosity of rocks.
5. Uni-axial compressive strength of dry and water saturated rock samples.
6. Tensile strength of rock using Brazilian test method.
7. Shear strength of rocks.
8. Tri-axial strength of rock and drawing of Mohr’s envelope.
9. Slake durability index of rocks.
10. Determination of longitudinal wave velocities of rocks using NDT.
11. Time dependent properties of rocks
12. Drillability index of rocks.
14. Determination of shear strength of soil
15. Determination of tri-axial strength of soil.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

The students will be able

1. To gain knowledge on strength and deformation characteristics of rock using different methods.
2. To select the suitable equipment to determine various characteristics of rock such as testing the rock strength and other material properties in the Rock testing laboratory.
3. To provide hands on experience in handling different types of rock testing equipments.

REFERENCES:

MI5512 MINE VENTILATION LABORATORY L T P C 0 0 2 1

COURSE OBJECTIVES:
1. To determine the psychrometric properties, gas percentage in atmosphere.
2. To study the principles and characteristics governing mine fans.

EXPERIMENTS:
1. Determination of psychrometric properties of air.
2. Study of mine flame safety lamp, gas testing with flame safety lamp.
3. Mine air sampling and detection of various mine gasses, like, methane, carbon monoxide (CO), etc.
4. Determination of percentage of mine gasses using chromatograph and other methods.
5. Measurement of cooling power by Kata thermometer.
7. Study of installation and positioning of booster fan.
8. Study of characteristics curve of different and its composition.
9. Study of axial flow fan and fan characteristics.
10. Study of central and boundary ventilation system.
11. Study of pressure survey and quantity survey in mines using velometer, anemometer and barometer.
12. Study of mine air-conditioning plant.

TOTAL: 30 PERIODS

COURSE OUTCOMES:
1. The students will have knowledge on practical significance of a ventilation system in an underground mine environment.
2. The students can handle some instruments and devices used in ventilation system.

COURSE OBJECTIVES:
1. To learn various unit operations carried out in the underground mine.
2. To expose the basic operations of various equipments deployed in the underground mine.
3. To impart practical experience to the student for gaining deeper understanding of the various activities and principles of underground mining.

Gaining practical experience is an important aspect of the mining engineering programme having many characteristic features of its own. The students have to undergo training in underground coal or metal mines/allied industry/research institute during the summer vacation at the end of the IV Semester for a period of 2 to 3 weeks and obtain a valid certificate from the competent authority of the organization provide training. The students have to submit a report on the training which would be evaluated during the ensuing V Semester. This carries a total of one credit during the V Semester. Evaluation would be done by a faculty or a group of faculties on different marking heads such as training, viva voce report etc., or other approved evaluation systems.
Normally a student is not permitted to withdraw from the practical training. In case of any unforeseen circumstances / valid reasons if he could not undergo the training as scheduled, on the recommendation of the Head of the Department and approval by the competent authority the student may be permitted to undergo Practical Training-II subsequently without affecting the academic schedule before undergoing Practical Training-III. The decision of the competent authority is final.

COURSE OUTCOMES:
The students will be able to

1. Understand the geology of the deposit amenable for underground mining.
2. Understand the site selection and method for assessing the deposit (shaft/incline/adit).
3. Acquire adequate knowledge on mine development, ground control and other significant parameters associated with mine construction.
4. Comprehend the knowledge on working of various equipments deployed for different unit operations in the underground mines along with its safety aspects.
5. Understand the methods of stockpiling and transportation techniques, mine dewatering, mineral handling/processing facilities.

COURSE OBJECTIVES:

- To introduce the basic concepts of environment, ecosystems and biodiversity and emphasize on the biodiversity of India and its conservation.
- To impart knowledge on the causes, effects and control or prevention measures of environmental pollution and natural disasters.
- To facilitate the understanding of global and Indian scenario of renewable and non-renewable resources, causes of their degradation and measures to preserve them.
- To familiarize the influence of societal use of resources on the environment and introduce the legal provisions, National and International laws and conventions for environmental protection.
- To inculcate the effect of population dynamics on human and environmental health and inform about human right, value education and role of technology in monitoring human and environmental issues.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY 14
Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – bio geographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds Field study of simple ecosystems – pond, river, hill slopes, etc.
UNIT II ENVIRONMENTAL POLLUTION 8
Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – soil waste management: causes, effects and control measures of municipal solid wastes – role of an individual in prevention of pollution – pollution case studies – disaster management: floods, earthquake, cyclone and landslides. Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES 10
Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. case studies – Land resources: Land as a resource, land 47 degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 7

UNIT V HUMAN POPULATION AND THE ENVIRONMENT 6

TOTAL: 45 PERIODS

COURSE OUTCOMES:
• To recognize and understand the functions of environment, ecosystems and biodiversity and their conservation.
• To identify the causes, effects and environmental pollution and natural disasters and contribute to the preventive measures in the immediate society.
• To identify and apply the understanding of renewable and non-renewable resources and contribute to the sustainable measures to preserve them for future generations.
• To recognize different forms of energy and apply them for suitable applications in for technological advancement and societal development.
• To demonstrate the knowledge of societal activity on the long and short term environmental issues and abide by the legal provisions, National and International laws and conventions in professional and personal activities and to identify and analyse effect of population dynamics on human value education, consumerism and role of technology in environmental issues.
TEXT BOOKS:

REFERENCES:

MI5601 UNDERGROUND MINING METHODS - METAL L T P C
3 0 0 3

COURSE OBJECTIVES:
1. To introduce concepts of metal mining and metal mining terminology.
2. To study development and operations of metal mines.
3. To study about special methods of metal mining methods.

UNIT I BASICS
Metal Mining Terminology; Typical modern metal mine features; exploration, estimation of block wise and mine wise reserves and actual production, typical prestoping ore block constructional features; classification of methods;

UNIT II GENERAL MINE DESIGN
Mode of mine and stope entry; Layouts; Determination of optimum production level; sequence of extraction, production scheduling; Basic design – Level Intervals, ore pass, common ore pass, size of blocks ore handling in stope and other openings, overview of constructional features – X cuts, Raises, Winzes etc.

UNIT III STOPING – GENERAL DESCRIPTION
Techno economic characteristics impacting choice of method; Typical unit cost parameters; optimum size of mine and stope. Stope layout, design, equipment selection; Preparing a stoping block; sequence of stoping; organization; production cycle; unit cost calculation; comparison of various methods and costs

UNIT IV STOPING METHODS
Unsupported methods – Stope and pillar, shrinkage, sublevel stoping etc. Supported stopes– Cut and fill, stull, square set etc. Caving methods – Top slicing, sublevel caving, block caving. Case studies of Indian and foreign underground metal mines. Comparison of various methods of stoping and costs.
UNIT V NOVEL INNOVATIVE TECHNIQUES & SPECIAL APPLICATIONS

Hydraulic mining, slurry mining, solution mining, nuclear mining; Rapid excavation; Radial – axial splitter; Thermal fragmentation; shock wave breaking; Deep mining; narrow contiguous veins; shaft and remnant pillars; VCR; Ring drilling; Large Blast hole stoping.

Note: All the above are to be studied with emphasis on MMR and the relevant circulars

TOTAL: 45 PERIODS

COURSE OUTCOMES:
1. The students will have basic concept on metal mining methods.
2. Enhance the knowledge on mine design, development and operations of metal mines.
3. The students will get basic knowledge about stoping techniques.
4. The students will understand the concepts of methods of stoping.
5. They will also know about novel methods of metal mining and its applications.

REFERENCES:

MI5602 MINING MACHINERY - II

L T P C
3 0 2 4

COURSE OBJECTIVES:
1. To understand the functioning of winding engines and other winding accessories
2. To study surface and pit bottom layouts, various coal face machinery
3. To study the design and construction details of excavating & transporting equipments used in surface mines.
4. To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars being covered under this course.

UNIT I WINDING ENGINES
Winding systems, drum winders, drives, mechanical braking of winders, safety devices in winding, over wind and over speed protection, Koepe and multi-rope friction winding, electrical layouts. Duty cycles of drum winders of different drum cross sections. Special problems of deep shaft winding.

UNIT II WINDING ACCESSORIES AND LAYOUTS
Head gear and their design, head sheave, cages and skips, suspension gear, shaft fittings and appliances – guides, keps, etc., signalling system, winding calculations relating to rope size & numbers, capacity & power requirement for cage, skip, drum and Koepe winding systems.
Surface and Pit-bottom layouts - Mine car circuits at the surface and pit bottom, creepers, skip winding – loading and discharge arrangements. Case studies, railway sidings and layouts.

UNIT III COAL FACE MACHINERY
Construction, salient mechanical and electrical features and operations of coal drills and their control panels, coal cutters, different types of mechanical loaders coal ploughs, cutter loaders and continuous miners; development road headers in face mechanisation, longwall mining equipment, electrical and hydraulic layouts; condition monitoring of mining machinery for underground and opencast miens and ore handling plants, modern concepts in underground mine mechanisation.
UNIT IV EXCAVATION AND LOADING MACHINERY IN SURFACE MINES 9

UNIT V OTHER MACHINERY IN SURFACE MINES 9
Classification of transport equipments; Understanding of construction and technical specifications of Dumpers of different types including multi-axial dumpers,, Tractor-trailers, Rippers (types), Motor Graders, Bull Dozers, Rock breakers, Road Compacters, Water Tankers.

COURSE OUTCOMES:
The students will be able
1. To learn the function of winding engines, winding accessories, pit-top and bottom mine circuits.
2. To know about working of various coal face machinery and understand the concept of underground transport system
3. To learn the application and features of cutting and mining machines
4. To enhance the knowledge on constructional features, operation, applicability and limitations of various excavating and loading equipments used in surface mines.
5. To obtain knowledge on the design & construction details of other prominent machinery used in surface mines.

TEXT BOOKS:

REFERENCES:

PRACTICALS:
1. Study of various types of head gear, fleet angle, study of shaft fittings, suspension gear, safety hooks used in winding, protective roofing, guides—methods of support and tensioning arrangements.
2. Construction of cages, skips & their fittings and brakes of winders & haulers
3. Study of different types of conveyors (components & safety devices) like armoured face conveyors, belt conveyors, gate belt conveyors, shaker & vibrating conveyors, high angle conveyors
4. Study of rotary percussive drill and its hammer used in surface mines
5. Study of pit top & pit bottom layouts in shaft and inclines.
6. Study of different types of loading machines
7. Study of cool plough and shearer.
8. Study of continuous miner and road headers.
9. Study of electric rope shovel and hydraulic excavators.
10. Study of Bucket Wheel Excavators and Draglines.
11. Study of Haul Trucks (Dumper).

15 PERIODS
TOTAL (45 + 15): 60 PERIODS
COURSE OBJECTIVES:
1. The students will possess the knowledge needed to design a mineral processing operation that ensures maximum profitability for a mining company while achieving the required product quality specifications.
2. The students will understand the methodology used to select the appropriate unit operations, determine the optimum operating conditions and select the required size of the unit.
3. The students will acquire adequate knowledge of product quality assurance programs that includes the monitoring of plant efficiency.

UNIT I INTRODUCTION 6

UNIT II COMMINUTION 8
Introduction to comminution, reduction ratio, primary/secondary/tertiary crushing, purpose, duty, theory of crushing, types of crushers and comparison, general crushing flow sheet, wet/dry grinding, mechanism and various affecting parameters. Power consumption for crushing & grinding.

UNIT III LABORATORY & INDUSTRIAL SIZING AND SAMPLING 9
Objectives of sizing and scale of sizing, factors governing particle behaviour, laboratory and industrial screens, trommels, vibrating screens, etc. wet and dry screening, classification and classifiers. Laboratory size analysis and interpretation. Metallurgical accounting and control - sampling and its significance, methods of sampling practiced in mills, automatic control in mineral processing.

UNIT IV SEPARATION / CONCENTRATION 12
Newton’s and Stoke's Laws of particle settlement, different concentration techniques-gravity, chemical froth flotation, wet &dry magnetic separation, electromagnetic, amalgamation, heavy media, jiggling, shaking tables, sluicing, spirals, thickeners, filtration, etc.; Colour based sorting of minerals – optical sorter; Coal washing and washability curves.

UNIT V SPECIAL METHODS 10
Chemical extraction, cyanide process, leaching, use of ion exchange, solvent extraction, pilot plant studies on ores, tailing dams – mode of disposal, construction and design & other solid-waste (other than overburden) management in mines; flow sheets for coal and typical ores of copper, aluminum, lead, zinc, gold, uranium, iron, limestone, magnesite and beach sand minerals with special reference to Indian deposits.

