ANNAPURNA UNIVERSITY, CHENNAI
NON- AUTONOMOUS COLLEGES AFFILIATED ANNA UNIVERSITY
M.E. COMPUTER INTEGRATED MANUFACTURING
REGULATIONS - 2021
CHOICE BASED CREDIT SYSTEM
I TO IV SEMESTERS CURRICULAR AND SYLLABI

1. PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

1. To train students to independently carry out research / investigations and development work to solve practical problems.
2. To train students to write and present a technical report/ documents.
3. To train students to demonstrate mastery in the area of computer integrated manufacturing at a higher level.
4. To train students to pursue professional career in manufacturing industries/educational institutions/research & development organisations as well as in allied fields and excel as an individual and also as a team player in multidisciplinary environments.
5. To train students to provide solutions to industrial/research problems considering economic, environmental and social contexts for sustainable development.
6. To train students to solve technical problems with creativity, innovation, confidence and self-responsibility.

2. PROGRAMME OUTCOMES (POs):

The programme outcomes of the Computer Integrated Manufacturing Postgraduate students are given below:

PO 1: Ability to independently carry out research / investigations and development work to solve practical problems.

PO 2: Ability to write and present a substantial technical report/ documents.

PO 3: Ability to demonstrate mastery in the area of computer integrated manufacturing at a higher level.

PO 4: Ability to pursue professional career in manufacturing industries/educational institutions/research & development organisations as well as in allied fields and excel as an individual and also as a team player in multidisciplinary environments.

PO 5: Ability to provide solutions to industrial/research problems considering economic, environmental and social contexts for sustainable development.

PO 6: Ability to solve technical problems with creativity, innovation, confidence and self-responsibility.
<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course name</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applied Probability and Statistics for Manufacturing Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer Applications in Design</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer Aided Manufacturing</td>
<td>1.6</td>
<td>2.2</td>
<td>2.6</td>
<td>2</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solid Freeform Manufacturing</td>
<td>2.8</td>
<td>2.8</td>
<td>2</td>
<td>3</td>
<td>2.5</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research Methodology and IPR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Industrial Robotics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YEAR 1</td>
<td>Semester 1</td>
<td>Audit Course – I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer Aided Design and Computer Aided Engineering Laboratory</td>
<td>2.4</td>
<td>2.25</td>
<td>2.25</td>
<td>1.66</td>
<td>2</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer Aided Manufacturing Laboratory</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Metrology</td>
<td>2.6</td>
<td>1.25</td>
<td>1.2</td>
<td>2</td>
<td>1.2</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manufacturing Planning and Control Systems</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.5</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Competitive Manufacturing Systems</td>
<td>2.6</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechatronics in Manufacturing Systems</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective - I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective - II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Audit Course – II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Metrology Laboratory</td>
<td>2.6</td>
<td>1.25</td>
<td>1.2</td>
<td>2</td>
<td>1.2</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automation and Robotics Laboratory</td>
<td>2.4</td>
<td>2.25</td>
<td>2.25</td>
<td>1.66</td>
<td>2</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective - III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective - IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective - V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open Elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>Semester 3</td>
<td>Project Work I</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Work II</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

4. PEO/PO MAPPING:

<table>
<thead>
<tr>
<th>PROGRAMME EDUCATIONAL OBJECTIVES</th>
<th>PROGRAMME OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>I</td>
<td>√</td>
</tr>
<tr>
<td>II</td>
<td>√</td>
</tr>
<tr>
<td>III</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>√</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>
ANNA UNIVERSITY, CHENNAI
NON- AUTONOMOUS COLLEGES AFFILIATED TO ANNA UNIVERSITY
M.E. COMPUTER INTEGRATED MANUFACTURING
REGULATIONS 2021
CHOICE BASED CREDIT SYSTEM
I TO IV SEMESTERS CURRICULA AND SYLLABUS

SEMESTER I

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA4155</td>
<td>Applied Probability and Statistics for Manufacturing Engineering</td>
<td>FC</td>
<td>3 1 0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>ED4153</td>
<td>Computer Applications in Design</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CM4151</td>
<td>Computer Aided Manufacturing</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CM4152</td>
<td>Solid Freeform Manufacturing</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>RM4151</td>
<td>Research Methodology and IPR</td>
<td>RMC</td>
<td>2 0 0</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>CM4101</td>
<td>Industrial Robotics</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>AC</td>
<td>Audit Course</td>
<td>AC</td>
<td>2 0 0</td>
<td>2</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>CM4111</td>
<td>Computer Aided Design and Computer Aided Engineering Laboratory</td>
<td>PCC</td>
<td>0 0 4</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>CM4161</td>
<td>Computer Aided Manufacturing Laboratory</td>
<td>PCC</td>
<td>0 0 4</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Audit Course is optional
SEMESTER II

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CM4201</td>
<td>Advanced Metrology</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CM4202</td>
<td>Manufacturing Planning and Control Systems</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>CM4203</td>
<td>Competitive Manufacturing Systems</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CM4204</td>
<td>Mechatronics in Manufacturing Systems</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Professional Elective - I</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Professional Elective - II</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Audit Course II*</td>
<td>AC</td>
<td>2 0 0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CM4211</td>
<td>Advanced Metrology Laboratory</td>
<td>PCC</td>
<td>0 0 4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>CM4212</td>
<td>Automation and Robotics Laboratory</td>
<td>PCC</td>
<td>0 0 4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>CM4213</td>
<td>Technical Seminar</td>
<td>EEC</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Audit Course is optional

SEMESTER III

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Professional Elective - III</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Professional Elective - IV</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Professional Elective - V</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Open Elective</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CM4311</td>
<td>Project Work I</td>
<td>EEC</td>
<td>0 0 12</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEMESTER IV

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CM4411</td>
<td>Project Work II</td>
<td>EEC</td>
<td>0 0 24</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE = 75
PROFESSIONAL ELECTIVES
SEMESTER II, ELECTIVES I & II

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CM4001</td>
<td>Advances In Manufacturing Technology</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CM4002</td>
<td>Computer Aided Process Planning</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CM4003</td>
<td>Design for Manufacturing</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CM4004</td>
<td>Design of Cellular Manufacturing System</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CM4005</td>
<td>Finite Element Analysis in Manufacturing Engineering</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CM4006</td>
<td>Advances in Welding and Casting Technology</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CM4007</td>
<td>Precision Engineering</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>MF4091</td>
<td>Manufacturing Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>CM4008</td>
<td>Applied Materials Engineering</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>CM4009</td>
<td>Micro and Nano Manufacturing</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>IL4093</td>
<td>Supply Chain Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>IL4075</td>
<td>Lean Manufacturing and Six Sigma</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>IL4071</td>
<td>Advanced Optimization Techniques</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>CM4010</td>
<td>Machine Learning</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER III
ELECTIVE III, IV & V

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CM4072</td>
<td>Electronics Manufacturing Technology</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CM4011</td>
<td>Environment Conscious Manufacturing</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CM4012</td>
<td>Evolutionary Computation</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CM4013</td>
<td>Intelligent Product Design and Manufacturing</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CM4014</td>
<td>Intelligent Manufacturing Systems</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CM4015</td>
<td>Micro Electro Mechanical Systems</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>PD4391</td>
<td>Product Lifecycle Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CM4071</td>
<td>Manufacturing System Simulation</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SL. NO</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>PERIODS PER WEEK</td>
<td>CREDITS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>--</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>AX4091</td>
<td>English for Research Paper Writing</td>
<td>L 2 T 0 P 0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>AX4092</td>
<td>Disaster Management</td>
<td>L 2 T 0 P 0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>AX4093</td>
<td>Constitution of India</td>
<td>L 2 T 0 P 0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>AX4094</td>
<td>இலக்கியம்</td>
<td>L 2 T 0 P 0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AUDIT COURSES (AC)

Registration for any of these courses is optional to students
<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>PERIODS PER WEEK</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OCE431</td>
<td>Integrated Water Resources Mgmt</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OCE432</td>
<td>Water, Sanitation and Health</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OCE433</td>
<td>Principles of Sustainable Dev</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>OCE434</td>
<td>Environmental Impact Assessment</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>OIC431</td>
<td>Blockchain Technologies</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>OIC432</td>
<td>Deep Learning</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OBA431</td>
<td>Sustainable Management</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>OBA432</td>
<td>Micro and Small Business Mgmt</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>OBA433</td>
<td>Intellectual Property Rights</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>OBA434</td>
<td>Ethical Management</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>ET4251</td>
<td>IoT for Smart Systems</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>ET4072</td>
<td>Machine Learning and DL</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>PX4012</td>
<td>Renewable Energy Technology</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>PS4093</td>
<td>Smart Grid</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>CP4391</td>
<td>Security Practices</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>MP4251</td>
<td>Cloud Computing Technologies</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>IF4072</td>
<td>Design Thinking</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>MU4153</td>
<td>Principles of Multimedia</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>19.</td>
<td>DS4015</td>
<td>Big Data Analytics</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>NC4201</td>
<td>Internet of Things and Cloud</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>21.</td>
<td>MX4073</td>
<td>Medical Robotics</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>22.</td>
<td>VE4202</td>
<td>Embedded Automation</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>23.</td>
<td>CX4016</td>
<td>Environmental Sustainability</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>24.</td>
<td>TX4092</td>
<td>Textile Reinforced Composites</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>25.</td>
<td>NT4002</td>
<td>Nanocomposite Materials</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>26.</td>
<td>BY4016</td>
<td>IPR, Biosafety and Entrepreneur</td>
<td>3 0 0</td>
<td>3</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
1. To understand the basics of random variables with emphasis on the standard discrete and continuous distributions.
2. To understand the basic probability concepts with respect to two dimensional random variables along with the relationship between the random variables.
3. To apply the small and large sample tests through test of hypothesis.
4. To understand the basic concepts of sampling distributions and statistical properties of point estimators.
5. To understand the concept of analysis of variance and use it to investigate factorial dependence.

UNIT I PROBABILITY AND RANDOM VARIABLES 12

UNIT II TWO DIMENSIONAL RANDOM VARIABLES 12
Joint distributions – Marginal and conditional distributions – Functions of two dimensional random variables – Regression curve – Correlation.

UNIT III TESTING OF HYPOTHESIS 12
Sampling distributions - Type I and Type II errors - Tests based on Normal, t, Chi square and F distributions for testing of mean, variance and proportions – Tests for independence of attributes and goodness of fit.

UNIT IV ESTIMATION THEORY 12
Interval estimation for population mean - Standard deviation - Difference in means, proportion ratio of standard deviations and variances.

UNIT V DESIGN OF EXPERIMENTS 12
 Completely randomized design – Randomized block design – Latin square design – 2² Factorial design.

TOTAL: 60 PERIODS

COURSE OUTCOMES:
At the end of the course, students will be able to
1. Analyze the performance in terms of probabilities and distributions achieved by the determined solutions.
2. Be familiar with some of the commonly encountered two dimensional random variables and be equipped for a possible extension to multivariate analysis.
3. Apply the basic principles underlying statistical inference(hypothesis testing).
4. Demonstrate knowledge of applicable large sample theory of estimators and tests.
5. Obtain a better understanding of the importance of the methods in modern industrial processes.

REFERENCES:
COURSE OBJECTIVES:

- To understand fundamental concepts of computer graphics and its tools in a generic framework.
- To impart the parametric fundamentals to create and manipulate geometric models using curves, surfaces and solids.
- To impart the parametric fundamentals to create and manipulate geometric models using NURBS and solids.
- To provide clear understanding of CAD systems for 3D modeling and viewing.
- To create strong skills of assembly modeling and prepare the student to be an effective user of a standards in CAD system.

UNIT – I INTRODUCTION TO COMPUTER GRAPHICS FUNDAMENTALS
Geometric Transformations: Coordinate Transformations, Windowing and Clipping, 2D Geometric transformations-Translation, Scaling, Shearing, Rotation and Reflection, Composite transformation, 3D transformations.

UNIT – II CURVES AND SURFACES MODELING
Introduction to curves - Analytical curves: line, circle and conics -- synthetic curves: Hermite cubic spline- Bezier curve and B-Spline curve – curve manipulations.

UNIT – III NURBS AND SOLID MODELING

UNIT – IV VISUAL REALISM
Animation - Conventional, Computer animation, Engineering animation - types and techniques.

UNIT – V ASSEMBLY OF PARTS AND PRODUCT LIFE CYCLE MANAGEMENT

TOTAL: 45 PERIODS
COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
1. Solve 2D and 3D transformations for the basic entities like line and circle.
2. Formulate the basic mathematics fundamental to CAD system.
3. Use the different geometric modeling techniques like feature based modeling, surface modeling and solid modeling.
4. Create geometric models through animation and transform them into real world systems

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>(10/5)=2</td>
</tr>
</tbody>
</table>

CM4151 COMPUTER AIDED MANUFACTURING

COURSE OBJECTIVES:
- To introduce the evolution of CAD, CAM, CIM, engineering product specification and interpreting geometric specifications.
- To train the candidates on the integration of Computer Aided Design and Computer Aided Manufacturing.
- To impart knowledge on manual part program and generation of CNC part program using Computer Aided Manufacturing packages.
- To introduce with the implementation of CAD and CAM in manufacturing process.
- To introduce the importance of Internet of Things in Computer Aided Manufacturing.
UNIT I INTRODUCTION TO CAM 9
Introduction CAD, CAM, CAE, CIM, system configuration for CAM including hardware and software, evolution of product realization, historical development, engineering product specification. Geometric Tolerancing - ASME standard, interpreting geometric specifications, multiple part features and datum.

UNIT II CAD AND CAM INTEGRATION 9

UNIT III PROGRAMMING OF CNC MACHINES 9
Structure of CNC program, Coordinate system, G & M codes, cutter radius compensation, tool nose radius compensation, tool wear compensation, canned cycles, mirroring features, Manual part programming for CNC turning, machining center, wire electric discharge machining, abrasive water jet cutting machine, bulk and sheet metal forming, generation of CNC program using CAM softwares.

UNIT IV CAD AND CAM FOR MANUFACTURING PROCESSES 9
Classification of Manufacturing process, construction and operations, Integration of CAD and CAM in CNC turning center, machining center, electric discharge machining, wire electric discharge machining, abrasive water jet cutting machine, bulk forming, sheet metal forming.

UNIT V IOT IN CAM 9
Introduction, overview of IOT enabled manufacturing system, Real-time and multi-source manufacturing information sensing system, IOT enabled smart assembly station, cloud computing based manufacturing resources configuration method, Real-time key production performances analysis method, Real-time information driven production scheduling system.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of this course, the students shall be able to:
CO1: Recognize the importance of CAD, CAM, CIM, Engineering product specification and interpreting geometric specifications.
CO2: Improve knowledge on the integration of CAD and CAM.
CO3: Exhibit competency in manual part program and generation of CNC part program using CAM packages.
CO4: Describe the implementation of CAD and CAM in manufacturing processes.
CO5: Explain applications of IOT in computer aided manufacturing.

REFERENCES:
<table>
<thead>
<tr>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>(8/5)=1.6</td>
<td>(11/5)=2.2</td>
<td>(13/5)=2.6</td>
<td>(10/5)=2</td>
<td>(12/5)=2.4</td>
<td>(13/5)=2.6</td>
</tr>
</tbody>
</table>

CM4152 SOLID FREEFORM MANUFACTURING

L T P C

3 0 0 3

COURSE OBJECTIVES:
- To acquaint the students with evolution of Solid Freeform Manufacturing (SFM) / Additive Manufacturing (AM), proliferation into various fields and its effects on supply chain.
- To gain knowledge on Design for Additive Manufacturing (DFAM) and its importance in quality improvement of fabricated parts.
- To acquaint with polymerization and sheet lamination processes and their applications.
- To acquaint with material extrusion and powder bed fusion processes.
- To gain knowledge on jetting and direct energy deposition processes and their applications.

UNIT I

INTRODUCTION

9

UNIT II

DESIGN FOR ADDITIVE MANUFACTURING

9

UNIT III

VAT POLYMERIZATION AND SHEET LAMINATION PROCESSES

9
UNIT IV MATERIAL EXTRUSION AND POWDER BED FUSION PROCESSES

UNIT V JETTING AND DIRECT ENERGY DEPOSITION PROCESSES

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of this course, the students shall be able to:
CO1: Relate the importance in the evolution of SFM/AM, proliferation into the various fields and its effects on supply chain.
CO2: Analyze the design for AM and its importance in the quality of fabricated parts.
CO3: Build knowledge on principles and applications of polymerization and sheet lamination processes with case studies.
CO4: Explain the principles of material extrusion and powder bed fusion processes and design guidelines.
CO5: Elaborate jetting and direct energy deposition processes and their applications.

REFERENCES:

<table>
<thead>
<tr>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>(14/5)=2.8</td>
<td>(14/5)=2.8</td>
<td>(10/5)=2</td>
<td>(15/5)=3</td>
<td>(10/4)=2.5</td>
<td>(7/5)=1.4</td>
</tr>
</tbody>
</table>
RM4151 RESEARCH METHODOLOGY AND IPR L T P C 2 0 0 2

UNIT I RESEARCH DESIGN 6
Overview of research process and design, Use of Secondary and exploratory data to answer the research question, Qualitative research, Observation studies, Experiments and Surveys.

UNIT II DATA COLLECTION AND SOURCES 6
Measurements, Measurement Scales, Questionnaires and Instruments, Sampling and methods. Data - Preparing, Exploring, examining and displaying.

UNIT III DATA ANALYSIS AND REPORTING 6
Overview of Multivariate analysis, Hypotheses testing and Measures of Association. Presenting Insights and findings using written reports and oral presentation.

UNIT IV INTELLECTUAL PROPERTY RIGHTS 6

UNIT V PATENTS 6

REFERENCES

TOTAL : 30 PERIODS

CM4101 INDUSTRIAL ROBOTICS L T P C 3 0 0 3

COURSE OBJECTIVES:
• To teach students the basics of robotics, construction features, sensor applications, robot cell design, robot programming and application of artificial intelligence and expert systems in robotics.

UNIT I INTRODUCTION AND ROBOT KINEMATICS 10

UNIT II ROBOT DRIVES AND CONTROL 9
UNIT III ROBOT SENSORS

UNIT IV ROBOT CELL DESIGN AND APPLICATION

UNIT V ROBOT PROGRAMMING, ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS

TOTAL: 45 PERIODS

COURSE OUTCOMES:
The student will be able to design robots and robotic work cells and write program for controlling the robots. The student will be able to apply artificial intelligence and expert systems in robotics.

REFERENCES
COURSE OBJECTIVES:
- To familiarize the students with CAD and CAE modules.
- To create basic sketches and to design part modelling for the given mechanical components.
- To generate assemblies from the part model with respect to the constraints and to various data exchange formats.
- To familiarize the students with reverse engineering as a tool to create 3D models for 3D printing.
- To gain practical knowledge in CAE module through Finite Element Analysis.

LIST OF EXPERIMENTS:
CAD MODULE
1. Sketching and Part modelling (Solid modelling, Surface modelling, Feature manipulation) of mechanical components using CAD software package.
2. Assembly (Constraints, Exploded Views, Interference check) and Drafting (Layouts, Geometric Dimensions & Tolerance Standards, Sectional Views, & Detailing) of mechanical components using CAD software package.
3. Working with CAD Data Exchange formats: IGES, PDES, PARASOLID, DXF and STL
4. Study and exercise on freeform modelling.
5. Reverse engineering the given product/component and convert the data into 3D model.

