ANNA UNIVERSITY, CHENNAI
NON - AUTONOMOUS COLLEGES AFFILIATED ANNA UNIVERSITY
M.E. COMPUTER SCIENCE AND ENGINEERING (WITH SPECIALIZATION IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING)
REGULATIONS – 2021
CHOICE BASED CREDIT SYSTEM

1. PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

 I. Succeed as a professional in the area of Artificial Intelligence (AI) and Machine Learning (ML)
 II. Develop the ability of innovative thinking, analysis and decision-making for offering techno-commercially feasible and socially acceptable solutions to real life problems by applying AI and ML.
 III. To analyze contemporary issues of AI & ML and devise effective solutions through persistent research and continuous learning.
 IV. Recognize and incorporate ethical, legal and social implications in the applications and products involving AI and ML.

 To practice and promote AI technologies for societal needs and contribute to advancement of ML methods by means of research and development

2. PROGRAM OUTCOMES (POs):

 1. An ability to independently carry out research / investigation and development work to solve practical problems.
 2. An ability to write and present a substantial technical report/document.
 3. Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
 4. To understand and demonstrate the knowledge of human cognition, AI and ML in terms of real world problems to meet the challenges of the future.
 5. To develop computational knowledge and project development skills using innovative tools and techniques to solve problems in the areas of Deep Learning, Machine learning, Artificial Intelligence.
 6. To define a new problem, design, model, analyse, and evaluate the solution and report it as a dissertation in the area of AI and ML.

PEO/PO Mapping:

<table>
<thead>
<tr>
<th>PEO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

(3-High, 2-Medium, 1-Low)
<table>
<thead>
<tr>
<th>YEAR</th>
<th>SEMESTER</th>
<th>COURSE NAME</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>Applied Probability and Statistics for Computer</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science Engineers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research Methodology and IPR</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Data Structures and Algorithms</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Database Practices</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principles of Programming Languages</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Artificial Intelligence</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Audit Course – I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Data Structures and Algorithms Laboratory</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Internet of Things</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Machine Learning</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Natural Language Processing</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Big Data Mining and Analytics</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Audit Course – II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Analytics Laboratory</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Term Paper Writing and Seminar</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Deep Learning</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Work I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Project Work II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: PO1 to PO6 represent different course outcomes and are not specific to the table content.
<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE TITLE</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Social Network Analysis</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Predictive Modeling</td>
<td>2</td>
<td>2.8</td>
<td>2.6</td>
<td>2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>3.</td>
<td>Smart Convergent Technologies</td>
<td>1.2</td>
<td>1.6</td>
<td>1.8</td>
<td>2.4</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td>4.</td>
<td>Probabilistic Graphical Models</td>
<td>2.2</td>
<td>1.2</td>
<td>1.6</td>
<td>2.4</td>
<td>2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>5.</td>
<td>Quantum Computing</td>
<td>1.6</td>
<td>1.8</td>
<td>1.2</td>
<td>2.6</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>6.</td>
<td>Multimedia Communication Networks</td>
<td>1.4</td>
<td>1.8</td>
<td>1.8</td>
<td>2.2</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>7.</td>
<td>Information Retrieval Techniques</td>
<td>2</td>
<td>1.2</td>
<td>2</td>
<td>2.2</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td>8.</td>
<td>Image Processing</td>
<td>1.6</td>
<td>1.8</td>
<td>2.2</td>
<td>1.8</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>9.</td>
<td>Autonomous Systems</td>
<td>2.4</td>
<td>1.8</td>
<td>2</td>
<td>2.4</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>10.</td>
<td>Web Analytics</td>
<td>1.6</td>
<td>1.2</td>
<td>1.6</td>
<td>2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>11.</td>
<td>Cognitive Computing</td>
<td>1.2</td>
<td>2.4</td>
<td>2.4</td>
<td>1.6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12.</td>
<td>Human Computer Interaction</td>
<td>1.2</td>
<td>1</td>
<td>2.2</td>
<td>2.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>13.</td>
<td>Performance Analysis of Computer Systems</td>
<td>2</td>
<td>2</td>
<td>1.2</td>
<td>2</td>
<td>2</td>
<td>2.3</td>
</tr>
<tr>
<td>14.</td>
<td>Data Visualization Techniques</td>
<td>2.2</td>
<td>1.66</td>
<td>1.5</td>
<td>2.2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>15.</td>
<td>Robotics</td>
<td>1.2</td>
<td>1.6</td>
<td>2</td>
<td>2.6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16.</td>
<td>Blockchain Technologies</td>
<td>1.4</td>
<td>1.6</td>
<td>2</td>
<td>2.4</td>
<td>1.75</td>
<td>1.5</td>
</tr>
<tr>
<td>17.</td>
<td>Mixed Reality</td>
<td>2.2</td>
<td>1.8</td>
<td>1.6</td>
<td>2.2</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>18.</td>
<td>Bioinformatics</td>
<td>1.6</td>
<td>1.2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>19.</td>
<td>Mobile Application Development</td>
<td>2</td>
<td>1.8</td>
<td>1.6</td>
<td>2.6</td>
<td>2.75</td>
<td>2.75</td>
</tr>
<tr>
<td>20.</td>
<td>Devops and Microservices</td>
<td>2</td>
<td>1.3</td>
<td>1.25</td>
<td>2.4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
ANNA UNIVERSITY, CHENNAI
NON- AUTONOMOUS COLLEGES AFFILIATED ANNA UNIVERSITY
M.E. COMPUTER SCIENCE AND ENGINEERING (WITH SPECIALIZATION IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING)
REGULATIONS – 2021
CHOICE BASED CREDIT SYSTEM
I TO IV SEMESTERS CURRICULA AND SYLLABI

SEMESTER I

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THEORY

1. MA4151 Applied Probability and Statistics for Computer Science Engineers FC 3 1 0 4 4
2. RM4151 Research Methodology and IPR RMC 2 0 0 2 2
3. CP4151 Advanced Data Structures and Algorithms PCC 3 0 0 3 3
4. CP4152 Database Practices PCC 3 0 2 5 4
5. CP4154 Principles of Programming Languages PCC 3 0 0 3 3
6. ML4151 Artificial Intelligence PCC 3 0 0 3 3
7. Audit Course – I* AC 2 0 0 2 0

PRACTICALS

8. CP4161 Advanced Data Structures and Algorithms Laboratory PCC 0 0 4 4 2

TOTAL 19 1 6 26 21

*Audit course is optional

SEMESTER II

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THEORY

1. CP4291 Internet of Things PCC 3 0 2 5 4
2. CP4252 Machine Learning PCC 3 0 2 5 4
3. ML4291 Natural Language Processing PCC 2 0 2 4 3
4. BD4251 Big Data Mining and Analytics PCC 3 0 0 3 3
5. Professional Elective I PEC 3 0 0 3 3
6. Professional Elective II PEC 3 0 0 3 3
7. Audit Course – II* AC 2 0 0 2 0

PRACTICALS

8. ML4211 Data Analytics Laboratory PCC 0 0 2 2 1
9. ML4212 Term Paper Writing and Seminar EEC 0 0 2 2 1

TOTAL 19 0 10 29 22

*Audit course is optional
Semester III

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IF4071</td>
<td>Deep Learning</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Professional Elective III</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Professional Elective IV</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Open Elective</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ML4311</td>
<td>Project Work I</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 12 0 16 28 20

Semester IV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ML4411</td>
<td>Project Work II</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 0 0 24 24 12

Total No. of Credits: 75

Professional Electives

Semester II, Elective I

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>IF4095</td>
<td>Social Network Analysis</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>BD4091</td>
<td>Predictive Modeling</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>MP4391</td>
<td>Smart Convergent Technologies</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>ML4001</td>
<td>Probabilistic Graphical Models</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>AP4093</td>
<td>Quantum Computing</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Semester II, Elective II

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MU4152</td>
<td>Multimedia Communication Networks</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>CP4093</td>
<td>Information Retrieval Techniques</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
SEMESTER III, ELECTIVE III

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MP4092</td>
<td>Human Computer Interaction</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CP4095</td>
<td>Performance Analysis of Computer Systems</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CP4092</td>
<td>Data Visualization Techniques</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>AP4094</td>
<td>Robotics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER III, ELECTIVE IV

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CP4072</td>
<td>Blockchain Technologies</td>
<td>PEC</td>
<td>3 0 2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MU4291</td>
<td>Mixed Reality</td>
<td>PEC</td>
<td>3 0 2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>CP4071</td>
<td>Bioinformatics</td>
<td>PEC</td>
<td>3 0 2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>MP4292</td>
<td>Mobile Application Development</td>
<td>PEC</td>
<td>3 0 2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>IF4073</td>
<td>Devops and Microservices</td>
<td>PEC</td>
<td>3 0 2</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

AUDIT COURSES (AC)

Registration for any of these courses is optional to students

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>PERIODS PER WEEK</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AX4091</td>
<td>English for Research Paper Writing</td>
<td>2 0 0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>AX4092</td>
<td>Disaster Management</td>
<td>2 0 0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>AX4093</td>
<td>Constitution of India</td>
<td>2 0 0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>AX4094</td>
<td>இலக்கியம் இலக்கியம்</td>
<td>2 0 0</td>
<td>0</td>
</tr>
</tbody>
</table>
LIST OF OPEN ELECTIVES FOR PG PROGRAMMES

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>PERIODS PER WEEK</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OCE431</td>
<td>Integrated Water Resources Management</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OCE432</td>
<td>Water, Sanitation and Health</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OCE433</td>
<td>Principles of Sustainable Development</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>OCE434</td>
<td>Environmental Impact Assessment</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>OME431</td>
<td>Vibration and Noise Control Strategies</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>OME432</td>
<td>Energy Conservation and Management in Domestic Sectors</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OME433</td>
<td>Additive Manufacturing</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>OME434</td>
<td>Electric Vehicle Technology</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>OME435</td>
<td>New Product Development</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>OBA431</td>
<td>Sustainable Management</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>OBA432</td>
<td>Micro and Small Business Management</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>OBA433</td>
<td>Intellectual Property Rights</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>OBA434</td>
<td>Ethical Management</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>ET4251</td>
<td>IoT for Smart Systems</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>ET4072</td>
<td>Machine Learning and Deep Learning</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>PX4012</td>
<td>Renewable Energy Technology</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>PS4093</td>
<td>Smart Grid</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>DS4015</td>
<td>Big Data Analytics</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>19.</td>
<td>NC4201</td>
<td>Internet of Things and Cloud</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>MX4073</td>
<td>Medical Robotics</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>21.</td>
<td>VE4202</td>
<td>Embedded Automation</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>22.</td>
<td>CX4016</td>
<td>Environmental Sustainability</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>23.</td>
<td>TX4092</td>
<td>Textile Reinforced Composites</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>24.</td>
<td>NT4002</td>
<td>Nanocomposite Materials</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>25.</td>
<td>BY4016</td>
<td>IPR, Biosafety and Entrepreneurship</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
</tbody>
</table>

FOUNDATION COURSES (FC)

<table>
<thead>
<tr>
<th>S. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>PERIODS PER WEEK</th>
<th>CREDITS</th>
<th>SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA4151</td>
<td>Applied Probability and Statistics for Computer Science Engineers</td>
<td>3 L 1 T 0</td>
<td>4</td>
<td>I</td>
</tr>
</tbody>
</table>
PROFESSIONAL CORE COURSES (PCC)

<table>
<thead>
<tr>
<th>S. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>PERIODS PER WEEK</th>
<th>CREDITS</th>
<th>SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>1.</td>
<td>CP4151</td>
<td>Advanced Data Structures and Algorithms</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>CP4152</td>
<td>Database Practices</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>CP4154</td>
<td>Principles of Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>ML4151</td>
<td>Artificial Intelligence</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>CP4161</td>
<td>Advanced Data Structures and Algorithms Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>CP4291</td>
<td>Internet of Things</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>CP4252</td>
<td>Machine Learning</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>ML4291</td>
<td>Natural Language Processing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>BD4251</td>
<td>Big Data Mining and Analytics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>ML4211</td>
<td>Data Analytics Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>11.</td>
<td>IF4071</td>
<td>Deep Learning</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

RESEARCH METHODOLOGY AND IPR COURSES (RMC)

<table>
<thead>
<tr>
<th>S. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>PERIODS PER WEEK</th>
<th>CREDITS</th>
<th>SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>1.</td>
<td>RM4151</td>
<td>Research Methodology and IPR</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

<table>
<thead>
<tr>
<th>S. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>PERIODS PER WEEK</th>
<th>CREDITS</th>
<th>SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>1.</td>
<td>ML4212</td>
<td>Term Paper Writing and Seminar</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>ML4311</td>
<td>Project Work I</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>3.</td>
<td>ML4411</td>
<td>Project Work II</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>SUBJECT AREA</td>
<td>CREDITS PER SEMESTER</td>
<td>CREDITS TOTAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>----------------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>1.</td>
<td>FC</td>
<td>04</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>2.</td>
<td>PCC</td>
<td>15</td>
<td>15</td>
<td>04</td>
<td>00</td>
</tr>
<tr>
<td>3.</td>
<td>PEC</td>
<td>00</td>
<td>06</td>
<td>07</td>
<td>00</td>
</tr>
<tr>
<td>4.</td>
<td>RMC</td>
<td>02</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>5.</td>
<td>OEC</td>
<td>00</td>
<td>00</td>
<td>03</td>
<td>00</td>
</tr>
<tr>
<td>6.</td>
<td>EEC</td>
<td>00</td>
<td>01</td>
<td>06</td>
<td>12</td>
</tr>
<tr>
<td>7.</td>
<td>Non Credit/Audit Course</td>
<td>✓</td>
<td>✓</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>8.</td>
<td>TOTAL CREDIT</td>
<td>21</td>
<td>22</td>
<td>20</td>
<td>12</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To encourage students to develop a working knowledge of the central ideas of Linear Algebra.
- To enable students to understand the concepts of Probability and Random Variables.
- To understand the basic probability concepts with respect to two dimensional random variables along with the relationship between the random variables and the significance of the central limit theorem.
- To apply the small / large sample tests through Tests of hypothesis.
- To enable the students to use the concepts of multivariate normal distribution and principal components analysis.

UNIT I LINEAR ALGEBRA 12

UNIT II PROBABILITY AND RANDOM VARIABLES 12

UNIT III TWO DIMENSIONAL RANDOM VARIABLES 12
Joint distributions – Marginal and conditional distributions – Functions of two dimensional random variables – Regression curve – Correlation.

UNIT IV TESTING OF HYPOTHESIS 12
Sampling distributions – Type I and Type II errors – Small and Large samples – Tests based on Normal, t, Chi square and F distributions for testing of mean, variance and proportions – Tests for independence of attributes and goodness of fit.

UNIT V MULTIVARIATE ANALYSIS 12
Random vectors and matrices – Mean vectors and covariance matrices – Multivariate normal density and its properties – Principal components – Population principal components – Principal components from standardized variables.

TOTAL : 60 PERIODS

COURSE OUTCOMES:
At the end of the course, students will be able to
CO1: apply the concepts of Linear Algebra to solve practical problems.
CO2: use the ideas of probability and random variables in solving engineering problems.
CO3: be familiar with some of the commonly encountered two dimensional random variables and be equipped for a possible extension to multivariate analysis.
CO4: use statistical tests in testing hypotheses on data.
CO5: develop critical thinking based on empirical evidence and the scientific approach to knowledge development.

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

RM4151 RESEARCH METHODOLOGY AND IPR L T P C 2 0 0 2

UNIT I RESEARCH DESIGN 6
Overview of research process and design, Use of Secondary and exploratory data to answer the research question, Qualitative research, Observation studies, Experiments and Surveys.

UNIT II DATA COLLECTION AND SOURCES 6
Measurements, Measurement Scales, Questionnaires and Instruments, Sampling and methods. Data - Preparing, Exploring, examining and displaying.

UNIT III DATA ANALYSIS AND REPORTING 6
Overview of Multivariate analysis, Hypotheses testing and Measures of Association. Presenting Insights and findings using written reports and oral presentation.

UNIT IV INTELLECTUAL PROPERTY RIGHTS 6
Intellectual Property – The concept of IPR, Evolution and development of concept of IPR, IPR development process, Trade secrets, utility Models, IPR & Biodiversity, Role of WIPO and WTO in
IPR establishments, Right of Property, Common rules of IPR practices, Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR maintenance.