COURSE OUTCOMES:
The students will be able to
1. Know the basic principles of mineral processing.
2. Obtain adequate knowledge for the typical process circuits used to treat aggregates and ores containing one or more valuable minerals.
3. Comprehend the basic concepts on various separation/concentration techniques and special methods adopted to process the minerals.
4. Develop processing flow sheets for the production of aggregates and mineral concentrates from raw ore material.
5. Identify the suitable site and adequate area for constructing the tailing dams for storing the refuse coming out of a typical processing plant.

TOTAL: 45 PERIODS
TEXT BOOKS

REFERENCES

MI5611 MINERAL PROCESSING LABORATORY

COURSE OBJECTIVES:
1. To study various mineral processing technique to enrich minerals.
2. To study about the devices used for mineral processing techniques.

EXPERIMENTS
1. Study of grab sampling and different sample division techniques like coning and Quartering, riffle sampling techniques, etc.
2. Determination of crushing characteristics of a given mineral sample using jaw crusher
3. Determination of the grinding characteristics of a given mineral sample using ball mill
4. Sieve analysis of a given sample and to calculate (a) percentage sample retained on screens (b) average size of sample material and (c) to plot sizing curves
5. Concentration of a given mineral sample using mineral jig
6. Concentration of a given mineral using Wilfley table
7. Concentration of a given mineral using froth flotation cell
8. Concentration of a given mineral using magnetic separator
10. Study of flow sheets for various mineral concentration techniques.
11. Study of various pollution control measures adopted in the beneficiation plants.

TOTAL: 30 PERIODS
COURSE OUTCOMES:
The student will be able
1. To reduce the size of feed into the required product sizes.
2. To carry out the screening to classify the products according to its size.
3. To understand the various concentration techniques used in the processing
4. To enrich the product by improving the recovery
5. To understand the performance of various sampling practiced in the processing plants.

REFERENCES:

MI5612 ROCK BLASTING LABORATORY

COURSE OBJECTIVES:
1. To study the various properties of explosives for designing the blasts according to the field conditions.
2. To monitor the ground vibration induced due to blasting & operation of HEMM.

LIST OF EXPERIMENTS:
1. Measurement of ground vibration produced due to blasting by seismograph
2. Measurement of body vibration of HEMM used in the mines
3. Development of predictor equation from the recorded data
4. Measurement of VOD by VOD mate and its analysis
5. Study of various fragmentation assessment techniques
6. Handling of WIPFRAG software
7. Design of blast for coal face
8. Design of blast for underground metal mine
9. Design of blast for bench blasting
10. Study of various blasting accessories
11. Study of High Speed Video Camera used for blasting.
12. Study of magazine constructed for storage of explosives and accessories

TOTAL: 30 PERIODS

COURSE OUTCOMES:
The student will be able
1. To understand the characteristics and applications of various explosives and accessories used in the mines.
2. To design the blasts in surface and underground mines
3. To monitor the environmental impacts produced due to blasting such as flyrock.
4. To monitor, measure and predict the blast-induced ground vibrations created in surface and underground mines.
5. To assess the fragmentation of blasted muck by using various tools and techniques
REFERENCES:

MI5613 SURVEY CAMP

COURSE OBJECTIVE:
To learn survey practice adopted in underground mines in confined and restricted environment. The course of mine surveying is sharply demarcated into general principles and surveying practices in mines. The subject of Surveying is applied in nature and is best learnt in an operating mine. This is done during the mine survey camp organized in an open pit or underground coal/metal mine or suitable place as part of the curriculum. The students have to undergo the survey camp during the winter holidays at the end of the V semester or during the VI semester depending on the permission granted by the respective mining companies for a period of 10 days and submit a report which will be evaluated during the ensuing VI semester. Evaluation would be done by one or more faculty of different aspects surveying in mines. Normally a student is not permitted to withdraw from the survey camp. In case of any unforeseen circumstances / valid reasons if he / she could not undergo the survey camp as scheduled, on the recommendation of the Head of the Department and approval by the competent authority the student may be permitted to undergo survey camp along with subsequent batch(es) of students when organized. The decision of the competent authority is final in this regard.

COURSE OUTCOME:
The students will be able to understand the difficulties of carrying out survey practice in the field.

MI5701 MINE LEGISLATION AND SAFETY

COURSE OBJECTIVES:
1. To study various acts, rules and regulations relating to the mineral industry
2. To study accidents, diseases & their prevention and mine safety

UNIT I INTRODUCTION TO MINING LAWS AND LEGISLATION
General principles of mining laws, development of mining legislation of India. Overview of enactment of various statutes and Bye-laws, State laws pertaining to Minor Minerals.
UNIT II ACTS, RULES APPLICABLE TO MINING - I (SAFETY)

UNIT III ACTS, RULES APPLICABLE TO MINING - II

UNIT IV ACCIDENTS AND DISEASES
Classification of accidents, causes and prevention of accidents, accident enquiry reports, cost of accidents, occupational diseases and their social effects.

UNIT V MINE SAFETY
Role of management, labour and government, Safety audit, instrumentation, Safety management system – risk identification and management; organisation for disaster management in mines, safety conferences, Pit safety committee.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
The students will able
1. To provide an insight to various laws, rules and Acts related to Mines Safety and mining legislation applicable to the mineral industry.
2. To learn the procedures to obtain necessary permission from the regulatory agencies for opening, operation and closure of mines in respect of mine safety.
3. To analyze the accidents and prepare the accident enquiry reports
4. To understand the significance of mine diseases affecting the health of persons working in the mine.
5. To carry out the risk assessment, safety audit process and prepare the safety management plan for the mines.
6. To get prepared for the DGMS certification for qualifying in the exam of Mines Manager.

REFERENCES
COURSE OBJECTIVES:

1. To understand the planning of opencast mining, underground mining and equipment utilization
2. To study project implementation and monitoring

UNIT I INTRODUCTION
Technical factors in mine planning, methodology of mine planning, short range & long range, Optimization Techniques in Mine Planning; mine plan preparation; Choice between surface and underground mining.

UNIT II OPENCAST MINING
Development of Ultimate Pit Configuration (open pit limits) and its determination – hand method, floating cone technique, Lerchs-Grossmann algorithm and computer assisted hand method; Selection of initial mine cuts and geometrical considerations; location of surface structures, division of mining area into blocks, mine design, Impact of various parameters like depth, dip, stripping ratio, geology and strength of mineral and overburden on mine planning; Selection of Mining Systems; Determination of optimum mine size and sequencing by nested pits; Lanes algorithm for estimation of optimum mill grade and production planning; calendar plan, production scheduling, economic productivity indices. Quality Control-Ore Blending; Planning for mine closure.

UNIT III UNDERGROUND MINING
Design of mine entries – shafts, inclines, design of stopes – size, level interval, etc, design of coal mining district, mine boundaries; design of shaft pillars and protective pillars, planning of production capacity, optimization of mine size – mine production capacity, layout of development drives / raises / winzes etc, length of faces, etc, planning of support systems, ventilation, lay out of drainage system; Production planning & Production scheduling, selection of depillaring / stoping method, manpower management economic/ productivity indices, Productivity and quality control; Techno-economic analysis, Planning for mine closure.

UNIT IV EQUIPMENT PLANNING
Latest technological developments in increase in both types and capacities of equipment used in mining operations. Planning and selection of equipment, their capacities and population for different mining conditions. Maintenance planning and scheduling including spare management; Equipment information – performance monitoring and expert systems.

UNIT V PROJECT IMPLEMENTATION AND MONITORING
Pre-project activities – feasibility report, environmental clearance, detailed project report, sources of funds, import of technology, selection of contracts and contract administration, time management, cost control material management system, project quality assurance, social responsibility, government orders and guidelines. Environmental impact assessment and preparation of environmental management plan.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
The students will be able

1. To gain knowledge on concept of mine planning process is required for the student for developing surface as well as underground metal mining project.
2. To understand different methods of extraction applicable to different types of mineral deposits.
3. To select proper types of equipment for improving the productivity in surface mining operations,
4. To optimize the production capacities in surface mining operations covering different types of mineral deposits.
5. To understand project implementation and monitoring methods adopted in the mineral industry.

TEXT BOOKS

REFERENCES

MI5703 MINE ENVIRONMENTAL ENGINEERING L T P C
 2 0 2 3

COURSE OBJECTIVES:
1. To study about spontaneous heating, mine fires, inundation and explosions
2. To study about mine rescue and first aid

UNIT I SPONTANEOUS HEATING AND MINE FIRES 12
Causes, detection, incubation period, precautions against spontaneous heating in underground and surface coal mines including coal benches, surface coal stocks, and dumps. Detection, prevention and control of underground fires, fire fighting, study of atmosphere behind sealed-off fire areas for reopening, methods of reopening sealed off fire areas.

UNIT II EXPLOSIONS 8
Causes, prevention and control of underground fire-damp and coal dust explosions including stone dusting, stone dust barriers, water barriers and triggered barriers, investigation after an explosion.

UNIT III INUNDATION 9
Surface and underground inundation, their causes and preventive measures, precautions to be taken while approaching old waterlogged workings, safety boring apparatus, design and construction of water dams and barriers, recovery of flooded mines, dewatering of old workings, layout of drainage systems and sumps.
UNIT IV MINE RESCUE AND FIRST AID SAFETY
Classification of rescue apparatus including self rescuer, various types of rescue and escape apparatus, rescue organisation of a mining company, layout of a modern rescue station including personnel, first aid to the persons injured in mine-accidents, electric shock, asphyxiation, different methods of artificial respiration, rescue and recovery work in mines including through boreholes, rescue rules; Miner’s diseases and their social impact.

UNIT V MINE ILLUMINATION
Electric safety lamps, their maintenance and examination, lamp room design and organisation, lighting from mains, lighting on mechanised longwall faces and gassy mines, photometry and illumination survey, legislations related to illumination survey.
Note: All the above are to be studied with emphasis on CMR and the relevant DGMS circulars

COURSE OUTCOMES:
1. The students will have knowledge on spontaneous heating, mine fires, etc.
2. The students will learn about explosions, their causes prevention and control measures.
3. The students will get knowledge about mine inundation, their causes and preventive measures.
4. They will also know about mine rescue and first aid.
5. Obtain adequate knowledge about mine illumination.

TEXT BOOKS:

REFERENCES:
5. Classified Circulars by D.G.M.S., Dhanbad.

PRACTICAL:
1. Determination of air born dust by gravimetric dust sampler, personal dust sampler and by high volume sampler.
2. Noise survey.
3. Determination of crossing point temperature and index of inflammability.
4. Study of self rescuers of different types.
5. Study of self contained breathing apparatus
6. Proximate analysis of coal
7. Measurement of vibrations due to various sources.
8. Determination of pH, TDS, TSS, dissolved oxygen and chemical oxygen demand of water.
9. Determination of organic carbon of soil sample
10. Illumination survey.

15 PERIODS
TOTAL (45 + 15): 60 PERIODS.
COURSE OBJECTIVES:
1. To study the computer programming for mining problems, mine ventilation network analysis.
2. To study the software used for modelling of surface and underground workings.

LIST OF EXPERIMENTS:
1. Design of pillars
2. Blast design
3. Subsidence prediction.
5. Modelling of airflow through underground workings using CFD.
6. Ore body modelling.
7. Slope stability analysis in soil and rocks.
8. Fragmentation Analysis
9. Truck dispatch system optimization
10. Digital Terrain and Wire-frame modelling
11. Surface Mine Design using MPD Software
12. Underground Mine Design using MPD Software
13. Pit optimization using MPD Software
14. Production Scheduling for grade control
15. Design of experiments.

TOTAL: 30 PERIODS

COURSE OUTCOMES:
The students will gain knowledge on
1. Designing of the pillars in underground mines
2. Designing of surface mine (both coal and metal)
3. Designing of underground mine (both coal and metal)
4. Modelling the ore body to carry out effective planning in the mines.
5. Scheduling the different unit operations to achieve maximum productivity.

MI5712 PRACTICAL TRAINING – III

COURSE OBJECTIVES:
1. To learn various unit operations carried out in the underground mine.
2. To expose the basic operations of various equipments deployed in the underground mine.
3. To impart practical experience to the student for gaining deeper understanding of the various activities and principles of underground mining.

Gaining practical experience is an important aspect of the mining engineering programme having many characteristic features of its own. The students have to undergo training in underground coal or metal mines/allied industry/research institute during the summer vacation at the end of the VI Semester for a period of 2 to 3 weeks and obtain a valid certificate from the competent authority of the organization provide training. The students have to submit a report on the training which would be evaluated during the ensuing VII Semester. This carries a total of one credit during the VII Semester. Evaluation would be done by a faculty or a group of faculties on different marking heads such as training, viva voce report etc., or other approved evaluation systems.
Normally a student is not permitted to withdraw from the practical training. In case of any unforeseen circumstances / valid reasons if he could not undergo the training as scheduled, on the recommendation of the Head of the Department and approval by the competent authority the student may be permitted to undergo Practical Training-III subsequently without affecting the academic schedule. The decision of the competent authority is final.