TOTAL: 60 PERIODS

COURSE OUTCOMES:
At the end of this course, the students shall be able to:
CO1: Apply knowledge on CAD and CAE modules.
CO2: Build and design interactive CAD models.
CO3: Interpret the given mechanical components and to design for 3D printing.
CO4: Demonstrate the use of FEA package.
CO5: Make use of assemble parts, evaluate the information and resources using FEA.

LIST OF ITEMS (HARDWARE/SOFTWARE) REQUIRED:
2. CAD software Package
3. Open source CAD software for Additive Manufacturing
4. CAE Software package

<table>
<thead>
<tr>
<th></th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>(12/5)=2.4</td>
</tr>
</tbody>
</table>

16
COURSE OBJECTIVES:
- To familiarize students with manual CNC part programming for milling and turning machines.
- To generate part programs using CAM packages for milling and turning machines.
- To train students with dimensional and geometric measurements for machined features using video measuring system and coordinate measuring machine.
- To get hands on knowledge on programming logic controller - ladder programming and robot programming.
- To introduce the concept of printing parts using additive manufacturing and to introduce Relational database management system in Material requirements planning.

LIST OF EXPERIMENTS
1. Programming and simulation for various operations using canned cycle for CNC turning Centre.
2. Programming and simulation for machining of internal surfaces in CNC turning Centre
3. Programming and simulation for profile milling operations
4. Programming and simulation for circular and rectangular pocket milling
5. Programming and simulation using canned cycle for CNC Milling such as peck drilling and tapping cycle
6. CNC code generation using CAM software packages – Milling
7. CNC code generation using CAM software packages – Turning
8. Dimensional and geometric measurement of machined features using VMS and CMM
9. PLC ladder logic programming.
10. Robot programming for Material handling applications.
11. Study on RDBMS and its application in problems like inventory control MRP.
12. Design and fabrication of a component using extrusion based additive manufacturing.

TOTAL: 60 PERIODS

COURSE OUTCOMES:
At the end of this course, the students shall be able to:
CO1: Explain the manual CNC part programming for milling and turning machines.
CO2: Create part programs using CAM packages for milling and turning Machines.
CO3: Appraise dimensional and geometric measurements of machined features using video measuring system and coordinate measuring machine.
CO4: Construct PLC ladder programming and robot programming.
CO5: Relate the concept of printing parts using additive manufacturing and appreciate the application RDBMS in MRP.

LIST OF EQUIPMENTS REQUIRED:
1. Computers: 30
2. CAM Software for 3 axis machining or more
3. CNC Production type turning or Machining center
4. Video Measuring System
5. Coordinate Measuring Machine
6. Surface Roughness tester
7. 5-axis Robot
8. Programmable Logic Controller with ladder logic programming software
9. RDMBS Package with relevant modules like Inventory Control and MRP
10. 3D Printer

<table>
<thead>
<tr>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>(5/5)=1</td>
<td>(15/5)=3</td>
<td>(10/5)=2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To teach the concepts of metrology.
- To train the students in various aspects of measurement of surface roughness.
- To train the students in the area of interferometry and form measurements.
- To train the students with understanding the fundamental principles of computer aided inspection and laser metrology.
- To introduce the basic principles of image processing and machine vision in context to metrological applications.

UNIT I CONCEPTS OF METROLOGY

UNIT II MEASUREMENT OF SURFACE ROUGHNESS

UNIT III INTERFEROMETRY

UNIT IV COMPUTER AIDED INSPECTION AND LASER METROLOGY

UNIT V MACHINE VISION AND IMAGE PROCESSING

COURSE OUTCOMES:

At the end of this course, the students shall be able to:

CO1: Illustrate the fundamental concepts of measurement, standards, calibration, maintenance of laboratory facilities and handling of metrological equipments.

CO2: Explain the roughness and its applications in manufacturing research, learn the important concepts, principles and applications related to interferometry.

CO3: Justify the use of interferometry related sophisticated measurement and inspection facilities.

CO4: Relate the concepts of Computer aided inspection technologies for industrial Situations, design and develop new inspection techniques.

CO5: Discuss the importance of image processing techniques and the possibilities of developing new heuristics for image processing related to metrology.
<table>
<thead>
<tr>
<th></th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>(11/5)=2.2</td>
</tr>
</tbody>
</table>

REFERENCES:

CM4202 MANUFACTURING PLANNING AND CONTROL SYSTEMS

<table>
<thead>
<tr>
<th></th>
<th>LT</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIVES:
- To introduce students with Current Trends in Manufacturing Planning and Control System and Forecasting activities.
- To impart basic concepts of Aggregate Production Planning.
- To elaborate on Inventory management and Resource Requirements.
- To be familiarized with the functions of Shop Floor Control and associated systems.

UNIT I MANUFACTURING PLANNING AND CONTROL AND FORECASTING

Introduction: Production Planning and Control: Limitations with Traditional Production Planning and Control - Need and Evolution of Manufacturing Planning and Control (MPC) System - Basic framework - Demand Management in MPC System - Forecasting: Time Horizon, Design of Forecasting Systems - Developing the Forecast Logic – Qualitative methods: Delphi Technique, Market Research, Quantitative methods - Time Series - Moving Averages, Exponential Smoothing - Regression - Measure of Forecast Accuracy - Numerical Problems

UNIT II AGGREGATE PRODUCTION PLANNING

UNIT III RESOURCE PLANNING

UNIT IV SHOP FLOOR CONTROL
Shop Floor Control - Functions - Shop Floor Control System - Order Release - Order Scheduling - Order Progress - Operation Scheduling - Priority Rules for Job Sequencing - The Factory Data Collection System - Online and Offline Data Collection Systems - Case studies.

UNIT V PROCESS MONITORING AND CONTROL

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of this course, the students shall be able to:
CO1: Evaluate the various activities of Manufacturing Planning and Control System and Forecasting activities.
CO2: Outline the concepts of Aggregate Production Planning.
CO3: Organize the Inventory management and Resource Requirements.
CO4: Develop the functions of Shop Floor Control and associated systems.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Avg (15/5)=3 (9/3)=3 (15/5)=3 (10/4)=2.5 (12/5)=2.4

REFERENCES
CM4203 COMPETITIVE MANUFACTURING SYSTEMS L T P C
3 0 0 0

COURSE OBJECTIVES:
- To expose students on the areas of competitive environment, the best manufacturing practices in the world.
- To impart the concepts of group technology and flexible manufacturing systems.
- To gain knowledge in simulation techniques of flexible manufacturing systems.
- To outline computer software and database of flexible manufacturing systems.
- To familiarize the principles of just in time manufacturing systems.

UNIT I MANUFACTURING IN A COMPETITIVE ENVIRONMENT 9

UNIT II GROUP TECHNOLOGY & FLEXIBLE MANUFACTURING SYSTEMS 9

UNIT III SIMULATION OF FLEXIBLE MANUFACTURING SYSTEMS 9

UNIT IV COMPUTER SOFTWARE AND DATABASE OF FLEXIBLE MANUFACTURING SYSTEMS 9

UNIT V JUST IN TIME MANUFACTURING SYSTEMS 9

COURSE OUTCOMES:
At the end of this course, the students shall be able to:
- CO1: Describe the areas of Competitive Environment and the best Manufacturing Practices in the World.
- CO5: Explain Just in Time Manufacturing Systems.

TOTAL: 45 PERIODS
REFERENCES:
5. Taiichi Ohno, Toyota, " Production System Beyond Large-Scale production Productivity Press (India) Pvt.Ltd. 1992

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Avg (13/5)=2.6 (15/5)=3 (15/5)=3

CM4204
MECHATRONICS IN MANUFACTURING SYSTEMS
L T P C
3 0 0 3

COURSE OBJECTIVES:
• To provide overview of various electrical and electronic control techniques used in modern manufacturing systems.
• To know the basic working principle of sensors and transducers of use for manufacturing systems
• To know the basic working principle of drives and actuators of use for manufacturing systems
• To know the features, modules and interfaces of microcontrollers and microprocessors
• To gain the knowledge of integration of mechatronic systems in automation of modern manufacturing systems

UNIT I
INTRODUCTION TO MECHATRONICS IN MODERN MANUFACTURING
UNIT II SENSORS AND TRANSDUCERS

UNIT III DRIVES AND ACTUATORS

UNIT III MICROPROCESSORS AND MICROCONTROLLERS

UNIT V INTEGRATION OF MANUFACTURING SYSTEMS

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Students will be able to

CO1 : Imply the knowledge to study the mechatronics in modern manufacturing systems.
CO2 : Identify and select the sensors and transducers based on the application.
CO3 : Identify the principles and functions of drives and actuators.
CO4 : Get knowledge of microprocessor and microcontrollers and its functions.
CO5 : Apply the knowledge about integration of mechatronic systems in manufacturing.

REFERENCES:
1. Beno Benhabib, Manufacturing, design, production, automation and integration, Marcel Dekker, 2003

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>15/5=3</td>
<td>(15/5)=3</td>
<td>(15/5)=3</td>
<td></td>
<td></td>
<td>(6/2)=3</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To introduce the practical applications of various measurement concepts.
- To gain knowledge on the design perspective of advanced measuring machines.
- To make the students understand the fundamental principles of measuring techniques by practicing exercises on various measuring instruments.
- To perform metallographic study of the given samples and heat treatment study of steel.
- To familiarize the importance of measurement and inspection in manufacturing industries.

LIST OF EXPERIMENTS:

1. Calibration of comparators using slip gauges
2. Assessment of gauge surfaces using optical flats
3. Measurement of Surface roughness of specimens using contact method
4. Non-contact surface roughness measurement of specimens
5. Counting of fringes produced by Michelson’s interferometer
6. Measurement of dimensional features using machine vision system
7. Study exercises on clean room behaviour
8. Roundness and cylindricity measurement of components
9. Study on flatness measurement of surface using autocollimator
10. Measurement of dimensional features of a specimen - Contact type using CMM.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of this course, the students shall be able to:

CO1: Demonstrate sophisticated measuring machines with ease.
CO2: Improve the confidence in developing of new concepts and new measuring machines.
CO3: Develop various technical terms and perform measurement tasks accurately.
CO4: Identify the right instrument and method of measurement for a particular Application.
CO5: Apply the fundamental concepts of measurements, standards, calibrations, maintenance of laboratory facilities and handling of equipment's.

<table>
<thead>
<tr>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Avg (13/5)=2.6 (5/4)=1.25 (6/5)=1.2 (10/5)=2 (6/5)=1.2 (11/5)=2.2
COURSE OBJECTIVE:
- To design and test hydraulic, Pneumatic circuits using any compatible software.
- To design and simulate fluid power actuator circuit using software tools.
- To simulate hydraulic and Pneumatic circuits using automation studio/any compatible software.
- To make different hydraulic and pneumatic circuits using automation studio/any compatible software.
- To make different types of robots and demonstrate them to identify different robot and for different applications.
- To write robot programming for simple operations.

List of Experiments:
1. System control using PID controllers.
2. Control of actuator using Hydrosim/Phenumsim/ Equivalent software.
3. Design and simulation of two pneumatic circuits using compatible software.
5. Design and simulation of two PLC based circuits (Ladder Diagram) using compatible software.
6. Two PLC based circuit and execute on experiment kit.
7. Robot programming and simulation for shape identification.
8. Robot programming and simulation for any industrial process (Packing, Assembly).
9. Robot programming and simulation for colour identification.
10. Robot programming and simulation for pick and place robot.

Course Outcome:
CO 1: Design and simulate Pneumatic, Electro –Pneumatic and PLC based circuits on compatible software.
CO 2: Model the PLC based circuits on experimental kit.
CO 3: Demonstrate PLC Ladder and robot programming.
CO 4: Evaluate any robotic simulation software to make different types of robot and calculate work volume for different robot.
CO 5: Make use of different types of robots and demonstrate them to identify different parts and components.

List of equipment required:
2. Hydraulic trainer kit with accessories
3. Pneumatic trainer kit accessories
4. PLC interface card
5. Hydraulic/ Pneumatic circuit simulation compatible software
6. Robot operating system
7. Pick and Place robot.

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>(12/5)=2.4</td>
<td>(9/4)=2.25</td>
<td>(9/4)=2.25</td>
<td>(5/3)=1.66</td>
<td>(6/3)=2</td>
<td>(7/4)=1.75</td>
</tr>
</tbody>
</table>
CM4311 PROJECT WORK I L T P C 0 0 12 6

COURSE OBJECTIVES:
- To identify industrial problem and solve them.
- To develop good written and oral communication skills and leadership skills.
- To train the students in preparing the project reports and to face reviews.
- To develop the ability to solve a specific Industrial problem.
- To accelerate the learning process.

EVALUATION
- Project work evaluation is based on Regulations of Credit System University Departments - Postgraduate programmes of Anna University

COURSE OUTCOMES:
At the end of this course, the students shall be able to:
CO1: Apply the knowledge gained from theoretical and practical courses in solving problems.
CO2: Recognize the importance of literature review.
CO3: Realize the importance of solving problems using literature review.
CO4: Recognize the modern concepts in technology and design.
CO5: Develop skills to read, write and comprehend.

<table>
<thead>
<tr>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>(9/3)=3</td>
<td>(3/1)=3</td>
<td>(3/1)=3</td>
<td>(3/1)=3</td>
<td>(12/4)=3</td>
<td>(6/2)=3</td>
</tr>
</tbody>
</table>

CM4411 PROJECT WORK II L T P C 0 0 24 12

COURSE OBJECTIVES:
- To produce factual results of their applied research idea in the Manufacturing Engineering.
- To improve research and development activities.
- To develop technical competency to provide solutions for problems.
- To accelerate the learning process.
- To develop good communication skills.

EVALUATION
- Project work evaluation is based on Regulations of Credit System University Departments - Postgraduate programmes of Anna University

COURSE OUTCOMES:
At the end of this course, the students shall be able to:
CO1: Apply the knowledge gained from theoretical and practical courses in solving problems.
CO2: Build strong working knowledge of ethics and professional responsibility.
CO3: Demonstrate effective organizational leadership and change skills.
CO4: Evaluate the importance of solving problems using literature review.
CO5: Develop skills to read, write and comprehend.
CM4001 ADVANCES IN MANUFACTURING TECHNOLOGY L T P C 3 0 0 3

COURSE OBJECTIVES:

- To interpret and compare different non-traditional machining processes.
- To recognize different precision machining processes.
- To interpret modern metal forming processes.
- To differentiate between micromachining and microfabrication.
- To formulate smart manufacturing systems.

UNIT I UNCONVENTIONAL MACHINING 9

UNIT II PRECISION MACHINING 9

UNIT III MODERN METAL FORMING 9

UNIT IV MICRO MACHINING AND MICRO FABRICATION 9

UNIT V INDUSTRY 4.0 9
Introduction - Industry 4.0 – Smart manufacturing: Smart design, smart machining, smart monitoring, smart control, smart scheduling - Internet of Things - Industrial Internet of Things - Framework: Connectivity devices and services - Intelligent networks of manufacturing - Cloud computing - Data analytics -Cyber physical systems -Machine to Machine communication- case studies.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of this course, the students shall be able to:

CO1: Classify different non-traditional machining processes.
CO2: Identify the different precision machining processes.
CO3: Explain the modern metal forming processes.
CO4: Interpret different micro machining and micro fabrication techniques.
CO5: Demonstrate the Industry 4.0 and smart manufacturing system concepts.
<table>
<thead>
<tr>
<th></th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3 3 3</td>
</tr>
<tr>
<td>CO2</td>
<td>3 3 3</td>
</tr>
<tr>
<td>CO3</td>
<td>3 3 3</td>
</tr>
<tr>
<td>CO4</td>
<td>3 3 3</td>
</tr>
<tr>
<td>CO5</td>
<td>3 3 3</td>
</tr>
</tbody>
</table>

Avg: \(\frac{12}{4}=3\), \(\frac{3}{1}=3\), \(\frac{3}{1}=3\), \(\frac{9}{3}=3\), \(\frac{15}{5}=3\), \(\frac{3}{1}=3\)

REFERENCES:

CM4002 COMPUTER AIDED PROCESS PLANNING L T P C

OBJECTIVES:
- To familiarize the students with the basics of process planning.
- To introduce the part representation methods and approaches
- To acquaint the students with knowledge in process metrics and capabilities
- To gain knowledge on Logical Design of Process Planning
- To impart knowledge on the types of computer aided process planning systems

UNIT I INTRODUCTION:
8
Production Planning and Process Planning - The role of Process Planning in the Manufacturing cycle - Experience based planning - Need for computer aided process planning - Process Planning and Concurrent Engineering, Group Technology

UNIT II PART DESIGN REPRESENTATION
10
Basic part representation methods: CAD models-Feature based design-Design interface: syntactic pattern recognition-State transition diagram-Decomposition approach-Logic approach-Graph based approach.

UNIT III KNOWLEDGE REPRESENTATION
7

UNIT IV SYSTEM FORMULATION
10

UNIT V COMPUTER AIDED PROCESS PLANNING SYSTEMS
10
Computer aided Process Planning – Variant process planning – Generative process planning- Forward and Backward planning, input format - Totally Integrated process planning systems – Expert process planning-Commercial systems: CAM-I, CAPP, MIPLAN, APPAS, AUTOPLAN and PRO, CPPP

TOTAL: 45 PERIODS
OUTCOMES:
At the end of this course students shall be able to:
CO1: Elaborate on the basics of process planning.
CO2: Demonstrate competency in part representation methods and approaches
CO3: Recognize the importance of process metrics and capabilities
CO4: Elaborate on Logical Design of Process Planning
CO5: To impart knowledge on the types of computer aided process planning systems

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>(10/5)=2</td>
<td></td>
<td></td>
<td>(2/1)=2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

CM4003 DESIGN FOR MANUFACTURING

- To impart the knowledge in design for manufacturing and assembly (DFM/A) principles.
- To be acquainted with the use of DFM/A tools.
- To elaborate DFM/A system architecture.
- To outline product model and interfacing.
- To discuss system implementation by considering various manufacturing constraints.

UNIT I INTRODUCTION
Implementation of concurrent engineering- Issues involved in introducing design for manufacturing and assembly (DFM/A)- DFM/A principles and techniques - Current state of commercial DFM/A packages- Requirements for a new generation of DFM/A Systems - Knowledge-based approaches to DFM/A- Interfacing design (CAD) and DFM/A Systems, Case studies.

UNIT II DFM/A METHODOLOGIES
Total design Environment-Tools: Quality function deployment, Failure modes and effects analysis (FMEA)- Design for manufacturing and assembly principles: Mechanical Assembly-General DFA principles- DFA guidelines: General mechanical, General electro-mechanical - Design for manual assembly- Design for electronics Assembly-Design for Testability-Machining-Currently available manufacturability analysis tools- Integrating DFM/A into different design regimes - Case studies
UNIT III DFM/A SYSTEM ARCHITECTURE 9

UNIT IV PRODUCT MODEL AND CAD INTERFACING 9
Product Model - Structure and object - Oriented Approach-Classes and objects - Polymorphism and inheritance - Modelling concepts- Product model structure overview- Detailed product model- Storage of object-Oriented product models - Features in CAD-DFM integration - Feature representation methodologies- Classification of features -Hierarchical structure of the features -Interfacing with different CAD systems - Interface mechanisms for applications-knowledge engineering and inferencing

UNIT V SYSTEM IMPLEMENTATION 9
System for design for PCB assembly, small parts assembly, mechanical assembly, machining Generic architecture operational aspects- Architecture realization- Control module

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the End of the Course, the students will be able to
CO1: Describe the design for manufacturing principles.
CO2: Implement DFM/A principles in the required applications.
CO3: Use DFM/A tools.
CO4: Select appropriate DFM/A system architecture with the given manufacturing aspects.
CO5: Create Product model.