UNIT V PATENTS

TOTAL : 30 PERIODS

REFERENCES:

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

CP4151 ADVANCED DATA STRUCTURES AND ALGORITHMS

COURSE OBJECTIVES:
- To understand the usage of algorithms in computing
- To learn and use hierarchical data structures and its operations
- To learn the usage of graphs and its applications
- To select and design data structures and algorithms that is appropriate for problems
- To study about NP Completeness of problems.

UNIT I ROLE OF ALGORITHMS IN COMPUTING & COMPLEXITY ANALYSIS

UNIT II HIERARCHICAL DATA STRUCTURES 9

UNIT III GRAPHS 9

UNIT IV ALGORITHM DESIGN TECHNIQUES 9

UNIT V NP COMPLETE AND NP HARD 9

SUGGESTED ACTIVITIES:
1. Write an algorithm for Towers of Hanoi problem using recursion and analyze the complexity (No of disc-4)
2. Write any one real time application of hierarchical data structure
3. Write a program to implement Make_Set, Find_Set and Union functions for Disjoint Set Data Structure for a given undirected graph G(V,E) using the linked list representation with simple implementation of Union operation
4. Find the minimum cost to reach last cell of the matrix from its first cell
5. Discuss about any NP completeness problem

COURSE OUTCOMES:
CO1: Design data structures and algorithms to solve computing problems.
CO2: Choose and implement efficient data structures and apply them to solve problems.
CO3: Design algorithms using graph structure and various string-matching algorithms to solve real-life problems.
CO4: Design one’s own algorithm for an unknown problem.
CO5: Apply suitable design strategy for problem solving.

REFERENCES

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

CP4152 DATABASE PRACTICES

COURSE OBJECTIVES
- Describe the fundamental elements of relational database management systems
- Explain the basic concepts of relational data model, entity-relationship model, relational database design, relational algebra and SQL.
- Understand query processing in a distributed database system
- Understand the basics of XML and create well-formed and valid XML documents.
- Distinguish the different types of NoSQL databases
- To understand the different models involved in database security and their applications in real-time world to protect the database and information associated with them.

UNIT I RELATIONAL DATA MODEL

Suggested Activities:
- Data Definition Language
 - Create, Alter and Drop
 - Enforce Primary Key, Foreign Key, Check, Unique and Not Null Constraints
 - Creating Views
- Data Manipulation Language
 - Insert, Delete, Update
 - Cartesian Product, Equi Join, Left Outer Join, Right Outer Join and Full Outer Join
 - Aggregate Functions
 - Set Operations
 - Nested Queries
Transaction Control Language
 - Commit, Rollback and Save Points

UNIT II DISTRIBUTED DATABASES, ACTIVE DATABASES AND OPEN DATABASE CONNECTIVITY

Suggested Activities:
 - Distributed Database Design and Implementation
 - Row Level and Statement Level Triggers
 - Accessing a Relational Database using PHP, Python and R

UNIT III XML DATABASES

Suggested Activities:
 - Creating XML Documents, Document Type Definition and XML Schema
 - Using a Relational Database to store the XML documents as text
 - Using a Relational Database to store the XML documents as data elements
 - Creating or publishing customized XML documents from pre-existing relational databases
 - Extracting XML Documents from Relational Databases
 - XML Querying

UNIT IV NOSQL DATABASES AND BIG DATA STORAGE SYSTEMS

Suggested Activities:
 - Creating Databases using MongoDB, DynamoDB, Voldemort Key-Value Distributed Data Store Hbase and Neo4j.
 - Writing simple queries to access databases created using MongoDB, DynamoDB, Voldemort Key-Value Distributed Data Store Hbase and Neo4j.

UNIT V DATABASE SECURITY
Suggested Activities:
Implementing Access Control in Relational Databases

TOTAL : 75 PERIODS

COURSE OUTCOMES:
At the end of the course, the students will be able to
CO1: Convert the ER-model to relational tables, populate relational databases and formulate SQL queries on data.
CO2: Understand and write well-formed XML documents
CO3: Be able to apply methods and techniques for distributed query processing.
CO4: Design and Implement secure database systems.
CO5: Use the data control, definition, and manipulation languages of the NoSQL databases

REFERENCES:

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

CP4154 PRINCIPLES OF PROGRAMMING LANGUAGES L T P C 3 0 0 3

COURSE OBJECTIVES:
- To understand and describe syntax and semantics of programming languages
- To understand data, data types, and basic statements
- To understand call-return architecture and ways of implementing them
- To understand object-orientation, concurrency, and event handling in
• programming languages
• To develop programs in non-procedural programming paradigms

UNIT I
SYNTAX AND SEMANTICS

UNIT II
DATA, DATA TYPES, AND BASIC STATEMENTS

UNIT III
SUBPROGRAMS AND IMPLEMENTATIONS

UNIT IV
OBJECT-ORIENTATION, CONCURRENCY, AND EVENT HANDLING

UNIT V
FUNCTIONAL AND LOGIC PROGRAMMING LANGUAGES
Introduction to lambda calculus – fundamentals of functional programming languages – Programming with Scheme – Programming with ML – Introduction to logic and logic programming – Programming with Prolog – multi-paradigm languages

COURSE OUTCOMES:

CO1: Describe syntax and semantics of programming languages
CO2: Explain data, data types, and basic statements of programming languages
CO3: Design and implement subprogram constructs
CO4: Apply object-oriented, concurrency, and event handling programming constructs
CO5: Develop programs in Scheme, ML, and Prolog and Understand and adopt new programming language

REFERENCES:

TOTAL : 45 PERIODS

<table>
<thead>
<tr>
<th>CO</th>
<th>POs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
</tr>
</tbody>
</table>

ML4151 ARTIFICIAL INTELLIGENCE L T P C 3 0 0 3

COURSE OBJECTIVES:
- To understand basic problem solving strategies.
- To outline game theory based search and constraint satisfaction
- To study knowledge representation techniques
- To explore reasoning and planning associated with AI.
- To study the techniques of knowledge representation.
- To understand probabilistic and other types of reasoning
- To discuss ethical and safety issues associated with AI

UNIT I INTRODUCTION AND PROBLEM SOLVING 9

UNIT II ADVERSARIAL SEARCH AND CONSTRAINT SATISFACTION PROBLEMS 9
Game Theory- Optimal Decisions in Games - Heuristic Alpha--Beta Tree Search- Monte Carlo Tree Search - Stochastic Games - Partially Observable Games - Limitations of Game Search Algorithms Constraint Satisfaction Problems (CSP)– Examples - Constraint Propagation-Backtracking Search for CSPs - Local Search for CSPs

UNIT III KNOWLEDGE, REASONING AND PLANNING 9

UNIT IV UNCERTAIN KNOWLEDGE AND REASONING 9
Quantifying Uncertainty - Probabilistic Reasoning - Probabilistic Reasoning over Time

UNIT V PHILOSOPHY, ETHICS AND SAFETY OF AI 9

SUGGESTED ACTIVITIES:
1. Solve puzzles with uninformed and informed searches.
2: Reasoning methods through puzzles and real life scenarios
3: Ontology creation using Protégé
4: Give example scenarios where probabilistic reasoning and case based reasoning can be applied
5: Discuss some case studies and their ethical issues

COURSE OUTCOMES:
CO1: Implement any three problem solving methods for a puzzle of your choice
CO2: Understand Game playing and implement a two player game using AI techniques
CO3: Design and Implement an example using predicate Logic
CO4: Implement a case based reasoning system
CO5: Discuss some methodologies to design ethical and explainable AI systems

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>.</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
- To acquire the knowledge of using advanced tree structures
- To learn the usage of heap structures
- To understand the usage of graph structures and spanning trees
- To understand the problems such as matrix chain multiplication, activity selection and Huffman coding
- To understand the necessary mathematical abstraction to solve problems.

LIST OF EXPERIMENTS:
1: Implementation of recursive function for tree traversal and Fibonacci
2: Implementation of iteration function for tree traversal and Fibonacci
3: Implementation of Merge Sort and Quick Sort
4: Implementation of a Binary Search Tree
5: Red-Black Tree Implementation
6: Heap Implementation
7: Fibonacci Heap Implementation
8: Graph Traversals
9: Spanning Tree Implementation
10: Shortest Path Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm)
11: Implementation of Matrix Chain Multiplication
12: Activity Selection and Huffman Coding Implementation

HARDWARE/SOFTWARE REQUIREMENTS
1: 64-bit Open source Linux or its derivative
2: Open Source C++ Programming tool like G++/GCC

TOTAL : 60 PERIODS

COURSE OUTCOMES:
CO1: Design and implement basic and advanced data structures extensively
CO2: Design algorithms using graph structures
CO3: Design and develop efficient algorithms with minimum complexity using design techniques
CO4: Develop programs using various algorithms.
CO5: Choose appropriate data structures and algorithms, understand the ADT/libraries, and use it to design algorithms for a specific problem.

REFERENCES:
COURSE OBJECTIVES:
- To Understand the Architectural Overview of IoT
- To Understand the IoT Reference Architecture and Real World Design Constraints
- To Understand the various IoT levels
- To understand the basics of cloud architecture
- To gain experience in Raspberry PI and experiment simple IoT application on it

UNIT I INTRODUCTION
Internet of Things- Domain Specific IoTs - IoT and M2M-Sensors for IoT Applications–Structure of IoT– IoT Map Device- IoT System Management with NETCONF-YANG

UNIT II IoT ARCHITECTURE, GENERATIONS AND PROTOCOLS

UNIT III IoT PROTOCOLS AND TECHNOLOGY

UNIT IV CLOUD ARCHITECTURE BASICS
The Cloud types; IaaS, PaaS, SaaS.- Development environments for service development; Amazon, Azure, Google Appcloud platform in industry

UNIT V IOT PROJECTS ON RASPBERRY PI
Building IOT with RASPBERRY PI- Creating the sensor project - Preparing Raspberry Pi - Clayster libraries – Hardware Interacting with the hardware - Interfacing the hardware- Internal representation of sensor values - Persisting data - External representation of sensor values - Exporting sensor data
SUGGESTED ACTIVITIES:
1. Develop an application for LED Blink and Pattern using arduino or Raspberry Pi
2. Develop an application for LED Pattern with Push Button Control using arduino or Raspberry Pi
3. Develop an application for LM35 Temperature Sensor to display temperature values using arduino or Raspberry Pi
4. Develop an application for Forest fire detection end node using Raspberry Pi device and sensor
5. Develop an application for home intrusion detection web application
6. Develop an application for Smart parking application using python and Django for web application

COURSE OUTCOMES:
CO1: Understand the various concept of the IoT and their technologies
CO2: Develop the IoT application using different hardware platforms
CO3: Implement the various IoT Protocols
CO4: Understand the basic principles of cloud computing
CO5: Develop and deploy the IoT application into cloud environment

TOTAL : 75 PERIODS

REFERENCES:

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
- To understand the concepts and mathematical foundations of machine learning and types of problems tackled by machine learning
- To explore the different supervised learning techniques including ensemble methods
- To learn different aspects of unsupervised learning and reinforcement learning
- To learn the role of probabilistic methods for machine learning
- To understand the basic concepts of neural networks and deep learning

UNIT I INTRODUCTION AND MATHEMATICAL FOUNDATIONS 9

UNIT II SUPERVISED LEARNING 9

UNIT III UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING 9

UNIT IV PROBABILISTIC METHODS FOR LEARNING 9

UNIT V NEURAL NETWORKS AND DEEP LEARNING 9
Neural Networks – Biological Motivation – Perceptron – Multi-layer Perceptron – Feed Forward Network – Back Propagation-Activation and Loss Functions – Limitations of Machine Learning – Deep Learning– Convolution Neural Networks – Recurrent Neural Networks – Use cases

45 PERIODS

SUGGESTED ACTIVITIES:
1. Give an example from our daily life for each type of machine learning problem
2. Study at least 3 Tools available for Machine Learning and discuss pros & cons of each
3. Take an example of a classification problem. Draw different decision trees for the example and explain the pros and cons of each decision variable at each level of the tree
4. Outline 10 machine learning applications in healthcare
5. Give 5 examples where sequential models are suitable.
6. Give at least 5 recent applications of CNN
PRACTICAL EXERCISES: 30 PERIODS

1. Implement a Linear Regression with a Real Dataset (https://www.kaggle.com/harrywang/housing). Experiment with different features in building a model. Tune the model's hyperparameters.

2. Implement a binary classification model. That is, answers a binary question such as "Are houses in this neighborhood above a certain price?" (use data from exercise 1). Modify the classification threshold and determine how that modification influences the model. Experiment with different classification metrics to determine your model's effectiveness.

3. Classification with Nearest Neighbours. In this question, you will use the scikit-learn’s KNN classifier to classify real vs. fake news headlines. The aim of this question is for you to read the scikit-learn API and get comfortable with training/validation splits. Use California Housing Dataset.

4. In this exercise, you'll experiment with validation sets and test sets using the dataset. Split a training set into a smaller training set and a validation set. Analyze deltas between training set and validation set results. Test the trained model with a test set to determine whether your trained model is overfitting. Detect and fix a common training problem.

7. Project - (in Pairs) Your project must implement one or more machine learning algorithms and apply them to some data.
 a. Your project may be a comparison of several existing algorithms, or it may propose a new algorithm in which case you still must compare it to at least one other approach.
 b. You can either pick a project of your own design, or you can choose from the set of pre-defined projects.
 c. You are free to use any third-party ideas or code that you wish as long as it is publicly available.
 d. You must properly provide references to any work that is not your own in the write-up.
 e. Project proposal You must turn in a brief project proposal. Your project proposal should describe the idea behind your project. You should also briefly describe software you will need to write, and papers (2-3) you plan to read.

List of Projects (datasets available)
1. Sentiment Analysis of Product Reviews
2. Stock Prediction
3. Sales Forecasting
4. Music Recommendation
5. Handwriting Digit Classification
6. Fake News Detection
7. Sports Prediction
8. Object Detection
9. Disease Prediction

COURSE OUTCOMES:
Upon the completion of course, students will be able to
CO1: Understand and outline problems for each type of machine learning
CO2: Design a Decision tree and Random forest for an application
CO3: Implement Probabilistic Discriminative and Generative algorithms for an application and analyze the results.
CO4: Use a tool to implement typical Clustering algorithms for different types of applications.
CO5: Design and implement an HMM for a Sequence Model type of application and identify applications suitable for different types of Machine Learning with suitable justification.

TOTAL: 75 PERIODS

REFERENCES

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
ML4291 NATURAL LANGUAGE PROCESSING L T P C 2023

COURSE OBJECTIVES:
- To understand basics of linguistics, probability and statistics
- To study statistical approaches to NLP and understand sequence labeling
- To outline different parsing techniques associated with NLP
- To explore semantics of words and semantic role labeling of sentences
- To understand discourse analysis, question answering and chatbots

UNIT I INTRODUCTION 6

UNIT II STATISTICAL NLP AND SEQUENCE LABELING 6

UNIT III CONTEXTUAL EMBEDDING 6
Constituency –Context Free Grammar –Lexicalized Grammars- CKY Parsing – Earley’s algorithm- Evaluating Parsers -Partial Parsing – Dependency Relations- Dependency Parsing -Transition Based - Graph Based

UNIT IV COMPUTATIONAL SEMANTICS 6

UNIT V DISCOURSE ANALYSIS AND SPEECH PROCESSING 6

30 PERIODS

SUGGESTED ACTIVITIES:
1. Probability and Statistics for NLP Problems
2. Carry out Morphological Tagging and Part-of-Speech Tagging for a sample text
3. Design a Finite State Automata for more Grammatical Categories
4. Problems associated with Vector Space Model
5. Hand Simulate the working of a HMM model
6. Examples for different types of work sense disambiguation
7. Give the design of a Chatbot

PRACTICAL EXERCISES: 30 PERIODS
1. Download nltk and packages. Use it to print the tokens in a document and the sentences from it.
2. Include custom stop words and remove them and all stop words from a given document using nltk or spaCY package
3. Implement a stemmer and a lemmatizer program.
4. Implement a simple Part-of-Speech Tagger
5. Write a program to calculate TFIDF of documents and find the cosine similarity between any two documents.
6. Use nltk to implement a dependency parser.
7. Implement a semantic language processor that uses WordNet for semantic tagging.
8. Project - (in Pairs) Your project must use NLP concepts and apply them to some data.
 a. Your project may be a comparison of several existing systems, or it may propose a new system in which case you still must compare it to at least one other approach.
 b. You are free to use any third-party ideas or code that you wish as long as it is publicly available.
 c. You must properly provide references to any work that is not your own in the write-up.
 d. Project proposal You must turn in a brief project proposal. Your project proposal should describe the idea behind your project. You should also briefly describe software you will need to write, and papers (2-3) you plan to read.