COURSE OUTCOMES:
The students will be able to
1. Understand the geology of the deposit suitable for underground mining.
2. Understand the site selection and method for assessing the deposit (shaft/incline/adit).
3. Acquire adequate knowledge on mine development, ground control and other significant parameters associated with mine construction in an underground mine.
4. Comprehend the knowledge on working of various equipments deployed for different unit operations in the underground mines along with its safety aspects.
5. Understand the methods of stockpiling and transportation techniques, mine dewatering, mineral handling/processing facilities pertaining to the underground mine.

COURSE OBJECTIVE:
To carry out a study or to solve a practical problem of the mining industry

A project topic must be selected either from published lists or the students themselves may propose suitable topics in consultation with their guides. The aim of the mini project work is to comprehend the principles by applying them to a new problem which may be a design and manufacture of a device, a research investigation, a computer or management project or a design problem.

The progress of the mini project is evaluated based on minimum of three reviews. The review committee may be constituted by the Head of the Department to monitor the progress of the project.

A mini project report is required to be submitted at the end of the semester. The mini project work is evaluated jointly by external and internal examiners constituted by the Head of the Department based on oral presentation and the project report.

COURSE OUTCOME:
1. The students will be able to carry out a project and write a report related to mining or allied field of engineering.
COURSE OBJECTIVE:
To carry out a study or to solve a practical problem of the mining industry

A project topic must be selected either from published lists or the students themselves may propose suitable topics in consultation with their guides. The aim of the mini project work is to comprehend the principles by applying them to a new problem which may be a design and manufacture of a device, a research investigation, a computer or management project or a design problem.

The progress of the project is evaluated based on minimum of three reviews. The review committee may be constituted by the Head of the Department to monitor the progress of the project.

A project report is required to be submitted at the end of the semester. The project work is evaluated jointly by team of external and internal examiners constituted by the Head of the Department with approval of Chairman based on oral presentation and the project report.

COURSE OUTCOME:
1. The students will be able to carry out a project and write a report related to mining or allied field of engineering.

UNIT I ROCK MECHANICS INSTRUMENTATION
Convergence indicators, load cells, strain gauges, flat jacks, LVDT, dial gauges, pressure cells and recorder, anchorage testing equipment, laboratory and in situ measurements, hydraulic fracturing rock mechanics instrumentation for B & P and longwall workings

UNIT II PIT SLOPE STABILITY & SUBSIDENCE
Approach to slope stability, slope parameters, different types of slope failures, factors affecting slope stability, introduction to methods of failure, analysis, determination of factor of safety. Introduction to different rock slope stabilisation techniques. Theories of subsidence, factors affecting subsidence, subsidence surveys, subsidence prediction techniques, subsidence control – surface and underground measures, pseudo-mining damage.

UNIT III THEORIES OF FAILURE OF ROCKS & PILLAR DESIGN AND ROCK BURST
Different theories of failure of rocks, modes of failure - Griffith, Coulumb-Navier, Mohr's, Hoek-Brown, empirical criteria, etc. and their field of applications. Strength of pillars, barrier and shaft pillar design – load estimation, factor of safety, various formulae, rock burst and bumps — phenomena, causes, prediction, monitoring and control, gas outbursts.
UNIT IV DESIGN OF UNDERGROUND WORKINGS 9
Stress distribution in underground workings including bord and pillar and longwall workings, rock load assessment, introduction to numerical methods of geomechanics; scaled model studies – principles of modeling.

UNIT V STOWING/FILLING 8
Selection and preparation of stowing materials, principal methods of stowing, collection, fields of application and limitations, preparation and transport of materials, surface, underground and face arrangements, design of stowing plants.

COURSE OUTCOMES:
1. The students will have knowledge on rock mechanics instrumentation.
2. The students will learn about pit slope stability, theories of subsidence.
3. The students will understand the theories of failure of rocks, rock burst and pillar design.
4. They will also know about design of underground openings and numerical methods of Geo mechanics.
5. The students will learn about methods of stowing.

TEXT BOOKS:

REFERENCES:

MI5002 SUBSIDENCE ENGINEERING L T P C 3 0 0 3

COURSE OBJECTIVES:
1. To know the basic subsidence mechanics and its influencing parameters
2. To study the control measures of subsidence and its impact on structure

UNIT I INTRODUCTION 9
Strata movement at the mining horizon, convergence in mine working, factors influencing convergence in mine workings.

UNIT II SUBSIDENCE MECHANISM 9
Zones of movement in the overlying beds, vertical and horizontal movement, subsidence trough, angle of draw, angle of break, sub-surface subsidence.
Different methods of surface subsidence prediction – graphical, analytical, profile function, empirical and theoretical models.

Influence of time on subsidence, example from longwall and bord and pillar workings. Calculation of ground movement over time. Types of stress on structures, stress-strain behaviour of soils, mining damage to buildings, industrial installations, railway lines, pipes, canals, etc.

Measures to reduce mining damage, mining methods to minimise damage, laws governing mining damage, different standards suggested for mining and building ground in respect of subsidence.

1. The students will understand the basic concepts of strata movement, convergence, etc.
2. The students will have knowledge about the subsidence mechanism.
3. The students will learn about subsidence prediction and influencing parameters.
4. The students will obtain a knowledge about influence of time and subsidence impacts on structures.
5. They will know about subsidence control, governing norms and regulations.

MI5003 ROCK REINFORCEMENT ENGINEERING

COURSE OBJECTIVES:
1. To introduce the rockmass classification and mechanism of rock reinforcement
2. To learn the typical and special methods of rock reinforcement

Basic concepts of rockmass classification; Rock Quality Designation (RQD); Norwegian Geomechanics Classification i.e. Q-system; Rock Mass Rating (RMR); CMRI system; Application of rockmass classification in assessing the support requirement for underground caverns.

Mechanisms of rock reinforcement by grouting; selection of optimum pressure and water-cement ratio for grouting; layout for grouting, working principle and field of application for grouting; Guniting and shotcreting operations and their field of application; fibre reinforced shotcreting.
UNIT III ROCK BOLTS
Elements of rock bolts; types of rock bolts and their fields of application; rock bolting machines and installation of rock bolts; pre-tensioning of rock bolts; principles of rock bolting; anchorage test and factors affecting anchorage strength of bolts; modes of failure; Design of rock bolting system for underground excavation i.e. determination of bolt length and bolt pattern.

UNIT IV CABLE BOLTS AND ROCK ANCHORS
Classification of cable bolts; installation and testing; modes of failure; different type of grouting materials; types of anchors; use of anchors for stabilising rock slope, dam etc.; testing of anchors.

UNIT V SPECIAL METHODS OF ROCK REINFORCEMENT
Ground freezing for slope stabilisation; berms for slope stabilisation; fore-poling; resin grouted rock bolts of fibre glass; geo-textiles and it’s area of application; water drainage and rock reinforcement; dump stabilisation by vegetation.

COURSE OUTCOMES:
1. The students will have the concept about the rockmass classification.
2. The students will learn about the mechanism of rock reinforcement, grouting, etc.
3. The students will get a basic knowledge on rock bolts and their applications.
4. The students will learn about cable bolts and rock anchors.
5. The students will know about special methods of rock reinforcement.

TEXT BOOKS:

REFERENCES:

GE5451 TOTAL QUALITY MANAGEMENT L T P C
3 0 0 3

COURSE OBJECTIVES:
- Teach the need for quality, its evolution, basic concepts, contribution of quality gurus, TQM framework, Barriers and Benefits of TQM.
- Explain the TQM Principles for application.
- Define the basics of Six Sigma and apply Traditional tools, New tools, Benchmarking and FMEA.
- Describe Taguchi’s Quality Loss Function, Performance Measures and apply Techniques like QFD, TPM, COQ and BPR.
- Illustrate and apply QMS and EMS in any organization.

UNIT I INTRODUCTION
Introduction - Need for quality - Evolution of quality - Definition of quality - Dimensions of product and service quality –Definition of TQM-- Basic concepts of TQM —Gurus of TQM (Brief introduction) -- TQM Framework- Barriers to TQM –Benefits of TQM.
UNIT II
TQM PRINCIPLES

Leadership - Deming Philosophy, Quality Council, Quality statements and Strategic planning-
Customer Satisfaction –Customer Perception of Quality, Feedback, Customer complaints, Service
Quality, Kano Model and Customer retention – Employee involvement – Motivation, Empowerment,
Team and Teamwork, Recognition & Reward and Performance Appraisal--Continuous process
improvement –Juran Trilogy, PDSA cycle, 5S and Kaizen - Supplier partnership – Partnering,
Supplier selection, Supplier Rating and Relationship development.

UNIT III
TQM TOOLS & TECHNIQUES I

The seven traditional tools of quality - New management tools - Six-sigma Process Capability-
Bench marking - Reasons to benchmark, Benchmarking process, What to Bench Mark,
Understanding Current Performance, Planning, Studying Others, Learning from the data, Using the
findings, Pitfalls and Criticisms of Benchmarking - FMEA - Intent , Documentation, Stages: Design
FMEA and Process FMEA.

UNIT IV
TQM TOOLS & TECHNIQUES II

Quality circles – Quality Function Deployment (QFD) - Taguchi quality loss function – TPM –
Concepts, improvement needs – Performance measures- Cost of Quality - BPR.

UNIT V
QUALITY MANAGEMENT SYSTEM

Introduction-Benefits of ISO Registration-ISO 9000 Series of Standards-Sector-Specific Standards -
AS 9100, TS16949 and TL 9000- ISO 9001 Requirements-Implementation-Documentation-Internal
Audits-Registration-ENVIRONMENTAL MANAGEMENT SYSTEM: Introduction—ISO 14000 Series
Standards—Concepts of ISO 14001—Requirements of ISO 14001-Benefits of EMS.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Ability to apply TQM concepts in a selected enterprise.
CO2: Ability to apply TQM principles in a selected enterprise.
CO3: Ability to understand Six Sigma and apply Traditional tools, New tools, Benchmarking and
FMEA.
CO4: Ability to understand Taguchi’s Quality Loss Function, Performance Measures and apply QFD,
TPM, COQ and BPR.
CO5: Ability to apply QMS and EMS in any organization.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

TEXT BOOK:

1. Dale H.Besterfiled, Carol B.Michna,Glen H. Bester field, MaryB.Sacre, HemantUrdhwareshe and
RashmiUrdhwareshe, “Total Quality Management”, Pearson Education Asia, Revised Third

REFERENCES:

Heinemann Ltd, 2016.
2003.
COURSE OBJECTIVES:
1. To impart knowledge on hardware and software issues concerned with computers in mining industry.
2. To develop algorithms and programs on various mining related problems.
3. To impart knowledge on high-end simulation methodologies.
4. To study modern techniques on solving mining problems.

UNIT I INTRODUCTION TO COMPUTERS 9
Configuration of computers and servers, evolution of operating systems; Networking Concepts, MIS Concepts – Cloud computing / grid computing in mining, Big Data analytics.

UNIT II PROGRAMMING & DBMS CONCEPTS 9
Algorithm, flow charts and Programming of mining application like pillar design, blast design, subsidence, - Database and Relational database - development of software packages for mining companies – forms, queries and reports, Enterprise resource planning for material managements.

UNIT III COMPUTERISED MINE PLANNING 9
Introduction of Geostatistics, Reserve Estimation, kriging, block modeling and orebody modelling, Optimization and mine design, mine scheduling.

UNIT IV PROBLEM SOLVING – APPLICATIONS IN MINING 10
Ventilation network analysis; support design, Applications of CAD in mining, GIS in Mining, online and offline monitoring and control, TDS, FEM and CFD Concepts and basics of modeling and simulation.

UNIT V RECENT TRENDS & MINING SOFTWARE 8
Artificial intelligence, expert system, neural networks, robotics and their applications in mining Functionalities of mine planning software, fragmentation software, and numerical software applicable to mining. Case studies of mining applications.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
1. The students will have basic programming knowledge and its applications on various mining related problems.
2. The students will have familiarity with hardware and software issues during development of programs.
3. The students will understand about geostatics, kriging, orebody modelling, mine optimization, etc.
4. The students will have a perspective on high-end simulation methodologies and modern techniques to solve mining problems.
5. The students will learn about recent numerical software applicable to mining industries.

TEXT BOOKS:
REFERENCES:

MI5005 NUMERICAL METHODS IN MINING ENGINEERING

COURSE OBJECTIVES:
1. To study the finite element methods, finite difference methods and boundary element methods.
2. To understand the practical applications of numerical methods in mining field.