REFERENCES:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>(15/5)=3</td>
<td>(5/2)=2.5</td>
<td>(15/5)=3</td>
<td>(10/5)=2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CM4004 DESIGN OF CELLULAR MANUFACTURING SYSTEM 3 0 0 3

OBJECTIVES:
1. To introduce the concept of group technology
2. To expose students to planning and design of cellular manufacturing system
3. To impart knowledge on implementation of group technology/cellular manufacturing systems
4. To outline the concept of performance measurement and control of GT/CMS
5. To gain knowledge on economics of GT/CMS
UNIT I
INTRODUCTION:
Introduction to Group Technology, Limitations of traditional manufacturing systems, characteristics and design of groups, benefits of GT and issues in GT.

UNIT II
CMS PLANNING AND DESIGN:

UNIT III
IMPLEMENTATION OF GT/CMS:
Inter and Intra cell layout, cost and non-cost based models, establishing a team approach, Managerial structure and groups, batch sequencing and sizing, life cycle issues in GT/CMS.

UNIT IV
PERFORMANCE MEASUREMENT AND CONTROL:
Measuring CMS performance - Parametric analysis - PBC in GT/CMS, cell loading, GT and MRP - framework.

UNIT V
ECONOMICS OF GT/CMS:
Conventional Vs group use of computer models in GT/CMS, Human aspects of GT/CMS - cases.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of this course, the students shall be able to
CO1: Perceive the concept of group technology
CO2: Understand the planning and design of CMS
CO3: Gain knowledge on implementation of GT/CMS
CO4: Analyse the performance measurement and control of GT/CMS
CO5: Describe the economics of GT/CMS

REFERENCES

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>(5/5)=1</td>
<td>(15/5)=3</td>
<td>(9/5)=1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OBJECTIVES:
- To equip students with fundamentals of finite element principles.
- To impart knowledge on solving 2 dimensional finite element problems.
- To develop finite element model for the field problems.
- To introduce non-linear analysis and its computational methods.
- To emphasize on the finite element approach of production processes.

UNIT I GENERAL INTRODUCTION

UNIT II PROBLEM IN 2D:

UNIT III APPLICATIONS TO FIELD PROBLEMS

UNIT IV NON-LINEAR ANALYSIS
Introduction to Non-linear problems - some solution techniques- computational procedure- simple material nonlinearity- Plasticity and viscoplasticity, stress stiffening, contact interfaces- problems of gaps and contact- geometric non-linearity- modeling considerations- Impact analysis.

UNIT V ANALYSIS OF PRODUCTION PROCESSES
Application to Bulk forming, sheet metal forming, casting, metal cutting, welding- Features of software packages

OUTCOMES:
CO1: Demonstrate finite element analysis techniques
CO2: Solve 2 dimensional finite element problems.
CO3: Analyze of field problems for shape function
CO4: Determine the computational solution techniques for non linear problems
CO5: Apply finite element analysis techniques to analyse the production processes

REFERENCES
<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>(10/5)=2</td>
<td>(5/5)=1</td>
<td>(2/1)=2</td>
<td></td>
<td></td>
<td>(5/5)=1</td>
</tr>
</tbody>
</table>

CM4006 ADVANCES IN WELDING AND CASTING TECHNOLOGY L T P C
3 0 0 3

COURSE OBJECTIVES:
- To impart knowledge on Metallurgy of welding.
- To be acquainted with Special welding processes.
- To elaborate gating system design and metallurgy.
- To provide knowledge on Special casting processes.
- To familiarize the students with automation and environmental aspects of welding and casting.

UNIT I WELDING DESIGN

UNIT II SPECIAL WELDING PROCESSES

UNIT III CASTING DESIGN
Introduction - Solidification shrinkage - Pattern allowances- Design of gating System-Design of thin and unequal sections -Rapid solidification processing (RSP) - Melt spinning -Roll quenching - Vibratory solidification -Splat cooling - Thixoforming – Rheocasting - Single crystal growing Casting defects, inspection, diagnosis and rectification – Case study on casting design.

UNIT IV SPECIAL CASTING PROCESSES

UNIT V AUTOMATION AND ENVIRONMENTAL ASPECTS OF WELDING AND CASTING

COURSE OUTCOMES:
At the end of this course, the students shall be able to:
CO1: Use design knowledge to overcome defects in welding.
CO2: Select suitable welding process for the given applications.
CO3: Use design knowledge to produce quality casting.
CO4: Select suitable casting process for the given applications.
CO5: Implement automation principles with environment consciousness techniques in welding and casting plants

<table>
<thead>
<tr>
<th></th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

CO1: 3 CO2: 2 CO3: 3 CO4: 2 CO5: 2 Avg: (12/5)=2.4 (2/1)=2 (2/2)=1

REFERENCES:

CM4007 PRECISION ENGINEERING

COURSE OBJECTIVES:
- To gain knowledge of the need for precision engineering and its application.
- To familiarize the importance of materials in precision engineering.
- To Introduce latest topics in manufacturing like micro machining and MEMS in order to equip them to join core facturing industries.
- To Impart knowledge about the causes of errors and their remedies.
- To introduce the students with elements used in precision machines.

UNIT I INTRODUCTION

UNIT II MATERIALS FOR PRECISION ENGINEERING

UNIT III PRECISION MACHINING
UNIT IV ERRORS: CAUSES AND REMEDIES
Static stiffness - influence on machining accuracy - over all stiffness in a machine/instrument - errors due to variation of cutting forces - clamping forces - errors due to compliance while machining. Inaccuracy due to thermal effects: Heat sources and dissipation - Geometry of thermal deformation – Influence of forced is statics dimensional wear of elements - instruments; Machining tools and their influence on accuracy- error due to clamping and setting location.

UNIT V PRECISION MACHINE ELEMENTS

COURSE OUTCOMES:
At the end of this course, the students shall be able to:
- CO1: Understand the need of precision engineering and its application.
- CO2: Discuss process knowledge to use the light material / superior material as per the raising demands.
- CO3: Discuss the advanced precision machining processes.
- CO4: Explain the various errors, its causes and remedies to overcome these.
- CO5: Describe elements used in precision machine tool.

REFERENCES:

<table>
<thead>
<tr>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>(15/5)=3</td>
<td>(2/2)=1</td>
<td>(10/5)=2</td>
<td>(9/5)=1.8</td>
<td>(4/3)=1.33</td>
<td>(7/5)=1.4</td>
</tr>
</tbody>
</table>

MF4091 MANUFACTURING MANAGEMENT L T P C
3 0 0 3

OBJECTIVES
1. Students will be able to study the concepts in facility planning.
2. Students will be able to study types of plant layout and capacity planning methods.
3. Students will be able to study the concepts of Project management.
4. Students will be able to study the concepts and methods in production planning and control.
5. Students will be able to study the concepts in Inventory and maintenance management.
UNIT-I FACILITY PLANNING 9
Facility planning – Factors affecting selection of plant location, Factor rating analysis: Break – even analysis, Load distance model, closeness ratings – case study

UNIT-II CAPACITY & LAYOUT PLANNING 9
Types of plant layout, criteria for good layout, Process layout, Assembly line balancing. Computer based solutions to layout problems such as CRAFT, ALDEP, CORELAP and PREP. Capacity planning – Analysis of designed capacity, installed capacity, commissioned capacity, utilized capacity, factors affecting productivity and capacity expansion strategies.

UNIT-III PROJECT MANAGEMENT 9
Demand forecasting – Quantitative and qualitative techniques, measurement of forecasting errors, Project management – its role in functional areas of management, network representation of a project, CPM and PERT techniques – case study

UNIT-IV PRODUCTION PLANNING & CONTROL 9
Aggregate production planning, production planning strategies, Disaggregating the aggregate plan, Materials Requirement Planning (MRP), MRP-II, Supply chain management, Operation scheduling, prioritization.

UNIT-V INVENTORY AND MAINTENANCE MANAGEMENT 9
Introduction to EOQ models, Inventory control techniques – ABC, FSN, VED etc. Types of inventory control – Perpetual, two-bin and periodic inventory system – JIT, SMED, Kanban, Zero inventory, Maintenance strategies and planning, Maintenance economics: quantitative analysis, optimal number of machines, Replacement strategies and policies – economic service life, opportunity cost, replacement analysis using specific time period.

TOTAL =45 PERIODS

COURSE OUTCOMES:
On Completion of the course the student will be able to
1. Able to acquire knowledge on facility, and problems associated with it.
2. Ability to learn the various capacity and layout planning models
3. Understand the concepts of demand forecasting and project management with relevant case studies.
4. Able to understand the concepts of production planning and scheduling.
5. Understand the various inventory and maintenance management techniques.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>(10/5)=2</td>
<td>(5/5)=1</td>
<td></td>
<td></td>
<td>(3/3)=1</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES:
COURSE OBJECTIVES:
- To provide knowledge in the areas of elastic and plastic behavior of materials.
- To understand the fracture behavior of materials.
- To elaborate the theories on plastic forming.
- To classify the different types of advanced materials.
- To select the material for specific industrial applications.

UNIT I ELASTIC AND PLASTIC BEHAVIOUR
Elastic, plastic and elastic and viscoelastic Behavior-Mechanism of Elastic and Plastic deformation, Shear strength of perfect and real crystals - Deformation by slip and twinning, strengthening mechanism, solid solution, grain boundary, poly phase mixture, precipitation, particle, fibre and dispersion strengthening, work hardening - Effect of temperature, strain and strain rate on plastic behavior.

UNIT II FRACTURE BEHAVIOUR
Types of fracture -Griffith’s theory, dislocation theory, ductile to brittle transition in steel – Stress intensity factor, fracture toughness and toughening mechanisms -High temperature fracture, creep - Larson-Miller Parameter - Deformation and fracture mechanism maps - Fatigue. Low and high cycle fatigue test, crack initiation and propagation mechanisms and Paris law, Effect of surface and metallurgical parameters on fatigue failure.

UNIT III PLASTIC FORMING OF METALS
Fundamentals of metal working, mechanics of metal working, flow-stress distribution, residual stresses, temperature in metal working- Forging in plane strain, open and closed die forging - Forces and geometrical relationships in rolling, theories of cold and hot rolling, bending and stretch forming.

UNIT IV ADVANCED MATERIALS

UNIT V SELECTION OF MATERIALS AND TESTING
Motivation, cost basis and service requirements - Selection for mechanical properties, Selection for surface durability - Relationship between materials processing and selection - Case studies in materials selection with relevance to aero, auto, marine, machinery and nuclear applications – Forgeability and castability test- NDT techniques.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of this course, the students shall be able to:
- CO1: Discuss elastic plastic behavior of metals and its strengthening mechanisms.
- CO2: Analyse the fracture behavior of metals and give solutions to avoid them.
- CO3: Create processing techniques for controlling shape of the final product.
- CO4: Select suitable materials for the specific industrial applications.
- CO5: Able to work in R&D activity in the field of material science.

REFERENCES:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>(13/5)=2.6</td>
<td>(11/4)=2.75</td>
<td>(2/1)=2</td>
<td>(7/5)=1.4</td>
<td>(5/4)=1.25</td>
<td></td>
</tr>
</tbody>
</table>

CM4009 MICRO AND NANO MANUFACTURING

OBJECTIVES:
- To introduce Meso, Micro and Nano manufacturing and their respective applications.
- To familiarize the students with diamond, turn machining.
- To acquaint the students with advanced micro machining and nano finishing methods.
- To familiarize the students with synthesis of nanomaterials.
- To gain knowledge on the types of characterization techniques to be used.

UNIT I INTRODUCTION
Introduction to Meso, Micro and Nano manufacturing, Miniaturization and applications, classification-
subtractive, additive, micro casting, micro forming, micro joining.
Micro and Nano products

UNIT II MANUFACTURING METHODS
Material deposition – PVD, CVD, LIGA, Micro stereo lithography, Electro discharge deposition,
Traditional micromachining- Theory of micromachining-Chip formation-size effect in micromachining,
micro turning, micro drilling, micro milling, micro grinding, Diamond turn machining

UNIT III ADVANCED MACHINING / FINISHING PROCESSES
Introduction to mechanical and beam energy based micro machining processes- Ultrasonic micro
machining, Focused Ion Beam machining, Laser Beam micro machining , Micro/ Nano finishing
processes- Abrasive Flow Machining, Magnetic Abrasive Finishing, Magneto Rheological Abrasive Flow
Machining, Magneto Rheological Finishing. Hybrid micro/nano machining – Electro Chemical Spark
Micro Machining, Electro Discharge Grinding, Electrolytic In Process Dressing Grinding

UNIT IV SYNTHESIS OF NANOMATERIALS
Introduction to nano materials, Methods of production of Nanoparticles, Sol-gel synthesis, Inert gas
condensation, High energy Ball milling, Plasma synthesis, Electro deposition and other techniques.
Synthesis of Carbon Nanotubes – Solid carbon source based production techniques, Gaseous carbon
source based production techniques – Diamond Like Carbon coating. Nano wires

UNIT V CHARACTERISATION TECHNIQUES
Metrology for micro machined components-Optical Microscopy,White Light Interferrometry, Molecular
Measuring Machine, Micro CMM Scanning Probe Microscopy (SPM) – Scanning Electron Microscope,
Transmission Electron Microscope, Scanning Thermal Microscopy, Tribological characteristics -Micro
abrasion wear -Nano indentation- Ellipsometric Analysis

TOTAL: 45 PERIODS
OUTCOMES:
CO1: Explain micro and nano manufacturing methods.
CO2: Extend material deposition methods for manufacturing
CO3: Select advanced machining process
CO4: Build nano composite materials
CO5: Analyze the nano materials and characterization techniques

REFERENCES

<table>
<thead>
<tr>
<th>CO1</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>(2/1)=2</td>
<td>(13/5)=2.6</td>
<td>(5/5)=1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVES:
- Explain the role of supply chain management in an organization.
- Identify the various aspects of supply chain management and the factors affecting them.
- Explain the relationship among various factors involved in planning, organising and controlling supply chain operations.
- Summarize the sourcing and inventory decisions involved in supply chain operations.
- Explain the use of information technology in supply chain management.

UNIT I INTRODUCTION SUPPLY CHAIN MANAGEMENT
Introduction, Types of supply chains with and examples, Evolution of SCM concepts, Supply chain performance, Strategic Fit, Drivers of Supply Chain Performance – key decision areas – External Drivers of Change. Supply contracts – centralized vs. decentralized system

UNIT II SUPPLY CHAIN NETWORK DESIGN
Need for distribution network design- Factors affecting, Design options for distribution network. Network design decisions - Framework, factors influencing, Models of facility location and capacity allocation. Role of Transportation in supply chain, modes of transportation Modal Selection, Classification of carriers, Carrier Selection, Transportation Execution and Control. Food Mile Concept., design options.

UNIT III DEMAND AND SUPPLY IN SUPPLY CHAIN
Distribution strategies—direct shipment, traditional warehousing, cross docking, inventory pooling, transshipment, Choosing appropriate strategy, Milk Run Model.

UNIT IV SOURCING AND INVENTORY DECISIONS IN SUPPLY CHAIN
Purchasing Vs Procurement Vs Strategic Sourcing, Item procurement importance matrix, Strategic Sourcing Methodology, Managing sourcing and procurement process, Supplier selection and evaluation, Bullwhip effect and its management, Economies of scale in supply chain—Cycle inventory, Estimation, Quantity discounts, Multiechelon cycle inventory. Uncertainty in supply chain—Safety inventory, Determination of appropriate level, Impact on uncertainty.

UNIT V SUPPLY CHAIN AND INFORMATION SYSTEMS

OUTCOMES:
Students will be able to:
CO1: To introduce the concepts and elements of supply chain management.
CO2: to understand supply chain network design aspects for various manufacturing and service sectors.
CO3: To understand the principle of demand and supply in supply chain
CO4: To gain knowledge on the sourcing and inventory decisions in supply chain.
CO5: To understand the concepts of supply chain information systems.

REFERENCES

CO-PO MAPPING:

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>(1+2)/2=1.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2/1=2</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2-medium, 3-high, ‘-‘- no correlation

IL4075 LEAN MANUFACTURING AND SIX SIGMA

OBJECTIVES:
- Summarize the basics of Lean and Six Sigma.
- Describe the need and the process of integrating Lean and Six sigma.
- Identify and select the resources required for LSS Projects and selection of projects including Team building.
- Infer the DMAIC process and study the various tools for undertaking LSS projects.
- Relate how to institutionalize the LSS efforts.
UNIT I INTRODUCTION TO LEAN AND SIX SIGMA
Introduction to Lean- Definition, Purpose, Features of Lean ; Top seven wastes, Need for Lean management, The philosophy of lean management, Creating a lean enterprise, Elements of Lean, Lean principles, the lean metric, Hidden time traps. Introduction to quality, Definition of six sigma, origin of six sigma, Six sigma concept and Critical success factors for six sigma; Case analysis.

UNIT II INTEGRATION OF LEAN AND SIX SIGMA
Evolution of lean six sigma, the synergy of Lean and six sigma, Definition of lean six sigma, the principles of lean six sigma, Scope for lean six sigma, Features of lean six sigma. The laws of lean six sigma, Key elements of LSS, the LSS model and the benefits of lean six sigma. Initiation - Top management commitment – Infrastructure and deployment planning, Process focus, organizational structures, Measures – Rewards and recognition, Infrastructure tools, structure of transforming event and Launch preparation; Case study presentations.

UNIT III PROJECT SELECTION AND TEAM BUILDING
Resource and project selection, Selection of Champions, Identification of potential projects, top down (Balanced score card) and Bottom up approach – Methods of selecting projects – Benefit/Effort graph, Process mapping, value stream mapping, Predicting and improving team performance, Nine team roles and Team leadership; Case study presentations .Black belts, Training of Black belts

UNIT IV THE DMAIC PROCESS AND TOOLS
The DMAIC process – Toll gate reviews; The DMAIC tools; Define tools – Project definition form, SIPOC diagram; Measure tools – Process mapping, Lead time/cycle time, Pareto chart, Cause and Effect matrix, FMEA; Idea – generating and organizing tools – Brainstorming, Nominal group technique, Multi-voting and Cause and effect diagram, Data collection and accuracy tools- Check sheet, Gauge R&R; Understanding and eliminating variation- run charts, control charts and process capability analysis; Analyze tools - Scatter plots, ANOVA, Regression analysis, Time trap analysis; Improve tools – Mistake proofing, Kaizen, set up time reduction (SMED), TPM, DOE and the pull system. Control tools – statistical process control.

UNIT V INSTITUTIONALIZING AND DESIGN FOR LSS
Institutionalizing lean six sigma – improving design velocity, creating cycle time base line, valuing projects, gating the projects, reducing product line complexity, Design for lean six sigma, QFD, Theory of Inventive Problem solving (TRIZ), Robust design; Case study presentations.

TOTAL:45 PERIODS

OUTCOMES:
CO1: The students will be able to understand what is Lean and Six sigma and their importance in the globalised competitive world.
CO2: The students will be able to understand the importance of integrating Lean and Six sigma and also the process of their integration.
CO3: The students will be able to plan the Resources required to undertake the LSS projects and also acquire how to select the suitable projects and the teams.
CO4: The students will be able apply DMAIC methodology to execute LSS projects and in this regard they will be acquainted with various LSS tools.
CO5: The students will be able to understand the process of institutionalizing the LSS effort and also understand the Design for LSS.