List of Possible Projects
1. Sentiment Analysis of Product Reviews
2. Information extraction from News articles
3. Customer support bot
4. Language identifier
5. Media Monitor
6. Paraphrase Detector
7. Identification of Toxic Comment
8. Spam Mail Identification

COURSE OUTCOMES:
CO1: Understand basics of linguistics, probability and statistics associated with NLP
CO2: Implement a Part-of-Speech Tagger
CO3: Design and implement a sequence labeling problem for a given domain
CO4: Implement semantic processing tasks and simple document indexing and searching system using the concepts of NLP
CO5: Implement a simple chatbot using dialogue system concepts

TOTAL: 60 PERIODS

REFERENCES
1. Daniel Jurafsky and James H.Martin, “Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition” (Prentice Hall Series in Artificial Intelligence), 2020
2. Jacob Eisenstein. "Natural Language Processing ", MIT Press, 2019
3. Samuel Burns “Natural Language Processing: A Quick Introduction to NLP with Python and NLTK, 2019
COURSE OBJECTIVES:

- To understand the computational approaches to Modeling, Feature Extraction
- To understand the need and application of Map Reduce
- To understand the various search algorithms applicable to Big Data
- To analyse and interpret streaming data
- To learn how to handle large data sets in main memory and learn the various clustering techniques applicable to Big Data

UNIT I DATA MINING AND LARGE SCALE FILES

UNIT II SIMILAR ITEMS

UNIT III MINING DATA STREAMS

UNIT IV LINK ANALYSIS AND FREQUENT ITEMSETS
UNIT V CLUSTERING

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to

CO1: Design algorithms by employing Map Reduce technique for solving Big Data problems.
CO2: Design algorithms for Big Data by deciding on the apt Features set.
CO3: Design algorithms for handling petabytes of datasets.
CO4: Design algorithms and propose solutions for Big Data by optimizing main memory consumption.
CO5: Design solutions for problems in Big Data by suggesting appropriate clustering techniques.

REFERENCES:

WEB REFERENCES:
1. https://swayam.gov.in/nd2_arp19_ap60/preview

ONLINE RESOURCES:
1. https://examupdates.in/big-data-analytics/

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>POs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
- To analyze the data using statistical methods.
- To understand data analysis tools.
- To learn a Data Mining Tool.
- To learn various data analysis algorithms.
- To learn Data Mining Algorithms.

SUGGESTED ACTIVITIES:
List of Experiments
1. Data Analysis - Getting to know the Data (Using ORANGE, WEKA)
 - Parametric - Means, T-Test, Correlation
 - Prediction for numerical outcomes - Linear regression
 - Correlation analysis
 - Preparing data for analysis
 - Pre-processing techniques
2. Data Mining (Using ORANGE, WEKA or any open source data mining tool)
 - Implement clustering algorithm
 - Implement classification using Decision tree
 - Back propagation
 - Visualization methods.

COURSE OUTCOMES:
CO1: Use statistical techniques to carry out the analysis of data.
CO2: Apply various Data Analysis algorithms.
CO3: Apply Data Mining algorithms
CO4: Use Data Analysis tools
CO5: Use Data Mining tools

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Avg 1 1 1 1 2 2

TOTAL: 30 PERIODS
In this course, students will develop their scientific and technical reading and writing skills that they need to understand and construct research articles. A term paper requires a student to obtain information from a variety of sources (i.e., Journals, dictionaries, reference books) and then place it in logically developed ideas. The work involves the following steps:

1. Selecting a subject, narrowing the subject into a topic
2. Stating an objective.
3. Collecting the relevant bibliography (atleast 15 journal papers)
4. Preparing a working outline.
5. Studying the papers and understanding the authors contributions and critically analysing each paper.
6. Preparing a working outline
7. Linking the papers and preparing a draft of the paper.
8. Preparing conclusions based on the reading of all the papers.
9. Writing the Final Paper and giving final Presentation

Please keep a file where the work carried out by you is maintained.

Activities to be carried out

<table>
<thead>
<tr>
<th>Activity</th>
<th>Instructions</th>
<th>Submission week</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection of area of interest and Topic</td>
<td>You are requested to select an area of interest, topic and state an objective</td>
<td>2nd week</td>
<td>3 % Based on clarity of thought, current relevance and clarity in writing</td>
</tr>
<tr>
<td>Stating an Objective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Collecting Information about your area & topic | 1. List 1 Special Interest Groups or professional society
2. List 2 journals
3. List 2 conferences, symposia or workshops
4. List 1 thesis title
5. List 3 web presences (mailing lists, forums, news sites)
6. List 3 authors who publish regularly in your area
7. Attach a call for papers (CFP) from your area. | 3rd week | 3% (the selected information must be area specific and of international and national standard) |
| Collection of Journal papers in the topic in the context of the objective – collect 20 & then filter | • You have to provide a complete list of references you will be using- Based on your objective -Search various digital libraries and Google Scholar
• When picking papers to read - try to:
• Pick papers that are related to each other in some ways and/or that are in | 4th week | 6% (the list of standard papers and reason for selection) |
the same field so that you can write a meaningful survey out of them,
- Favour papers from well-known journals and conferences,
- Favour “first” or “foundational” papers in the field (as indicated in other people’s survey paper),
- Favour more recent papers,
- Pick a recent survey of the field so you can quickly gain an overview,
- Find relationships with respect to each other and to your topic area (classification scheme/categorization)
- Mark in the hard copy of papers whether complete work or section/sections of the paper are being considered

<table>
<thead>
<tr>
<th>Reading and notes for first 5 papers</th>
<th>Reading Paper Process</th>
<th>5th week</th>
<th>8%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For each paper form a Table answering the following questions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- What is the main topic of the article?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- What was/were the main issue(s) the author said they want to discuss?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Why did the author claim it was important?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- How does the work build on other’s work, in the author’s opinion?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- What simplifying assumptions does the author claim to be making?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- What did the author do?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- How did the author claim they were going to evaluate their work and compare it to others?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- What did the author say were the limitations of their research?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- What did the author say were the important directions for future research?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conclude with limitations/issues not addressed by the paper (from the perspective of your survey)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reading and notes for next 5 papers</th>
<th>Repeat Reading Paper Process</th>
<th>6th week</th>
<th>8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each paper)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading and notes for final 5 papers</td>
<td>Repeat Reading Paper Process</td>
<td>7th week</td>
<td>8% (the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each paper)</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------------------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Draft outline 1 and Linking papers</td>
<td>Prepare a draft Outline, your survey goals, along with a classification / categorization diagram</td>
<td>8th week</td>
<td>8% (this component will be evaluated based on the linking and classification among the papers)</td>
</tr>
<tr>
<td>Abstract</td>
<td>Prepare a draft abstract and give a presentation</td>
<td>9th week</td>
<td>6% (Clarity, purpose and conclusion) 6% Presentation & Viva Voce</td>
</tr>
<tr>
<td>Introduction Background</td>
<td>Write an introduction and background sections</td>
<td>10th week</td>
<td>5% (clarity)</td>
</tr>
<tr>
<td>Sections of the paper</td>
<td>Write the sections of your paper based on the classification / categorization diagram in keeping with the goals of your survey</td>
<td>11th week</td>
<td>10% (this component will be evaluated based on the linking and classification among the papers)</td>
</tr>
<tr>
<td>Your conclusions</td>
<td>Write your conclusions and future work</td>
<td>12th week</td>
<td>5% (conclusions – clarity and your ideas)</td>
</tr>
<tr>
<td>Final Draft</td>
<td>Complete the final draft of your paper</td>
<td>13th week</td>
<td>10% (formatting, English, Clarity and linking) 4% Plagiarism Check Report</td>
</tr>
<tr>
<td>Seminar</td>
<td>A brief 15 slides on your paper</td>
<td>14th & 15th week</td>
<td>10% (based on presentation and Viva-voce)</td>
</tr>
</tbody>
</table>

TOTAL: 30 PERIODS

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| CO-PO Mapping |
COURSE OBJECTIVES:

- Develop and Train Deep Neural Networks.
- Develop a CNN, R-CNN, Fast R-CNN, Faster-R-CNN, Mask-RCNN for detection and recognition
- Build and train RNNs, work with NLP and Word Embeddings
- The internal structure of LSTM and GRU and the differences between them
- The Auto Encoders for Image Processing

UNIT I DEEP LEARNING CONCEPTS 6

UNIT II NEURAL NETWORKS 9

UNIT III CONVOLUTIONAL NEURAL NETWORK 10

UNIT VI NATURAL LANGUAGE PROCESSING USING RNN 10

UNIT V DEEP REINFORCEMENT & UNSUPERVISED LEARNING 10

LIST OF EXPERIMENTS:
1: Feature Selection from Video and Image Data
2: Image and video recognition
3: Image Colorization
4: Aspect Oriented Topic Detection & Sentiment Analysis
5: Object Detection using Autoencoder

COURSE OUTCOMES:
CO1: Feature Extraction from Image and Video Data
CO2: Implement Image Segmentation and Instance Segmentation in Images
CO3: Implement image recognition and image classification using a pretrained network (Transfer Learning)
CO4: Traffic Information analysis using Twitter Data
CO5: Autoencoder for Classification & Feature Extraction

REFERENCES
1. Deep Learning A Practitioner’s Approach Josh Patterson and Adam Gibson O’Reilly Media, Inc.2017
2. Learn Keras for Deep Neural Networks, Jojo Moolayil, Apress,2018
4. Deep Learning with Python, FRANÇOIS CHOLLET, MANNING SHELTER ISLAND,2017

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL : 45+30=75 PERIODS
COURSE OBJECTIVES:

- Formalise different types of entities and relationships as nodes and edges and represent this information as relational data.
- Understand the fundamental concepts in analyzing the large-scale data that are derived from social networks.
- Understand the basic concepts and principles of different theoretical models of social networks analysis.
- Transform data for analysis using graph-based and statistics-based social network measures.
- Choose among social network designs based on research goals.

UNIT I GRAPH THEORY AND STRUCTURE 10

UNIT II SOCIAL NETWORK GRAPH ANALYSIS 9
Social network exploration/processing and properties: Finding overlapping communities, similarity between graph nodes, counting triangles in graphs, neighborhood properties of graphs. Pregel paradigm and Apache Giraph graph processing system.

UNIT III INFORMATION DIFFUSION IN SOCIAL NETWORKS 9

UNIT IV CASCADING IN SOCIAL NETWORKS 8

UNIT V LINK ANALYSIS & COMMUNITY DETECTION 9
SUGGESTED ACTIVITIES:

1: Twitter Intelligence project performs tracking and analysis of the Twitter
2: Large-Scale Network Embedding as Sparse Matrix Factorization
3: Implement how Information Propagation on Twitter
4: Social Network Analysis and Visualization software application.
5: Implement the Structure of Links in Networks

COURSE OUTCOMES:
CO1: Plan and execute network analytical computations.
CO2: Implement mining algorithms for social networks
CO3: Analyze and evaluate social communities.
CO4: Use social network analysis in behavior analytics
CO5: Perform mining on large social networks and illustrate the results.

TOTAL: 45 PERIODS

REFERENCES
1. Practical Social Network Analysis with Python, Krishna Raj P. M. Ankith Mohan and K. G. Srinivasa. Springer, 2018
2. SOCIAL NETWORK ANALYSIS: METHODS AND APPLICATIONS, STANLEY WASSERMAN, and KATHERINE F' AUST. CAMBRIDGE UNIVERSITY PRESS, 2012

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

BD4091 PREDICTIVE MODELLING L T P C 3 0 0 3

COURSE OBJECTIVES:
- To understand the terms and terminologies of predictive modeling.
- To study the various predictive models, their merits, demerits and application.
- To get exposure to various analytical tools available for predictive modeling.
- To learn the predictive modeling markup language.
• To get familiar with the technologies in predictive modeling.

UNIT I
INTRODUCTION TO PREDICTIVE MODELING
Core ideas in data mining - Supervised and unsupervised learning - Classification vs. Prediction - Steps in data mining - SEMMA Approach - Sampling - Pre-processing - Data cleaning - Data Partitioning - Building a model - Statistical models - Statistical models for predictive analytics.

UNIT II
PREDICTIVE MODELING BASICS

UNIT III
PREDICTIVE MODELS

UNIT IV
PREDICTIVE MODELING MARKUP LANGUAGE

UNIT V
TECHNOLOGIES AND CASE STUDIES

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Design and analyze appropriate predictive models.

CO2: Define the predictive models using PMML.

CO3: Apply statistical tools for analysis.

CO4: Use various analytical tools available for predictive modeling.

CO5: Apply predictive modeling markup language in data manipulation.

REFERENCES:

WEB REFERENCES:
1. https://nptel.ac.in/courses/108108111/
2. https://www.coursera.org/learn/predictive-modeling-analytics

ONLINE RESOURCES:
1. https://bookdown.org/egarpor/PM-UC3M/
2. https://cics.nd.edu/research/applications/materials/

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

CO-PO Mapping

MP4391
SMART CONVERGENT TECHNOLOGIES

COURSE OBJECTIVES:
- To learn about Fundamentals of IoT and Security
- To know about IoT applications in Industry
- To learn about RFID Pervasive networks
- To gain fundamental concepts in 5G and Next Gen networks
- To know about IoT implementation

UNIT I TOWARDS THE IOT UNIVERSE

UNIT II IOT APPLICATIONS — VALUE CREATION FOR INDUSTRY

UNIT III RFID PERVASIVE NETWORKS
RFID Tags- RFID Automatic Identification and Data Capture RFID Data Warehousing and analysis- RFID Data Management Issues, Solutions, and Directions- RFID Security: Threats and Solutions- RFIG Geometric Context of Wireless Tags- RFID Application in Animal Monitoring-
UNIT IV INTRODUCTION TO INDUSTRIAL INTERNET OF THINGS

Industrial Internet- Key IIoT Technologies- Innovation and the IIoT - Key Opportunities and Benefits - The Digital and Human Workforce - Logistics and the Industrial Internet- IOT Innovations in Retail - Cyber Physical Systems (CPS) – IP Mobility – Network Virtualization - SDN (Software Defined Networks)- The Cloud and Fog

UNIT V IIOT ARCHITECTURE AND DESIGNING INDUSTRIAL INTERNET SYSTEMS

COURSE OUTCOMES:
After completion of the course, the student will be able to:

CO1: Describe the core principles of IoT Network Management
CO2: Identify the applications of IoT in Industry
CO3: Explain the basic concepts in RFID and Pervasive Networks
CO4: Discuss the fundamental concepts in IIoT, CPS and Network Virtualization.
CO5: Design Industrial Internet Systems

REFERENCE:

4. Gilchrist, Alasdair, “Industry 4.0 The Industrial Internet of Things”, Apress, 2017. (Unit IV and Unit V)

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
- To understand basic concepts of probabilistic graphical models
- To explore different aspects of representation of probabilistic graphical models
- To study different inference techniques
- To apply various inference techniques
- To understand learning associated with probabilistic graphical models

UNIT I INTRODUCTION

UNIT II REPRESENTATION

UNIT III INFERENCE
Exact Inference – Variable Elimination- Conditioning – Clique Trees – Message Passing – Inference as Optimization – Exact Inference as Optimization – Propagation based Approximation

UNIT IV ADVANCED INFERENCE
Particle Based Approximate Inference – Forward Sampling - Markov Chain Monte Carlo Methods – Map Inference - Variable Elimination for Map – Max-Product in Clique Trees – Exact Inference in Temporal Models

UNIT V LEARNING

SUGGESTED ACTIVITIES:
1. Problems in Probability
2. Design examples of Probabilistic Graphical Models
3. Hand simulate all inferences possible with graphical models for examples of your choice
4. Give an example for temporal probabilistic graphical model
5. Discuss pros and cons of different learning techniques
COURSE OUTCOMES:
CO1: Understand basic concepts of probabilistic graphical models
CO2: Automatically convert a problem into a probabilistic graphical model
CO3: Implement a simple graphical model
CO4: Understand issues associated with temporal models
CO5: Design a learning system for the graphical model

TOTAL: 45 PERIODS

REFERENCES

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>2.2</td>
<td>1.2</td>
<td>1.6</td>
<td>2.4</td>
<td>2.2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To introduce the building blocks of Quantum computers and highlight the paradigm change between conventional computing and quantum computing
- To understand the Quantum state transformations and the algorithms
- To understand entangled quantum subsystems and properties of entangled states
- To explore the applications of quantum computing

AP4093 QUANTUM COMPUTING L T P C 3 0 0 3
UNIT I QUANTUM BUILDING BLOCKS 9
The Quantum Mechanics of Photon Polarization, Single-Qubit Quantum Systems, Quantum State Spaces, Entangled States, Multiple-Qubit Systems, Measurement of Multiple-Qubit States, EPR Paradox and Bell's Theorem, Bloch sphere

UNIT II QUANTUM STATE TRANSFORMATIONS 9
Unitary Transformations, Quantum Gates, Unitary Transformations as Quantum Circuits, Reversible Classical Computations to Quantum Computations, Language for Quantum Implementations.