UNIT I INTRODUCTION TO ELASTIC AND PLASTIC MODELS
Fundamentals, elastic, plastic, homogeneous and isotropic, non-linear elastic and elasto-plastic models.

UNIT II FINITE DIFFERENCE METHODS
Concept, formation of mesh element, finite difference patterns, solutions, application to mining.

UNIT III FINITE ELEMENT METHODS
Concept, discretisation, element configuration, element stiffness, assemblage and solutions, two and three dimensional solutions, linear and non-linear analysis, applications in geomechanics; simulation of joints in strata.

UNIT IV BOUNDARY ELEMENT METHOD
Concept, discretisation, different methods of solution for isotropic and infinite media.

UNIT V PRACTICAL APPLICATIONS IN MINING AND ROCK MECHANICS
Practical Applications in stress analysis, slope stability, subsidence prediction, pillar design, rock burst, etc.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
1. The students will have the fundamentals of elastic and plastic models.
2. The students will understand finite difference methods, mesh elements, patterns, etc.
3. The students will get the concept about finite element models, methods, dimensional solutions, etc.
4. The students will learn about boundary elements methods.
5. They will also know about the practical applications of these methods in mining and rock mechanics.

TEXT BOOKS:
REFERENCES

MI5006 ENGINEERING MATERIALS, FUELS AND ASSAYING

UNIT I ENGINEERING MATERIALS
Cement – properties, grouting, guniting, bricks, tiles, fiber glass, rubber and timber.

UNIT II ENGINEERING PROPERTIES AND USES
Engineering properties and use of wrought iron, steel alloys, aluminium, copper, lead, zinc, tin and non-ferrous alloys; phase equilibrium diagram of binary alloys, iron carbon diagram; microstructure of metals and alloys, methods of corrosion control.

UNIT III CLASSIFICATION OF FUELS
Source of energy, resources, classification and types, solid fuels, wood, peat, lignite, bituminous coal and anthracite; proximate and ultimate analysis of coal, coking properties, coal storage and transportation, low and high temperature carbonisation.

UNIT IV LIQUID AND GASEOUS FUELS

UNIT V ASSAYING
Sampling of ores, metallurgical products, fire methods of assaying of iron, aluminium, copper, lead, zinc, tin, manganese, chromium ores.

TOTAL: 45 PERIODS

REFERENCES
COURSE OBJECTIVES:
1. To know basic of system engineering concept and analysis
2. To study the various techniques of operations research, simulation and network analysis

UNIT I INTRODUCTION
Introduction to systems engineering, systems concept and analysis, models in systems analysis, tools and methodology of system analysis.

UNIT II OPERATIONS RESEARCH
Introduction to operations research, introduction to linear programming, application to mineral industry.

UNIT III SIMULATION TECHNIQUES
Introduction to Monte-carlo sampling and deterministic simulation of different mining subsystems and total system, simulation application for equipment selection and production scheduling. Transportation and assignment model, Queuing theory.

UNIT IV NETWORK ANALYSIS
Network analysis, monitoring and control of developmental activities in mining project by CPM and PERT.

UNIT V MISCELLANEOUS
Inventory of mineral resources, basic models and optimization, introduction to statistical decision theory and its application in mineral industry.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
1. The students will learn the concept of system engineering and applicability in mining field.
2. The students will learn the concept of operational research and applicability in mining field.
3. The students will learn about simulation techniques.
4. The students will have knowledge about CPM, PERT, etc.
5. They will also know about basic models, statistical theory, etc.

TEXT BOOKS:

REFERENCES
COURSE OBJECTIVES:
1. To introduce the small scale mining methods with case studies
2. To introduce the marine geology and its exploitation techniques

UNIT I INTRODUCTION TO SMALL SCALE MINING
Concept of small scale mining, small scale mines – world wide, Indian Policy in small scale mines – practices, policies and perspectives, problems of small scale mines – finance, legislative support, technical expertise, environmental obligations, safety, health and training, environmental impacts and protection.

UNIT II SMALL SCALE MINING METHODS
Classification and mode of occurrence of granite and other minor minerals, physical, mechanical and chemical properties, geological aspects of mining, granite and dimensional stone mining – manual, semi-mechanised and mechanised mining methods, conventional & novel techniques, recent trends, processing, finishing, quality control, marketing & export of minerals. Case studies of mining of other minerals like sandstone, marble, beach sands, alluvial mining, mica, barytes, diamond and gemstones, etc.

UNIT III INTRODUCTION TO MARINE MINING
Introduction to marine environment, development & status of ocean resources of mining in India and other parts of the world, Ocean profile, ocean floor topography, economic exclusive zone & fundamentals of law of the sea, oastal zone & its characteristics.

UNIT IV MARINE GEOLOGY AND RESOURCES
Physical and chemical properties of seawater, overview of marine mineral deposits, beach placers, deep-sea bed mineral resources, polymetallic nodules, polymetallic sulphides, Cobalt rich crust, chemicals from the ocean, dissolved and undissolved mineral deposits, sea water as resource

UNIT V EXPLOITATION OF MARINE DEPOSTS
Shallow and deep sea bed, oceanographic instruments, mining of polymetallic nodules, polymetallic sulphides, deep sea drilling methods, ocean bottom samplers, drag buckets, grab buckets, coring systems, ocean bathymetry, temperature measurement systems, water samplers, ocean dynamic analysis, beach placer mining, underwater photographs, vehicles and transportation, offshore oil platforms.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
1. The students will have basic knowledge on small scale mining.
2. The students will have adequate knowledge on methods of small scale mining.
3. The students will have basic knowledge on marine mining.
4. The students will get knowledge about physical and chemical properties of sea water.
5. The students will understand about exploitation of marine deposits, machineries used, etc.

REFERENCES
AIM:
To instruct the importance of energy conservation in both thermal and electrical energy and its management for the better utilization of resources.

COURSE OBJECTIVES:
At the end of the course, the student expected to do
1. Understand and analyze the plant energy data
2. Energy audit and suggest methodologies for energy savings
3. Energy accounting and balance and
4. Able to utilize the available resources in optimal way

UNIT I IMPORTANCE OF ENERGY CONSERVATION AND MANAGEMENT

UNIT II ELECTRICAL SYSTEMS

UNIT III THERMAL SYSTEMS

UNIT IV ENERGY CONSERVATION
Energy conservation in Pumps, Fans (flow control) and blowers, Compressed Air Systems, Refrigeration and air conditioning systems – Waste heat recovery recuperators, heat sheets, heat pipes, heat pumps.

UNIT V ENERGY MANAGEMENT, ECONOMICS

TOTAL: 45 PERIODS

COURSE OUTCOMES
1. The students will understand the importance of energy conservation and management.
2. The students will have knowledge about AC /DC current systems, distribution systems, etc.
3. The students will understand about thermal systems.
4. The students will learn about techniques of energy conservation.
5. They will also learn about computational energy management including life cycle costing.

TEXT BOOKS:
REFERENCES

MI5010 DRILLING AND BLASTING ENGINEERING

COURSE OBJECTIVES:
1. To understand the principles and mechanism of different drilling methods, novel drilling techniques.
2. To learn the basic mechanism of rock fragmentation by blasting
3. To know the various types of explosives and accessories used in the blasting operation
4. To learn the different methods of blasting adopted in surface and underground coal / non-coal mines.
5. To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars being covered under this course.

UNIT I EXPLORATION AND PRODUCTION DRILLING
Exploratory drilling – drills, core recovery and Interpretation of borehole data; Production drilling; Operating variables; Various methods of drilling - percussive, rotary, rotary percussive; mechanics of different methods of drilling; Down-the-hole drilling & Top hammer drilling; Inclined Drilling; Factors affecting drilling & drillability studies - micro-bit drilling; selection of drilling equipment; different types of bit & selection of drill bits; bits wear; Introduction to novel and special drilling techniques.

UNIT II EXPLOSIVES, ACCESSORIES AND TOOLS
Various type of explosives and Blasting Agents - ANFO, slurry, emulsion, permitted explosives and their development; Bulk explosives; Selection of explosives; Initiation systems, Blasting accessories, Testing of explosives; Storage, transportation and handling of explosives; Destruction of explosives and accessories. Mechanics of rock fragmentation by explosive action.

UNIT III BLASTING IN UNDERGROUND MINES

UNIT IV BLAST DESIGN IN SURFACE MINES
Methods of blasting in surface mines - Primary and secondary blasting, Blast design for surface mines; Alternatives to blasting; Rock fragmentation studies, Controlled blasting techniques.

UNIT V ADVERSE EFFECTS OF BLASTING AND INSTRUMENTATION
Dangers associated with blasting in opencast mines and underground mines – misfires, blown out shots, incomplete detonation; Environmental impacts due to blasting - fly rock, ground vibrations, air blast and air & water pollution and its controlling measures; Introduction to instrumentation in blasting –V.O.D probe, vibration monitoring, high speed video camera, etc; Introduction to blasting software; Introduction to blasting concepts related to road constructions, trench cutting, demolition of buildings, dimensional stone quarries, underwater blasting.
COURSE OUTCOMES:
The students will be able to
1. Understand the principles and basic mechanism of different drilling methods and novel drilling techniques.
2. Select the suitable explosives and accessories in mining and construction projects.
3. Design the blasting pattern for surface mines, dimensional stones, road constructions and underground mines.
4. Use modern tools for providing solutions for optimum fragmentation.
5. Understand the environmental effects due to blasting and to adopt the required controlling measures involving modern monitoring tools during the blasting as per the statutory provisions.

TEXT BOOKS:

REFERENCES:
COURSE OBJECTIVES:
1. To understand the rock mechanics, rock cutting technology.
2. To learn about the rock cutting tools and rock excavating machine.

UNIT I INTRODUCTION
Concepts, historical developments in rock excavation systems, factors affecting the rock fragmentation, mechanism of rock breakage and fracture; their application to rock fragmentation methods—explosive action, cutting, ripping and impacts.

UNIT II ROCK PROPERTIES
Rock properties related to excavation process; application of compressive, tensile and triaxial strengths, index tests and abrasivity, anisotropy, elasticity, porosity, laminations, bedding and jointing in rock fragmentation process.

UNIT III ROCK CUTTING TECHNOLOGY
Mechanism of drilling — rotary, percussive, rotary percussive, mechanics of rock cutting, theory of single tool rock cutting, crack initiation and propagation, breakage pattern, rock excavation by cutting action — picks, discs, roller cutters, water jet cutting, methods of evaluation of drillability and cuttability index of rocks.

UNIT IV ROCK CUTTING TOOLS
Rock cutting tool materials, different types, relative applications and their choice, tool shape and size, specific energy consumption, tool wear, effect of operational parameters on tool performance, maintenance and replacement of cutting tools of excavating machines.

UNIT V ROCK EXCAVATING MACHINES
Excavating machines, principles, operation, applicability and technical indices of road headers, TBM’S coalface machines and bucket wheel excavators.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
1. The students will have basic knowledge about factors affecting rock fragmentation, breakage and fracture.
2. The students will have knowledge about mechanism of rock excavation process, influences of rock properties in excavation, etc.
3. The students will learn about rock cutting technology and mechanics of rock cutting, etc.
4. The students will get adequate knowledge about rock cutting tool materials, different types, relative applications, etc.
5. They will also learn about the different types of excavating machines.

TEXT BOOKS:
COURSE OBJECTIVES:
1. To familiar with the recent developments in various blasting technology used in surface and underground mines.
2. To learn the various theories of rock fragmentation by blasting and use the suitable modern tools for predicting fragmentation in the blasting operation.
3. To know the various statutory aspects like CMR, MMR and the relevant DGMS circulars being covered under this course.

UNIT – I EXPLOSIVES AND ACCESSORIES 7
Emerging trends in explosives, initiating system and blasting techniques; Bulk Blasting agents & Mode of Bulk Delivery System; Performance testing of explosives and accessories; Scattering in Delay timing of delay detonator.

UNIT – II TRENDS IN SURFACE AND UNDERGROUND BLASTING TECHNIQUES 10
Theories of rock breakage - Mechanics of rock fragmentation due to blasting; Recent advances in blasting techniques in both underground and surface mines; Cast blasting for improved mine economics; Blast optimization in surface mines. Blasting in opencast coal mines of developed galleries. Economic evaluation of blasting operations. Tunnel blast designs, Tunnel breakthrough under water.

UNIT – III INSTRUMENTATION FOR BLAST PERFORMANCE MONITORING 9
Fragmentation prediction and assessment, Instrumentation and software application for design of blast round, Deep hole blasting and Hot hole blasting. Instrumentation in Blasting – V.O.D probe, Laser Profiler, Vibration monitoring, High speed video camera, Stemming plug etc.