REFERENCES:
IL4071

ADVANCED OPTIMIZATION TECHNIQUES

OBJECTIVES:

- Learn to solve integer programming problems
- To know how to solve the Dynamic programming problems
- Learn to solve non-linear programming problems with unconstrained optimization problems
- Understand how to solve non-linear programming problems using KKT conditions, quadratic and separable programming
- To create awareness of Meta heuristic algorithms.

UNIT I INTEGER PROGRAMMING

Branch and Bound technique – cutting plane algorithm method - Travelling Salesman problem - Traveling Salesman Problem - Branch and Bound Algorithms for TSP - Heuristics for TSP - Chinese Postman Problem - Vehicle Routeing Problem

UNIT II DYNAMIC PROGRAMMING

UNIT III NONLINEAR PROGRAMMING - I

Types of Nonlinear Programming Problems - One-Variable Unconstrained Optimization - Multivariable Unconstrained Optimization

UNIT IV NONLINEAR PROGRAMMING – II

UNIT V NON-TRADITIONAL OPTIMIZATION

OUTCOMES:

CO1: Know how to solve integer programming problems
CO2: Able to solve Dynamic programming problems
CO3: Familiar in solving unconstrained non-linear optimization problems
CO4: Familiar in solving constrained linear optimization problems
CO5: Know how to solve non-linear optimization problems using Meta heuristic algorithms
REFERENCES:

CO-PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>2/1=2</td>
<td>(1+1+1+1)/4=1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2-medium, 3-high, ’-‘- no correlation

CM4010 MACHINE LEARNING L TP C 3 0 03

COURSE OBJECTIVES:
This course will make students
1. To learn the basic aspects of machine learning.
2. To get basic knowledge on supervised learning.
3. To realize the importance of unsupervised learning.
4. To exposed on direct and indirect neuro control schemes.
5. To get insight into the basic knowledge on fuzzy logic systems.

UNIT-I INTRODUCTION TO MACHINE LEARNING

UNIT-II SUPERVISED LEARNING

UNIT-III UNSUPERVISED LEARNING
Introduction – Clustering:- Partitioning Methods:- K-means algorithm - Hierarchical clustering – Fuzzy Clustering – Clustering High-Dimensional Data:- Problems – Challenges – Subspace Clustering – Biclustering – Self Organizing Map (SOM) - SOM algorithm

UNIT-IV NEURAL NETWORKS FOR MODELING AND CONTROL
Need for using ANN in Modeling and Control – Modeling of non-linear systems using ANN: Generation of training data, Identification of Optimal architecture, Model validation – Control of non-linear systems using ANN: Direct and Indirect neuro control schemes – Adaptive neuro controller
UNIT-V FUZZY LOGIC SYSTEMS

COURSE OUTCOMES:
Upon completion of this course, students will be able
CO1: To get familiarize with the basic aspects of machine learning.
CO2: To get exposure on supervised and unsupervised learning.
CO3: To demonstrate the need for neutral networks for modelling and control
CO4: To get familiarize with the fuzzy logic systems.
CO5: To realize the importance of machine learning and its applications.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>CO2</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>CO4</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

REFERENCES:

UNIT IV SURFACE MOUNT TECHNOLOGY: 9
SMT Equipment and Material Handling Systems, Handling of Components and Assemblies - Moisture Sensitivity and ESD, Safety and Precautions Needed, IPC and Other Standards, Stencil Printing Process, solder paste storage and handling, stencils and squeegees, process parameters, quality control - Component Placement, Equipment Type, Chip shooter, IC placer, Flexibility, Accuracy of Placement, Throughput, reflow soldering, adhesive, underfill and encapsulation process, applications, storage and handling, process & parameters.

UNIT V INSPECTION, TEST AND REWORK FOR PCB: 9

OUTCOMES:
At the end of this course, the students shall be able to:
CO1: Realize wafer preparation and PCB fabrication.
CO2: Elaborate on through hole and surface mount technology components.
CO3: Discuss the steps involved in soldering post solder cleaning and its importance in PCB manufacturing.
CO4: Improve knowledge on surface mount technology.
CO5: Locate the required inspections, testing and repair methods used in PCB.

REFERENCES

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>(15/5)=3</td>
<td>(6/3)=2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OBJECTIVES:
- To impart knowledge on sustainable manufacturing concepts and standards
- To gain an insight on green manufacturing initiatives
- To get familiarized with environment conscious design
- To explore methods that support environmental friendly manufacturing
- To understand the Life Cycle Assessment process

UNIT I SUSTAINABLE MANUFACTURING AND EMS:

UNIT II GREEN MANUFACTURING:
Green Design and Quality Initiatives - Environmental Cost Accounting and Business Strategy - Accounting for an Environmentally Conscious Setting - The Development of Eco labelling Schemes

UNIT III RECYCLING:
Recycling as Universal Resource Policy - Innovation Towards Environmental Sustainability In Industry - A Systematic Framework for Environmentally Conscious Design

UNIT IV ENVIRONMENTAL ATTRIBUTES OF MANUFACTURING:
Environmental Attributes of Manufacturing Processes - Environmental Decision Support Systems - Decision Models for Reverse Production System Design - Environmentally Sound Supply Chain Management

UNIT V LIFE CYCLE ASSESSMENT
Life Cycle Assessment - Multipath way and Cumulative Risk Assessment - Reclamation And Recycling of Waste

TOTAL: 45 PERIODS

OUTCOMES:
At the end of this course, the students shall be able to
CO1: Take advantage of sustainable manufacturing concepts and standards
CO2: Deploy green manufacturing initiatives
CO3: Apply the environment conscious design
CO4: Take advantage of environmental friendly manufacturing methods
CO5: Apply the Life Cycle Assessment process

REFERENCES
OBJECTIVES:
- To impart the knowledge in optimization,
- To explore multi objective optimization,
- To learn evolutionary algorithms,
- To understand Evolutionary strategies and programming.
- To get familiarized in Multi-Objective Evolutionary algorithm

UNIT I INTRODUCTION TO OPTIMIZATION: 9
Introduction to optimization - single and multi objective optimization - Evolutionary algorithms - principles of multi objective optimization.

UNIT II MULTI OBJECTIVE OPTIMIZATION: 9
Convex programming, Karush-Kuhn-Tucker conditions, Direct functional evaluation and derivative based optimization techniques;

UNIT III EVOLUTIONARY ALGORITHMS: 9
Simulated annealing, Tabu search; NFL theorem; Biological principles of evolution, General scheme of EAs, Representation, Selection schemes, Population evaluation, Variation operators; Constraint handling; Schema theorem; Binary coded genetic algorithm, Real coded genetic algorithm.

UNIT IV EVOLUTIONARY STRATEGIES AND EVOLUTIONARY PROGRAMMING 9
Evolutionary strategies, Evolutionary programming, genetic programming, Differential evolution, Particle swarm optimization;

UNIT V APPLICATIONS OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS: 9
Pareto-optimality, Multi-objective evolutionary algorithms; Statistical analysis of EC techniques; Customization in EAs; Applications of multi-objective evolutionary algorithms - Mechanical component design - Truss-structure design - Other applications.

TOTAL: 45 PERIODS

OUTCOME:
CO1: Demonstrate principles of optimization process
CO2: Make use of multi response optimization
CO3: Inference to the evolutionary programming
CO4: Evaluate the process parameters for optimization
CO5: Apply optimization techniques in mechanical component design

REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td></td>
<td>(5/5)=1</td>
<td>(15/5)=3</td>
<td></td>
<td>(2/1)=2</td>
<td></td>
</tr>
</tbody>
</table>
OBJECTIVES:
- To understand the basic principles of intelligent product design and manufacturing.
- To study the various techniques of knowledge representation.
- To study the different the modelling techniques in intelligent product design and manufacturing.
- To apply the neural networks in manufacturing systems.
- To understand and develop the web based CAD/CAM internet model.

UNIT I INTRODUCTION TO INTELLIGENT DESIGN AND MANUFACTURING: 9
Need - Internet technology and Manufacturing Industry - Digital enterprises - Manufacturing portals – Benefits.

UNIT II TECHNIQUES OF KNOWLEDGE REPRESENTATION 9

UNIT III INTELLIGENT PRODUCT MODELING TECHNIQUES: 9
Intelligent CAD systems, integrating product and process design, manufacturing analysis and CAD/CAM integration, design methodology for automated manufacture, the impacts of intelligent process control on product design, and fuzzy knowledge-based controller design.

UNIT IV APPLICATION OF NEURAL NETWORKS: 9
Neural Networks for Intelligent Process Monitoring and Control : Applications to CNC machining, Metal Forming - Intelligent Manufacturing Planning, Scheduling and Control - Intelligent Assembly and Layout Planning.

UNIT V INTERNET BASED COLLABORATIVE CAD/CAM : 9
Applications to web based CAD, CAPP, CNC, Assembly planning, and Rapid Prototyping - Challenging issues of Collaborative CAD/CAM.

TOTAL: 45 PERIODS

OUTCOMES:
CO1: Demonstrate Internet technology in manufacturing Industry
CO2: Make use of techniques of Knowledge Representation
CO3: Analysis of various CAD/CAM system
CO4: Apply neural networks for intelligent process monitoring and control
CO5: Develop web based CAD/CAM internet model

REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

PO

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>(8/3)=2.66</td>
<td>(5/3)=1.66</td>
<td>(9/3)=3</td>
<td>(8/3)=2.66</td>
<td>(9/3)=3</td>
<td>(6/2)=3</td>
</tr>
</tbody>
</table>
CM4014 INTELLIGENT MANUFACTURING SYSTEMS

COURSE OBJECTIVES:
To know the concepts of Artificial Intelligence
To Practice the methods of solving problems using Artificial Intelligence
To understand intelligent systems and its troubleshooting methods
To investigate and deploy Artificial Intelligence for future smart manufacturing factories.

UNIT I INTRODUCTION 9

UNIT II ARTIFICIAL INTELLIGENCE LANGUAGES 9
Heuristic search-logic programming and reasoning-automatic programming-scope of AI-in manufacturing components of intelligent manufacturing Aspects of intelligence and AI Requirements of AI languages, LISP & PROLOG – Simple programs

UNIT III BUILDING OF KNOWLEDGE BASED SYSTEMS 9
Knowledge engineering-protocol analysis -fuzzy logic :Semantic networks, Learning systems Knowledge Engineering Knowledge representation – Knowledge acquisition and optimization -Knowledge based approaches to design mechanical parts and mechanisms and design for automated assembly.

UNIT IV INTELLIGENT SYSTEMS 9
Knowledge based system for material selection – Intelligent process planning system. Intelligent system for equipment selection -Intelligent system for project management & factory monitoring. Inference engine Vision programmes-factory vision systems -machine learning

UNIT V FACTORIES OF FUTURE 9
The role of Artificial Intelligence in the factory of the future Features of Experts systems -applications in manufacturing planning and control – Intelligent systems. Scheduling in manufacturing – scheduling the shop floor – Diagnosis & trouble shooting.

TOTAL 45 PERIODS

COURSE OUTCOMES:
CO1: Apply various knowledge based techniques
CO2: Build components of intelligent decision support system
CO3: Adopt intelligent system for Manufacturing
CO4: Demonstrate the concepts of Artificial Intelligence
CO5: Solve problems using Artificial Intelligence

REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Avg (14/5)=2.8 (15/5)=3 (12/5)=2.4 (11/5)=2.2 (9/4)=2.25 (9/5)=1.8
OBJECTIVES:
- To introduce MEMS, Microsystems, materials and working of MEMS and Microsystems
- To explain the scaling laws in miniaturization and design for microsystems
- To familiarize with different microsystem fabrication processes.
- To learn packaging, interfaces and assembly of microsystems
- To gain knowledge in different measurement and characterization methods for MEMS

UNIT I INTRODUCTION

UNIT II MECHANICS, SCALING AND DESIGN

UNIT III MICRO SYSTEM FABRICATION PROCESSES
Introduction- Photolithography- Ion implantation- Chemical Vapor Deposition-Physical Vapor Deposition- clean room- Bulk micromachining :etching, isotropic and anisotropic etching, wet and dry etching-Surface micro machining :process, mechanical problems associated with surface micro machining- LIGA process :general description, materials for substrates and photo resists-SLIGA process-Abrasive jet micro machining-Laser beam micro machining- Micro Electrical Discharge Micro Machining–Ultrasonic Micro Machining- Electro chemical spark micro machining- Electron beam micro machining-Focused Ion Beam machining

UNIT IV MICROSYSTEMS PACKAGING
Introduction - Microsystems Packaging-Interfaces in Microsystems Packaging-Essential Packaging Technologies- Die preparation, surface bonding, wire bonding, sealing- Three dimensional Packaging-Assembly of Microsystems, Signal Mapping and Transduction

UNIT V MICROMETROLOGY AND CHARACTERIZATION

OUTCOME:
CO1: Explain the concept of Micro Electro Mechanical systems
CO2: Develop micro system design
CO3: Identify the elements of MEMS system
CO4: Determine the scaling and design methods
CO5: Examine the micro metrology and characterization

REFERENCES
OBJECTIVES:
1. To understand history, concepts and terminology of PLM
2. To understand functions and features of PLM/PDM
3. To understand different modules offered in commercial PLM/PDM tools
4. To demonstrate PLM/PDM approaches for industrial applications
5. To use PLM/PDM with legacy data bases, CAx & ERP systems

UNIT I HISTORY, CONCEPTS AND TERMINOLOGY OF PLM
Introduction to PLM, Need for PLM, opportunities of PLM, Different views of PLM - Engineering Data Management (EDM), Product Data Management (PDM), Collaborative Product Definition Management (cPDM), Collaborative Product Commerce (CPC), Product Lifecycle Management (PLM). PLM/PDM Infrastructure – Network and Communications, Data Management, Heterogeneous data sources and applications.

UNIT II PLM/PDM FUNCTIONS AND FEATURES

UNIT III DETAILS OF MODULES IN APDM/PLM SOFTWARE
Case studies based on top few commercial PLM/PDM tools

UNIT IV ROLE OF PLM IN INDUSTRIES
Case studies on PLM selection and implementation (like auto, aero, electronic) - other possible sectors, PLM visioning, PLM strategy, PLM feasibility study, change management for PLM, financial justification of PLM, barriers to PLM implementation, ten step approach to PLM, benefits of PLM for—business, organization, users, product or service, process performance.

UNIT V BASICS ON CUSTOMISATION/INTEGRATION OF PDM/PLM SOFTWARE
PLM Customization, use of EAI technology (Middleware), Integration with legacy data base, CAD, SLM and ERP

OUTCOMES:
The students will be able to
1. Summarize the history, concepts and terminology of PLM
2. Use the functions and features of PLM/PDM
3. Use different modules offered in commercial PLM/PDM tools.
4. Implement PLM/PDM approaches for industrial applications.
5. Integrate PLM/PDM with legacy data bases, CAx & ERP systems.
REFERENCES

CM4071 MANUFACTURING SYSTEM SIMULATION

OBJECTIVES:
• To discuss the importance and advantages of applying simulation and modelling techniques
• To teach various random number generation techniques, its use in simulation
• To explain the applications of random probability distributions in real time environments.
• To train students to solve discrete event problems using software.
• To train students on Simulation models using a simulation software.

UNIT I INTRODUCTION 9
Systems and its types, Types of Modelling, Principles used in Modeling, simulation as a decision making tool, types of simulation, Advantages and disadvantages of simulation, Steps in simulation model building - statistical models in simulation - discrete and continuous system

UNIT II RANDOM NUMBERS 9

UNIT III RANDOM VARIATES 9

UNIT IV ANALYSIS OF SIMULATION DATA 9
Input modelling- Fitness tests – verification and validation of simulation models – output analysis for a single model, Comparison and evaluation of alternate system design, Optimization using simulation.
UNIT V SIMULATION LANGUAGES AND CASE STUDIES
Simulation languages and packages - Case studies in WITNESS; FLEXSIM, ARENA, SIMQUICK - Simulation based optimization - Modelling and Simulation with Petri nets - Case studies in manufacturing and material handling system - Monte Carlo Simulation. Simulation of Single Server Queuing System. Simulation of manufacturing shop - Simulation of Inventory System

TOTAL: 45 PERIODS

OUTCOMES
CO1: Explain the Manufacturing Models of Discrete event systems
CO2: Develop the Uncertainty using Random numbers and Random Variates
CO3: Analyze the verification & valediction of Models and Optimization
CO4: Demonstrate the concepts of modeling layers of society's critical infrastructure networks
CO5: Make use of tools to view and control simulations

REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>(5/5)=1</td>
<td>(15/5)=3</td>
<td>(5/5)=1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CM4016 MANUFACTURING INFORMATION SYSTEMS

OBJECTIVES:
- To introduce the evolution of order policies and agile manufacturing information systems
- To elaborate database terminologies, data models, data independence and trends in database
- To impart knowledge on database designing, normalization types and query languages
- To give an overview of modules involved in inventory, process flow and shop floor control
- To be acquainted with integration of the modules to function as a single application that aids different departments of factory

UNIT I INTRODUCTION:
The Evolution of order policies, from MRP to MRP II to ERP – Agile Manufacturing Information Systems, Manufacturing Database Integration.

UNIT II DATABASE:

UNIT III DESIGNING DATABASE:
Hierarchical model – Network approach - Relational Database concepts, principles, keys,- functional dependency – Normalization types – relational operations- Query Languages-Case studies.

UNIT IV MANUFACTURING CONSIDERATION:
The product and its structure, inventory and process flow – Shop floor control Data structure and procedure – various models – the order scheduling module, Input/output analysis module, and stock status database – the complete IOM database.
UNIT V INFORMATION SYSTEM FOR MANUFACTURING: 10
Parts oriented production information system – concepts and structure – Computerized production scheduling, online production control systems, Computer based production management system, computerized manufacturing information system -RFID-Telecommunication– case study.

TOTAL: 45 PERIODS

OUTCOMES
At the end of this course, the students shall be able to
CO1: Perceive the evolution of order policies, agile manufacturing information systems and manufacturing database integration
CO2: Explain the database terminologies, data models, data independence and trends in database
CO3: Acquire knowledge on database designing, normalization types and query languages
CO4: Elaborate modules involved in inventory, process flow and shop floor control
CO5: Understand the integration of the modules to function as a single application that aids different departments of factory

REFERENCES
8. www.ist.psu.edu

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>(7/5)=1.4</td>
</tr>
</tbody>
</table>

CM4017 SUSTAINABLE MANUFACTURING L T P C

COURSE OBJECTIVES
- To be acquainted with sustainability in manufacturing and its evaluation.
- To provide knowledge in environment and social sustainability.
- To provide the student with the knowledge of strategy to achieve sustainability.
- To familiarize with trends in sustainable operations.
- To create awareness in current sustainable practices in manufacturing industry.

UNIT I ECONOMIC SUSTAINABILITY 9

54
UNIT II SOCIA L AND ENVIRONMENTAL SUSTAINABILITY

UNIT III SUSTAINABILITY PRACTICES
Sustainability awareness - Measuring Industry Awareness-Drivers and barriers -Availability of sustainability indicators -Analysis of sustainability practicing -Modeling and assessment of sustainable practicing -Sustainability awareness -Sustainability drivers and barriers -Availability of sustainability indicators- Designing questionnaires- Optimizing Sustainability Indexes-Elements – Cost and time model.