UNIT III QUANTUM ALGORITHMS 9
Computing with Superpositions, Quantum Subroutines, Quantum Fourier Transformations, Shor’s Algorithm and Generalizations, Grover’s Algorithm and Generalizations

UNIT IV ENTANGLED SUBSYSTEMS AND ROBUST QUANTUM COMPUTATION 9
Quantum Subsystems, Properties of Entangled States, Quantum Error Correction, Graph states and codes, CSS Codes, Stabilizer Codes, Fault Tolerance and Robust Quantum Computing

UNIT V QUANTUM INFORMATION PROCESSING 9

COURSE OUTCOMES:
At the end of the course, the student will be able to
CO1: Understand the basic principles of quantum computing.
CO2: Gain knowledge of the fundamental differences between conventional computing and quantum computing.
CO3: Understand several basic quantum computing algorithms.
CO4: Understand the classes of problems that can be expected to be solved well by quantum computers.
CO5: Simulate and analyze the characteristics of Quantum Computing Systems.

TOTAL: 45 PERIODS

REFERENCES:
1. John Gribbin, Computing with Quantum Cats: From Colossus to Qubits, 2021
2. William (Chuck) Easttom, Quantum Computing Fundamentals, 2021
3. Parag Lala, Quantum Computing, 2019
MU4152 MULTIMEDIA COMMUNICATION NETWORKS L T P C
 3 0 0 3

COURSE OBJECTIVES:
- To recapitulate the fundamentals of networking and understand the requirements for multimedia communication.
- To learn guaranteed service model.
- To learn communication protocols that is frequently used in IoT ecosystems.
- To explore the support provided for multimedia communication in 3G and 4G networks.
- To study about VoIP and real time multimedia network applications.

UNIT I INTRODUCTION 9

Suggested Activities:
- Flipped classroom on network externalities and Economies of scale.
- External learning – Inter-continental backbone network and Autonomous Systems model of the Internet.
- Assignments on computing the playout time of packets.

Suggested Evaluation Methods:
- Quiz and discussion on network externalities and economies of scale.
- Assignments on proprietary protocols used in IoT and M2M.
- Assignments on problems related to playout time of multimedia applications.

UNIT II GUARANTEED SERVICE MODEL 9

Suggested Activities:
- Flipped classroom on IntServ and DiffServ networks.
- External learning – Exploring the ways of using DSCP in IP header.
- Assignments on finish time problems related to WFQ and its variants.

Suggested Evaluation Methods:
- Quiz and discussion on IntServ and DiffServ networks.
- Assignments on configuring a router in such a way that DSCP fielder is exploited to provide QoS.
- Assignments on problems related to the virtual finish and actual finish of packets in WFQ and its variants.

UNIT III MULTIMEDIA TRANSPORT

Suggested Activities:
- External learning – Exploring various media players available and the ways to customize them.
- Exploring the ways to configure RTP.
- Flipped classroom on RTP and RTCP.

Suggested Evaluation Methods:
- Assignments on media players available and configuring them.
- Configuring RTP and RTSP.
- Quiz and discussion on RTP and RTCP.

UNIT IV MULTIMEDIA OVER WIRELESS NETWORKS

Suggested Activities:
- Flipped classroom on IMSVoLTE architecture.
- External learning – Multimedia support in 5G networks.
- Analyzing the protocols of IP media subsystem.
Suggested Evaluation Methods:
- Quiz and discussion on IMSVoLTE architecture.
- Assignments on multimedia support in 5G networks.
- Assignments on analyzing the headers of IP multimedia subsystem.

UNIT V MULTIMEDIA NETWORKED APPLICATIONS 9

Suggested Activities:
- Flipped classroom on SCIBus and S.100.
- External learning – Multimedia access networks and edge networks.
- Exploring the ways to configure SIP.

Suggested Evaluation Methods:
- Quiz and discussion on SCIBus and S.100.
- Assignments on multimedia access networks and edge networks.
- Configuring SIP using suitable commands.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On completion of the course, the students will be able to:
CO1: Deploy the right multimedia communication models.
CO2: Apply QoS to multimedia network applications at the network level with efficient scheduling and routing techniques.
CO3: Apply QoS to multimedia network applications at the end system level with efficient scheduling and routing techniques.
CO4: Understand IP multimedia subsystem and IP initiatives in cellular networks to support multimedia traffic.
CO5: Design and implement VoIP based solutions for multimedia transport.
CO6: Develop the real-time multimedia network applications.

REFERENCES:

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
CP4093 INFORMATION RETRIEVAL TECHNIQUES L T P C 3 0 0 3

COURSE OBJECTIVES:
- To understand the basics of information retrieval with pertinence to modeling, query operations and indexing
- To get an understanding of machine learning techniques for text classification and clustering.
- To understand the various applications of information retrieval giving emphasis to multimedia IR, web search
- To get an understanding of machine learning techniques for text classification and clustering.
- To understand the concepts of digital libraries

UNIT I INTRODUCTION: MOTIVATION 9

UNIT II MODELING 9

UNIT III INDEXING 9
Static and Dynamic Inverted Indices – Index Construction and Index Compression. Searching - Sequential Searching and Pattern Matching, Query Operations -Query Languages – Query Processing - Relevance Feedback and Query Expansion - Automatic Local and Global Analysis – Measuring Effectiveness and Efficiency

UNIT IV EVALUATION AND PARALLEL INFORMATION RETRIEVAL 9

UNIT V SEARCHING THE WEB 9
COURSE OUTCOMES:
CO1: Build an Information Retrieval system using the available tools.
CO2: Identify and design the various components of an Information Retrieval system.
CO3: Categorize the different types of IR Models.
CO4: Apply machine learning techniques to text classification and clustering which is used for efficient Information Retrieval.
CO5: Design an efficient search engine and analyze the Web content structure.

TOTAL: 45 PERIODS

REFERENCES

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>1.2</td>
<td>2</td>
<td>2.2</td>
<td>2.6</td>
<td>2.4</td>
</tr>
</tbody>
</table>

SE4072 IMAGE PROCESSING

COURSE OBJECTIVES:
- To study fundamental concepts of digital image processing.
- To get exposed to simple image enhancement techniques in Spatial and Frequency domain.
- To become familiar with image compression
- To study the image segmentation and Morphological Processing.
- To expose student's in recognition methods.
UNIT I INTRODUCTION
Examples of fields that use digital image processing, fundamental steps in digital image processing, components of image processing system. Digital Image Fundamentals: A simple image formation model, image sampling and quantization, basic relationships between pixels. Color Image Processing: Color fundamentals, color models, pseudo color image processing, basics of full–color image processing, color transforms, smoothing and sharpening, color segmentation

UNIT II IMAGE ENHANCEMENT

UNIT III WAVELETS AND IMAGE COMPRESSION
Wavelets and Multiresolution Processing. Fundamentals, image compression models, error-free compression, lossy predictive coding, image compression standards

UNIT IV IMAGE SEGMENTATION
Detection of Discontinuities, Edge Linking and Boundary Detection, Thresholding, Region-Based Segmentation, Segmentation by Morphological Watersheds, The Use of Motion in Segmentation Morphological Image Processing: Prelimaries, dilation, erosion, open and closing, hit or miss transformation, basic morphologic algorithms.

UNIT V REPRESENTATION AND OBJECT RECOGNITION
Representation, Boundary Descriptors, Regional Descriptors, Use of Principal Components for Description. Object Recognition: Patterns and patterns classes, recognition based on decision—theoretic methods, matching, optimum statistical classifiers, neural networks, structural methods – matching shape numbers, string matching.

COURSE OUTCOMES:
CO1: Apply knowledge of mathematics for image understanding and analysis.
CO2: Design and analysis of techniques / processes for image Enhancement.
CO3: Design and analysis of techniques / processes for image compression.
CO4: Able to expose to current trends in field of image segmentation.
CO5: Design, realize and troubleshoot various algorithms for image processing case studies.

TOTAL: 45 PERIODS

REFERENCES
3. Introduction to Digital Image Processing with Matlab, Alasdair McAndrew, Thomson Course Technology, 2021
4. Computer Vision and Image Processing, Adrian Low, Second Edition,
CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>1.6</td>
<td>1.8</td>
<td>2.2</td>
<td>1.8</td>
<td>2.4</td>
<td>2.6</td>
</tr>
</tbody>
</table>

CP4091 AUTONOMOUS SYSTEMS

UNIT I INTRODUCTION AND FUNCTIONAL ARCHITECTURE
Functional architecture - Major functions in an autonomous vehicle system, Motion Modeling - Coordinate frames and transforms, point mass model, Vehicle modeling (kinematic and dynamic bicycle model - two-track models), Sensor Modeling - encoders, inertial sensors, GPS.

UNIT II PERCEPTION FOR AUTONOMOUS SYSTEMS
SLAM - Localization and mapping fundamentals, LIDAR and visual SLAM, Navigation – Global path planning, Local path planning, Vehicle control - Control structures, PID control, Linear quadratic regulator, Sample controllers.

UNIT III ROBOTICS INTRODUCTION, END EFFECTORS AND CONTROL
Robot anatomy-Definition, law of robotics, Simple problems Specifications of Robot-Speed of Robot-Robot joints and links-Robot classifications-Architecture of robotic systems, Mechanical grippers-Slider crank mechanism, Screw type, Rotary actuators, cam type-Magnetic grippers-Vacuum grippers-Air operated grippers-Gripper force analysis-Gripper design-Simple problems-Robot controls-Point to point control, Continuous path control, Intelligent robot

Control system for robot joint-Control actions-Feedback devices-Encoder, Resolver, LVDT

Motion Interpolations-Adaptive control.
UNIT IV ROBOT TRANSFORMATIONS, SENSORS AND ROBOT CELL DESIGN

UNIT V MICRO/NANO ROBOTICS SYSTEM

Micro/Nano robotics system overview-Scaling effect-Top down and bottom up approach Actuators of Micro/Nano robotics system-Nano robot communication techniques-Fabrication of micro/nano grippers-Wall climbing micro robot working principles-Biomimetic robot-Swarm robot-Nano robot in targeted drug delivery system.

COURSE OUTCOMES:
CO1: Understand architecture and modeling of autonomous systems.
CO2: Employ localization mapping techniques for autonomous systems
CO3: Design solutions for autonomous systems control.
CO4: Analyze Robot Transformations, Sensors and Cell Design
CO5: Explain the working principles of Micro/Nano Robotic system

TOTAL: 45 PERIODS

REFERENCES

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>2.4</td>
<td>1.8</td>
<td>2</td>
<td>2.4</td>
<td>1.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
- To understand the Web analytics platform, and their evolution.
- To learn about the various Data Streams Data.
- To learn about the benefits of surveys and capturing of data.
- To understand Common metrics of web as well as KPI related concepts.
- To learn about the various Web analytics versions.

UNIT I INTRODUCTION
Definition, Process, Key terms: Site references, Keywords and Key phrases; building block terms: Visit characterization terms, Content characterization terms, Conversion metrics; Categories: Offsite web, on site web; Web analytics platform, Web analytics evolution, Need for web analytics, Advantages, Limitations.

UNIT II DATA COLLECTION
Click stream Data: Web logs, Web Beacons, JavaScript tags, Packet Sniffing; Outcomes Data: E-commerce, Lead generation, Brand/Advocacy and Support; Research data: Mindset, Organizational structure, Timing; Competitive Data: Panel-Based measurement, ISP-based measurement, Search Engine data.

UNIT III QUALITATIVE ANALYSIS
Heuristic evaluations: Conducting a heuristic evaluation, Benefits of heuristic evaluations; Site Visits: Conducting a site visit, Benefits of site visits; Surveys: Website surveys, Post-visit surveys, creating and running a survey, Benefits of surveys. Capturing data: Web logs or JavaScript’s tags, Separate data serving and data capture, Type and size of data, Innovation, Integration, Selecting optimal web analytic tool, Understanding click stream data quality, Identifying unique page definition, Using cookies, Link coding issues.

UNIT IV WEB METRICS

UNIT V WEB ANALYTICS 2.0
Web analytics 1.0, Limitations of web analytics 1.0, Introduction to analytic 2.0, Competitive intelligence analysis : CI data sources, Toolbar data, Panel data ,ISP data, Search engine data, Hybrid data, Website traffic analysis: Comparing long term traffic trends, Analyzing competitive site overlap and opportunities. Google Analytics: Brief introduction and working, Adwords, Benchmarking, Categories of traffic: Organic traffic, Paid traffic; Google website optimizer, Implementation technology, Limitations, Performance concerns, Privacy issues.

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon completion of this course, the students should be able to:
- CO1: Understand the Web analytics platform, and their evolution.
CO2: Use the various Data Streams Data.
CO3: Know how the survey of capturing of data will benefit.
CO4: Understand Common metrics of web as well as KPI related concepts.
CO5: Apply various Web analytics versions in existence.

REFERENCES:

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>1.6</td>
<td>1.2</td>
<td>1.6</td>
<td>2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

MP4091 COGNITIVE COMPUTING

COURSE OBJECTIVES:
- To familiarize Use the Innovation Canvas to justify potentially successful products.
- To learn various ways in which to develop a product idea.
- To understand about how Big Data can play vital role in Cognitive Computing
- To know about the business applications of Cognitive Computing
- To get into all applications of Cognitive Computing

UNIT I FOUNDATION OF COGNITIVE COMPUTING
Foundation of Cognitive Computing: cognitive computing as a new generation, the uses of cognitive systems, system cognitive, gaining insights from data, Artificial Intelligence as the foundation of cognitive computing, understanding cognition Design Principles for Cognitive Systems: Components of a cognitive system, building the corpus, bringing data into cognitive system, machine learning, hypotheses generation and scoring, presentation, and visualization services
UNIT II NATURAL LANGUAGE PROCESSING IN COGNITIVE SYSTEMS 9
Natural Language Processing in support of a Cognitive System: Role of NLP in a cognitive system, semantic web, Applying Natural language technologies to Business problems Representing knowledge in Taxonomies and Ontologies: Representing knowledge, Defining Taxonomies and Ontologies, knowledge representation, models for knowledge representation, implementation considerations

UNIT III BIG DATA AND COGNITIVE COMPUTING 9
Relationship between Big Data and Cognitive Computing: Dealing with human-generated data, defining big data, architectural foundation, analytical data warehouses, Hadoop, data in motion and streaming data, integration of big data with traditional data Applying Advanced Analytics to cognitive computing: Advanced analytics is on a path to cognitive computing, Key capabilities in advanced analytics, using advanced analytics to create value, Impact of open source tools on advanced analytics

UNIT IV BUSINESS IMPLICATIONS OF COGNITIVE COMPUTING 9
Preparing for change ,advantages of new disruptive models , knowledge meaning to business, difference with a cognitive systems approach , meshing data together differently, using business knowledge to plan for the future , answering business questions in new ways , building business specific solutions , making cognitive computing a reality , cognitive application changing the market The process of building a cognitive application: Emerging cognitive platform, defining the objective, defining the domain, understanding the intended users and their attributes, questions and exploring insights, training and testing

UNIT V APPLICATION OF COGNITIVE COMPUTING 9
Building a cognitive health care application: Foundations of cognitive computing for healthcare, constituents in healthcare ecosystem, learning from patterns in healthcare Data, Building on a foundation of big data analytics, cognitive applications across the health care eco system, starting with a cognitive application for healthcare, using cognitive applications to improve health and wellness, using a cognitive application to enhance the electronic medical record Using cognitive application to improve clinical teaching

COURSE OUTCOMES:
CO1: Explain applications in Cognitive Computing.
CO2: Describe Natural language processor role in Cognitive computing.
CO3: Explain future directions of Cognitive Computing
CO4: Evaluate the process of taking a product to market
CO5: Comprehend the applications involved in this domain.