UNIT – IV ENVIRONMENTAL CONTROL AND SAFETY IN BLASTING 9
Blasting damages – Micro and macro level damages due to blasting; Ground vibrations, flyrock and air over pressure. Influence of Blasting on surface structures and underground workings; Safety during blasting

UNIT – V EMERGING BLASTING TECHNIQUES 10
Special Blasting techniques – Road Construction, Dimension stone blasting, Underwater Blasting; Air-Decking & Baby-decking techniques; Novel Blasting Techniques in Surface and underground construction; Demolition blasting; Shaft sinking in Populated area (City), Underground storage construction. Intelligent blast design, blast economics, computer applications in blasting.

COURSE OUTCOMES:
The students will able to
1. Understand the recent developments in blasting techniques adopted in surface and underground mines.
2. The students will learn about theories of rock breakage, mechanics of rock fragmentation, etc.
3. Learn the usage of modern instrumentation and software for monitoring and analyzing the blast performance.
4. Control the environmental effects due to blasting and design the blast accordingly as per the statutory provisions.
5. Understand the basic concepts of novel blasting techniques adopted surface and underground construction projects.

TOTAL: 45 PERIODS
TEXT BOOKS

REFERENCES

MI5013 ENVIRONMENTAL MANAGEMENT FOR SUSTAINABLE MINING L T P C
3 0 0 3

COURSE OBJECTIVES:
1. To study the various environmental pollution occurring in mineral industry.
2. To study various methods of managing environmental pollution.
3. To study various statute related to environment.

UNIT I ENVIRONMENT & ECOLOGY

UNIT II ENVIRONMENTAL POLLUTION-I
Environmental Pollutants due to surface and underground mining – Air, Water, Noise, Sources and Classification of pollutants including dust and their effect on human health, Sources, hazards, sampling and analysis, standards, instrumentation and measurement of pollutants including dust, Control and preventive measure for air pollution including for dust, Structure of the atmosphere – ozone layer depletion – Acid rain – Green house gases and global warming Ambient Air quality and emission standards, Air quality Sampling and monitoring, Dispersion of air pollutants
UNIT III ENVIRONMENTAL POLLUTION-II
Environmental Pollution due to Water – Sources, Classification and measurements of pollutants and their effect on human health, hazards, sampling and analysis, Water pollution, measurement standards, Noise standards – Measurement – Noise Impact Index assessment, Control and preventive measures for water, noise pollution. Pollution due to equipment vibrations & their monitoring, prevention and control, Land pollution, land for alternation dealing with mind outland, re-vegetation, land use plan, Textural classification and properties of soil. Impact of pollution on human health,

UNIT IV ENVIRONMENTAL MANAGEMENT

UNIT V ENVIRONMENTAL LEGISLATIONS

COURSE OUTCOMES:
1. The students will have basic knowledge on concepts of ecology.
2. The students will have knowledge about various pollutants including acid rain, greenhouse gases, etc.
3. The students will have knowledge about impacts of pollution.
4. The students will have adequate knowledge on cost benefit analysis, environmental administration, etc.
5. The students will have knowledge on, pollution its control and ecological systems along with related laws

TEXT BOOKS:

REFERENCES:
4. Manahan S.E. Environmental Science and Technology.
COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
1. Developing mathematical models for Boundary Value Problems and their numerical solution.
2. Applying concepts of Finite Element Analysis to solve one dimensional problem.
3. Determining field variables for two dimensional scalar variable problems.
4. Determining field variables for two dimensional vector variable problems.
5. Applying the need for Isoparametric transformation and the use of numerical integration.

UNIT I INTRODUCTION

UNIT II ONE-DIMENSIONAL PROBLEMS

UNIT III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS

UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

UNIT V ISOPARAMETRIC FORMULATION AND ADVANCED TOPICS

TOTAL = 45 PERIODS
COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
1. Develop mathematical models for Boundary Value Problems and their numerical solution
2. Apply concepts of Finite Element Analysis to solve one dimensional problems
3. Determine field variables for two dimensional scalar variable problems
4. Determine field variables for two dimensional vector variable problems
5. Apply the need for Isoparametric transformation and the use of numerical integration

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.9</td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.9</td>
<td></td>
<td>0.9</td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.6</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MI5014 NON-DESTRUCTIVE TESTING L T P C 3 0 0 3

COURSE OBJECTIVES:
On completion of this course, the students are expected to be conversant with
1. Principles of various NDT techniques
2. The equipment required for the NDT
3. The mechanism involved in there NDT techniques
4. Applications of NDT and recent trends in NDT

UNIT I LIQUID PENETRANT AND MAGNETIC PARTICLE INSPECTION 9

UNIT II RADIOGRAPHY 11
UNIT III EDDY CURRENT INSPECTION 7
Eddy current production – Impedance concepts – Inspection of magnetic materials – Inspection of
non magnetic materials – influences of various parameters – Advantages and limitations.

UNIT IV ULTRASONIC TESTING 10
Production of ultrasonic waves – Different types of waves – normal beam inspection – Angle beam
inspection – thickness measurements – Applications.

UNIT V RECENT TECHNIQUES 8
Non destructive inspection– Instrumentation for non destructive testing – Principles of holography-
Principle of acoustic emission – Applications of holographic techniques– advantages and limitations
– Other techniques.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
1. The students will have knowledge about liquid penetrant systems, magnetic fields, etc.
2. The students will have basic understanding of characteristics of rays, half life period, etc.
3. The students will have knowledge about eddy current, their advantages and limitations, etc.
4. The students will have adequate knowledge about ultrasonic waves their types and
 applications.
5. They will also learn about recent techniques of non-destructive testing.

TEXT BOOK:

REFERENCES:
3. Proceedings of the 10th International Acoustic Emission Symposium, Japanese Society for Non
 Destructive Inspection, Sendai, 1990.
UNIT III MINE EVALUATION 12
Time value of money; annuity; redemption of capital, net present value; depletion allowance; depreciation; inflation; escalation; rates of return; Hoskold’s Two rate method; capital and operating cost including wages, incentives, material, etc.; assets; liabilities; cash flows and discounted cash flow – their implications in mine economic evaluation.

UNIT IV PROJECT APPRAISAL 12
Methods of project evaluation – payback, annual value, benefit/cost ratio, ARR and IRR, NPV, Profitability Index etc., Cost-Volume-Profit Analysis; evaluation of exploratory mining areas and operating mines; mine project financing, its risks and constraints; mine taxation; critical impact of depreciation, depletion, type of funding, reserves, life, etc. on mine profitability.

UNIT V FINANCE AND ACCOUNTING 8
Sources of mine funds – shares, debentures, fixed deposit, sinking fund, capital gearing, Trading Account, P & L account, balance sheet, Income Statement, Cash flow and Funds flow statement; typical case studies of mine feasibility. Cost estimation of individual mining operations and overall mining cost, cost control methods.

COURSE OUTCOME:
• The students will have knowledge on estimation and valuation of mineral deposits. They will possess about project appraisal, finance and accounting.

TEXT BOOKS:

REFERENCES
3. Park, R.J., Examination and Valuation of mineral property

MI5015 ROCK SLOPE ENGINEERING L T P C 3 0 0 3

COURSE OBJECTIVES:
1. To introduce the basic mechanics of rock slope failures
2. To learn the types of rock failure and its influencing parameters

UNIT I BASIC MECHANICS OF ROCK SLOPE FAILURE 8
Rock slope economics; continuum mechanics approach to slope stability; slope parameters; effect of water pressure; factor of safety of slopes; slope height vs slope angle; design of slopes.
UNIT II GEOLOGICAL AND ROCK STRENGTH PROPERTIES

Geological parameters affecting slope stability; graphical representation of geological data; plotting and analysis of field measurements; physico-mechanical properties affecting slope stability, shearing on incline plane, determination of shear strength of rock and rock discontinuities; Ground water flow in rock masses; field measurement of permeability; measurement of water pressure.

UNIT III PLANE FAILURE AND WEDGE FAILURE

Plane failure analysis; graphical analysis of stability; influence of ground water on stability; influence of tension crack; analysis of failure on a rough plane; rock reinforcement of slopes; Analysis of wedge failure; wedge analysis including cohesion and water pressure; Wedge stability charts for friction only; case studies. Numerical problems.

UNIT IV CIRCULAR AND TOPPLING FAILURE

Conditions for circular failure; derivation of circular failure analysis; effect of ground water; circular failure charts; Bishop’s and Janbu’s methods of failure analysis; case studies. Types of toppling failure; secondary toppling modes; analysis of toppling failure; limit equilibrium analysis of toppling failures; Influence of slope curvature on stability; slope depressurisation; protection of slopes; control of rock falls; measurement and monitoring and interpretation of slope displacements. Numerical problems.

UNIT V ROCK SLOPE FAILURE MONITORING AND SLOPE STABILIZATION

Types of slope movement, Surface and Sub-surface monitoring methods including instrumentation and techniques & Guidelines for monitoring programs. Causes of rock falls; Rock slope stabilization programs – stabilization by rock reinforcement & rock removal; protection measures against rock falls.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

1. The students will know the fundamental mechanics of rock slope failure, types of failure and its influencing parameters.
2. The students will know about parameters affecting rock slope stability.
3. The students will have adequate knowledge on plane and wedge failure.
4. The students will have enhanced knowledge on circular and toppling failure.
5. They will also know about techniques & Guidelines for monitoring programs.

TEXT BOOKS:

REFERENCES

COURSE OBJECTIVES:
1. To introduce the basic principles in material handling
2. To study the conveyor system and its advancement
3. To study various material handling methods and its applications in the mines.

UNIT I BULK HANDLING SYSTEMS
Basic principles in material handling and its benefits. Classification of material handling equipment. Stacking, blending, reclaiming and wagon loading, machinery and systems used at the stack yards; stock piles, silos, bunkers – their design, reclamation from them, various types of weigh bridges. Segregation - size wise and grade wise, Railway sidings.

UNIT II SHORT CONVEYORS AND HAULAGE SYSTEMS
Roller conveyor, overhead conveyor, screw conveyor, auger conveyor, apron feeder, bucket elevators, scraper haulage, conveyors in steep gradient, Armoured face conveyor, Off-highway Trucks, haul roads, In-pit crushers and modular conveyors, electric trolley assisted haulage, shuttle cars, skip hoist, winders, LHD’s, pneumatic conveying, hydraulic transport.

UNIT III BELT CONVEYOR SYSTEM
Design, capacity, calculations with respect to the size, speed, troughing, power requirement, tension requirement, belt selection, factor of safety; developments in the design, of various components of belt conveyor systems such as; structures, rollers, gear boxes and motors, drums and pulleys, belting, ancillary components and safety gadgets.

UNIT IV NEW TYPES OF BELT CONVEYOR SYSTEMS
Curved conveyors, cable belts, pipe conveyors, rock belts – mine-run-rock conveyor, steel belt conveyors, steel slot conveyor, chain belt conveyors, etc., and other new developments, High Angle Conveyors (HAC); New inventions in HAC, Mobile or fixed installations; Woven wire belts, En Masse conveyor, Vibrating conveyor, gravity bucket conveyor.

UNIT V MATERIAL HANDLING IN MINES, PLANTS AND WORKSHOPS
Mobile cranes, derrick cranes, pillar cranes, tower cranes, radial cranes, bridge cranes, fork lifters, over head gantry material handling in workshops. Mineral handling in dimensional stone quarries, Mineral handling plants (coal, etc.,) Locomotives, rail tracks, rail cars, railways wagons; Aerial ropeways, gravity ropeways; Containers and shipping; Rope haulage - different types.

COURSE OUTCOMES:
The students will get adequate knowledge on
1. Design and application of hoisting system
2. Application of men and material transport system
3. Design concept of scraper haulage, aerial ropeway and belt conveyor system in mines.
4. Design and constructional features of existing and modern belt conveyors
5. Material handling methods and systems and its principle to convey the minerals or materials from mines, plants and workshops.

TEXT BOOKS:
REFERENCES:

MI5017 ADVANCED SURFACE MINING TECHNOLOGY

COURSE OBJECTIVES:
1. To introduce the various techniques for mine planning, geotechnical investigation and equipment management.
2. To appreciate the modern trends in opencast mines, safety and environment

UNIT I PIT PLANNING
Development of economic block model; Pit cut-off grade and its estimation; Ultimate pit configuration and its determination – hand method, floating cone technique, Lerchs-Grossmann algorithm, and computer assisted hand method. Addition of haulroad on pit plan; Pit layouts. Open-pit optimisation techniques for mine geometry and output, mine development phases, quality control Output and manpower planning; calendar planning, mine scheduling, production scheduling, truck dispatch system; Feasibility Report, DPR-contents and preparation.