UNIT IV MANUFACTURING STRATEGY FOR SUSTAINABILITY
Concepts of competitive strategy and manufacturing strategies and development of a strategic improvement programme - Manufacturing strategy in business success strategy formation and formulation - Structured strategy formulation - Sustainable manufacturing system design options - Approaches to strategy formulation - Realization of new strategies/system designs.

UNIT V TRENDS IN SUSTAINABLE OPERATIONS

COURSE OUTCOMES:
At the end of this course, the students shall be able to:
CO1: Discuss the importance of economic sustainability.
CO2: Describe the importance of sustainable practices.
CO3: Identify drivers and barriers for the given conditions.
CO4: Formulate strategy in sustainable manufacturing.
CO5: Plan for sustainable operation of industry with environmental, cost consciousness.

TOTAL: 45 PERIODS

REFERENCES:
OBJECTIVES:
- Describe an idea about ERP
- Creating awareness of core and extended modules of ERP
- Extract knowledge of ERP implementation cycle
- Gaining knowledge about effects of ERP after its implementation.
- Understanding the emerging trends on ERP

UNIT I INTRODUCTION 9
Overview of enterprise systems – Evolution - Risks and benefits - Fundamental technology - Issues to be consider in planning design and implementation of cross functional integrated ERP systems.

UNIT II ERP SOLUTIONS AND FUNCTIONAL MODULES 9
Overview of ERP software solutions- Small, medium and large enterprise vendor solutions, BPR, and best business practices - Business process Management, Functional modules.

UNIT III ERP IMPLEMENTATION 9

UNIT IV POST IMPLEMENTATION 9
Maintenance of ERP- Organizational and Industrial impact; Success and Failure factors of ERP Implementation.

UNIT V EMERGING TRENDS ON ERP 9
Extended ERP systems and ERP add-ons - CRM, SCM, Business analytics - Future trends in ERP systems-web enabled, Wireless technologies, cloud computing

TOTAL: 45 PERIODS

OUTCOMES
CO1: Get an idea about ERP
CO2: Awareness of core and extended modules of ERP
CO3: Knowledge of ERP implementation cycle
CO4: Gain knowledge about effects of ERP after its implementation
CO5: Understand the emerging trends on ERP

REFERENCES
3. MahadeoJaiswal and Ganesh Vanapalli, ERP Macmillan India, 2009

CO-PO MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES
The main learning objective of this course is to prepare the students for:
1. Selecting the different machine tool mechanisms.
2. Designing the Multi speed Gear Box and feed drives.
3. Designing the machine tool structures.
4. Designing the guideways and power screws.
5. Designing the spindles and bearings.

UNIT I INTRODUCTION TO MACHINE TOOL DESIGN 9

UNIT II REGULATION OF SPEEDS AND FEEDS 9
Aim of Speed and Feed Regulation, Stepped Regulation of Speeds, Multiple Speed Motors, Ray Diagrams and Design Considerations, Design of Speed Gear Boxes, Feed Drives, Feed Box Design

UNIT III DESIGN OF MACHINE TOOL STRUCTURES 9

UNIT IV DESIGN OF GUIDEWAYS AND POWER SCREWS 9

UNIT V DESIGN OF SPINDLES AND SPINDLE SUPPORT 9

TOTAL = 45 PERIODS

OUTCOMES:
On Completion of the course the student will be able to
1. Select the different machine tool mechanisms.
2. Design the Multi speed Gear Box and feed drives.
3. Design the machine tool structures.
4. Design the guideways and power screws.
5. Design the spindles and bearings.

REFERENCES:
OBJECTIVES:

- To teach the different aspects of manufacturing and competitiveness
- To identify the flow design for products
- To make the students select job design and work measurement
- To train the students to evaluate MRP systems and inventory models
- To create the ability to apply reengineering concepts in manufacturing

UNIT I INTRODUCTION:

Elements – Manufacturing Strategies and competitiveness - Meeting the competitive project management.

UNIT II DESIGNING OF PRODUCTS:

UNIT III DESIGN OF FACILITIES AND JOBS:

Capacity planning – Strategies – Planning service capacity – JIT – Facility location and layout – Job design and work measurement.

UNIT IV INVENTORY SYSTEMS AND MRP:

Definition – Purposes of inventory – Inventory models – Fixed order quantity models and fixed-time period models. MRP Systems – MRP system structures – Improvements for MRP systems – Advanced MRP-Type systems.

UNIT V REVISITING THE SYSTEM:

TOTAL: 45 PERIODS

OUTCOME:

CO1: Able to classify the different aspects of manufacturing
CO2: Able to identify the flow design for products
CO3: Ability to evaluate MRP systems and inventory models
CO4: Capacity to select job design and work measurement
CO5: Know the procedure to apply reengineering concepts in manufacturing
REFERENCES:

CM4019 DESIGN OF FLUID POWER SYSTEMS

OBJECTIVE:
- To explain the principles of Hydraulic actuation systems and valves
- To learn hydraulic circuits suitable for different applications
- To get exposure on principles of Pneumatic systems and Pneumatic circuits
- To learn various designing methods of Pneumatic circuits
- To understand the applications of computer control in fluid power

UNIT I OIL HYDRAULIC SYSTEMS: 9
Hydraulic Power Generators - Selection and specification of pumps, pump characteristics - Linear and Rotary Actuators - selection, specification and characteristics - Pressure - direction and flow control valves - relief valves, non-return and safety valves - Hydraulic actuation systems.

UNIT II HYDRAULIC CIRCUIT DESIGN: 9

UNIT III PNEUMATIC SYSTEMS AND CIRCUITS: 9
Pneumatic fundamentals - control elements, position and pressure sensing - logic circuits - switching circuits - fringe conditions - modules and their integration.

UNIT IV PNEUMATIC CIRCUIT DESIGN: 9

UNIT V COMPUTER CONTROL AND MAINTENANCE OF FLUID POWER CIRCUITS: 9
Fuzzy logic in fluid power circuits- PLC in fluid powers- PLC ladder diagram – Low cost automation - Robotic circuits - Installation -Fault finding in fluid power circuits.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of this course, the students will be able to
CO1: Demonstrate various Hydraulic actuation systems and valves
CO2: Design and analyse hydraulic circuits
CO3: Design and analyse pneumatic circuits
CO4: Choose a suitable designing method for a pneumatic circuit
CO5: Apply fuzzy logic in fluid power and to identify suitable maintenance methods
REFERENCES

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>(10/5)=2</td>
<td>(11/5)=2.2</td>
<td>(5/2)=2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IL4092 PROJECT MANAGEMENT

OBJECTIVES:
Compare various models used in project selection.
Define project planning, and estimate the cost involved.
Apply network techniques for project scheduling and resource allocation.
Summarize the information needed planning, monitoring and controlling cycle of a project.
Recognize the values of project audit.

UNIT I STRATEGIC MANAGEMENT AND PROJECT SELECTION 9
Project selection models, Project portfolio process, Analysis under uncertainty, Project organization, Matrix organization

UNIT II PROJECT PLANNING AND COST ESTIMATION 9

UNIT III PROJECT IMPLEMENTATION 9
Scheduling: Network Techniques PERT and CPM, Risk analysis using simulation, CPM- crashing a project, Resource loading, leveling, and allocation.

UNIT IV MONITORING AND INFORMATION SYSTEMS 9
Information needs and the reporting process, computerized PMIS, Earned value analysis, Planning-Monitoring-Controlling cycle, Project control: types of control processes, design of control systems, control of change and scope

UNIT V PROJECT AUDITING 9
Construction and use of audit report, Project audit life cycle, Essentials of audit and evaluation, Varieties of project termination, the termination process, The Final Report – A project history

OUTCOMES:
CO1 - Understand various models used in project selection.

TOTAL: 45 PERIODS
CO2 - Acquire knowledge in project planning, and estimate the cost involved.
CO3 - Prepare Project Scheduling and resource allocation.
CO4 - Understand about planning, monitoring and controlling cycle of a project.
CO5 - Understand the values of project audit.

REFERENCES:

CM4020 RELIABILITY AND TOTAL PRODUCTIVE MAINTENANCE

OBJECTIVE:
• To gain an insight on Reliability function and life time calculations relevant to maintenance
• To get familiarized with various failure data analysis methods
• To be acquainted with various reliability prediction methods
• To get accustomed with reliability estimation techniques
• To understand the concepts of Total Productive Maintenance

UNIT I INTRODUCTION
Reliability function - MTBF - MTTF - mortality curve - availability - Maintainability.

UNIT II FAILURE DATA ANALYSIS:
Repair time distributions - exponential, normal, log normal, gamma, and Weibull - reliability data requirements - Graphical evaluation.

UNIT III RELIABILITY PREDICTION:

UNIT IV RELIABILITY MANAGEMENT:
Reliability demonstration testing - Reliability growth testing - Duane curve - Risk assessment - FMEA, Fault tree.

UNIT V TOTAL PRODUCTIVE MAINTENANCE:

TOTAL: 45 PERIODS
OUTCOMES:
At the end of this course, the students shall be able to
CO1: Use the Reliability function and life time calculations relevant to maintenance
CO2: Apply the failure data analysis methods
CO3: Deploy various reliability prediction methods
CO4: Apply the reliability estimation techniques
CO5: Take advantage of Total Productive Maintenance concepts

REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>(5/5)=1</td>
<td>(15/5)=3</td>
<td>(3/1)=3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CM4021 SENSORS FOR MANUFACTURING AND CONDITION MONITORING L T P C
3 0 0 3

OBJECTIVES:
- To make students familiar with various sensors in manufacturing and signal processing.
- To impart knowledge on sensors used in workpiece monitoring.
- To explain various sensors used in machine tool monitoring.
- To learn various sensors used in machining process monitoring.
- To brief the advanced and smart sensor technologies.

UNIT I INTRODUCTION TO SENSORS
Role of sensors in manufacturing and condition monitoring – Principles – Classification Applications – Basic requirements of sensor – Signal processing and decision making.

UNIT II SENSORS FOR WORKPIECE MONITORING
Mechanical, Electrical, Electro-mechanical, Opto-electrical, Optical, Pneumatic, Capacitance, Eddy-current and Magnetic sensors.

UNIT III SENSORS FOR MACHINE TOOL MONITORING
Position measurements: Linear, angular and velocity sensors – Calibration of machine tools – Collision detection measurements.
UNIT IV SENSORS FOR MACHINING PROCESSES

UNIT V ADVANCED SENSORS

TOTAL: 45 PERIODS

OUTCOME:
At the end of this course, the students shall be able to:
CO1: Recognize the importance of sensors and condition monitoring in manufacturing.
CO2: Identify suitable sensors for monitoring workpiece during machining operation.
CO3: Identify suitable sensors for monitoring machine tool during machining operation.
CO4: Identify suitable sensors in monitoring the machining process.
CO5: Perceive the usage and importance of advanced sensors in manufacturing industries.

REFERENCES

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>(5/5)=1</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES
1. To expose the students to the basics of environmental sustainability and impact assessment objectives.
2. To incorporate knowledge about the environmental based improvements towards lean manufacturing systems.
3. To analyze various machineries with intent to conserve energy.
4. To analyze hazardous and solid wastes with intent to point out areas of adverse environmental impact and how this impact could be minimized or prevented.
5. To impart the knowledge about the need, procedure and benefits of Green-Co rating.

UNIT – I ENVIRONMENTAL SUSTAINABILITY AND IMPACT ASSESSMENT
Environmental impact assessment objectives – Legislative development – European community directive – Hungarian directive. Strategic environmental assessment and sustainability appraisal. Regional spatial planning and environmental policy.

UNIT – II LEAN MANUFACTURING AND GREEN ENERGY SYSTEM

UNIT – III ENERGY SAVING MACHINERY AND COMPONENTS

UNIT – IV HAZARDOUS AND SOLID WASTE MANAGEMENT

UNIT – V GREEN CO-RATING

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
CO1: Understand the Concepts of environmental sustainability and environmental impact assessment objectives
CO2: Apply suitable schemes towards design of green manufacturing requirements.
CO3: Analyze manufacturing processes towards conservation of energy.
CO4: Analyze manufacturing processes towards minimization or prevention of hazardous and solid wastes.
CO5: Acquire Knowledge of green co-rating and its benefits are well known to the students.
CM4022 MATERIAL CHARACTERIZATION TECHNIQUES

OBJECTIVES:
- To impart knowledge in specimen preparation techniques, microstructure evaluation of materials.
- To elaborate X-ray diffraction techniques and crystal structure identification.
- To acquire knowledge in various microscopy techniques.
- To get insights into different methods of chemical and thermal analysis.
- To understand and practice various mechanical testing methods.

UNIT I MICRO STRUCTURAL EVALUATION: 9

UNIT II CRYSTAL STRUCTURE ANALYSIS: 9

UNIT III ELECTRON MICROSCOPY: 9

UNIT IV CHEMICAL AND THERMAL ANALYSIS: 9
Basic principles, practice and applications of X-ray spectrometry, Wave dispersive X-ray spectrometry, Auger spectroscopy, Secondary ion mass spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR) – proton induced X-ray Emission spectroscopy, Differential thermal analysis, Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA).
UNIT V MECHANICAL TESTING:

OUTCOME:
CO1: Apply various material characterization techniques for research and analysis.
CO2: Evaluation of microstructure for materials
CO3: Explain the crystal structure analysis, electron microscopy
CO4: Analyze the Chemical, Thermal analysis
CO5: Make use of mechanical testing methods.

REFERENCES

<table>
<thead>
<tr>
<th>PO</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>Avg</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>(15/5)=3</td>
<td>(7/5)=1.4</td>
<td>(2/1)=2</td>
<td>(2/1)=2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CM4023 TOOL ENGINEERING
OBJECTIVES:
- To introduce the various materials and tools for production of components.
- To impart knowledge in design of various cutting tools and its nomenclature.
- To familiarize in designing dies for various processes.
- To understand the design of differenter jigs and fixtures
- To be acquainted with various gauges and tool design for CNC machines.

UNIT I INTRODUCTION:
Broad Classification of Tools-Cutting tools, Dies, Holding and Measuring tools, Tool materials and heat treatment- Ferrous, Non-ferrous and Non metallic materials, tool making practices.
UNIT II DESIGN OF CUTTING TOOLS: 9
Single Point Cutting Tools: Classification, Nomenclature, geometry, design of single point tools for lathes, shapers, planers etc. Chip breakers and their design. Multipoint Cutting Tools: Classification and specification, nomenclature, Design of drills, milling cutters, broaches, taps etc. Design of Form Tools: Flat and circular form tools, their design and applications.

UNIT III DESIGN OF DIES: 9

UNIT IV DESIGN OF JIGS AND FIXTURES: 9
Classification of Jigs and Fixtures, Fundamental Principles of design of Jigs and Fixtures, Location and Clamping in Jigs and fixtures, Simple design for drilling Jigs, Milling fixtures etc. Indexing Jigs and fixtures.

UNIT V DESIGN OF LIMIT GAUGES AND TOOL DESIGN FOR CNC MACHINES: 9
Fixed gauges, gauge tolerances, indicating gauges, automatic gauges, selection of materials, tool design for CNC machines- fixture design, cutting tools, tool holding, tool pre-setter, automatic tool changers and positioners.

TOTAL: 45 PERIODS

OUTCOMES:
CO1: Apply domain knowledge will increase their employability skills
CO2: Make use of this knowledge to develop innovative ideas work holding methods
CO3: Explain the encourages to involve in research in the area of machining
CO4: Improve the design of jigs and fixtures
CO5: Identify the measuring gauges

REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td></td>
<td>(1/1)=1</td>
<td>(4/2)=2</td>
<td>(5/5)=1</td>
<td>(10/4)=2.5</td>
<td>(8/4)=2</td>
<td>(2/1)=2</td>
</tr>
</tbody>
</table>

CM4024 TOTAL QUALITY SYSTEMS AND ENGINEERING L T P C
3 0 0 3

OBJECTIVE:
- To gain an insight on Totally quality systems
- To get familiarized with various quality audit systems
- To get acquainted with elements of TQM
- To appreciate implementation of quality by design concepts
- To get acquainted with the laws that governs the product quality and safety
UNIT I INTRODUCTION: 9
Definition of Quality and TQM - Importance of quality - Principles of Quality Management - Pioneers of TQM - Quality costs - Customer Orientation - Benchmarking - Re-engineering - Concurrent Engineering.

UNIT II PRACTICES OF TQM: 9

UNIT III TECHNIQUES OF TQM: 9

UNIT IV QUALITY BY DESIGN: 9

UNIT V PRODUCTS LIABILITY: 9

TOTAL: 45 PERIODS

OUTCOMES:
At the end of this course, the students shall be able to
CO1: Assess the Totally quality system concepts
CO2: Recognize various quality audit systems
CO3: Evaluate various elements of TQM
CO4: Implement the quality by design concepts
CO5: Recognize the laws that governs the product quality and safety

REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>(5/5)=1</td>
<td>(10/5)=2</td>
<td>(15/5)=3</td>
<td>(10/5)=2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OBJECTIVES:
- To impart knowledge on various layout planning methods
- To get familiarized with various racking systems
- To gain an insight on material handling systems
- To learn various part feeding methods, optimum design of feeding routes and feeding methods
- To develop knowledge on warehouse management systems, safety requirements of warehouse panning

UNIT I LAYOUT PLANNING: 8
- Layout Planning - Importance of Layout Planning - General Steps in Layout and Space Requirements
- Planning - Warehouse Activities - Determining Space Requirements – Develop realistic and Ideal Layout for Storage and Retrieval – Material storage methods for each part

UNIT II RACKING SYSTEMS FOR WAREHOUSE: 9

UNIT III MATERIAL HANDLING SYSTEMS FOR WAREHOUSE: 9
- Material Handling System - Material Flow Path - Selection Criteria to Determine Equipment - Material Handling Equipment Classification – MHE Manufacturer’s Worldwide Ranking - Comparison of Fork Lift, Reach Truck and Narrow Aisle Truck - MHE Service and Battery Charging - Crane Design Requirements

UNIT IV PART FEEDING: 10
- Part feeding - Number of Tow Truck Requirements - Calculations - Kitting Trolley Route Map - Kitting Time Estimation - Kitting Trolley Feeding Man Power Calculation - Kitting Trolley Design Methodology - Assumptions in Kitting Design - Kit Trolley Design - Key Warehouse Planning - Issues to be Considered during Warehouse Planning - Check List for Warehouse Layout Planning - Return on Assets

UNIT V WAREHOUSE MANAGEMENT SYSTEMS, SAFETY AND STAFFING 9

TOTAL: 45 PERIODS

OUTCOMES:
CO1: Apply the Design and plan warehouse layouts
CO2: Explain the Plan racking systems
CO3: Make use of material handling systems for warehouse requirements.
CO4: To take advantage of various part feeding mechanisms
CO5: Develop knowledge on warehouse management systems and identify the safety requirements of warehouse panning
REFERENCES
1. Bartholdi, J.J. and Hackman, S.T., "Warehouse & Distribution science", Release 0.89, The Supply chain and logistics Institute, School of Industrial and systems Engineering, Georgia Institute of technology, Atlanta, GA 30332-0205 USA, Revised August 20, 2008.
3. Hanson, R., "In-plant materials supply: Supporting the choice between kitting and continuous supply", Department of Technology Management and Economics, Chalmers University of Technology, Gothenburg, Sweden 2012. (http://publications.lib.chalmers.se/records/fulltext/155418.pdf)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td></td>
<td>(15/5)=3</td>
<td></td>
<td>(5/5)=1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MR4071 INTERNET OF THINGS FOR MANUFACTURING

COURSE OBJECTIVES:
1. To understand the basics of IoT, Opportunities and challenges in IoT
2. To design a IoT solution
3. To develop an IoT prototype
4. To explain the various protocols used in IoT and Localization
5. To examine the applications of IoT in Manufacturing

UNIT I INTRODUCTION

UNIT II DESIGN OF IoT
Design challenges in IoT - Standardization, Security and privacy, Infrastructure, Analytics. Design steps for implementing IoT.