TOTAL:45 PERIODS

REFERENCES
<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>1.2</td>
<td>2.4</td>
<td>2.4</td>
<td>1.6</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To learn the foundations of Human Computer Interaction
- Understanding Interaction Styles and to become familiar with the design technologies for individuals and persons with disabilities.
- To understand the process of Evaluation of Interaction Design.
- To clarify the significance of task analysis for ubiquitous computing
- To get insight on web and mobile interaction.

**UNIT I ** FOUNDATIONS OF HCI

**UNIT II ** INTERACTION STYLES

**UNIT III ** EVALUATION OF INTERACTION
UNIT IV MODELS AND THEORIES
Task analysis, dialog notations and design, Models of the system, Modeling rich interaction, Ubiquitous computing

UNIT V WEB AND MOBILE INTERACTION
Hypertext, Multimedia and WWW, Designing for the web Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow. Use Transitions-Lookup patterns-Feedback patterns Mobile apps, Mobile navigation, content and control idioms, Multi-touch gestures, Inter-app integration, Mobile web

COURSE OUTCOMES:
CO1: Understand the basics of human computer interactions via usability engineering and cognitive modeling.
CO2: Understand the basic design paradigms, complex interaction styles.
CO3: Understand the models and theories for user interaction
CO4: Examine the evaluation of interaction designs and implementations.
CO5: Elaborate the above issues for web and mobile applications.

TOTAL: 45 PERIODS

REFERENCES

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>1.2</td>
<td>1</td>
<td>2.2</td>
<td>2.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
- To understand the mathematical foundations needed for performance evaluation of computer systems
- To understand the metrics used for performance evaluation
- To understand the analytical modeling of computer systems
- To enable the students to develop new queuing analysis for both simple and complex systems
- To appreciate the use of smart scheduling and introduce the students to analytical techniques for evaluating scheduling policies

UNIT I OVERVIEW OF PERFORMANCE EVALUATION 9

UNIT II MARKOV CHAINS AND SIMPLE QUEUES 9

UNIT III MULTI-SERVER AND MULTI-QUEUE SYSTEMS 9
Server Farms: M/M/k and M/M/k/k – Capacity Provisioning for Server Farms – Time Reversibility and Burke’s Theorem – Networks of Queues and Jackson Product Form – Classed and Closed Networks of Queues.

UNIT IV REAL-WORLD WORKLOADS 9

UNIT V SMART SCHEDULING IN THE M/G/1 9

COURSE OUTCOMES:
Upon completion of this course, the students should be able to
CO1: Identify the need for performance evaluation and the metrics used for it
CO2: Distinguish between open and closed queuing networks
CO3: Apply Little’s law and other operational laws to open and closed systems
CO4: Use discrete-time and continuous-time Markov chains to model real world systems
CO5: Develop analytical techniques for evaluating scheduling policies

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>2</td>
<td>1.2</td>
<td>2</td>
<td>2</td>
<td>2.33333</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

- To develop skills to both design and critique visualizations.
- To introduce visual perception and core skills for visual analysis.
- To understand technological advancements of data visualization
- To understand various data visualization techniques
- To understand the methodologies used to visualize large data sets

UNIT I INTRODUCTION AND DATA FOUNDATION

Basics - Relationship between Visualization and Other Fields - The Visualization Process - Pseudo code Conventions - The Scatter plot. Data Foundation - Types of Data - Structure within and between Records - Data Preprocessing - Data Sets

UNIT II FOUNDATIONS FOR VISUALIZATION

Visualization stages - Semiology of Graphical Symbols - The Eight Visual Variables – Historical Perspective - Taxonomies - Experimental Semiotics based on Perception Gibson’s Affordance theory – A Model of Perceptual Processing.
UNIT III VISUALIZATION TECHNIQUES

UNIT IV INTERACTION CONCEPTS AND TECHNIQUES

UNIT V RESEARCH DIRECTIONS IN VISUALIZATIONS

COURSE OUTCOMES:
CO1: Visualize the objects in different dimensions.
CO2: Design and process the data for Visualization.
CO3: Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical sciences.
CO4: Apply the virtualization techniques for research projects.
CO5: Identify appropriate data visualization techniques given particular requirements imposed by the data.

TOTAL: 45 PERIODS

REFERENCES

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

CO-PO Mapping
COURSE OBJECTIVES:

- To Introduce the concepts of Robotic systems
- To understand the concepts of Instrumentation and control related to Robotics
- To understand the kinematics and dynamics of robotics
- To explore robotics in Industrial applications

UNIT I INTRODUCTION TO ROBOTICS
Robotics - History - Classification and Structure of Robotic Systems - Basic components - Degrees of freedom - Robot joints coordinates - Reference frames - workspace - Robot languages - Robotic sensors - proximity and range sensors, ultrasonic sensor, touch and slip sensor.

UNIT II ROBOT KINEMATICS AND DYNAMICS

UNIT III ROBOTICS CONTROL
Control of robot manipulator - state equations - constant solutions - linear feedback systems, single-axis PID control - PD gravity control - computed torque control, variable structure control and impedance control.

UNIT IV ROBOT INTELLIGENCE AND TASK PLANNING
Artificial Intelligence - techniques - search problem reduction - predicate logic means and end analysis - problem solving - robot learning - task planning - basic problems in task planning - AI in robotics and Knowledge Based Expert System in robotics.

UNIT V INDUSTRIAL ROBOTICS
Robot cell design and control - cell layouts - multiple robots and machine interference - work cell design - work cell control - interlocks - error detection, deduction and recovery - work cell controller - robot cycle time analysis. Safety in robotics, Applications of robot and future scope.

COURSE OUTCOMES:
At the end of the course the student will be able to

CO1: Describe the fundamentals of robotics
CO2: Understand the concept of kinematics and dynamics in robotics.
CO3: Discuss the robot control techniques
CO4: Explain the basis of intelligence in robotics and task planning
CO5: Discuss the industrial applications of robotics
REFERENCE:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>1.2</td>
<td>1.6</td>
<td>2</td>
<td>2.6</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

CP4072 BLOCKCHAIN TECHNOLOGIES

COURSE OBJECTIVES:
- This course is intended to study the basics of Blockchain technology.
- During this course the learner will explore various aspects of Blockchain technology like application in various domains.
- By implementing, learners will have idea about private and public Blockchain, and smart contract.

UNIT I INTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN
Introduction to Blockchain, Blockchain Technology Mechanisms & Networks, Blockchain Origins, Objective of Blockchain, Blockchain Challenges, Transactions and Blocks, P2P Systems, Keys as Identity, Digital Signatures, Hashing, and public key cryptosystems, private vs. public Blockchain.

UNIT II BITCOIN AND CRYPTOCURRENCY
UNIT III INTRODUCTION TO ETHEREUM
Introduction to Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum Accounts, , Transactions, Receiving Ethers, Smart Contracts.

UNIT-IV INTRODUCTION TO HYPERLEDGER AND SOLIDITY PROGRAMMING

UNIT V BLOCKCHAIN APPLICATIONS
Internet of Things, Medical Record Management System, Domain Name Service and Future of Blockchain, Alt Coins.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS:
1. Create a Simple Blockchain in any suitable programming language.
2. Use Geth to Implement Private Ethereum Block Chain.
4. Build Hyperledger Fabric with Smart Contract.
5. Create Case study of Block Chain being used in illegal activities in real world.
6. Using Python Libraries to develop Block Chain Application.

TOTAL: 30 PERIODS

SUPPLEMENTARY RESOURCES:
- NPTEL online course: https://nptel.ac.in/courses/106/104/106104220/#
- Udemy: https://www.udemy.com/course/build-your-blockchain-az/
- EDUXLABS Online training: https://eduxlabs.com/courses/blockchain-technology-training/?tab=tab-curriculum

TOTAL: 75 PERIODS

COURSE OUTCOMES:
After the completion of this course, student will be able to

CO1: Understand and explore the working of Blockchain technology
CO2: Analyze the working of Smart Contracts
CO3: Understand and analyze the working of Hyperledger
CO4: Apply the learning of solidity to build de-centralized apps on Ethereum
CO5: Develop applications on Blockchain

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>1.4</td>
<td>1.6</td>
<td>2</td>
<td>2.4</td>
<td>1.75</td>
<td>1.5</td>
</tr>
</tbody>
</table>

MU4291 MIXED REALITY L T P C
3 0 2 4

COURSE OBJECTIVES:
- To study about Fundamental Concept and Components of Virtual Reality
- To study about Interactive Techniques in Virtual Reality
- To study about Visual Computation in Virtual Reality
- To study about Augmented and Mixed Reality and Its Applications
- To know about I/O Interfaces and its functions.

UNIT I INTRODUCTION TO VIRTUAL REALITY 9

Suggested Activities:
- Flipped classroom on uses of MR applications.
- Videos – Experience the virtual reality effect.
- Assignment on comparison of VR with traditional multimedia applications.

Suggested Evaluation Methods:
- Tutorial – Applications of MR.
- Quizzes on the displayed video and the special effects

UNIT II INTERACTIVE TECHNIQUES IN VIRTUAL REALITY 9
Suggested Activities:
- Flipped classroom on modeling three dimensional objects.
- External learning – Collision detection algorithms.
- Practical – Creating three dimensional models.

Suggested Evaluation Methods:
- Tutorial – Three dimensional modeling techniques.
- Brainstorming session on collision detection algorithms.
- Demonstration of three dimensional scene creation.

UNIT III VISUAL COMPUTATION IN VIRTUAL REALITY

Suggested Activities:
- External learning – Different types of programming toolkits and Learn different types of available VR applications.
- Practical – Create VR scenes using any toolkit and develop applications.

Suggested Evaluation Methods:
- Tutorial – VR tool comparison.
- Brainstorming session on tools and technologies used in VR.
- Demonstration of the created VR applications.

UNIT IV AUGMENTED AND MIXED REALITY

Taxonomy, technology and features of augmented reality, difference between AR and VR, Challenges with AR, AR systems and functionality, Augmented reality methods, visualization techniques for augmented reality, wireless displays in educational augmented reality applications, mobile projection interfaces, marker-less tracking for augmented reality, enhancing interactivity in AR environments, evaluating AR systems.

Suggested Activities:
- External learning - AR Systems

Suggested Evaluation Methods:
- Brainstorming session different AR systems and environments.

UNIT V I/O INTERFACE IN VR & APPLICATION OF VR

Human factors: Introduction, the eye, the ear, the somatic senses. VR Hardware: Introduction, sensor hardware, Head-coupled displays, Acoustic hardware, Integrated VR systems. VR Software: Introduction, Modeling virtual world, Physical simulation, VR toolkits, Introduction to VRML, Input -- Tracker, Sensor, Digitalglobe, Movement Capture, Video-based Input, 3D Menus & 3DScanner etc. Output -- Visual /Auditory / Haptic Devices. VR Technology in Film & TV Production. VR Technology in Physical Exercises and Games. Demonstration of Digital Entertainment by VR.
Suggested Activities:
- External learning – Different types of sensing and tracking devices for creating mixed reality environments.
- Practical – Create MR scenes using any toolkit and develop applications.

Suggested Evaluation Methods:
- Tutorial – Mobile Interface Design.
- Brainstorming session on wearable computing devices and games design.
- Demonstration and evaluation of the developed MR application.

COURSE OUTCOMES:
CO1: Understand the Fundamental Concept and Components of Virtual Reality
CO2: Able to know the Interactive Techniques in Virtual Reality
CO3: Can know about Visual Computation in Virtual Reality
CO4: Able to know the concepts of Augmented and Mixed Reality and Its Applications
CO5: Know about I/O Interfaces and its functions.

TOTAL: 45 PERIODS

PRACTICALS:
1. Study of tools like Unity, Maya, 3DS MAX, AR toolkit, Vuforia and Blender.
2. Use the primitive objects and apply various projection methods by handling the camera.
3. Download objects from asset stores and apply various lighting and shading effects.
4. Model three dimensional objects using various modeling techniques and apply textures over them.
5. Create three dimensional realistic scenes and develop simple virtual reality enabled mobile applications which have limited interactivity.
6. Add audio and text special effects to the developed application.
7. Develop VR enabled applications using motion trackers and sensors incorporating full haptic interactivity.
8. Develop AR enabled applications with interactivity like E learning environment, Virtual walkthroughs and visualization of historic places.
10. Develop simple MR enabled gaming applications.

TOTAL: 45+30=75 Periods

REFERENCES
CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>2.2</td>
<td>1.8</td>
<td>1.6</td>
<td>2.2</td>
<td>1.5</td>
<td>1</td>
</tr>
</tbody>
</table>

CP4071 BIO INFORMATICS L T P C 3 0 2 4

COURSE OBJECTIVES:
- Exposed to the need for Bioinformatics technologies
- Be familiar with the modeling techniques
- Learn microarray analysis
- Exposed to Pattern Matching and Visualization
- To know about Microarray Analysis

UNIT I INTRODUCTION
Need for Bioinformatics technologies – Overview of Bioinformatics technologies
Structural bioinformatics – Data format and processing – Secondary resources and applications – Role of Structural bioinformatics – Biological Data Integration System.

UNIT II DATAWAREHOUSING AND DATAMINING IN BIOINFORMATICS
Bioinformatics data – Data warehousing architecture – data quality – Biomedical data analysis – DNA data analysis – Protein data analysis – Machine learning – Neural network architecture and applications in bioinformatics.

UNIT III MODELING FOR BIOINFORMATICS

UNIT IV PATTERN MATCHING AND VISUALIZATION

UNIT V MICROARRAY ANALYSIS
Microarray technology for genome expression study – image analysis for data extraction – preprocessing – segmentation – gridding – spot extraction – normalization, filtering – cluster

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS:
1. Manipulating DNA strings
2. Use Protein Data Bank to visualize and Analyze the Proteins from protein database
3. Explore the Human Genome with the SciPy Stack
4. Hidden Markov Model for Biological Sequence
5. Molecular Modeling using MMTK package
6. Sequence Alignment using Biopython, Pairwise and multiple sequence alignment using ClustalW and BLAST
7. Simple generation and manipulation of genome graphs
8. DNA data handling using Biopython
9. Chaos Game Representation of a genetic sequence
10. Visualize the microarray data using Heatmap

TOTAL: 30 PERIODS

COURSE OUTCOMES:
CO1: Understand the different Data formats
CO2: Develop machine learning algorithms.
CO3: Develop models for biological data.
CO4: Apply pattern matching techniques to bioinformatics data – protein data, genomic data.
CO5: Apply micro array technology for genomic expression study.

REFERENCES

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>1.6</td>
<td>1.2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1.5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To facilitate students to understand android SDK
- To help students to gain basic understanding of Android application development
- To understand how to work with various mobile application development frameworks
- To inculcate working knowledge of Android Studio development tool
- To learn the basic and important design concepts and issues of development of mobile applications

UNIT I MOBILE PLATFORM AND APPLICATIONS

UNIT II INTRODUCTION TO ANDROID

UNIT III ANDROID APPLICATION DESIGN ESSENTIALS

UNIT IV ANDROID USER INTERFACE DESIGN & MULTIMEDIA
User Interface Screen elements, Designing User Interfaces with Layouts, Drawing and Working with Animation. Playing Audio and Video, Recording Audio and Video, Using the Camera to Take and Process Pictures

UNIT V ANDROID APIs
Using Android Data and Storage APIs, Managing data using Sqlite, Sharing Data between Applications with Content Providers, Using Android Networking APIs, Using Android Web APIs, Using Android Telephony APIs, Deploying Android Application to the World.