UNIT II GEOTECHNICAL PARAMETERS
Influence of pit slope on mine economics; Highwall slope stability analysis and design methodology; stability analysis and design methodology for waste dumps; Application of geotechnical investigation for design of ultimate pit slope and other design parameters. Numerical problems on slope stability analysis including mine waste rock dumps and tailing dumps.

UNIT III PRODUCTION AND EQUIPMENT PLANNING
Determination of mine size and sequencing by nested pits; Cash flow calculations; Mine and mill plant sizing; Production scheduling. Stockpiling and blending, Spreaders and Reclaimers; computerized truck dispatch. Selection of mining system vis-à-vis equipment system; Computations for the capacity and number of machines vis-à-vis mine production. Machine availability, productivity, maintenance scheduling, preventive maintenance, control and monitoring inventory. Workshops for HEMM. Power supply arrangements in opencast mines.

UNIT IV HEALTH, SAFETY AND ENVIRONMENTAL MANAGEMENT
Occupational health hazards due to mine dust, poor lighting and ventilation, noise and vibration, radioactive emission; Impact of surface subsidence; Accidents in Surface mining and their prevention; Sources of water, assessment of drainage requirements, sump design and drainage patterns - pumping systems. Pre-drainage through diversion channels and boreholes; Water pollution, Methods of reclamation of mined out areas, dumps and tailing ponds, environmental audit. Socio-economic factors in surface mines.
UNIT V MODERN TRENDS IN OPENCAST MINES

Recent developments in mining methods and layouts. In pit crushing & conveying, continuous surface mining. Selective extraction and dumping. Extraction of seams developed/extracted by underground methods. Deep Open pit Mining; Placer mining and solution mining – scope of applicability, sequence of development and machinery; Closure of surface mines.

TOTAL :45 PERIODS

COURSE OUTCOMES:
The students will be able to
1. have insight about the advanced techniques for mine planning, geotechnical investigation and equipment management.
2. Know about mine scheduling and production scheduling.
3. Know about the maintainance of equipments and availability of equipments
4. Understand health, safety and environmental management in surface mines
5. Update the modern trends related to opencast mines.

TEXT BOOKS

REFERENCES
3. Das, S.K., Modern Coal Mining Technology, Lovely Prakashan, Dhanbad, 1994
UNIT III ORGANS OF GOVERNANCE
Parliament-Composition-Qualifications and Disqualifications-Powers and Functions-Executive
President-Governor-Council of Ministers-Judiciary, Appointment and Transfer of Judges, Qualifications
Powers and Functions

UNIT IV EMERGENCY PROVISIONS

UNIT V LOCAL ADMINISTRATION
District's Administration head- Role and Importance-Municipalities- Introduction- Mayor and role of
Elected Representative-CEO of Municipal Corporation-Pachayati raj- Introduction- PRI- Zila Pachayat-
Elected officials and their roles- CEO ZilaPachayat- Position and role-Block level-Organizational
Hierarchy (Different departments)-Village level- Role of Elected and Appointed officials-Importance of
grass root democracy

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Able to understand history and philosophy of Indian Constitution.
CO2: Able to understand the premises informing the twin themes of liberty and freedom from a
civil rights perspective.
CO3: Able to understand powers and functions of Indian government.
CO4: Able to understand emergency rule.
CO5: Able to understand structure and functions of local administration.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

TEXT BOOKS:
4. The Constitution of India (Bare Act), Government Publication, 1950

AD5092 VALUE EDUCATION

COURSE OBJECTIVES:
- Develop knowledge of self-development
- Explain the importance of Human values
- Develop the overall personality through value education
- Overcome the self destructive habits with value education
- Interpret social empowerment with value education
UNIT I INTRODUCTION TO VALUE EDUCATION 9
Values and self-development –Social values and individual attitudes, Work ethics, Indian vision of
humanism, Moral and non-moral valuation, Standards and principles, Value judgements

UNIT II IMPORTANCE OF VALUES 9
Importance of cultivation of values, Sense of duty, Devotion, Self-reliance, Confidence, Concentration,
Truthfulness, Cleanliness. Honesty, Humanity, Power of faith, National Unity, Patriotism, Love for
nature, Discipline

UNIT III INFLUENCE OF VALUE EDUCATION 9
Personality and Behaviour development - Soul and Scientific attitude. Positive Thinking, Integrity and
discipline, Punctuality, Love and Kindness, Avoid fault Thinking, Free from anger, Dignity of labour,
Universal brotherhood and religious tolerance, True friendship Happiness Vs suffering, love for truth.

UNIT IV REINCARNATION THROUGH VALUE EDUCATION 9
Aware of self-destructive habits, Association and Cooperation, Doing best for saving nature Character
and Competence –Holy books vs Blind faith, Self-management and Good health, Science of
reincarnation

UNIT V VALUE EDUCATION IN SOCIAL EMPOWERMENT 9
Equality, Non violence, Humility, Role of Women, All religions and same message, Mind your Mind,
Self-control, Honesty, Studying effectively

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1 – Gain knowledge of self-development
CO2 – Learn the importance of Human values
CO3 – Develop the overall personality through value education
CO4 – Overcome the self destructive habits with value education
CO5 – Interpret social empowerment with value education

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

REFERENCES:
 University Press ,New Delhi
COURSE OBJECTIVES:
- Understand the methodology of pedagogy.
- Compare pedagogical practices used by teachers in formal and informal classrooms in developing countries.
- Infer how can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy.
- Illustrate the factors necessary for professional development.
- Identify the Research gaps in pedagogy.

UNIT I INTRODUCTION AND METHODOLOGY:
Aims and rationale, Policy background, Conceptual framework and terminology - Theories of learning, Curriculum, Teacher education - Conceptual framework, Research questions - Overview of methodology and Searching.

UNIT II THEMATIC OVERVIEW
Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries - Curriculum, Teacher education.

UNIT III EVIDENCE ON THE EFFECTIVENESS OF PEDAGOGICAL PRACTICES
Methodology for the in depth stage: quality assessment of included studies - How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? - Theory of change - Strength and nature of the body of evidence for effective pedagogical practices - Pedagogic theory and pedagogical approaches - Teachers’ attitudes and beliefs and Pedagogic strategies.

UNIT IV PROFESSIONAL DEVELOPMENT
Professional development: alignment with classroom practices and follow up support - Peer support - Support from the head teacher and the community - Curriculum and assessment - Barriers to learning: limited resources and large class sizes

UNIT V RESEARCH GAPS AND FUTURE DIRECTIONS
Research design – Contexts – Pedagogy - Teacher education - Curriculum and assessment - Dissemination and research impact.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
- Understand the methodology of pedagogy.
- Understand Pedagogical practices used by teachers in formal and informal classrooms in developing countries.
- Find how can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy.
- Know the factors necessary for professional development.
- Identify the Research gaps in pedagogy.

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
AD5094 STRESS MANAGEMENT BY YOGA L T P C
 3 0 0 0

COURSE OBJECTIVES:
• Develop healthy mind in a healthy body thus improving social health also improve efficiency
• Invent Do’s and Don’t’s in life through Yam
• Categorize Do’s and Don’t’s in life through Niyam
• Develop a healthy mind and body through Yog Asans
• Invent breathing techniques through Pranayam

UNIT I INTRODUCTION TO YOGA 9
Definitions of Eight parts of yog. (Ashtanga)

UNIT II YAM 9
Do’s and Don’t’s in life.
Shaucha, santosh, tapa, swadhyay, ishwarpriyanidhan

UNIT III NIYAM 9
Do’s and Don’t’s in life.
Ahinsa, satyay, astheya, bramhacharya and aparigraha

UNIT IV ASAN 9
Various yog poses and their benefits for mind & body

UNIT V PRANAYAM 9
Regularization of breathing techniques and its effects-Types of pranayam

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1 – Develop healthy mind in a healthy body thus improving social health also improve efficiency
CO2 – Learn Do’s and Don’t’s in life through Yam
CO3 – Learn Do’s and Don’t’s in life through Niyam
CO4 – Develop a healthy mind and body through Yog Asans
CO5 – Learn breathing techniques through Pranayam
<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES:
1. “Rajayoga or conquering the Internal Nature” by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata
2. ‘Yogic Asanas for Group Training-Part-I” : Janardan Swami Yogabhyasi Mandal, Nagpur

AD5095 PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

COURSE OBJECTIVES:
- Develop basic personality skills holistically
- Develop deep personality skills holistically to achieve happy goals
- Rewrite the responsibilities
- Reframe a person with stable mind, pleasing personality and determination
- Discover wisdom in students

UNIT I NEETISATAKAM-HOLISTIC DEVELOPMENT OF PERSONALITY - I
Verses- 19,20,21,22 (wisdom) - Verses- 29,31,32 (pride & heroism) – Verses- 26,28,63,65 (virtue)

UNIT II NEETISATAKAM-HOLISTIC DEVELOPMENT OF PERSONALITY - II
Verses- 52,53,59 (dont’s) - Verses- 71,73,75,78 (do’s)

UNIT III APPROACH TO DAY TO DAY WORK AND DUTIES
Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48 - Chapter 3-Verses 13, 21, 27, 35 Chapter 6-Verses 5,13,17,23, 35 - Chapter 18-Verses 45, 46, 48

UNIT IV STATEMENTS OF BASIC KNOWLEDGE – I
Statements of basic knowledge - Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68 Chapter 12 - Verses 13, 14, 15, 16,17, 18

UNIT V PERSONALITY OF ROLE MODEL - SHRIMAD BHAGWADGEETA
Chapter2-Verses 17, Chapter 3-Verses 36, 37, 42 - Chapter 4-Verses 18, 38,39 Chapter18 – Verses 37,38,63

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: To develop basic personality skills holistically
CO2: To develop deep personality skills holistically to achieve happy goals
CO3: To rewrite the responsibilities
CO4: To reframe a person with stable mind, pleasing personality and determination
CO5: To awaken wisdom in students
REFERENCES:
1. Gopinath,Rashtriya Sanskrit Sansthanam P, Bhartrihari’s ThreeSatakam , Niti-sringar-vairagya, New Delhi,2010
2. Swami Swarupananda , Srimad Bhagavad Gita, Advaita Ashram,Publication Department, Kolkata,2016

AD5097 ESSENCE OF INDIAN KNOWLEDGE TRADITION L T P C 3 0 0 0

COURSE OBJECTIVES
The course will introduce the students to
- get a knowledge about Indian Culture
- Know Indian Languages and Literature religion and philosophy and the fine arts in India
- Explore the Science and Scientists of Ancient, Medieval and Modern India
- Understand education systems in India

UNIT I INTRODUCTION TO CULTURE
Culture, civilization, culture and heritage, general characteristics of culture, importance of culture in human literature, Indian Culture, Ancient India, Medieval India, Modern India.

UNIT II INDIAN LANGUAGES AND LITERATURE
Indian Languages and Literature – I: Languages and Literature of South India, – Indian Languages and Literature – II: Northern Indian Languages & Literature

UNIT III RELIGION AND PHILOSOPHY
Major religions practiced in India and Understanding their Philosophy – religious movements in Modern India (Selected movements only)

UNIT IV FINE ARTS IN INDIA (ART, TECHNOLOGY& ENGINEERING)
Indian Painting, Indian handicrafts, Music, divisions of Indian classic music, modern Indian music, Dance and Drama, Indian Architecture (ancient, medieval and modern), Science and Technology in India, development of science in ancient, medieval and modern India

UNIT V EDUCATION SYSTEM IN INDIA
Education in ancient, medieval and modern India, aims of education, subjects, languages, Science and Scientists of Ancient India, Science and Scientists of Medieval India, Scientists of Modern India

TOTAL: 45 PERIODS
COURSE OUTCOMES
After successful completion of the course the students will be able to

- Understand philosophy of Indian culture.
- Distinguish the Indian languages and literature.
- Learn the philosophy of ancient, medieval and modern India.
- Acquire the information about the fine arts in India.
- Know the contribution of scientists of different eras.
- Understand education systems in India.

REFERENCES:
5. Satya Prakash, “Founders of Sciences in Ancient India”, Vijay Kumar Publisher, 1989

AD5098 SANGA TAMIL LITERATURE APPRECIATION

COURSE OBJECTIVES:
The main learning objective of this course is to make the students an appreciation for:
1. Introduction to Sanga Tamil Literature.
2. ‘Agathinai’ and ‘Purathinai’ in Sanga Tamil Literature.
3. ‘Attruppadai’ in Sanga Tamil Literature.
4. ‘Puranaanuru’ in Sanga Tamil Literature.
5. ‘Pathitrupaththu’ in Sanga Tamil Literature.