UNIT III PROTOTYPING OF IoT

UNIT IV PREREQUISITES FOR IoT
IOT Technologies Wireless protocols low-power design (Bluetooth Low Energy), range extension techniques (data mining and mesh networking), and data-intensive IoT for continuous recognition applications Data storage and analysis Localization algorithms Localization for mobile systems
Applications HCI and IoT world - Multilingual interactions Robotics and Autonomous Vehicles Sensing and data processing-Simultaneous mapping and localization-Levels of autonomy, Smart factories, Future research challenges

TOTAL : 45 PERIODS

OUTCOMES:
On completion of the course, the students will be able to
CO1: Identify the Opportunities and challenges in IoT
CO2: Propose a suitable IoT design
CO3: Develop an optimized IoT prototype
CO4: Understand the various protocols used in IoT and Localization
CO5: Understand the applications of IoT in Manufacturing

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Avg</td>
<td>(5/5)=1</td>
<td>(10/5)=2</td>
<td>(1/1)=1</td>
<td>(12/4)=3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IS4071 DATA ANALYTICS

COURSE OBJECTIVES:
1. Recognize the importance of data analytics
2. Exhibit competence on data analytics packages
3. Apply solution methodologies for industrial problems.

UNIT I INTRODUCTION

UNIT II MULTIPLE REGRESSION
Multiple Regression- Linear and Nonlinear techniques- Backward-Forward-Stepwise Hierarchical regression-Testing interactions (2way interaction) - Analysis of Variance and Covariance (ANOVA & ANCOVA) - Multivariate Analysis of Variance and Covariance (MANOVA & MANCOVA).
UNIT III LOGISTIC REGRESSION
Regression with binary dependent variable - Simple Discriminant Analysis Multiple Discriminant analysis-Assessing classification accuracy- Conjoint analysis (Full profile method).

UNIT IV PRINCIPAL COMPONENT ANALYSIS
Principal Component Analysis - Factor Analysis - Orthogonal and Oblique Rotation - Factor Score Estimation - Multidimensional Scaling - Perceptual Map - Cluster Analysis (Hierarchical Vs Nonhierarchical Clustering).

UNIT V LATENT VARIABLE MODELS
Latent Variable Models an Introduction to Factor, Path, and Structural Equation Analysis - Time series data analysis (ARIMA model) – Decision tree analysis (CHAID, CART) - Introduction to Big Data Management.

COURSE OUTCOMES:
On completion of the course, the student will be able to:
• To recognize the importance of data analytics
• To Exhibit competence on data analytics packages
• To apply solution methodologies for industrial problems.

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AVG</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high, ‘-‘- no correlation
AUDIT COURSES

AX4091 ENGLISH FOR RESEARCH PAPER WRITING L T P C 2 0 0 0

COURSE OBJECTIVES
- Teach how to improve writing skills and level of readability
- Tell about what to write in each section
- Summarize the skills needed when writing a Title
- Infer the skills needed when writing the Conclusion
- Ensure the quality of paper at very first-time submission

UNIT I INTRODUCTION TO RESEARCH PAPER WRITING 6
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT II PRESENTATION SKILLS 6

UNIT III TITLE WRITING SKILLS 6
Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check

UNIT IV RESULT WRITING SKILLS 6
Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions

UNIT V VERIFICATION SKILLS 6
Useful phrases, checking Plagiarism, how to ensure paper is as good as it could possibly be the first-time submission

TOTAL: 30 PERIODS

COUSE OUTCOMES
CO1 – Understand that how to improve your writing skills and level of readability
CO2 – Learn about what to write in each section
CO3 – Understand the skills needed when writing a Title
CO4 – Understand the skills needed when writing the Conclusion
CO5 – Ensure the good quality of paper at very first-time submission

REFERENCES
COURSE OBJECTIVES

- Summarize basics of disaster
- Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Develop the strengths and weaknesses of disaster management approaches

UNIT I INTRODUCTION 6
Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

UNIT II REPERCUSSIONS OF DISASTERS AND HAZARDS 6
Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

UNIT III DISASTER PRONE AREAS IN INDIA 6
Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides and Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT 6
Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT V RISK ASSESSMENT 6
Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People’s Participation in Risk Assessment. Strategies for Survival

COURSE OUTCOMES
CO1: Ability to summarize basics of disaster
CO2: Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
CO3: Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
CO4: Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
CO5: Ability to develop the strengths and weaknesses of disaster management approaches

REFERENCES
OBJECTIVES
Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional Role and entitlement to civil and economic rights as well as the emergence nation hood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

UNIT I HISTORY OF MAKING OF THE INDIAN CONSTITUTION
History, Drafting Committee, (Composition & Working)

UNIT II PHILOSOPHY OF THE INDIAN CONSTITUTION
Preamble, Salient Features

UNIT III CONTOURS OF CONSTITUTIONAL RIGHTS AND DUTIES

UNIT IV ORGANS OF GOVERNANCE
Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.

UNIT V LOCAL ADMINISTRATION
District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO, Municipal Corporation, Panchayat, Election, PRI: Zila Panchayat, Elected officials and their roles, CEO Zila Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

UNIT VI ELECTION COMMISSION
Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners - Institute and Bodies for the welfare of SC/ST/OBC and women.

TOTAL: 30 PERIODS

OUTCOMES
Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party (CSP) under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

SUGGESTED READING
- The Constitution of India, 1950 (Bare Act), Government Publication.
UNIT I சங்க இலக்கியம்
1. சங்க இலக்கியம் நூல் பாடல்கள்
 - சங்க பாடல், சங்க பொறுமை
2. அதைக்கும் (82)
 - இவ்வாறு இலக்கியக் கற்றுகூறும்
3. தமிழிய பாடல்கள் பக்துக்காட்டி
4. பெண் வாசியம் (95, 195)
 - பெண் நீண்டிய தமதுவர்

UNIT II அறநநறித் தமிழ்
1. அறநநறித் தமிழ் பொறுமை
 - அறநநறித், வழிகாட்டி, சீராடி, தமிழ் துணைக்
2. பொறுமை அறநநறித்
 - தமிழ், சீராடி, சீன், வழிகாட்டி, குழுக்காட்டிய (அறநநறித்

UNIT III இரட்டடக் காப்பியங்கள்
1. இரட்டடக் பிரிவாடியப்
 - வைத்திருக்கும் வயது காட்டி
2. இரட்டடக் காப்பியங்கள்
 - வைத்திருக்கும் அறநநறித் காட்டி

UNIT IV அருள்நநறித் தமிழ்
1. சிறுபொணொற்றுப்பகட
 - பொருள் முல்கல் பதர்
2. சிறுபொணொற்றுப்பகட
 - பொருள் முல்கல் பதர்
3. நற்றிகண்
 - அன்னைக்குரிய புட்டன்
4. திருமந்திரம் (617, 618)
 - இயந்திரம் நியமம்
5. புறநொனூறு
 - பொருள் முல்கல் பதர்
6. அகநொனூறு (4)
 - பொருள்
 - குருவிகள் (11)
 - பொறுமை
 - குருவிகள் (11)
 - பொருள், பொறு
 - குருவிகள் 50 (27)
 - பொறு
UNIT V நவீன தமிழ் இலக்கியம்

1. உகரநகத் தமிழ்,
 - குப்பியில் புத்தகங்கள்,
 - குப்பியில் சென்பிள்ளை,
 - குப்பியில் தமிழ் திடக்கத்,
 - பயண தமிழ் இலக்கியம்,
 - பயண தமிழ் இலக்கியம்,
 - குப்பியில்.
2. நொட்டுவிடுத்தகலும் பபொரொட்டமும் தமிழ் இலக்கியமும்,
3. முதொய விடுத்தகலயும் தமிழ் இலக்கியமும்,
4. தபண்பு விடுத்தகலயும் விளிம்பு நிகலையை வீதீட்டூரில் தமிழ் இலக்கியமும்,
5. அறிவியல் தமிழ்,
6. தொடர்ச்சிக் தமிழ்,
7. தமிழ்கல்வியை வீதீட்டூரில் தமிழ் இலக்கியமும்.

TOTAL: 30 PERIODS

தமிழ் இலக்கியம் வடிவியல் /புத்தகங்கள்

1. தமிழ் இகணயகல்வி கல்விக்கழகம் (Tamil Virtual University) - www.tamilvu.org
2. தமிழ் விக்கிப்பீடியொ (Tamil Wikipedia) - https://ta.wikipedia.org
3. வொழியல் உதுத்து கைசிய
4. வொழியல் கல்விக்கழகம் - தமிழ் படகல்கட்டகம் கதிரை
5. தமிழ்கல்வி கல்விக்கழகம் - தமிழ் வளர்ச்சிக் கைசிய (thamilvalarchithurai.com)
6. அறிவியல் கல்விக்கழகம் - தமிழ் படகல்கட்டகம் கதிரை
<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>PERIODS PER WEEK</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.</td>
<td>OCE431</td>
<td>Integrated Water Resources Management</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>28.</td>
<td>OCE432</td>
<td>Water, Sanitation and Health</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>29.</td>
<td>OCE433</td>
<td>Principles of Sustainable Development</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>30.</td>
<td>OCE434</td>
<td>Environmental Impact Assessment</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>31.</td>
<td>OIC431</td>
<td>Blockchain Technologies</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>32.</td>
<td>OIC432</td>
<td>Deep Learning</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>33.</td>
<td>OBA431</td>
<td>Sustainable Management</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>34.</td>
<td>OBA432</td>
<td>Micro and Small Business Management</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>35.</td>
<td>OBA433</td>
<td>Intellectual Property Rights</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>36.</td>
<td>OBA434</td>
<td>Ethical Management</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>37.</td>
<td>ET4251</td>
<td>IoT for Smart Systems</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>38.</td>
<td>ET4072</td>
<td>Machine Learning and Deep Learning</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>39.</td>
<td>PX4012</td>
<td>Renewable Energy Technology</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>40.</td>
<td>PS4093</td>
<td>Smart Grid</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>41.</td>
<td>CP4391</td>
<td>Security Practices</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>42.</td>
<td>MP4251</td>
<td>Cloud Computing Technologies</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>43.</td>
<td>IF4072</td>
<td>Design Thinking</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>44.</td>
<td>MU4153</td>
<td>Principles of Multimedia</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>45.</td>
<td>DS4015</td>
<td>Big Data Analytics</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>46.</td>
<td>NC4201</td>
<td>Internet of Things and Cloud</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>47.</td>
<td>MX4073</td>
<td>Medical Robotics</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>48.</td>
<td>VE4202</td>
<td>Embedded Automation</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>49.</td>
<td>CX4016</td>
<td>Environmental Sustainability</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>50.</td>
<td>TX4092</td>
<td>Textile Reinforced Composites</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>51.</td>
<td>NT4002</td>
<td>Nanocomposite Materials</td>
<td>3 0 0</td>
<td>3</td>
</tr>
</tbody>
</table>
OBJECTIVE

- Students will be introduced to the concepts and principles of IWRM, which is inclusive of the economics, public-private partnership, water & health, water & food security and legal & regulatory settings.

UNIT I CONTEXT FOR IWRM

Water as a global issue: key challenges – Definition of IWRM within the broader context of development – Key elements of IWRM - Principles – Paradigm shift in water management - Complexity of the IWRM process – UN World Water Assessment - SDGs.

UNIT II WATER ECONOMICS

Economic view of water issues: economic characteristics of water good and services – Non-market monetary valuation methods – Water economic instruments – Private sector involvement in water resources management: PPP objectives, PPP models, PPP processes, PPP experiences through case studies.

UNIT III LEGAL AND REGULATORY SETTINGS
Basic notion of law and governance: principles of international and national law in the area of water management - Understanding UN law on non-navigable uses of international water courses – International law for groundwater management – World Water Forums – Global Water Partnerships - Development of IWRM in line with legal and regulatory framework.

UNIT IV WATER AND HEALTH WITHIN THE IWRM CONTEXT 9

Links between water and health: options to include water management interventions for health – Health protection and promotion in the context of IWRM – Global burden of Diseases - Health impact assessment of water resources development projects – Case studies.

UNIT V AGRICULTURE IN THE CONCEPT OF IWRM 9

Water for food production: ‘blue’ versus ‘green’ water debate – Water foot print - Virtual water trade for achieving global water and food security — Irrigation efficiencies, irrigation methods - current water pricing policy– scope to relook pricing.

TOTAL: 45 PERIODS

OUTCOMES

- On completion of the course, the student is expected to be able to

<table>
<thead>
<tr>
<th>CO</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Describe the context and principles of IWRM; Compare the conventional and integrated ways of water management.</td>
</tr>
<tr>
<td>CO2</td>
<td>Select the best economic option among the alternatives; illustrate the pros and cons of PPP through case studies.</td>
</tr>
<tr>
<td>CO3</td>
<td>Apply law and governance in the context of IWRM.</td>
</tr>
<tr>
<td>CO4</td>
<td>Discuss the linkages between water-health; develop a HIA framework.</td>
</tr>
<tr>
<td>CO5</td>
<td>Analyse how the virtual water concept pave way to alternate policy options.</td>
</tr>
</tbody>
</table>

REFERENCES:

CO – PO Mapping - INTEGRATED WATER RESOURCES MANAGEMENT
<table>
<thead>
<tr>
<th>POs/PSOs</th>
<th>Course Outcome</th>
<th>Overall Correlation of COs to POs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1 Knowledge of Engineering Sciences</td>
<td>3 2 2 2 2</td>
<td>2</td>
</tr>
<tr>
<td>PO2 Problem analysis</td>
<td>1 3 2 2 2</td>
<td>2</td>
</tr>
<tr>
<td>PO3 Design / development of solutions</td>
<td>2 2 2 2</td>
<td>2</td>
</tr>
<tr>
<td>PO4 Investigation</td>
<td>1 2 1 1</td>
<td>1</td>
</tr>
<tr>
<td>PO5 Modern Tool Usage</td>
<td>1 1 2 1 1</td>
<td>1</td>
</tr>
<tr>
<td>PO6 Individual and Team work</td>
<td>2 2</td>
<td>2</td>
</tr>
<tr>
<td>PO7 Communication</td>
<td>2 2</td>
<td>2</td>
</tr>
<tr>
<td>PO8 Engineer and Society</td>
<td>2 2 3 3 3 3</td>
<td>3</td>
</tr>
<tr>
<td>PO9 Ethics</td>
<td>2 3 2 2 2</td>
<td>2</td>
</tr>
<tr>
<td>PO10 Environment and Sustainability</td>
<td>3 3 3 3 3</td>
<td>3</td>
</tr>
<tr>
<td>PO11 Project Management and Finance</td>
<td>1 1 1 1</td>
<td>1</td>
</tr>
<tr>
<td>PO12 Life Long Learning</td>
<td>2 2 2 2 2</td>
<td>2</td>
</tr>
<tr>
<td>PSO1 Knowledge of field research methodology, gender, legal and environmental aspects in the context of integrated water resources management</td>
<td>3 2 2 2 2</td>
<td>2</td>
</tr>
<tr>
<td>PSO2 Formulate, analyze and comprehend the differences in social and environmental variability in South Indian context with their peers and strive to work towards sustainability</td>
<td>2 2 2 2 2</td>
<td>2</td>
</tr>
<tr>
<td>PSO3 Produce and publish professional reports, peer-reviewed journal, on contemporary and state of the art research in integrated water resources management</td>
<td>2 2 2 2 2</td>
<td>2</td>
</tr>
</tbody>
</table>

OBJECTIVES:

- Understand the accelerating health impacts due to the present managerial aspects and initiatives in water and sanitation and health sectors in the developing scenario

UNIT I FUNDAMENTALS WASH

Meanings and Definition: Safe Water- Health, Nexus: Water- Sanitation - Health and Hygiene – Equity issues-Water security - Food Security. Sanitation And Hygiene (WASH) and Integrated Water Resources Management (IWRM) - Need and Importance of WASH
UNIT II MANAGERIAL IMPLICATIONS AND IMPACT

UNIT III CHALLENGES IN MANAGEMENT AND DEVELOPMENT

UNIT IV GOVERNANCE

Public health - Community Health Assessment and Improvement Planning (CHA/CHIP) - Infrastructure and Investments on Water, (WASH) - Cost Benefit Analysis – Institutional Intervention - Public Private Partnership - Policy Directives - Social Insurance - Political Will vs Participatory Governance.

UNIT V INITIATIVES

Management vs Development - Accelerating Development - Development Indicators - Inclusive Development - Global and Local - Millennium Development Goal (MDG) and Targets - Five Year Plans - Implementation - Capacity Building - Case studies on WASH.

TOTAL: 45 PERIODS

OUTCOMES:

<table>
<thead>
<tr>
<th>CO1</th>
<th>Capture to fundamental concepts and terms which are to be applied and understood all through the study.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Comprehend the various factors affecting water sanitation and health through the lens of third world scenario.</td>
</tr>
<tr>
<td>CO3</td>
<td>Critically analyse and articulate the underlying common challenges in water, sanitation and health.</td>
</tr>
<tr>
<td>CO4</td>
<td>Acquire knowledge on the attributes of governance and its say on water sanitation and health.</td>
</tr>
<tr>
<td>CO5</td>
<td>Gain an overarching insight in to the aspects of sustainable resource management in the absence of a clear level playing field in the developmental aspects.</td>
</tr>
</tbody>
</table>

REFERENCES

CO PO MAPPING : WATER, SANITATION AND HEALTH

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>Course Outcome</th>
<th>Overall Correlation of COs to POs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO1</td>
<td>CO2</td>
</tr>
<tr>
<td>PO1</td>
<td>Knowledge of Engineering Sciences</td>
<td>1</td>
</tr>
<tr>
<td>PO2</td>
<td>Problem analysis</td>
<td>2</td>
</tr>
<tr>
<td>PO3</td>
<td>Design / development of solutions</td>
<td>2</td>
</tr>
<tr>
<td>PO4</td>
<td>Investigation</td>
<td>2</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td></td>
</tr>
<tr>
<td>PO6</td>
<td>Individual and Team work</td>
<td>2</td>
</tr>
<tr>
<td>PO7</td>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>PO8</td>
<td>Engineer and Society</td>
<td>3</td>
</tr>
<tr>
<td>PO9</td>
<td>Ethics</td>
<td>1</td>
</tr>
<tr>
<td>PO10</td>
<td>Environment and Sustainability</td>
<td></td>
</tr>
<tr>
<td>PO11</td>
<td>Project Management and Finance</td>
<td></td>
</tr>
<tr>
<td>PO12</td>
<td>Life Long Learning</td>
<td>2</td>
</tr>
<tr>
<td>PSO1</td>
<td>Explain the concepts of water management, field research methodology, gender, legal and environmental aspects in the context of integrated water resources management</td>
<td>3</td>
</tr>
<tr>
<td>PSO2</td>
<td>Formulate, analyse and comprehend the differences in social and economic variability in South Asian context with their peers and strive to work towards sustainability.</td>
<td>3</td>
</tr>
<tr>
<td>PSO3</td>
<td>Produce and publish professional reports, peer reviewed journal on contemporary and state of art research in water resources Engineering.</td>
<td>3</td>
</tr>
</tbody>
</table>

OCE433 PRINCIPLES OF SUSTAINABLE DEVELOPMENT

OBJECTIVES:
To impart knowledge on environmental, social and economic dimensions of sustainability and the principles evolved through landmark events so as to develop an action mindset for sustainable development.