LIST OF EXPERIMENTS:
1. Develop an application that uses GUI components, Font, Layout Managers and event listeners.
2. Develop an application that makes use of databases
3. Develop a native application that uses GPS location information
4. Implement an application that creates an alert upon receiving a message
5. Develop an application that makes use of RSS Feed.
6. Create an application using Sensor Manager
7. Create an android application that converts the user input text to voice.
8. Develop a Mobile application for simple and day to day needs (Mini Project)
COURSE OUTCOMES:

CO1: Identify various concepts of mobile programming that make it unique from programming for other platforms

CO2: Create, test and debug Android application by setting up Android development

CO3: Demonstrate methods in storing, sharing and retrieving data in Android applications

CO4: Utilize rapid prototyping techniques to design and develop sophisticated mobile interfaces

CO5: Create interactive applications in android using databases with multiple activities including audio, video and notifications and deploy them in marketplace

TOTAL: 45+30=75 PERIODS

REFERENCES

4. Reto Meier, “Professional Android 2 Application Development”, Wiley India Pvt Ltd, 2010

5. Mark L Murphy, “Beginning Android”, Wiley India Pvt Ltd, 2009

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Avg 2 1.8 1.6 2.6 2.75 2.75
COURSE OBJECTIVES:

- To learn the basic concepts and terminology of DevOps
- To gain knowledge on DevOps platform
- To understand building and deployment of code
- To be familiar with DevOps automation tools
- To learn basics of MLOps

UNIT I INTRODUCTION
Software Engineering - traditional and Agile process models - DevOps - Definition - Practices - DevOps life cycle process - need for DevOps - Barriers

UNIT II DEVOPS PLATFORM AND SERVICES
Cloud as a platform - IaaS, PaaS, SaaS - Virtualization - Containers - Supporting Multiple Data Centers - Operation Services - Hardware provisioning - software Provisioning - IT services - SLA - capacity planning - security - Service Transition - Service Operation Concepts.

UNIT III BUILDING, TESTING AND DEPLOYMENT
Microservices architecture - coordination model - building and testing - Deployment pipeline - Development and Pre-commit Testing - Build and Integration Testing - continuous integration - monitoring - security - Resources to Be Protected - Identity Management

UNIT IV DEVOPS AUTOMATION TOOLS

UNIT V MLOPS
MLOps - Definition - Challenges - Developing Models - Deploying to production - Model Governance - Real world examples

SUGGESTED ACTIVITIES:
1: Creating a new Git repository, cloning existing repository, Checking changes into a Git repository, Pushing changes to a Git remote, Creating a Git branch
2: Installing Docker container on windows/Linux, issuing docker commands
3: Building Docker Images for Python Application
4: Setting up Docker and Maven in Jenkins and First Pipeline Run
5: Running Unit Tests and Integration Tests in Jenkins Pipelines

COURSE OUTCOMES:
CO1: Implement modern software Engineering process
CO2: work with DevOps platform
CO3: build, test and deploy code
CO4: Explore DevOps tools
CO5: Correlate MLOps concepts with real time examples

TOTAL: 75 PERIODS
REFERENCES

4. Mark Treveil, and the Dataiku Team - "Introducing MLOps" - O'Reilly Media - 2020

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>1.3</td>
<td>1.25</td>
<td>2.4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

AUDIT COURSES

AX4091 ENGLISH FOR RESEARCH PAPER WRITING L T P C 2 0 0 0

COURSE OBJECTIVES

- Teach how to improve writing skills and level of readability
- Tell about what to write in each section
- Summarize the skills needed when writing a Title
- Infer the skills needed when writing the Conclusion
- Ensure the quality of paper at very first-time submission

UNIT I INTRODUCTION TO RESEARCH PAPER WRITING 6
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT II PRESENTATION SKILLS 6

UNIT III TITLE WRITING SKILLS 6
Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check
UNIT IV RESULT WRITING SKILLS 6
Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions

UNIT V VERIFICATION SKILLS 6
Useful phrases, checking Plagiarism, how to ensure paper is as good as it could possibly be the first-time submission

TOTAL: 30 PERIODS

COURSE OUTCOMES
CO1 – Understand that how to improve your writing skills and level of readability
CO2 – Learn about what to write in each section
CO3 – Understand the skills needed when writing a Title
CO4 – Understand the skills needed when writing the Conclusion
CO5 – Ensure the good quality of paper at very first-time submission

REFERENCES:

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>1.6</td>
<td>2</td>
<td>1.2</td>
<td>2.8</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

AX4092 DISASTER MANAGEMENT L T P C 2 0 0 0

COURSE OBJECTIVES:
- Summarize basics of disaster
- Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Develop the strengths and weaknesses of disaster management approaches
UNIT I INTRODUCTION 6
Disaster: Definition, Factors and Significance; Difference between Hazard And Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

UNIT II REPERCUSSIONS OF DISASTERS AND HAZARDS 6

UNIT III DISASTER PRONE AREAS IN INDIA 6
Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides And Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics.

UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT 6
Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT V RISK ASSESSMENT 6

TOTAL : 30 PERIODS

COURSE OUTCOMES:
CO1: Ability to summarize basics of disaster
CO2: Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
CO3: Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
CO4: Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
CO5: Ability to develop the strengths and weaknesses of disaster management approaches

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution 1917 And its impact on the initial drafting of the Indian Constitution.

UNIT I HISTORY OF MAKING OF THE INDIAN CONSTITUTION
History, Drafting Committee, (Composition & Working)

UNIT II PHILOSOPHY OF THE INDIAN CONSTITUTION
Preamble, Salient Features

UNIT III CONTOURS OF CONSTITUTIONAL RIGHTS AND DUTIES

UNIT IV ORGANS OF GOVERNANCE
Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.

UNIT V LOCAL ADMINISTRATION

UNIT VI ELECTION COMMISSION
Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners - Institute and Bodies for the welfare of SC/ST/OBC and women.

TOTAL: 30 PERIODS
COURSE OUTCOMES
Students will be able to:
- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

SUGGESTED READING
1. The Constitution of India, 1950 (Bare Act), Government Publication.

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>1.4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

AX4094 கல்விப் திட்டத்திலிருந்து L T P C 2000

UNIT I கல்விப் திட்டத்திலிருந்து 6
1. தமிழ் துவக்க நூல் தட்டொல்கொப்பியம் - புரேக்க, கோலம், பராமை
2. அகத்தூது (82)
 - புரேக்க திட்டத்திலிருந்து ஆவாமை
3. குறிஞ்சிப் பொட்டின் மலர்க்கொட்சி
4. புறாகத்தூது (95, 195)
 - புரேக்க திட்டத்திலிருந்து ஆவாமை

UNIT II அதிபர் குரு 6
1. அதிபர் முதல் முதல் தமிழ்த்திட்டம்
- அழைக்கும் விளக்கம், வர்ணப்படுத்தல், வருத்தம், கட்டுமனை

2. பொிய அமுருகாசம் - திண்மசம் நூற்றாண்டு - தமிழ் பொழுதுபோக்கம், என்று திகழ்க வலியுறுத்தும் (காப்பிய விளக்கும் நூற்றாண்டு)

UNIT III இரட்டடக் காப்பியங்கள் 6

1. கணக்கியின் புரட்சி - திண்மசம் நூற்றாண்டு காப்பிய

2. சுருக்கங்கள் இண் க்கிய வளியுறுத்தும் - திண்மசம் நூற்றாண்டு காப்பிய

UNIT IV அதைத் திறன் 6

1. திண்மசம் நூற்றாண்டு சில் - பருத்தி மூடுகோபாலம் காப்பிய, பக்க புரிமையும் பருத்தி காறைகள், அதிகாரி செழவுக்காக இணைக்கும் காறைகள், என்று பல்பலம்

2. முனைவை - அண்டமடிகள் புரட்சிக்கு விளை

3. திண்மசம் (617, 618) - திண்மசம் விளை

4. திறக்கப்படும் திண்மசம் வர்த்தமாண்டு

5. புறக்காண்டு - திண்மசம் வந்தடரங்கள்

6. ஆக்காரங்கள் (4) - நூறணி

(11) - கணக்கியங்களான (11) - பருத்தியை புரிமை

(50) - மொன்னாய் விளை

UNIT V நவீன தமிழ் இலக்கியம் 6

1. தமிழேம் குறிப்பிட்டு - குறிப்பிட்டு மேற்கும் பொறிய

- குறிப்பிட்டு தொடரும் தொகுதிய

- செழவு தொகுதிய

- புரிமை தொகுதிய

- தொகுதிய

2. பார்வை என்றான பச்சையைலிய குறிப்பிட்டு தொகுதிய

3. கன்னார என்றான குறிப்பிட்டு தொகுதிய

4. புரிமை என்றான தொகுதிய

5. அழைக்கும் திறன்.
OBJECTIVE

- Students will be introduced to the concepts and principles of IWRM, which is inclusive of the economics, public-private partnership, water & health, water & food security and legal & regulatory settings.

UNIT I CONTEXT FOR IWRM
Water as a global issue: key challenges – Definition of IWRM within the broader context of development – Key elements of IWRM - Principles – Paradigm shift in water management - Complexity of the IWRM process – UN World Water Assessment - SDGs.

UNIT II WATER ECONOMICS
Economic view of water issues: economic characteristics of water good and services – Non-market monetary valuation methods – Water economic instruments – Private sector involvement in water resources management: PPP objectives, PPP models, PPP processes, PPP experiences through case studies.

UNIT III LEGAL AND REGULATORY SETTINGS
Basic notion of law and governance: principles of international and national law in the area of water management - Understanding UN law on non-navigable uses of international water courses – International law for groundwater management – World Water Forums – Global Water Partnerships - Development of IWRM in line with legal and regulatory framework.
UNIT IV WATER AND HEALTH WITHIN THE IWRM CONTEXT 9
Links between water and health: options to include water management interventions for health – Health protection and promotion in the context of IWRM – Global burden of Diseases - Health impact assessment of water resources development projects – Case studies.

UNIT V AGRICULTURE IN THE CONCEPT OF IWRM 9
Water for food production: ‘blue’ versus ‘green’ water debate – Water foot print - Virtual water trade for achieving global water and food security — Irrigation efficiencies, irrigation methods - current water pricing policy– scope to relook pricing.

OUTCOMES
• On completion of the course, the student is expected to be able to

CO1 Describe the context and principles of IWRM; Compare the conventional and integrated ways of water management.
CO2 Select the best economic option among the alternatives; illustrate the pros and cons of PPP through case studies.
CO3 Apply law and governance in the context of IWRM.
CO4 Discuss the linkages between water-health; develop a HIA framework.
CO5 Analyse how the virtual water concept pave way to alternate policy options.

REFERENCES:

OCE432 WATER, SANITATION AND HEALTH L T P C 3 0 0 3
OBJECTIVES:
• Understand the accelerating health impacts due to the present managerial aspects and initiatives in water and sanitation and health sectors in the developing scenario

UNIT I FUNDAMENTALS WASH 9
Meanings and Definition: Safe Water- Health, Nexus: Water- Sanitation - Health and Hygiene – Equity issues-Water security - Food Security. Sanitation And Hygiene (WASH) and Integrated Water Resources Management (IWRM) - Need and Importance of WASH

UNIT II MANAGERIAL IMPLICATIONS AND IMPACT 9
Third World Scenario – Poor and Multidimensional Deprivation--Health Burden in Developing Scenario -Factors contribute to water, sanitation and hygiene related diseases-Social: Social

UNIT III CHALLENGES IN MANAGEMENT AND DEVELOPMENT

UNIT IV GOVERNANCE

Public health - Community Health Assessment and Improvement Planning (CHA/CHIP) - Infrastructure and Investments on Water, (WASH) - Cost Benefit Analysis – Institutional Intervention - Public Private Partnership - Policy Directives - Social Insurance - Political Will vs Participatory Governance -

UNIT V INITIATIVES

Management vs Development - Accelerating Development - Development Indicators - Inclusive Development - Global and Local - Millennium Development Goal (MDG) and Targets - Five Year Plans - Implementation - Capacity Building - Case studies on WASH.

TOTAL: 45 PERIODS

OUTCOMES:

CO1 Capture to fundamental concepts and terms which are to be applied and understood all through the study.

CO2 Comprehend the various factors affecting water sanitation and health through the lens of third world scenario.

CO3 Critically analyse and articulate the underlying common challenges in water, sanitation and health.

CO4 Acquire knowledge on the attributes of governance and its say on water sanitation and health.

CO5 Gain an overarching insight in to the aspects of sustainable resource management in the absence of a clear level playing field in the developmental aspects.

REFERENCES

OBJECTIVES:
- To impart knowledge on environmental, social and economic dimensions of sustainability and the principles evolved through landmark events so as to develop an action mindset for sustainable development.

UNIT I SUSTAINABILITY AND DEVELOPMENT CHALLENGES 9

UNIT II PRINCIPLES AND FRAMEWORK 9

UNIT III SUSTAINABLE DEVELOPMENT AND WELLBEING 9

UNIT IV SUSTAINABLE SOCIO-ECONOMIC SYSTEMS 10

UNIT V ASSESSING PROGRESS AND WAY FORWARD 8

TOTAL: 45 PERIODS
OUTCOMES:

- On completion of the course, the student is expected to be able to

 CO1 Explain and evaluate current challenges to sustainability, including modern world
 social, environmental, and economic structures and crises.

 CO2 Identify and critically analyze the social environmental, and economic dimensions of
 sustainability in terms of UN Sustainable development goals

 CO3 Develop a fair understanding of the social, economic and ecological linkage of
 Human well being, production and consumption

 CO4 Evaluate sustainability issues and solutions using a holistic approach that focuses on
 connections between complex human and natural systems.

 CO5 Integrate knowledge from multiple sources and perspectives to understand
 environmental limits governing human societies and economies and social justice
 dimensions of sustainability.

REFERENCES:

1. Tom Theis and Jonathan Tomkin, Sustainability: A Comprehensive Foundation, Rice
University, Houston, Texas, 2012
2. A guide to SDG interactions:from science to implementation, International Council for
Science, Paris,2017
Rouledge Taylor and Francis, 2017.
4. The New Global Frontier - Urbanization, Poverty and Environmentin the 21st Century -
George Martine,Gordon McGranahan,Mark Montgomery and Rogelio Fernández-Castilla,
IIED and UNFPA, Earthscan, UK, 2008

OCE434 ENVIRONMENTAL IMPACT ASSESSMENT

OBJECTIVES:
- To make the students to understand environmental clearance, its legal requirements and to
 provide knowledge on overall methodology of EIA, prediction tools and models,
 environmental management plan and case studies.

UNIT I INTRODUCTION
Historical development of Environmental Impact Assessment (EIA). Environmental Clearance- EIA
in project cycle. legal and regulatory aspects in India – types and limitations of EIA –EIA process-
issues –public hearing in EIA- EIA consultant accreditation.

UNIT II IMPACT INDENTIFICATION AND PREDICTION
in EIA. prediction tools for EIA – mathematical modeling for impact prediction – assessment of
UNIT III SOCIO-ECONOMIC IMPACT ASSESSMENT 8
Socio-economic impact assessment - relationship between social impacts and change in community and institutional arrangements. Factors and methodologies- individual and family level impacts. Communities in transition-rehabilitation

UNIT IV EIA DOCUMENTATION AND ENVIRONMENTAL MANAGEMENT PLAN 9
Environmental management plan - preparation, implementation and review – mitigation and rehabilitation plans – policy and guidelines for planning and monitoring programmes – post project audit – documentation of EIA findings – ethical and quality aspects of environmental impact assessment

UNIT V CASE STUDIES 9
Mining, power plants, cement plants, highways, petroleum refining industry, storage & handling of hazardous chemicals, common hazardous waste facilities, CETPs, CMSWMF, building and construction projects

TOTAL: 45 PERIODS

OUTCOMES:
• On completion of the course, the student is expected to be able to
 CO1 Understand need for environmental clearance, its legal procedure, need of EIA, its types, stakeholders and their roles
 CO2 Understand various impact identification methodologies, prediction techniques and model of impacts on various environments
 CO3 Understand relationship between social impacts and change in community due to development activities and rehabilitation methods
 CO4 Document the EIA findings and prepare environmental management and monitoring plan
 CO5 Identify, predict and assess impacts of similar projects based on case studies

REFERENCES:
1. EIA Notification 2006 including recent amendments, by Ministry of Environment, Forest and Climate Change, Government of India
2. Sectoral Guidelines under EIA Notification by Ministry of Environment, Forest and Climate Change, Government of India

OME431 VIBRATION AND NOISE CONTROL STRATEGIES L T P C
3 0 0 3

OBJECTIVES
• To appreciate the basic concepts of vibration in damped and undamped systems
To appreciate the basic concepts of noise, its effect on hearing and related terminology
To use the instruments for measuring and analyzing the vibration levels in a body
To use the instruments for measuring and analyzing the noise levels in a system
To learn the standards of vibration and noise levels and their control techniques

UNIT- I BASICS OF VIBRATION

UNIT- II BASICS OF NOISE
Introduction - Anatomy of human ear - Mechanism of hearing - Amplitude, frequency, wavelength and sound pressure level - Relationship between sound power, sound intensity and sound pressure level - Addition, subtraction and averaging decibel levels - sound spectra -Types of sound fields - Octave band analysis - Loudness.