UNIT I SANGA TAMIL LITERATURE AN INTRODUCTION
Introduction to Tamil Sangam – History of Tamil Three Sangams – Introduction to Tamil Sangam Literature – Special Branches in Tamil Sangam Literature - Tamil Sangam Literature’s Grammar - Tamil Sangam Literature’s parables.

UNIT II ‘AGATHINAI’ AND ‘PURATHINAI’

UNIT III ‘ATTRUPPADAI’

UNIT IV ‘PURANAANURU’
Puranaanuru on Good Administration, Ruler and Subjects – Emotion & its Effect in Puranaanuru.

UNIT V ‘PATHITRUPATTHU’
Pathitrupaththu in ‘Ettuthogai’ – Pathitrupaththu’s Parables – Tamil dynasty: Valor, Administration, Charity in Pathitrupaththu - Message to Society from Pathitrupaththu.

TOTAL (L: 45) = 45 PERIODS
COURSE OUTCOMES: Upon completion of this course, the students will be able to:

1. Appreciate and apply the messages in Sanga Tamil Literature in their life.
2. Differentiate ‘Agathinai’ and ‘Purathinai’ in their personal and societal life.
3. Appreciate and apply the messages in ‘Attruppadai’ in their personal and societal life.
4. Appreciate and apply the messages in ‘Puranaanuru’ in their personal and societal life.
5. Appreciate and apply the messages in ‘Pathitrupaththu’ in their personal and societal life.

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.9</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.9</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0.9</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0.9</td>
</tr>
</tbody>
</table>

HSMC – ELECTIVES – HUMANITIES I (ODD SEMESTER)

HU5171

LANGUAGE AND COMMUNICATION

COURSE DESCRIPTION

This course offers an introduction to language and communication. The primary goal of this course is to familiarize students with key ideas related to communication using language as well as non-verbal means. Ideas related to the use of language and the underlying power structures are also examined. The course also examines the role of media in communication and in the dissemination of ideas as well as opinions.

Objectives

- To familiarize students with the concept of communication using linguistic and non-linguistic resources.
- To help students ask critical questions regarding facts and opinions.
- To provide students with the material to discuss issues such as language and power structures.
- To help students think critically about false propaganda and fake news.

Learning Outcomes

- Students will be able to use linguistic and non-linguistic resources of language in an integrated manner for communication.
- Students will be able to analyse communication in terms of facts and opinions.
- Students will be able to discuss, analyse and argue about issues related to language and power.
UNIT I LINGUISTIC AND NON-LINGUISTIC RESOURCE OF COMMUNICATION: 9
a) Writing and Speech
b) Distinction between language structure and language use, form and function, acceptability and grammaticality
c) Gestures and Body language, pictures and symbols, cultural appropriacy
d) Communicative Competency, context and situation, combination of linguistic and non-linguistic elements of communication

UNIT II STRUCTURE OF WRITING/CONVERSATION: 9
a) Language skills and the communication cycle; speaking and listening, writing and reading
b) Initiating and closing conversations, intervention, turn taking
c) Writing for target reader, rhetorical devices and strategies
d) Coherence and Cohesion in speech and writing

UNIT III POWER STRUCTURE AND LANGUAGE USE: 9
a) Gender and language use
b) Politeness expressions and their use
c) Ethical dimensions of language use
d) Language rights as part of human rights

UNIT IV MEDIA COMMUNICATION: 9
a) Print media, electronic media, social media
b) Power of media
c) Manufacturing of opinion, fake news and hidden agendas

UNIT V PERSUASIVE COMMUNICATION AND MISCOMMUNICATION: 9
a) Fundamentals of persuasive communication
b) Persuasive strategies
c) Communication barriers

TOTAL: 45 PERIODS

TEXT BOOKS:

HU5172 VALUES AND ETHICS L T P C
3 0 0 3

OBJECTIVES:
- Teach definition and classification of values.
- Explain Purusartha.
- Describe Sarvodaya idea.
- Summarize sustenance of life.
- Conclude views of hierarchy of values.
UNIT I DEFINITION AND CLASSIFICATION OF VALUES 9
Extrinsic values- Universal and Situational values- Physical- Environmental-Sensuous- Economic-
Social-Aesthetic-Moral and Religious values

UNIT II CONCEPTS RELATED TO VALUES 9
Purushartha-Virtue- Right- duty- justice- Equality- Love and Good

UNIT III IDEOLOGY OF SARVODAYA 9
Egoism- Altruism and universalism- The Ideal of Sarvodaya and Vasudhaiva Kutumbakam

UNIT IV SUSTENANCE OF LIFE 9
The Problem of Sustenance of value in the process of Social, Political and Technological
Changes

UNIT V VIEWS ON HIERARCHY OF VALUES 9
The Problem of hierarchy of values and their choice, The views of Pt. Madan Mohan Malviya
and Mahatma Gandhi

OUTCOMES:
CO1: Able to understand definition and classification of values.
CO2: Able to understand purushartha.
CO3: Able to understand sarvodaya idea.
CO4: Able to understand sustenance of life.
CO5: Able to understand views of hierarchy of values.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

TEXTBOOKS:
2. Little, William, : An Introduction of Ethics (Allied Publisher, Indian Reprint 1955)

HU5173 HUMAN RELATIONS AT WORK L T P C
3 0 0 3

OBJECTIVES:
- Illustrate human relations at work its relationship with self.
- Explain the importance of interacting with people at work to develop teamwork.
- Infer the importance of physical health in maintaining human relations at work.
- Describe the importance of staying psychologically healthy.
- Identify the essential qualities for progressing in career.
UNIT I UNDERSTANDING AND MANAGING YOURSELF
Human Relations and You: Self-Esteem and Self-Confidence: Self-Motivation and Goal Setting; Emotional Intelligence, Attitudes, and Happiness; Values and Ethics and Problem Solving and Creativity.

UNIT II DEALING EFFECTIVELY WITH PEOPLE
Communication in the Workplace; Specialized Tactics for Getting Along with Others in the Workplace; Managing Conflict; Becoming an Effective Leader; Motivating Others and Developing Teamwork; Diversity and Cross-Cultural Competence.

UNIT III STAYING PHYSICALLY HEALTHY
Yoga, Pranayam and Exercise: Aerobic and anaerobic.

UNIT IV STAYING PSYCHOLOGICALLY HEALTHY
Managing Stress and Personal Problems, Meditation.

UNIT V DEVELOPING CAREER THRUST

TOTAL: 45 PERIODS

OUTCOMES:
Students will be able to
CO1: Understand the importance of self-management.
CO2: Know how to deal with people to develop teamwork.
CO3: Know the importance of staying healthy.
CO4: Know how to manage stress and personal problems.
CO5: Develop the personal qualities essential for career growth.

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEXT BOOK:

REFERENCES:
COURSE DESCRIPTION
Psychological Processes course is designed for students to be aware of the basic principles of psychology for the better understanding of people’s psyche and behaviour around them. This course enables learners to use the optimal use of different forms of thinking skills and thereby results in effective communication in diverse situations. Every unit of the syllabus highlights the psychological process of people, the most powerful and constructive use of perceptions.

OBJECTIVES
The major objectives of this course is
- To develop students’ awareness – on psychology, learning behavior and usage of perception effectively.
- To learn to use the various kinds of thinking in a formal context.
- To critically evaluate content and comprehend the message on the bases of perception, personality and intelligence.

UNIT I INTRODUCTION

UNIT II SENSORY & PERCEPTUAL PROCESSES
Some general properties of Senses: Visual system – the eye, colour vision – Auditory system – Hearing, listening, Sounds - Other senses - Selective attention; physiological correlates of attention; Internal influences on perception learning – set - motivation & emotion - cognitive styles; External influences on perception figure and ground separation – movement – organization – illusion; Internal-external interactions: Constancy - Depth Perception- Binocular & Monocular Perception; Perceptual defense & Perceptual vigilance; Sensory deprivation -Sensory bombardment; ESP - Social Perception.

UNIT III COGNITION & AFFECT

UNIT IV THINKING, PROBLEM-SOLVING & DECISION MAKING

UNIT V PERSONALITY & INTELLIGENCE
Psychological phenomena & Attributes of humans - cognition, motivation, and behavior - thoughts, feelings, perceptions, and actions – personality dimensions, traits, patterns - Specialized knowledge, performance accomplishments, automaticity or ease of functioning, skilled performance under challenge - generative flexibility, and speed of learning or behavior change.
REFERENCES

HU5175 EDUCATION, TECHNOLOGY AND SOCIETY L T P C 3 0 0 3

COURSE DESCRIPTION
This course introduces students to multidisciplinary studies in Education, Technology and Society. Students will get an understanding of the relationship between education, technology and society. They will also learn about the long lasting impact of good education in a technologically advanced society.

COURSE OBJECTIVES:
The course aims
- To help learners understand the basics of different types of technology utilised in the field of education
- To make them realize the impact of education in society
- To make them evolve as responsible citizen in a technologically advanced society

LEARNING OUTCOMES
By the end of the course, learners will be able to
- Understand the various apps of technology apps and use them to access, generate and present information effectively.
- Apply technology based resources and other media formats equitably, ethically and legally.
- Integrate their technical education for betterment of society as well as their personal life.

UNIT I INDIAN EDUCATION SYSTEM
Gurukul to ICT education – Teacher as facilitator – Macaulay’s Minutes – English medium vs Regional medium – Importance of Education in Modern India - Challenges in Education

UNIT II LEARNING THEORIES

UNIT III TECHNOLOGICAL ADVANCEMENTS
Web tools – Social media in education – elearning – MOOCs – Mobile assisted learning – Learning Apps – Blended learning - Self-directed learning

UNIT IV EDUCATIONAL TECHNOLOGY
Technological implications on Education – Teaching, Learning & Testing with Technology - Advantages and drawbacks – Critical analysis on the use of technology
UNIT V ETHICAL IMPLICATIONS
Plagiarism – Online Copyright issues – Ethical and value implications of education and technology on individual and society.

TOTAL: 45 PERIODS

TEACHING METHODS
Teaching modes include guest lectures, discussion groups, presentations, visual media, and a practicum style of learning.

EVALUATION
As this course is not a content based course, it focuses more on the ethical use of technology in education and society, and so, evaluation can be based on assignments and discussions. So there is no need for an end semester examination. Internals marks can be taken for the total marks.

INTERNAL (100 % WEIGHTAGE)
(a) Written Test (40 marks)
(b) Assignment: Write a real time report of the technology use in any school / college (15 marks)
(c) Presentation: Students choose any one of the technological tools and present its relevance to education and society (15 marks)
(d) Group discussion: Students discuss in groups on case studies relating to various challenges in education and technology use in society (20 marks)
(e) Blog entry: Making weekly blog posts in Class Blog on the topics related to the course posted by the instructor and commenting on others’ posts. (10 marks)

REFERENCES
1) Education and Social order by Bertrand Russel
2) Theories of learning by Bower and Hilgard
3) Technology and Society by Jan L Harrington

HU5176 PHILOSOPHY

OBJECTIVES
• To create a new understanding by teaching philosophy through a comparison of Indian and Western traditions.
• To foster critical thinking and imagination by dealing with inter-related concepts in literature and science.
• To bridge the gap between the sciences and humanities through introspective analyses.
• To nurture an understanding of the self and elucidates ways to progress towards a higher understanding of one’s self and others.

UNIT I KNOWLEDGE

UNIT II ORIGIN
Origin of Universe And Creation – ‘Nasidiya Sukta’ in Relation With Big Bang Theory. Greek Concept of Chaos. The Concept of Space – Space as the Final Goal – Udgitha. Relationship Between Teacher
And Student – The Knowledge Of Combinations, Body And Speech – Siksha Valli – Taittriya Upanishad.

UNIT III WORD

UNIT IV KNOWLEDGE AS POWER/OPPRESSION

UNIT V SELF KNOWLEDGE/BRAHMAN

TOTAL : 45 PERIODS

OUTCOMES:
On completion of the course, the students will be able to:
1. Think sceptically, ask questions and to arrive at deductions.
2. Connect and relate different branches of thought.
3. Comprehends the relation between language, thought and action.
4. Arrive at a better understanding of self and others and forms a new outlook.

REFERENCES:
7. Bacon, Francis: Power as Knowledge

HU5177 APPLIED PSYCHOLOGY IN EVERYDAY LIFE L T P C

UNIT I INTRODUCTION
Nature and fields.

UNIT II PSYCHOLOGY IN INDUSTRIES AND ORGANIZATIONS
Job analysis; fatigue and accidents; consumer behavior.