UNIT I SUSTAINABILITY AND DEVELOPMENT CHALLENGES 9

UNIT II PRINCIPLES AND FRAMEWORK 9

UNIT III SUSTAINABLE DEVELOPMENT AND WELLBEING 9

UNIT IV SUSTAINABLE SOCIO-ECONOMIC SYSTEMS 10

UNIT V ASSESSING PROGRESS AND WAY FORWARD 8

TOTAL: 45 PERIODS
OUTCOMES:

- On completion of the course, the student is expected to be able to

<table>
<thead>
<tr>
<th>CO1</th>
<th>Explain and evaluate current challenges to sustainability, including modern world social, environmental, and economic structures and crises.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Identify and critically analyze the social environmental, and economic dimensions of sustainability in terms of UN Sustainable development goals</td>
</tr>
<tr>
<td>CO3</td>
<td>Develop a fair understanding of the social, economic and ecological linkage of Human well being, production and consumption</td>
</tr>
<tr>
<td>CO4</td>
<td>Evaluate sustainability issues and solutions using a holistic approach that focuses on connections between complex human and natural systems.</td>
</tr>
<tr>
<td>CO5</td>
<td>Integrate knowledge from multiple sources and perspectives to understand environmental limits governing human societies and economies and social justice dimensions of sustainability.</td>
</tr>
</tbody>
</table>

REFERENCES:

CO – PO Mapping – Principles of Sustainable Development

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>Course Outcome</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Knowledge of Engineering Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO2</td>
<td>Problem analysis</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO3</td>
<td>Design / development of solutions</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO4</td>
<td>Investigation</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO6</td>
<td>Individual and Team work</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO7</td>
<td>Communication</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PO8</td>
<td>Engineer and Society</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO9</td>
<td>Ethics</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO10</td>
<td>Environment and Sustainability</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
OBJECTIVES:

- To make the students to understand environmental clearance, its legal requirements and to provide knowledge on overall methodology of EIA, prediction tools and models, environmental management plan and case studies.

UNIT I INTRODUCTION

UNIT II IMPACT IDENTIFICATION AND PREDICTION

UNIT III SOCIO-ECONOMIC IMPACT ASSESSMENT

Socio-economic impact assessment - relationship between social impacts and change in community and institutional arrangements. factors and methodologies- individual and family level impacts. communities in transition-rehabilitation

UNIT IV EIA DOCUMENTATION AND ENVIRONMENTAL MANAGEMENT PLAN

Environmental management plan - preparation, implementation and review – mitigation and rehabilitation plans – policy and guidelines for planning and monitoring programmes – post project audit – documentation of EIA findings – ethical and quality aspects of environmental impact assessment
UNIT V CASE STUDIES

Mining, power plants, cement plants, highways, petroleum refining industry, storage & handling of hazardous chemicals, common hazardous waste facilities, CETPs, CMSWMF, building and construction projects

TOTAL: 45 PERIODS

OUTCOMES:

- On completion of the course, the student is expected to be able to

CO1	Understand need for environmental clearance, its legal procedure, need of EIA, its types, stakeholders and their roles
CO2	Understand various impact identification methodologies, prediction techniques and model of impacts on various environments
CO3	Understand relationship between social impacts and change in community due to development activities and rehabilitation methods
CO4	Document the EIA findings and prepare environmental management and monitoring plan
CO5	Identify, predict and assess impacts of similar projects based on case studies

REFERENCES:

1. EIA Notification 2006 including recent amendments, by Ministry of Environment, Forest and Climate Change, Government of India
2. Sectoral Guidelines under EIA Notification by Ministry of Environment, Forest and Climate Change, Government of India

CO – PO Mapping- ENVIRONMENTAL IMPACT ASSESSMENT

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>Course Outcome</th>
<th>Overall Correlation of COs to Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO1</td>
<td>CO2</td>
</tr>
<tr>
<td>PO1</td>
<td>Knowledge of Engineering Sciences</td>
<td>3</td>
</tr>
<tr>
<td>PO2</td>
<td>Problem analysis</td>
<td>2</td>
</tr>
<tr>
<td>PO3</td>
<td>Design / development of solutions</td>
<td>3</td>
</tr>
<tr>
<td>PO4</td>
<td>Investigation</td>
<td>2</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td>2</td>
</tr>
</tbody>
</table>
OIC431 BLOCKCHAIN TECHNOLOGIES L T P C

3 0 0 3

COURSE OBJECTIVES:
- This course is intended to study the basics of Blockchain technology.
- During this course the learner will explore various aspects of Blockchain technology like application in various domains.
- By implementing, learners will have idea about private and public Blockchain, and smart contract.

UNIT I INTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN 9
Introduction to Blockchain, Blockchain Technology Mechanisms & Networks, Blockchain Origins, Objective of Blockchain, Blockchain Challenges, Transactions and Blocks, P2P Systems, Keys as Identity, Digital Signatures, Hashing, and public key cryptosystems, private vs. public Blockchain.

UNIT II BITCOIN AND CRYPTOCURRENCY 9

UNIT III INTRODUCTION TO ETHEREUM 9
Introduction to Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum Accounts, , Transactions, Receiving Ethers, Smart Contracts.

UNIT-IV INTRODUCTION TO HYPERLEDGER AND SOLIDITY PROGRAMMING 10

UNIT V BLOCKCHAIN APPLICATIONS 8
Internet of Things, Medical Record Management System, Domain Name Service and Future of Blockchain, Alt Coins.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After the completion of this course, student will be able to

CO1: Understand and explore the working of Blockchain technology
CO2: Analyze the working of Smart Contracts
CO3: Understand and analyze the working of Hyperledger
CO4: Apply the learning of solidity to build de-centralized apps on Ethereum
CO5: Develop applications on Blockchain

REFERENCES:

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>CO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2.00</td>
<td>1.00</td>
<td>2.50</td>
<td>2.25</td>
<td>2.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

OIC432 DEEP LEARNING

COURSE OBJECTIVES:
- Develop and Train Deep Neural Networks.
- Develop a CNN, R-CNN, Fast R-CNN, Faster-R-CNN, Mask-RCNN for detection and recognition
- Build and train RNNs, work with NLP and Word Embeddings
- The internal structure of LSTM and GRU and the differences between them
- The Auto Encoders for Image Processing

UNIT I DEEP LEARNING CONCEPTS

UNIT II NEURAL NETWORKS

UNIT III CONVOLUTIONAL NEURAL NETWORK

UNIT VI NATURAL LANGUAGE PROCESSING USING RNN

UNIT V DEEP REINFORCEMENT & UNSUPERVISED LEARNING

COURSE OUTCOMES:

CO1: Feature Extraction from Image and Video Data
CO2: Implement Image Segmentation and Instance Segmentation in Images
CO3: Implement image recognition and image classification using a pretrained network (Transfer Learning)
CO4: Traffic Information analysis using Twitter Data
CO5: Autoencoder for Classification & Feature Extraction

TOTAL : 45 PERIODS

REFERENCES

1. Deep Learning A Practitioner’s Approach Josh Patterson and Adam Gibson O’Reilly Media,
OBA431 SUSTAINABLE MANAGEMENT

COURSE OBJECTIVES:

To provide students with fundamental knowledge of the notion of corporate sustainability.

To determine how organizations impacts on the environment and socio-technical systems, the relationship between social and environmental performance and competitiveness, the approaches and methods.

UNIT I MANAGEMENT OF SUSTAINABILITY 9

Management of sustainability - rationale and political trends: An introduction to sustainability management, International and European policies on sustainable development, theoretical pillars in sustainability management studies.

UNIT II CORPORATE SUSTAINABILITY AND RESPONSIBILITY 9

Corporate sustainability parameter, corporate sustainability institutional framework, integration of sustainability into strategic planning and regular business practices, fundamentals of stakeholder engagement.

UNIT III SUSTAINABILITY MANAGEMENT: STRATEGIES AND APPROACHES 9

Corporate sustainability management and competitiveness: Sustainability-oriented corporate strategies, markets and competitiveness, Green Management between theory and practice, Sustainable Consumption and Green Marketing strategies, Environmental regulation and strategic postures; Green Management approaches and tools: Green engineering; clean technologies and innovation processes; Sustainable Supply Chain Management and Procurement.

UNIT IV SUSTAINABILITY AND INNOVATION 9

Socio-technical transitions and sustainability, Sustainable entrepreneurship, Sustainable pioneers in green market niches, Smart communities and smart specializations.

UNIT V SUSTAINABLE MANAGEMENT OF RESOURCES, COMMODITIES AND COMMONS 9

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: An understanding of sustainability management as an approach to aid in evaluating and minimizing environmental impacts while achieving the expected social impact.

CO2: An understanding of corporate sustainability and responsible Business Practices

CO3: Knowledge and skills to understand, to measure and interpret sustainability performances.

CO4: Knowledge of innovative practices in sustainable business and community management

CO5: Deep understanding of sustainable management of resources and commodities

REFERENCES:

4. Margaret Robertson, Sustainability Principles and Practice, 2014
5. Peter Rogers, An Introduction to Sustainable Development, 2006

MAPPING OF POs AND COs:

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

OBA432 MICRO AND SMALL BUSINESS MANAGEMENT L T P C
3 0 0 3

COURSE OBJECTIVES

- To familiarize students with the theory and practice of small business management.
- To learn the legal issues faced by small business and how they impact operations.

UNIT I INTRODUCTION TO SMALL BUSINESS 9

UNIT II SCREENING THE BUSINESS OPPORTUNITY AND FORMULATING THE BUSINESS PLAN

Concepts of opportunity recognition; Key factors leading to new venture failure; New venture screening process; Applying new venture screening process to the early stage small firm Role planning in small business – importance of strategy formulation – management skills for small business creation and development.

UNIT III BUILDING THE RIGHT TEAM AND MARKETING STRATEGY

Management and Leadership – employee assessments – Tuckman’s stages of group development - The entrepreneurial process model - Delegation and team building - Comparison of HR management in small and large firms - Importance of coaching and how to apply a coaching model.

Marketing within the small business - success strategies for small business marketing - customer delight and business generating systems, - market research, - assessing market performance- sales management and strategy - the marketing mix and marketing strategy.

UNIT IV FINANCING SMALL BUSINESS

Main sources of entrepreneurial capital; Nature of ‘bootstrap’ financing - Difference between cash and profit - Nature of bank financing and equity financing - Funding-equity gap for small firms. Importance of working capital cycle - Calculation of break-even point - Power of gross profit margin - Pricing for profit - Credit policy issues and relating these to cash flow management and profitability.

UNIT V VALUING SMALL BUSINESS AND CRISIS MANAGEMENT

Causes of small business failure - Danger signals of impending trouble - Characteristics of poorly performing firms - Turnaround strategies - Concept of business valuation - Different valuation measurements - Nature of goodwill and how to measure it - Advantages and disadvantages of buying an established small firm - Process of preparing a business for sale.

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1. Familiarise the students with the concept of small business

CO2. In depth knowledge on small business opportunities and challenges

CO3. Ability to devise plans for small business by building the right skills and marketing strategies

CO4. Identify the funding source for small start ups

CO5. Business evaluation for buying and selling of small firms

REFERENCES
3. Journal articles on SME’s.

MAPPING OF POs AND COs

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

OBA433 INTELLECTUAL PROPERTY RIGHTS L T P C 3 0 0 3

COURSE OBJECTIVE
➢ To understand intellectual property rights and its valuation.

UNIT I INTRODUCTION 9
Intellectual property rights - Introduction, Basic concepts, Patents, Copyrights, Trademarks, Trade Secrets, Geographic Indicators; Nature of Intellectual Property, Technological Research, Inventions and Innovations, History - the way from WTO to WIPO, TRIPS.

UNIT II PROCESS 9
New Developments in IPR, Procedure for grant of Patents, TM, GIs, Patenting under Patent Cooperation Treaty, Administration of Patent system in India, Patenting in foreign countries.

UNIT III STATUTES 9

UNIT IV STRATEGIES IN INTELLECTUAL PROPERTY 9
Strategies for investing in R&D, Patent Information and databases, IPR strength in India, Traditional Knowledge, Case studies.
UNIT V MODELS
The technologies Know-how, concept of ownership, Significance of IP in Value Creation, IP Valuation and IP Valuation Models, Application of Real Option Model in Strategic Decision Making, Transfer and Licensing.

TOTAL: 45 PERIODS

COURSE OUTCOMES
- CO1: Understanding of intellectual property and appreciation of the need to protect it
- CO2: Awareness about the process of patenting
- CO3: Understanding of the statutes related to IPR
- CO4: Ability to apply strategies to protect intellectual property
- CO5: Ability to apply models for making strategic decisions related to IPR

REFERENCES
2. Intellectual Property rights and copyrights, EssEss Publications.

MAPPING OF POs AND COs

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

OBA434 ETHICAL MANAGEMENT L T P C

COURSE OBJECTIVE
➢ To help students develop knowledge and competence in ethical management and decision making in organizational contexts.

UNIT I ETHICS AND SOCIETY
Ethical Management- Definition, Motivation, Advantages-Practical implications of ethical management. Managerial ethics, professional ethics, and social Responsibility(Role of culture and society’s expectations-Individual and organizational responsibility to society and the community.)

UNIT II ETHICAL DECISION MAKING AND MANAGEMENT IN A CRISIS
Managing in an ethical crisis, the nature of a crisis, ethics in crisis management, discuss case studies, analyze real-world scenarios, develop ethical management skills, knowledge, and competencies. Proactive crisis management.

UNIT III STAKEHOLDERS IN ETHICAL MANAGEMENT

Stakeholders in ethical management, identifying internal and external stakeholders, nature of stakeholders, ethical management of various kinds of stakeholders: customers (product and service issues), employees (leadership, fairness, justice, diversity) suppliers, collaborators, business, community, the natural environment (the sustainability imperative, green management, Contemporary issues).

UNIT IV INDIVIDUAL VARIABLES IN ETHICAL MANAGEMENT

Understanding individual variables in ethics, managerial ethics, concepts in ethical psychology- ethical awareness, ethical courage, ethical judgment, ethical foundations, ethical emotions/intuitions/intensity. Utilization of these concepts and competencies for ethical decision-making and management.

UNIT V PRACTICAL FIELD-GUIDE, TECHNIQUES AND SKILLS

Ethical management in practice, development of techniques and skills, navigating challenges and dilemmas, resolving issues and preventing unethical management proactively. Role modelling and creating a culture of ethical management and human flourishing.

COURSE OUTCOMES

TOTAL: 45 PERIODS

CO1: Role modelling and influencing the ethical and cultural context.
CO2: Respond to ethical crises and proactively address potential crises situations.
CO3: Understand and implement stakeholder management decisions.
CO4: Develop the ability, knowledge, and skills for ethical management.
CO5: Develop practical skills to navigate, resolve and thrive in management situations

REFERENCES

MAPPING OF POs AND COs

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
ET4251 IoT FOR SMART SYSTEMS LT P C 3 0 0 3

COURSE OBJECTIVES:
1. To study about Internet of Things technologies and its role in real time applications.
2. To introduce the infrastructure required for IoT
3. To familiarize the accessories and communication techniques for IoT.
4. To provide insight about the embedded processor and sensors required for IoT
5. To familiarize the different platforms and Attributes for IoT

UNIT I INTRODUCTION TO INTERNET OF THINGS
Overview, Hardware and software requirements for IOT, Sensor and actuators, Technology drivers, Business drivers, Typical IoT applications, Trends and implications.

UNIT II IOT ARCHITECTURE

UNIT III PROTOCOLS AND WIRELESS TECHNOLOGIES FOR IOT
PROTOCOLS:
NFC, SCADA and RFID, Zigbee MIPI, M-PHY, UniPro, SPMI, SPI, M-PCIe GSM, CDMA, LTE, GPRS, small cell.

Wireless technologies for IoT: WiFi (IEEE 802.11), Bluetooth/Bluetooth Smart, ZigBee/ZigBee Smart, UWB (IEEE 802.15.4), 6LoWPAN, Proprietary systems-Recent trends.

UNIT IV IOT PROCESSORS
Services/Attributes: Big-Data Analytics for IOT, Dependability, Interoperability, Security, Maintainability.
UNIT V CASE STUDIES

Industrial IoT, Home Automation, smart cities, Smart Grid, connected vehicles, electric vehicle charging, Environment, Agriculture, Productivity Applications, IOT Defense

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of this course, the students will have the ability to
CO1: Analyze the concepts of IoT and its present developments.
CO2: Compare and contrast different platforms and infrastructures available for IoT
CO3: Explain different protocols and communication technologies used in IoT
CO4: Analyze the big data analytic and programming of IoT
CO5: Implement IoT solutions for smart applications

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.75</td>
</tr>
</tbody>
</table>

REFERENCES:

ET4072 MACHINE LEARNING AND DEEP LEARNING L T P C
3 0 0 3

COURSE OBJECTIVES:
The course is aimed at

1. Understanding about the learning problem and algorithms
2. Providing insight about neural networks
3. Introducing the machine learning fundamentals and significance
4. Enabling the students to acquire knowledge about pattern recognition.
5. Motivating the students to apply deep learning algorithms for solving real life problems.

UNIT I LEARNING PROBLEMS AND ALGORITHMS
Various paradigms of learning problems, Supervised, Semi-supervised and Unsupervised algorithms

UNIT II NEURAL NETWORKS

UNIT III MACHINE LEARNING – FUNDAMENTALS & FEATURE SELECTIONS & CLASSIFICATIONS
Classifying Samples: The confusion matrix, Accuracy, Precision, Recall, F1- Score, the curse of dimensionality, training, testing, validation, cross validation, overfitting, under-fitting the data, early stopping, regularization, bias and variance. Feature Selection, normalization, dimensionality reduction, Classifiers: KNN, SVM, Decision trees, Naive Bayes, Binary classification, multi class classification, clustering.

UNIT IV DEEP LEARNING: CONVOLUTIONAL NEURAL NETWORKS
Feed forward networks, Activation functions, back propagation in CNN, optimizers, batch normalization, convolution layers, pooling layers, fully connected layers, dropout, Examples of CNNs.
COURSE OUTCOMES (CO):

At the end of the course the student will be able to

CO1: Illustrate the categorization of machine learning algorithms.

CO2: Compare and contrast the types of neural network architectures, activation functions

CO3: Acquaint with the pattern association using neural networks

CO4: Elaborate various terminologies related with pattern recognition and architectures of convolutional neural networks

CO5: Construct different feature selection and classification techniques and advanced neural network architectures such as RNN, Autoencoders, and GANs.

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.42</td>
</tr>
</tbody>
</table>

REFERENCES:

OBJECTIVES:

To impart knowledge on

- Different types of renewable energy technologies
- Standalone operation, grid connected operation of renewable energy systems

UNIT I INTRODUCTION 9

Classification of energy sources – Co2 Emission - Features of Renewable energy - Renewable energy scenario in India - Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment Per Capital Consumption - CO₂ Emission - importance of renewable energy sources, Potentials – Achievements– Applications.