UNIT- III INSTRUMENTATION FOR VIBRATION MEASUREMENT

UNIT- IV INSTRUMENTATION FOR NOISE MEASUREMENT AND ANALYSIS
Microphones - Weighting networks - Sound Level meters, its classes and calibration - Noise measurements using sound level meters - Data Loggers - Sound exposure meters - Recording of noise - Spectrum analyser - Intensity meters - Energy density sensors - Sound source localization.

UNIT- V METHODS OF VIBRATION CONTROL, SOURCES OF NOISE AND ITS CONTROL

TOTAL: 45 PERIODS

OUTCOMES:
On Completion of the course the student will be able to
1. apply the basic concepts of vibration in damped and undamped systems
2. apply the basic concepts of noise and to understand its effects on systems
3. select the instruments required for vibration measurement and its analysis
4. select the instruments required for noise measurement and its analysis.
5. recognize the noise sources and to control the vibration levels in a body and to control noise under different strategies.
REFERENCES:

OME432 ENERGY CONSERVATION AND MANAGEMENT IN DOMESTIC SECTORS

COURSE OBJECTIVES:
• To learn the present energy scenario and the need for energy conservation.
• To understand the different measures for energy conservation in utilities.
• Acquaint students with principle theories, materials, and construction techniques to create energy efficient buildings.
• To identify the energy demand and bridge the gap with suitable technology for sustainable habitat
• To get familiar with the energy technology, current status of research and find the ways to optimize a system as per the user requirement

UNIT I ENERGY SCENARIO

UNIT II HEATING, VENTILLATION & AIR CONDITIONING

UNIT III LIGHTING, COMPUTER, TV

UNIT IV ENERGY EFFICIENT BUILDINGS

UNIT V ENERGY STORAGE TECHNOLOGIES
Necessity & types of energy storage – Thermal energy storage – Battery energy storage, charging and discharging– Hydrogen energy storage & Super capacitors – energy density and safety issues – Applications.

TOTAL: 45 PERIODS
COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
- Understand technical aspects of energy conservation scenario.
- Energy audit in any type for domestic buildings and suggest the conservation measures.
- Perform building load estimates and design the energy efficient landscape system.
- Gain knowledge to utilize an appliance/device sustainably.
- Understand the status and current technological advancement in energy storage field.

REFERENCES:
6. (Could be downloaded from www.energymanagertraining.com)

OME433 ADDITIVE MANUFACTURING L T P C 3 0 0 3

UNIT I INTRODUCTION 9

UNIT II DESIGN FOR ADDITIVE MANUFACTURING 9

UNIT III VAT POLYMERIZATION 9

UNIT IV MATERIAL EXTRUSION AND SHEET LAMINATION 9

85

POWDER BASED PROCESS

UNIT V CASE STUDIES AND OPPORTUNITIES ADDITIVE MANUFACTURING PROCESSES

REFERENCES:
UNIT III ENERGY STORAGE
Batteries – types – lead acid batteries, nickel based batteries, and lithium based batteries, electrochemical reactions, thermodynamic voltage, specific energy, specific power, energy efficiency, Battery modeling and equivalent circuit, battery charging and types, battery cooling, Ultra-capacitors, Flywheel technology, Hydrogen fuel cell, Thermal Management of the PEM fuel cell

UNIT IV ELECTRIC DRIVES AND CONTROL
Types of electric motors – working principle of AC and DC motors, advantages and limitations, DC motor drives and control, Induction motor drives and control, PMSM and brushless DC motor - drives and control, AC and Switch reluctance motor drives and control – Drive system efficiency – Inverters – DC and AC motor speed controllers

UNIT V DESIGN OF ELECTRIC VEHICLES

TOTAL: 45 PERIODS

REFERENCES:

OME435 NEW PRODUCT DEVELOPMENT L T P C
3 0 0 3

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
- Applying the principles of generic development process; and understanding the organization structure for new product design and development.
- Identifying opportunity and planning for new product design and development.
- Conducting customer need analysis; and setting product specification for new product design and development.
- Generating, selecting, and testing the concepts for new product design and development.
- Applying the principles of Industrial design and prototype for new product design and development.

UNIT I INTRODUCTION TO PRODUCT DESIGN & DEVELOPMENT

UNIT II OPPORTUNITY IDENTIFICATION & PRODUCT PLANNING 9

UNIT III IDENTIFYING CUSTOMER NEEDS & PRODUCT SPECIFICATIONS 9

UNIT IV CONCEPT GENERATION, SELECTION & TESTING 9

UNITV INDUSTRIAL DESIGN & PROTOTYPING 9

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:

- Apply the principles of generic development process; and understand the organization structure for new product design and development.
- Identify opportunity and plan for new product design and development.
- Conduct customer need analysis; and set product specification for new product design and development.
- Generate, select, and test the concepts for new product design and development.
- Apply the principles of Industrial design and prototype for design and develop new products.

TEXT BOOK:

REFERENCES:
COURSE OBJECTIVES:

- To provide students with fundamental knowledge of the notion of corporate sustainability.
- To determine how organizations impacts on the environment and socio-technical systems, the relationship between social and environmental performance and competitiveness, the approaches and methods.

UNIT I MANAGEMENT OF SUSTAINABILITY

Management of sustainability - rationale and political trends: An introduction to sustainability management, International and European policies on sustainable development, theoretical pillars in sustainability management studies.

UNIT II CORPORATE SUSTAINABILITY AND RESPONSIBILITY

Corporate sustainability parameter, corporate sustainability institutional framework, integration of sustainability into strategic planning and regular business practices, fundamentals of stakeholder engagement.

UNIT III SUSTAINABILITY MANAGEMENT: STRATEGIES AND APPROACHES

Corporate sustainability management and competitiveness: Sustainability-oriented corporate strategies, markets and competitiveness, Green Management between theory and practice, Sustainable Consumption and Green Marketing strategies, Environmental regulation and strategic postures; Green Management approaches and tools; Green engineering: clean technologies and innovation processes; Sustainable Supply Chain Management and Procurement.

UNIT IV SUSTAINABILITY AND INNOVATION

Socio-technical transitions and sustainability, Sustainable entrepreneurship, Sustainable pioneers in green market niches, Smart communities and smart specializations.

UNIT V SUSTAINABLE MANAGEMENT OF RESOURCES, COMMODITIES AND COMMONS

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: An understanding of sustainability management as an approach to aid in evaluating and minimizing environmental impacts while achieving the expected social impact.

CO2: An understanding of corporate sustainability and responsible Business Practices

CO3: Knowledge and skills to understand, to measure and interpret sustainability performances.

CO4: Knowledge of innovative practices in sustainable business and community management

CO5: Deep understanding of sustainable management of resources and commodities

REFERENCES:

COURSE OBJECTIVES
- To familiarize students with the theory and practice of small business management.
- To learn the legal issues faced by small business and how they impact operations.

UNIT I INTRODUCTION TO SMALL BUSINESS

UNIT II SCREENING THE BUSINESS OPPORTUNITY AND FORMULATING THE BUSINESS PLAN
Concepts of opportunity recognition; Key factors leading to new venture failure; New venture screening process; Applying new venture screening process to the early stage small firm Role planning in small business – importance of strategy formulation – management skills for small business creation and development.

UNIT III BUILDING THE RIGHT TEAM AND MARKETING STRATEGY
Management and Leadership – employee assessments – Tuckman’s stages of group development - The entrepreneurial process model - Delegation and team building - Comparison of HR management in small and large firms - Importance of coaching and how to apply a coaching model.
Marketing within the small business - success strategies for small business marketing - customer delight and business generating systems, - market research, - assessing market performance-sales management and strategy - the marketing mix and marketing strategy.

UNIT IV FINANCING SMALL BUSINESS
Main sources of entrepreneurial capital; Nature of ‘bootstrap’ financing - Difference between cash and profit - Nature of bank financing and equity financing - Funding-equity gap for small firms. Importance of working capital cycle - Calculation of break-even point - Power of gross profit margin- Pricing for profit - Credit policy issues and relating these to cash flow management and profitability.

UNIT V VALUING SMALL BUSINESS AND CRISIS MANAGEMENT
Causes of small business failure - Danger signals of impending trouble - Characteristics of poorly performing firms - Turnaround strategies - Concept of business valuation - Different valuation measurements - Nature of goodwill and how to measure it - Advantages and disadvantages of buying an established small firm - Process of preparing a business for sale.

COURSE OUTCOMES
CO1. Familiarise the students with the concept of small business
CO2. In depth knowledge on small business opportunities and challenges
CO3. Ability to devise plans for small business by building the right skills and marketing strategies
CO4. Identify the funding source for small start ups
CO5. Business evaluation for buying and selling of small firms

REFERENCES
3. Journal articles on SME’s.

OBA433 INTELLECTUAL PROPERTY RIGHTS

COURSE OBJECTIVE
• To understand intellectual property rights and its valuation.

UNIT I INTRODUCTION
Intellectual property rights - Introduction, Basic concepts, Patents, Copyrights, Trademarks, Trade Secrets, Geographic Indicators; Nature of Intellectual Property, Technological Research, Inventions and Innovations, History - the way from WTO to WIPO, TRIPS.

UNIT II PROCESS
New Developments in IPR, Procedure for grant of Patents, TM, GIs, Patenting under Patent Cooperation Treaty, Administration of Patent system in India, Patenting in foreign countries.

UNIT III STATUTES

UNIT IV STRATEGIES IN INTELLECTUAL PROPERTY
Strategies for investing in R&D, Patent Information and databases, IPR strength in India, Traditional Knowledge, Case studies.

UNIT V MODELS
The technologies Know-how, concept of ownership, Significance of IP in Value Creation, IP Valuation and IP Valuation Models, Application of Real Option Model in Strategic Decision Making, Transfer and Licensing.

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1: Understanding of intellectual property and appreciation of the need to protect it
CO2: Awareness about the process of patenting
CO3: Understanding of the statutes related to IPR
CO4: Ability to apply strategies to protect intellectual property
CO5: Ability to apply models for making strategic decisions related to IPR
REFERENCES
2. Intellectual Property rights and copyrights, EssEss Publications.

OBA434 ETHICAL MANAGEMENT L T P C
3 0 0 3

COURSE OBJECTIVE
- To help students develop knowledge and competence in ethical management and decision making in organizational contexts.

UNIT I ETHICS AND SOCIETY
Ethical Management- Definition, Motivation, Advantages-Practical implications of ethical management. Managerial ethics, professional ethics, and social Responsibility-Role of culture and society’s expectations- Individual and organizational responsibility to society and the community.

UNIT II ETHICAL DECISION MAKING AND MANAGEMENT IN A CRISIS
Managing in an ethical crisis, the nature of a crisis, ethics in crisis management, discuss case studies, analyze real-world scenarios, develop ethical management skills, knowledge, and competencies. Proactive crisis management.

UNIT III STAKEHOLDERS IN ETHICAL MANAGEMENT
Stakeholders in ethical management, identifying internal and external stakeholders, nature of stakeholders, ethical management of various kinds of stakeholders: customers (product and service issues), employees (leadership, fairness, justice, diversity) suppliers, collaborators, business, community, the natural environment (the sustainability imperative, green management, Contemporary issues).

UNIT IV INDIVIDUAL VARIABLES IN ETHICAL MANAGEMENT
Understanding individual variables in ethics, managerial ethics, concepts in ethical psychology-ethical awareness, ethical courage, ethical judgment, ethical foundations, ethical emotions/intuitions/intensity. Utilization of these concepts and competencies for ethical decision-making and management.

UNIT V PRACTICAL FIELD-GUIDE, TECHNIQUES AND SKILLS
Ethical management in practice, development of techniques and skills, navigating challenges and dilemmas, resolving issues and preventing unethical management proactively. Role modelling and creating a culture of ethical management and human flourishing.

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1: Role modelling and influencing the ethical and cultural context.
CO2: Respond to ethical crises and proactively address potential crises situations.
CO3: Understand and implement stakeholder management decisions.
CO4: Develop the ability, knowledge, and skills for ethical management.
CO5: Develop practical skills to navigate, resolve and thrive in management situations

REFERENCES

ET4251 IoT FOR SMART SYSTEMS

3 0 0 3

COURSE OBJECTIVES:
- To study about Internet of Things technologies and its role in real time applications.
- To introduce the infrastructure required for IoT
- To familiarize the accessories and communication techniques for IoT.
- To provide insight about the embedded processor and sensors required for IoT
- To familiarize the different platforms and Attributes for IoT

UNIT I INTRODUCTION TO INTERNET OF THINGS
Overview, Hardware and software requirements for IOT, Sensor and actuators, Technology drivers, Business drivers, Typical IoT applications, Trends and implications.

UNIT II IOT ARCHITECTURE

UNIT III PROTOCOLS AND WIRELESS TECHNOLOGIES FOR IOT
PROTOCOLS:
NFC, SCADA and RFID, Zigbee MIPI, M-PHY, UniPro, SPMI, SPI, M-PCIe GSM, CDMA, LTE, GPRS, small cell.

Wireless technologies for IoT: WiFi (IEEE 802.11), Bluetooth/Bluetooth Smart, ZigBee/ZigBee Smart, UWB (IEEE 802.15.4), 6LoWPAN, Proprietary systems-Recent trends.

UNIT IV IOT PROCESSORS
Services/Attributes: Big-Data Analytics for IOT, Dependability, Interoperability, Security, Maintainability.
Embedded processors for IOT :Introduction to Python programming -Building IOT with RASPERRY PI and Arduino.

UNIT V CASE STUDIES
Industrial IoT, Home Automation, smart cities, Smart Grid, connected vehicles, electric vehicle charging, Environment, Agriculture, Productivity Applications, IOT Defense

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of this course, the students will have the ability to
CO1: Analyze the concepts of IoT and its present developments.
CO2: Compare and contrast different platforms and infrastructures available for IoT
CO3: Explain different protocols and communication technologies used in IoT
CO4: Analyze the big data analytic and programming of IoT
CO5: Implement IoT solutions for smart applications

REFERENCES:

ET4072 MACHINE LEARNING AND DEEP LEARNING L T P C 3 0 0 3

COURSE OBJECTIVES:
The course is aimed at
- Understanding about the learning problem and algorithms
- Providing insight about neural networks
- Introducing the machine learning fundamentals and significance
- Enabling the students to acquire knowledge about pattern recognition.
- Motivating the students to apply deep learning algorithms for solving real life problems.

UNIT I LEARNING PROBLEMS AND ALGORITHMS 9
Various paradigms of learning problems, Supervised, Semi-supervised and Unsupervised algorithms

UNIT II NEURAL NETWORKS 9
Differences between Biological and Artificial Neural Networks - Typical Architecture, Common Activation Functions, Multi-layer neural network, Linear Separability, Hebb Net, Perceptron,

UNIT III MACHINE LEARNING – FUNDAMENTALS & FEATURE SELECTIONS & CLASSIFICATIONS
Classifying Samples: The confusion matrix, Accuracy, Precision, Recall, F1- Score, the curse of dimensionality, training, testing, validation, cross validation, overfitting, under-fitting the data, early stopping, regularization, bias and variance. Feature Selection, normalization, dimensionality reduction, Classifiers: KNN, SVM, Decision trees, Naive Bayes, Binary classification, multi class classification, clustering.

UNIT IV DEEP LEARNING: CONVOLUTIONAL NEURAL NETWORKS
Feed forward networks, Activation functions, back propagation in CNN, optimizers, batch normalization, convolution layers, pooling layers, fully connected layers, dropout, Examples of CNNs.