UNIT III PSYCHOLOGY AND MENTAL HEALTH
Abnormality, symptoms and causes psychological disorders
TEXT BOOKS

HSMC– ELECTIVES – HUMANITIES II (EVEN SEMESTER)

HU5271 GENDER, CULTURE AND DEVELOPMENT L T P C 3 0 0 3

COURSE DESCRIPTION
This course offers an introduction to Gender Studies that asks critical questions about the meanings of sex and gender in Indian society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary, drawing from Indian literature and media studies, to examine cultural assumptions about sex, gender, and sexuality. This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with class, caste and other social identities. This course also seeks to build an understanding of the concepts of gender, gender-based violence, sexuality, and rights and their impact on development through a number of discussions, exercises and reflective activities.

Objectives
✓ To familiarize students with the concepts of sex and gender through literary and media texts.
✓ To help students ask critical questions regarding gender roles in society.
✓ To provide students with the material to discuss gender issues such as gender based discrimination, violence and development.
✓ To help students think critically about gender based problems and solutions.

Learning Outcomes
➢ Students will be able to critically read literary and media texts and understand the underlying gender perspectives in them.
➢ Students will be able to analyse current social events in the light of gender perspectives.
➢ Students will be able to discuss, analyse and argue about issues related to gender and their impact on society, culture and development.
UNIT I: Introduction to Gender
- Definition of Gender
- Basic Gender Concepts and Terminology
- Exploring Attitudes towards Gender
- Social Construction of Gender

Texts:
1. Sukhu and Dukhu (Amar Chitra Katha)
2. The Cat who Became a Queen (Folk tale, J. Hinton Knowles, Folk-Tales of Kashmir. London: Kegan Paul, Trench, Trübner, and Company, 1893, pp. 8-10.)

UNIT II: Gender Roles and Relations
- Types of Gender Roles
- Gender Roles and Relationships Matrix
- Gender-based Division and Valuation of Labour

Texts:
1. Muniyakka (Short Story, Lakshmi Kannan, Nandanvan and Other Stories, Hyderabad: Orient Blackswan, 2011)

UNIT III: Gender Development Issues
- Identifying Gender Issues
- Gender Sensitive Language
- Gender, Governance and Sustainable Development
- Gender and Human Rights
- Gender and Mainstreaming

Texts:
2. Tell Us Marx (Poem, Mallika Sengupta, Translated by Sanjukta Dasgupta)

UNIT IV: Gender-based Violence
- The concept of violence
- Types of Gender-based violence
- The relationship between gender, development and violence
- Gender-based violence from a human rights perspective

Texts:
1. Lights Out (Play, Manjula Padmanabhan)
2. Lights Out (Video of play enacted)

UNIT V: Gender and Culture
- Gender and Film
- Gender, Media and Advertisement

Texts:
1. Mahanagar (Movie: Satyajit Ray)
2. Beti Bachao Beti Padhao Advertisements
READINGS: Relevant additional texts for readings will be announced in the class. Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments.

ASSESSMENT AND GRADING:
Discussion & Classroom Participation: 20%
Project/Assignment: 30%
End Term Exam: 50%

HU5272 ETHICS AND HOLISTIC LIFE

OBJECTIVES:
- To emphasize the meaning and nature of ethics, human values and holistic life for leading a good, successful and happy life through continuous examination of thoughts and conduct in day to day life.
- To understand the status and responsible role of individual in abatement of value crisis in contemporary world in order to develop a civilized and human society. Understanding the process of ethical decision making through critical assessment of incidents/cases of ethical dilemmas in personal, professional and social life.
- To view the place of Ethics and Human Values in the development of individual and society through identification and cross examination of life values and world view of his/her role models in society.

UNIT I HUMAN LIFE, ITS AIM AND SIGNIFICANCE
The concept of a successful life, happy life and a meaningful life, Ethical and decision making capability and its development: Meaning of Ethical dilemma, sharing real life experiences.

UNIT II CREATIVE AND LEADERSHIP ABILITY AND THEIR DEVELOPMENT
Intellectual, Emotional, Creative, Ethico - spiritual development, Aesthetic sense, Self-dependency, Activeness, Development of positive attitude.

UNIT III HARMONY IN PERSONAL AND SOCIAL LIFE:
Concept of personal and group Ethics; Balance between - rights and duties-welfare of self and welfare of all, Creating a value based work culture in hostel, classroom and other places in the campus and society.

UNIT IV CHARACTER, RIGHTEOUSNESS AND VIRTUES FOR A MEANINGFUL LIFE
Egolessness, Humility, Righteousness, Purity, Truthfulness, Integrity, Self-restraint, Self-control, Sense of responsibility, Empathy, Love, Compassion, Maitri / Comradeship, Cooperation, Tolerance.

UNIT V DILEMMA BETWEEN MATERIALISTIC DEVELOPMENT AND HUMAN WELFARE

TOTAL:45 PERIODS
OUTCOMES:
On completion of the course, the students will be able to:
1. Enable students to understand the concept of contemporary ethics at different levels: Individual, local and Global and enable them to cross examine the ethical and social consequences of the decisions of their life-view and world view.
2. Develop the ability of students to create a balance between their individual freedom and social responsibilities and enable them to identify the personal, professional and social values and integrate them in their personality after cross examination.
3. Enable students to cross examine their earlier decisions taken in life and understand the meaning of ethical dilemma to overcome the ethical dilemmas and engage in critical reflection.
4. Develop positive habits of thought and conduct and work cohesively with fellow beings who have variety of strengths, experiences, shortcomings and challenges, hence to enable them to handle diverse type of personalities.
5. Enable students to develop a method for making ethically sound decisions for themselves, within hostels, classrooms, university campus and society.

HU5273 LAW AND ENGINEERING L T P C 3 0 0 3

UNIT I THE LEGAL SYSTEM: SOURCES OF LAW AND THE COURT STRUCTURE 9
Enacted law - Acts of Parliament are of primary legislation, Common Law or Case law- Principles taken from decisions of judges constitute binding legal rules. The Court System in India and Foreign Courtiers. (District Court, District Consumer Forum, Tribunals, High Courts, Supreme Court) Arbitration: As an alternative to resolving disputes in the normal courts, parties who are in dispute can agree that this will instead be referred to arbitration.

UNIT II LAWS 9
Basic principles of contract law, sale of goods law, laws relating to industrial pollution, accident, environmental protection, health and safety at work, patent law, constitutional law: the supreme law of the land, Information technology law and cyber crimes.

UNIT III BUSINESS ORGANISATIONS 9
Sole traders (Business has no separate identity from you, all business property belongs to you). Partnerships: Types of Partnerships - Limited Liability Partnership, General Partnership, Limited Partnerships. Companies: The nature of companies, Classification of companies, Formation of companies, Features of a public company, Carrying on business, Directors– Their Powers and Responsibilities/Liabilities.

UNIT IV LAW AND SOCIETY 9
Interdisciplinary nature of law, legal ideologies/philosophy/ schools of jurisprudence.

UNIT V CASE STUDIES 9
Important legal disputes and judicial litigations

TOTAL: 45 PERIODS
COURSE DESCRIPTION
This is an intensive course designed to promote comprehensive understanding and insights into the nature of cinema and other related forms and practices. Movies, though at times are used more as escapism, they are also a true art form and expressive tool used by writers, directors and actors. This course will explore the aesthetics of cinema, the concepts behind storytelling and various other elements of a film. It will also explore the impact of movies in our society and in our lives. It also encourages students to use films as a medium to analyse visual texts and read underlying messages.

OBJECTIVES:
- To help learners understand the various movie genres and its types.
- To understand various elements that contributes to film making.
- To make them realize the impact of film in society.
- To analyse the visual media and interpret the underlying messages.

UNIT I THE COMPONENTS OF FILMS
Story, Screenplay & Script – Actors – Director – Crew Members – Mis En Scene – Structure of A Film – Narrative Elements – Linear & Non-Linear – Types of Movie Genres: Mysteries, Romantic Comedies, Horror Etc.

UNIT II EVOLUTION OF FILM

UNIT III FILMS ACROSS THE WORLD

UNIT IV INDIAN FILMS

UNIT V INTERPRETING FILMS
Film Criticism & Appreciation – Censorship in Movies – Cultural Representation in Movies – Television – New Media & Online Media – Films Beyond Entertainment.

TOTAL: 45 PERIODS

OUTCOMES
On completion of the course, the students will be able to:
- Recognize types of films, their impact on society and their roles in our lives.
- Have an understanding of the concepts of storytelling, Mise en Scene, and other elements of film making.
- Interpret the underlying messages in the movies.

Teaching Methods
- Each unit consists of reading materials, learning activities videos, websites. Students are expected to watch movies sometimes in class and at times at home and discuss in class.

Evaluation
- As this is course is critical appreciation course on films, there is no written end semester examination. The course is more on learning how to critically analyse a movie and appreciate its finer elements. Therefore evaluation can be based on assignments and discussions. Internals marks can be taken for the total marks.
Internal (100 % weightage)

- Assignment 1: Write a movie review with critical analysis (20 marks).
- Assignment 2: Write a script for a scene taken from a short story / novella (20 marks).
- Presentation: Students choose any one topic related to films and present it to the audience. (25 marks)
- Group discussion: Students discuss in groups on the various aspects of movies and its impact on society. (25 marks)
- Blog entry: Making weekly blog posts in Class Blog on the topics related to the course posted by the instructor and commenting on others’ posts. (10 marks)

REFERENCES
1. A Biographical Dictionary of Film by David Thomson, Secker & Warburg, 1975
2. Signs and Meaning in the Cinema by Peter Wollen, Secker & Warburg, 1969
3. The World Viewed by Stanley Cavell 1971
4. Film Style and Technology: History and Analysis by Barry Salt, Starword, 1983

HU5275 FUNDAMENTALS OF LANGUAGE AND LINGUISTICS

OBJECTIVES
- To broadly introduce students to the formal and theoretical aspects of linguistics.
- To enable learners to understand the various practical applications of language and recent findings in the field of applied linguistics.

CONTENTS :

UNIT I LANGUAGE AND LINGUISTICS: AN OVERVIEW

UNIT II MORPHOLOGY - WORDS OF LANGUAGE

UNIT III SYNTAX- THE SENTENCE PATTERNS OF LANGUAGE AND SEMANTICS-THE MEANING OF LANGUAGE

UNIT IV PHONETICS – THE SOUNDS OF LANGUAGE
UNIT V APPLIED LINGUISTICS - THE PRACTICAL APPLICATIONS OF LANGUAGE
Language learning and teaching (ELT)- lexicography-translation studies-computational linguistics-neurolinguistics (speech pathology and language disorders)- forensic linguistics – sociolinguistics.

TOTAL : 45 PERIODS

Teaching Methods :
Lectures, discussion.

Evaluation Internal and External :
Internal: 2 written tests + assignments, seminars, project (50+15+15+20).
External: A 3 hour written exam (50 marks)

REFERENCES :

HU5276 UNDERSTANDING SOCIETY AND CULTURE THROUGH LITERATURE L T P C
3 0 0 3

OBJECTIVES
- To internalize the importance of language by understanding its role in the transformation of man.
- To look at language, literature and culture as locus of identity and change.
- To extract meaning from existing literatures and cultures.
- To identify meanings in modern life by reconnecting with lost cultures.

UNIT I INTRODUCTION
Why study literature? Tracing the origin – pictures. Tokens as precursors of writing. Movement from three dimensions to two dimensions- Pictography. From visual to oral -Logography. Reading out literature to young children- Edmund J Farrell.

UNIT II READING CULTURE
Reading culture through language, signs and consumables- Roland Barthes. Culture through poems- Nissim Ezekiel’s ‘The night of the Scorpion’ . ‘Nothing’s Changed’- Tatamkhulu Afrika- Apartheid. Ruskin Bond- ‘Night train at Deoli’- How real life is different from movies.

UNIT III IDENTIFYING MEANING
Searching and locating meaning through literature. Looking for order in a chaotic world. The Myth of Sisyphus (Albert Camus) and Adi Shankar’s ‘Jagat Mithya’- the world as an illusion. The Indian version as ‘meaningless meaning’.

UNIT IV POST MODERNISM
‘If on a winter’s night a traveler’- Italo Calvino. The book about the reader- the experience of reading as reading. Metafiction. Selfie Culture. Visual Culture as purpose of modern life.

UNIT V RETURNING TO PICTURES
Reading list
1. Bond, Ruskin: ‘Night train at Deoli’
2. Ezekiel, Nissim: 'The Night of the Scorpion'
3. Afrika, Tatamkhulu: 'Nothing’s Changed'
4. Barthes, Roland: *Mythologies*
5. Shankaracharya: *Viveka Chudamani*
6. Camus, Albert- *The Myth of Sisyphus*
7. Calvino, Italo: *If on a winter’s night a traveler*

OUTCOMES

- Can identify the connections among language, literature and culture.
- Is able to relate between seemingly different aspects of life.
- Understands the fractions in modern life and can assimilate meanings.