UNIT V DEEP LEARNING: RNNS, AUTOENCODERS AND GANS
State, Structure of RNN Cell, LSTM and GRU, Time distributed layers, Generating Text, Autoencoders: Convolutional Autoencoders, Denoising autoencoders, Variational autoencoders, GANs: The discriminator, generator, DCGANs

TOTAL : 45 PERIODS

COURSE OUTCOMES (CO):
At the end of the course the student will be able to
CO1 : Illustrate the categorization of machine learning algorithms.
CO2: Compare and contrast the types of neural network architectures, activation functions
CO3: Acquaint with the pattern association using neural networks
CO4: Elaborate various terminologies related with pattern recognition and architectures of convolutional neural networks
CO5: Construct different feature selection and classification techniques and advanced neural network architectures such as RNN, Autoencoders, and GANs.

REFERENCES:
OBJECTIVES:
To impart knowledge on
- Different types of renewable energy technologies
- Standalone operation, grid connected operation of renewable energy systems

UNIT I INTRODUCTION
Classification of energy sources – Co2 Emission - Features of Renewable energy - Renewable energy scenario in India - Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment Per Capital Consumption - CO2 Emission - importance of renewable energy sources, Potentials – Achievements – Applications.

UNIT II SOLAR PHOTOVOLTAICS

UNIT III PHOTOVOLTAIC SYSTEM DESIGN
Block diagram of solar photo voltaic system : Line commutated converters (inversion mode) - Boost and buck-boost converters - selection of inverter, battery sizing, array sizing - PV systems classification- standalone PV systems - Grid tied and grid interactive inverters- grid connection issues.

UNIT IV WIND ENERGY CONVERSION SYSTEMS

UNIT V OTHER RENEWABLE ENERGY SOURCES
Qualitative study of different renewable energy resources: ocean, Biomass, Hydrogen energy systems, Fuel cells, Ocean Thermal Energy Conversion (OTEC), Tidal and wave energy, Geothermal Energy Resources.

TOTAL : 45 PERIODS

OUTCOMES:
After completion of this course, the student will be able to:
- CO1: Demonstrate the need for renewable energy sources.
- CO2: Develop a stand-alone photo voltaic system and implement a maximum power point tracking in the PV system.
- CO3: Design a stand-alone and Grid connected PV system.
- CO4: Analyze the different configurations of the wind energy conversion systems.
- CO5: Realize the basic of various available renewable energy sources
REFERENCES:

PS4093 SMART GRID L T P C 3 0 0 3

COURSE OBJECTIVES
- To Study about Smart Grid technologies, different smart meters and advanced metering infrastructure.
- To know about the function of smart grid.
- To familiarize the power quality management issues in Smart Grid.
- To familiarize the high performance computing for Smart Grid applications.
- To get familiarized with the communication networks for Smart Grid applications.

UNIT I INTRODUCTION TO SMART GRID
Evolution of Electric Grid, Concept, Definitions and Need for Smart Grid, Smart grid drivers, functions, opportunities, challenges and benefits, Difference between conventional & Smart Grid, Comparison of Micro grid and Smart grid, Present development & International policies in Smart Grid, Smart Grid Initiative for Power Distribution Utility in India – Case Study.

UNIT II SMART GRID TECHNOLOGIES
Technology Drivers, Smart Integration of energy resources, Smart substations, Substation Automation, Feeder Automation, Transmission systems: EMS, FACTS and HVDC, Wide area monitoring, Protection and control, Distribution systems: DMS, Volt/Var control, Fault Detection, Isolation and service restoration, Outage management, High-Efficiency Distribution Transformers, Phase Shifting Transformers, Plug in Hybrid Electric Vehicles (PHEV) – Grid to Vehicle and Vehicle to Grid charging concepts.

UNIT III SMART METERS AND ADVANCED METERING INFRASTRUCTURE
Introduction to Smart Meters, Advanced Metering infrastructure (AMI) drivers and benefits, AMI protocols, standards and initiatives, AMI needs in the smart grid, Phasor Measurement Unit(PMU) & their application for monitoring & protection. Demand side management and demand response programs, Demand pricing and Time of Use, Real Time Pricing, Peak Time Pricing.

UNIT IV POWER QUALITY MANAGEMENT IN SMART GRID
Unit V HIGH PERFORMANCE COMPUTING FOR SMART GRID APPLICATIONS
Architecture and Standards - Local Area Network (LAN), House Area Network (HAN), Wide Area Network (WAN), Broadband over Power line (BPL), PLC, Zigbee, GSM, IP based Protocols, Basics of Web Service and CLOUD Computing, Cyber Security for Smart Grid.

COURSE OUTCOME:
Students able to
CO1: Relate with the smart resources, smart meters and other smart devices.
CO2: Explain the function of Smart Grid.
CO3: Experiment the issues of Power Quality in Smart Grid.
CO4: Analyze the performance of Smart Grid.
CO5: Recommend suitable communication networks for smart grid applications

REFERENCES

DS4015 BIG DATA ANALYTICS

COURSE OBJECTIVES:
- To understand the basics of big data analytics
- To understand the search methods and visualization
- To learn mining data streams
- To learn frameworks
- To gain knowledge on R language

UNIT I INTRODUCTION TO BIG DATA

UNIT II SEARCH METHODS AND VISUALIZATION
UNIT III MINING DATA STREAMS 9

UNIT IV FRAMEWORKS 9
MapReduce – Hadoop, Hive, MapR – Sharding – NoSQL Databases - S3 - Hadoop Distributed File Systems – Case Study- Preventing Private Information Inference Attacks on Social Networks- Grand Challenge: Applying Regulatory Science and Big Data to Improve Medical Device Innovation

UNIT V R LANGUAGE 9

COURSE OUTCOMES:
CO1:understand the basics of big data analytics
CO2: Ability to use Hadoop, Map Reduce Framework.
CO3: Ability to identify the areas for applying big data analytics for increasing the business outcome.
CO4:gain knowledge on R language
CO5: Contextually integrate and correlate large amounts of information to gain faster insights.

TOTAL:45 PERIODS

REFERENCE:

NC4201 INTERNET OF THINGS AND CLOUD L T P C
3 0 0 3

COURSE OBJECTIVES:
- To understand Smart Objects and IoT Architectures
- To learn about various IOT-related protocols
- To build simple IoT Systems using Arduino and Raspberry Pi.
- To understand data analytics and cloud in the context of IoT
- To develop IoT infrastructure for popular applications

UNIT I FUNDAMENTALS OF IoT 9
Arduino, Raspberry Pi, Node MCU. A Case study with any one of the boards and data acquisition from sensors.

UNIT II PROTOCOLS FOR IoT

UNIT III CASE STUDIES/INDUSTRIAL APPLICATIONS
Case studies with architectural analysis: IoT applications – Smart City – Smart Water – Smart Agriculture – Smart Energy – Smart Healthcare – Smart Transportation – Smart Retail – Smart waste management.

UNIT IV CLOUD COMPUTING INTRODUCTION

UNIT V IoT AND CLOUD

TOTAL:45 PERIODS

COURSE OUTCOMES:
At the end of the course, the student will be able to:
CO1: Understand the various concept of the IoT and their technologies.
CO2: Develop IoT application using different hardware platforms
CO3: Implement the various IoT Protocols
CO4: Understand the basic principles of cloud computing.
CO5: Develop and deploy the IoT application into cloud environment

REFERENCES

MX4073 MEDICAL ROBOTICS

COURSE OBJECTIVES:
- To explain the basic concepts of robots and types of robots
- To discuss the designing procedure of manipulators, actuators and grippers
- To impart knowledge on various types of sensors and power sources
- To explore various applications of Robots in Medicine
To impart knowledge on wearable robots

UNIT I INTRODUCTION TO ROBOTICS 9
Introduction to Robotics, Overview of robot subsystems, Degrees of freedom, configurations and concept of workspace, Dynamic Stabilization

Sensors and Actuators
Sensors and controllers, Internal and external sensors, position, velocity and acceleration sensors, Proximity sensors, force sensors Pneumatic and hydraulic actuators, Stepper motor control circuits, End effectors, Various types of Grippers, PD and PID feedback actuator models

UNIT II MANIPULATORS & BASIC KINEMATICS 9
Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and pneumatic manipulator, Forward Kinematic Problems, Inverse Kinematic Problems, Solutions of Inverse Kinematic problems

Navigation and Treatment Planning
Variable speed arrangements, Path determination – Machinery vision, Ranging – Laser – Acoustic, Magnetic, fiber optic and Tactile sensor

UNIT III SURGICAL ROBOTS 9
Da Vinci Surgical System, Image guided robotic systems for focal ultrasound based surgical applications, System concept for robotic Tele-surgical system for off-pump, CABG surgery, Urologic applications, Cardiac surgery, Neuro-surgery, Pediatric and General Surgery, Gynecologic Surgery, General Surgery and Nanorobotics. Case Study

UNIT IV REHABILITATION AND ASSISTIVE ROBOTS 9
Pediatric Rehabilitation, Robotic Therapy for the Upper Extremity and Walking, Clinical-Based Gait Rehabilitation Robots, Motion Correlation and Tracking, Motion Prediction, Motion Replication. Portable Robot for Tele rehabilitation, Robotic Exoskeletons – Design considerations, Hybrid assistive limb. Case Study

UNIT V WEARABLE ROBOTS 9
Augmented Reality, Kinematics and Dynamics for Wearable Robots, Wearable Robot technology, Sensors, Actuators, Portable Energy Storage, Human–robot cognitive interaction (cHRI), Human–robot physical interaction (pHRI), Wearable Robotic Communication - case study

TOTAL:45 PERIODS

COURSE OUTCOMES:
CO1: Describe the configuration, applications of robots and the concept of grippers and actuators
CO2: Explain the functions of manipulators and basic kinematics
CO3: Describe the application of robots in various surgeries
CO4: Design and analyze the robotic systems for rehabilitation
CO5: Design the wearable robots

REFERENCES
VE4202 EMBEDDED AUTOMATION L T P C
1 3 0 0 3

COURSE OBJECTIVES:
- To learn about the process involved in the design and development of real-time embedded system
- To develop the embedded C programming skills on 8-bit microcontroller
- To study about the interfacing mechanism of peripheral devices with 8-bit microcontrollers
- To learn about the tools, firmware related to microcontroller programming
- To build a home automation system

UNIT - I INTRODUCTION TO EMBEDDED C PROGRAMMING 9
C Overview and Program Structure - C Types, Operators and Expressions - C Control Flow - C Functions and Program Structures - C Pointers And Arrays - FIFO and LIFO - C Structures - Development Tools

UNIT - II AVR MICROCONTROLLER 9
ATMEGA 16 Architecture - Nonvolatile and Data Memories - Port System - Peripheral Features: Time Base, Timing Subsystem, Pulse Width Modulation, USART, SPI, Two Wire Serial Interface, ADC, Interrupts - Physical and Operating Parameters

UNIT – III HARDWARE AND SOFTWARE INTERFACING WITH 8-BIT SERIES CONTROLLERS 9
Lights and Switches - Stack Operation - Implementing Combinational Logic - Expanding I/O - Interfacing Analog To Digital Convertors - Interfacing Digital To Analog Convertors - LED Displays: Seven Segment Displays, Dot Matrix Displays - LCD Displays - Driving Relays - Stepper Motor Interface - Serial EEPROM - Real Time Clock - Accessing Constants Table - Arbitrary Waveform Generation - Communication Links - System Development Tools
UNIT – IV VISION SYSTEM

UNIT – V HOME AUTOMATION
Home Automation - Requirements - Water Level Notifier - Electric Guard Dog - Tweeting Bird Feeder - Package Delivery Detector - Web Enabled Light Switch - Curtain Automation - Android Door Lock - Voice Controlled Home Automation - Smart Lighting - Smart Mailbox - Electricity Usage Monitor - Proximity Garage Door Opener - Vision Based Authentic Entry System

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On successful completion of this course, students will be able to
CO1: analyze the 8-bit series microcontroller architecture, features and pin details
CO2: write embedded C programs for embedded system application
CO3: design and develop real time systems using AVR microcontrollers
CO4: design and develop the systems based on vision mechanism
CO5: design and develop a real time home automation system

REFERENCES:

CX4016 ENVIRONMENTAL SUSTAINABILITY L T P C
UNIT I INTRODUCTION 3 0 0 3
Valuing the Environment: Concepts, Valuing the Environment: Methods, Property Rights, Externalities, and Environmental Problems

UNIT II CONCEPT OF SUSTAINABILITY 9
Sustainable Development: Defining the Concept, the Population Problem, Natural Resource Economics: An Overview, Energy, Water, Agriculture

UNIT III SIGNIFICANCE OF BIODIVERSITY 9
Biodiversity, Forest Habitat, Commercially Valuable Species, Stationary - Source Local Air Pollution, Acid Rain and Atmospheric Modification, Transportation
UNIT IV POLLUTION IMPACTS 9
Water Pollution, Solid Waste and Recycling, Toxic Substances and Hazardous Wastes, Global Warming.

UNIT V ENVIRONMENTAL ECONOMICS 9
Development, Poverty, and the Environment, Visions of the Future, Environmental economics and policy by Tom Tietenberg, Environmental Economics

REFERENCES

TOTAL: 45 PERIODS

UNIT I REINFORCEMENTS 9
Introduction – composites –classification and application; reinforcements- fibres and its properties; preparation of reinforced materials and quality evaluation; preforms for various composites

UNIT II MATRICES 9
Preparation, chemistry, properties and applications of thermoplastic and thermoset resins; mechanism of interaction of matrices and reinforcements; optimization of matrices

UNIT III COMPOSITE MANUFACTURING 9
Classification; methods of composites manufacturing for both thermoplastics and thermosets- Hand layup, Filament Winding, Resin transfer moulding, prepregs and autoclave moulding, pultrusion, vacuum impregnation methods, compression moulding; post processing of composites and composite design requirements

UNIT IV TESTING 9
Fibre volume and weight fraction, specific gravity of composites, tensile, flexural, impact, compression, inter laminar shear stress and fatigue properties of thermoset and thermoplastic composites.

UNIT V MECHANICS 9
Micro mechanics, macro mechanics of single layer, macro mechanics of laminate, classical lamination theory, failure theories and prediction of inter laminar stresses using at ware

TOTAL: 45 PERIODS
REFERENCES

NT4002 NANOCOMPOSITE MATERIALS L T P C
 3 0 0 3

UNIT I BASICS OF NANOCOMPOSITES 9

UNIT II METAL BASED NANOCOMPOSITES 9
Metal-metal nanocomposites, some simple preparation techniques and their properties. Metal-Oxide or Metal-Ceramic composites, Different aspects of their preparation techniques and their final properties and functionality. Fractal based glass-metal nanocomposites, its designing and fractal dimension analysis. Core-Shell structured nanocomposites

UNIT III POLYMER BASED NANOCOMPOSITES 9
Preparation and characterization of diblock Copolymer based nanocomposites; Polymer Carbon nanotubes based composites, their mechanical properties, and industrial possibilities.

UNIT IV NANOCOMPOSITE FROM BIOMATERIALS 9
Natural nanocomposite systems - spider silk, bones, shells; organic-inorganic nanocomposite formation through self-assembly. Biomimetic synthesis of nanocomposites material; Use of synthetic nanocomposites for bone, teeth replacement.

UNIT V NANOCOMPOSITE TECHNOLOGY 9

TOTAL : 45 PERIODS

REFERENCES:
5. The search for novel, superhard materials- Stan Vepřek (Review Article) JVST A, 1999

BY4016 IPR, BIOSAFETY AND ENTREPRENEURSHIP

UNIT I IPR

UNIT II AGREEMENTS, TREATIES AND PATENT FILING PROCEDURES

UNIT III BIOSAFETY

UNIT IV GENETICALLY MODIFIED ORGANISMS
Definition of GMOs & LMOs – Roles of Institutional Biosafety Committee – RCGM – GEAC etc. for GMO applications in food and agriculture – Environmental release of GMOs – Risk Analysis – Risk Assessment – Risk management and communication – Overview of National Regulations and relevant International Agreements including Cartegana Protocol.

UNIT V ENTREPRENEURSHIP DEVELOPMENT

TOTAL : 45 PERIODS
REFERENCES