UNIT II SOLAR PHOTOVOLTAICS 9

UNIT III PHOTOVOLTAIC SYSTEM DESIGN 9

Block diagram of solar photo voltaic system : Line commutated converters (inversion mode) - Boost and buck-boost converters - selection of inverter, battery sizing, array sizing - PV systems classification- standalone PV systems - Grid tied and grid interactive inverters- grid connection issues.

UNIT IV WIND ENERGY CONVERSION SYSTEMS 9

UNIT V OTHER RENEWABLE ENERGY SOURCES 9

Qualitative study of different renewable energy resources: ocean, Biomass, Hydrogen energy systems, Fuel cells, Ocean Thermal Energy Conversion (OTEC), Tidal and wave energy, Geothermal Energy Resources.

TOTAL : 45 PERIODS

OUTCOMES:

After completion of this course, the student will be able to:
CO1: Demonstrate the need for renewable energy sources.

CO2: Develop a stand-alone photo voltaic system and implement a maximum power point tracking in the PV system.

CO3: Design a stand-alone and Grid connected PV system.

CO4: Analyze the different configurations of the wind energy conversion systems.

CO5: Realize the basic of various available renewable energy sources

REFERENCES:

CO-PO MAPPING :

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

PS4093 SMART GRID L T P C
3 0 0 3

COURSE OBJECTIVES
- To Study about Smart Grid technologies, different smart meters and advanced metering infrastructure.
- To know about the function of smart grid.
To familiarize the power quality management issues in Smart Grid.
To familiarize the high performance computing for Smart Grid applications
To get familiarized with the communication networks for Smart Grid applications

UNIT I INTRODUCTION TO SMART GRID 9
Evolution of Electric Grid, Concept, Definitions and Need for Smart Grid, Smart grid drivers, functions, opportunities, challenges and benefits, Difference between conventional & Smart Grid, Comparison of Micro grid and Smart grid, Present development & International policies in Smart Grid, Smart Grid Initiative for Power Distribution Utility in India – Case Study.

UNIT II SMART GRID TECHNOLOGIES 9
Technology Drivers, Smart Integration of energy resources, Smart substations, Substation Automation, Feeder Automation , Transmission systems: EMS, FACTS and HVDC, Wide area monitoring, Protection and control, Distribution systems: DMS, Volt/Var control, Fault Detection, Isolation and service restoration, Outage management, High-Efficiency Distribution Transformers, Phase Shifting Transformers, Plug in Hybrid Electric Vehicles (PHEV) – Grid to Vehicle and Vehicle to Grid charging concepts.

UNIT III SMART METERS AND ADVANCED METERING INFRASTRUCTURE 9
Introduction to Smart Meters, Advanced Metering infrastructure (AMI) drivers and benefits, AMI protocols, standards and initiatives, AMI needs in the smart grid, Phasor Measurement Unit(PMU) & their application for monitoring & protection. Demand side management and demand response programs, Demand pricing and Time of Use, Real Time Pricing, Peak Time Pricing.

UNIT IV POWER QUALITY MANAGEMENT IN SMART GRID 9

Unit V HIGH PERFORMANCE COMPUTING FOR SMART GRID APPLICATIONS 9
Architecture and Standards -Local Area Network (LAN), House Area Network (HAN), Wide Area Network (WAN), Broadband over Power line (BPL), PLC, Zigbee, GSM, IP based Protocols, Basics of Web Service and CLOUD Computing, Cyber Security for Smart Grid.

TOTAL : 45 PERIODS

COURSE OUTCOME:
Students able to
CO1: Relate with the smart resources, smart meters and other smart devices.
CO2: Explain the function of Smart Grid.
CO3: Experiment the issues of Power Quality in Smart Grid.
CO4: Analyze the performance of Smart Grid.
CO5: Recommend suitable communication networks for smart grid applications
REFERENCES

MAPPING OF CO'S WITH PO'S

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AVG</td>
<td>2.25</td>
<td>2</td>
<td>1.66</td>
<td>2.25</td>
<td>2.3</td>
<td>2</td>
</tr>
</tbody>
</table>

CP4391 SECURITY PRACTICES

L T P C 3 0 0 3

COURSE OBJECTIVES:
- To learn the core fundamentals of system and web security concepts
- To have through understanding in the security concepts related to networks
- To deploy the security essentials in IT Sector
- To be exposed to the concepts of Cyber Security and cloud security
- To perform a detailed study of Privacy and Storage security and related Issues

UNIT I SYSTEM SECURITY

UNIT II NETWORK SECURITY
UNIT III SECURITY MANAGEMENT

UNIT IV CYBER SECURITY AND CLOUD SECURITY

UNIT V PRIVACY AND STORAGE SECURITY

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Understand the core fundamentals of system security
CO2: Apply the security concepts to wired and wireless networks
CO3: Implement and Manage the security essentials in IT Sector
CO4: Explain the concepts of Cyber Security and Cyber forensics
CO5: Be aware of Privacy and Storage security Issues.

REFERENCES

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>1.50</td>
<td>1.67</td>
<td>1.60</td>
<td>1.60</td>
<td>1.80</td>
<td>2.40</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
- To gain expertise in Virtualization, Virtual Machines and deploy practical virtualization solution
- To understand the architecture, infrastructure and delivery models of cloud computing.
- To explore the roster of AWS services and illustrate the way to make applications in AWS
- To gain knowledge in the working of Windows Azure and Storage services offered by Windows Azure
- To develop the cloud application using various programming model of Hadoop and Aneka

UNIT I VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE 6

UNIT II CLOUD PLATFORM ARCHITECTURE 12

UNIT III AWS CLOUD PLATFORM - IAAS 9

UNIT IV PAAS CLOUD PLATFORM 9

UNIT V PROGRAMMING MODEL 9
Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job – Developing Map Reduce Applications - Design of Hadoop file system – Setting up Hadoop Cluster- Aneka: Cloud Application Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka

COURSE OUTCOMES:
CO1: Employ the concepts of virtualization in the cloud computing
CO2: Identify the architecture, infrastructure and delivery models of cloud computing
CO3: Develop the Cloud Application in AWS platform
CO4: Apply the concepts of Windows Azure to design Cloud Application
CO5: Develop services using various Cloud computing programming models.

REFERENCES
IF4072 DESIGN THINKING

COURSE OBJECTIVES:

- To provide a sound knowledge in UI & UX
- To understand the need for UI and UX
- Research Methods used in Design
- Tools used in UI & UX
- Creating a wireframe and prototype

UNIT I UX LIFECYCLE TEMPLATE

UNIT II CONTEXTUAL INQUIRY

UNIT III DESIGN THINKING, IDEATION, AND SKETCHING

UNIT IV UX GOALS, METRICS, AND TARGETS

Introduction. UX goals. UX target tables. Work roles, user classes, and UX goals. UX measures. Measuring instruments. UX metrics. Baseline level. Target level. Setting levels. Observed results. Practical tips and
cautions for creating UX targets. How UX targets help manage the user experience engineering process.

UNIT V ANALYSING USER EXPERIENCE

SUGGESTED ACTIVITIES:

1: Hands on Design Thinking process for a product
2: Defining the Look and Feel of any new Project
3: Create a Sample Pattern Library for that product (Mood board, Fonts, Colors based on UI principles)
4: Identify a customer problem to solve.
5: Conduct end-to-end user research - User research, creating personas, Ideation process (User stories, Scenarios), Flow diagrams, Flow Mapping

TOTAL : 45 PERIODS

COURSE OUTCOMES:

CO1: Build UI for user Applications
CO2: Use the UI Interaction behaviors and principles
CO3: Evaluate UX design of any product or application
CO4: Demonstrate UX Skills in product development
CO5: Implement Sketching principles

REFERENCES

4. Lean UX: Designing Great Products with Agile Teams, Gothelf, Jeff, Seiden, and Josh. O'Reilly Media, 2016
5. Designing UX: Prototyping: Because Modern Design is Never Static, Ben Coleman, and Dan Goodwin. SitePoint, 2017
COURSE OBJECTIVES:

- To get familiarity with gamut of multimedia and its significance
- To acquire knowledge in multimedia components.
- To acquire knowledge about multimedia tools and authoring.
- To acquire knowledge in the development of multimedia applications.
- To explore the latest trends and technologies in multimedia

UNIT I INTRODUCTION

Suggested Activities:

1. Flipped classroom on media Components.
2. External learning – Interactive presentation.

Suggested Evaluation Methods:

1. Tutorial – Handling media components
2. Quizzes on different types of data presentation.

UNIT II ELEMENTS OF MULTIMEDIA

Text-Types, Font, Unicode Standard, File Formats, Graphics and Image data representations – data types, file formats, color models; video – color models in video, analog video, digital video, file formats, video display interfaces, 3D video and TV: Audio – Digitization, SNR, SQNR, quantization, audio quality, file formats, MIDI; Animation- Key Frames and Tweening, other Techniques, 2D and 3D Animation.

Suggested Activities:

1. Flipped classroom on different file formats of various media elements.

Suggested Evaluation Methods:

1. Demonstration on after effects animations.
2. Quizzes on file formats and color models.

UNIT III MULTIMEDIA TOOLS

Suggested Activities:

1. Flipped classroom on multimedia tools.
2. External learning – Comparison of various authoring tools.

Suggested Evaluation Methods:

1. Tutorial – Audio editing tool.
2. Quizzes on animation tools.

UNIT IV MULTIMEDIA SYSTEMS

Suggested Activities:

1. Flipped classroom on concepts of multimedia hardware architectures.
2. External learning – Digital repositories and hypermedia design.

Suggested Evaluation Methods:

1. Quizzes on multimedia hardware and compression techniques.
2. Tutorial – Hypermedia design.

UNIT V MULTIMEDIA APPLICATIONS FOR THE WEB AND MOBILE PLATFORMS

Suggested Activities:

1. External learning – Game consoles.
2. External learning – VRML scripting languages.

Suggested Evaluation Methods:

1. Demonstration of simple interactive games.
2. Tutorial – Simple VRML program.

TOTAL : 45 PERIODS

COURSE OUTCOMES:

CO1: Handle the multimedia elements effectively.

CO2: Articulate the concepts and techniques used in multimedia applications.

CO3: Develop effective strategies to deliver Quality of Experience in multimedia applications.

CO4: Design and implement algorithms and techniques applied to multimedia objects.

CO5: Design and develop multimedia applications following software engineering models.

REFERENCES:

DS4015 BIG DATA ANALYTICS L T P C 3 0 0 3

COURSE OBJECTIVES:
- To understand the basics of big data analytics
- To understand the search methods and visualization
- To learn mining data streams
- To learn frameworks
- To gain knowledge on R language

UNIT I INTRODUCTION TO BIG DATA 9

UNIT II SEARCH METHODS AND VISUALIZATION 9

UNIT III MINING DATA STREAMS 9

UNIT IV FRAMEWORKS 9
MapReduce – Hadoop, Hive, MapR – Sharding – NoSQL Databases - S3 - Hadoop Distributed File Systems – Case Study- Preventing Private Information Inference Attacks on Social Networks- Grand Challenge: Applying Regulatory Science and Big Data to Improve Medical Device Innovation

UNIT V R LANGUAGE 9

COURSE OUTCOMES:
CO1: understand the basics of big data analytics
CO2: Ability to use Hadoop, Map Reduce Framework.
CO3: Ability to identify the areas for applying big data analytics for increasing the business outcome.
CO4: gain knowledge on R language
CO5: Contextually integrate and correlate large amounts of information to gain faster insights.

REFERENCE:

TOTAL:45 PERIODS

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

NC4201 INTERNET OF THINGS AND CLOUD L T P C
3 0 0 3
COURSE OBJECTIVES:

- To understand Smart Objects and IoT Architectures
- To learn about various IOT-related protocols
- To build simple IoT Systems using Arduino and Raspberry Pi.
- To understand data analytics and cloud in the context of IoT
- To develop IoT infrastructure for popular applications

UNIT I FUNDAMENTALS OF IoT

UNIT II PROTOCOLS FOR IoT

UNIT III CASE STUDIES/INDUSTRIAL APPLICATIONS

Case studies with architectural analysis: IoT applications – Smart City – Smart Water – Smart Agriculture – Smart Energy – Smart Healthcare – Smart Transportation – Smart Retail – Smart waste management.

UNIT IV CLOUD COMPUTING INTRODUCTION

UNIT V IoT AND CLOUD

TOTAL:45 PERIODS

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1: Understand the various concept of the IoT and their technologies..

CO2: Develop IoT application using different hardware platforms

CO3: Implement the various IoT Protocols

CO4: Understand the basic principles of cloud computing.
CO5: Develop and deploy the IoT application into cloud environment

REFERENCES

MX4073 MEDICAL ROBOTICS 3 0 0 3

COURSE OBJECTIVES:
- To explain the basic concepts of robots and types of robots
- To discuss the designing procedure of manipulators, actuators and grippers
- To impart knowledge on various types of sensors and power sources
- To explore various applications of Robots in Medicine
- To impart knowledge on wearable robots

UNIT I INTRODUCTION TO ROBOTICS
Introduction to Robotics, Overview of robot subsystems, Degrees of freedom, configurations and concept of workspace, Dynamic Stabilization

Sensors and Actuators
Sensors and controllers, Internal and external sensors, position, velocity and acceleration sensors, Proximity sensors, force sensors Pneumatic and hydraulic actuators, Stepper motor control circuits, End effectors, Various types of Grippers, PD and PID feedback actuator models

UNIT II MANIPULATORS & BASIC KINEMATICS
Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and pneumatic manipulator, Forward Kinematic Problems, Inverse Kinematic Problems, Solutions of Inverse Kinematic problems

Navigation and Treatment Planning
Variable speed arrangements, Path determination – Machinery vision, Ranging – Laser – Acoustic, Magnetic, fiber optic and Tactile sensor

UNIT III SURGICAL ROBOTS
Da Vinci Surgical System, Image guided robotic systems for focal ultrasound based surgical applications, System concept for robotic Tele-surgical system for off-pump, CABG surgery, Urologic applications, Cardiac surgery, Neuro-surgery, Pediatric and General Surgery, Gynecologic Surgery, General Surgery and Nanorobotics. Case Study
UNIT IV REHABILITATION AND ASSISTIVE ROBOTS

Pediatric Rehabilitation, Robotic Therapy for the Upper Extremity and Walking, Clinical-Based Gait Rehabilitation Robots, Motion Correlation and Tracking, Motion Prediction, Motion Replication. Portable Robot for Tele rehabilitation, Robotic Exoskeletons – Design considerations, Hybrid assistive limb. Case Study

UNIT V WEARABLE ROBOTS

Augmented Reality, Kinematics and Dynamics for Wearable Robots, Wearable Robot technology, Sensors, Actuators, Portable Energy Storage, Human–robot cognitive interaction (cHRI), Human–robot physical interaction (pHRI), Wearable Robotic Communication - case study

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Describe the configuration, applications of robots and the concept of grippers and actuators

CO2: Explain the functions of manipulators and basic kinematics

CO3: Describe the application of robots in various surgeries

CO4: Design and analyze the robotic systems for rehabilitation

CO5: Design the wearable robots

REFERENCES

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>POs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1: Describe the configuration, applications of robots and the concept of grippers and actuators</td>
<td></td>
</tr>
<tr>
<td>CO2: Explain the functions of manipulators and basic kinematics</td>
<td></td>
</tr>
<tr>
<td>CO3: Describe the application of robots in various surgeries</td>
<td></td>
</tr>
<tr>
<td>CO4: Design and analyze the robotic systems for rehabilitation</td>
<td></td>
</tr>
<tr>
<td>CO5: Design the wearable robots</td>
<td></td>
</tr>
</tbody>
</table>

115
VE4202 EMBEDDED AUTOMATION

L T P C
3 0 0 3

COURSE OBJECTIVES:

- To learn about the process involved in the design and development of real-time embedded system
- To develop the embedded C programming skills on 8-bit microcontroller
- To study about the interfacing mechanism of peripheral devices with 8-bit microcontrollers
- To learn about the tools, firmware related to microcontroller programming
- To build a home automation system

UNIT - I INTRODUCTION TO EMBEDDED C PROGRAMMING

C Overview and Program Structure - C Types, Operators and Expressions - C Control Flow - C Functions and Program Structures - C Pointers And Arrays - FIFO and LIFO - C Structures - Development Tools

UNIT - II AVR MICROCONTROLLER

ATMEGA 16 Architecture - Nonvolatile and Data Memories - Port System - Peripheral Features : Time Base, Timing Subsystem, Pulse Width Modulation, USART, SPI, Two Wire Serial Interface, ADC, Interrupts - Physical and Operating Parameters

UNIT – III HARDWARE AND SOFTWARE INTERFACING WITH 8-BIT SERIES CONTROLLERS

Lights and Switches - Stack Operation - Implementing Combinational Logic - Expanding I/O - Interfacing Analog To Digital Convertors - Interfacing Digital To Analog Convertors - LED Displays : Seven Segment Displays, Dot Matrix Displays - LCD Displays - Driving Relays - Stepper Motor Interface - Serial EEPROM - Real Time Clock - Accessing Constants Table - Arbitrary Waveform Generation - Communication Links - System Development Tools

UNIT – IV VISION SYSTEM

CO1: analyze the 8-bit series microcontroller architecture, features and pin details

CO2: write embedded C programs for embedded system application

CO3: design and develop real time systems using AVR microcontrollers

CO4: design and develop the systems based on vision mechanism

CO5: design and develop a real time home automation system

REFERENCES:

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>(5/5)=1</td>
<td>(12/4)=3</td>
<td>(5/5)=1</td>
<td>(5/5)=1</td>
<td>(5/5)=1</td>
<td>(12/4)=3</td>
</tr>
</tbody>
</table>
UNIT I
INTRODUCTION

Valuing the Environment: Concepts, Valuing the Environment: Methods, Property Rights, Externalities, and Environmental Problems

UNIT II
CONCEPT OF SUSTAINABILITY

Sustainable Development: Defining the Concept, the Population Problem, Natural Resource Economics: An Overview, Energy, Water, Agriculture

UNIT III
SIGNIFICANCE OF BIODIVERSITY

Biodiversity, Forest Habitat, Commercially Valuable Species, Stationary - Source Local Air Pollution, Acid Rain and Atmospheric Modification, Transportation

UNIT IV
POLLUTION IMPACTS

Water Pollution, Solid Waste and Recycling, Toxic Substances and Hazardous Wastes, Global Warming

UNIT V
ENVIRONMENTAL ECONOMICS

Development, Poverty, and the Environment, Visions of the Future, Environmental economics and policy by Tom Tietenberg, Environmental Economics

REFERENCES

TOTAL : 45 PERIODS
UNIT I REINFORCMENTS
Introduction – composites – classification and application; reinforcements- fibres and its properties; preparation of reinforced materials and quality evaluation; preforms for various composites

UNIT II MATRICES
Preparation, chemistry, properties and applications of thermoplastic and thermoset resins; mechanism of interaction of matrices and reinforcements; optimization of matrices

UNIT III COMPOSITE MANUFACTURING
Classification; methods of composites manufacturing for both thermoplastics and thermosets- Hand layup, Filament Winding, Resin transfer moulding, prepregs and autoclave moulding, pultrusion, vacuum impregnation methods, compression moulding; post processing of composites and composite design requirements

UNIT IV TESTING
Fibre volume and weight fraction, specific gravity of composites, tensile, flexural, impact, compression, inter laminar shear stress and fatigue properties of thermoset and thermoplastic composites.

UNIT V MECHANICS
Micro mechanics, macro mechanics of single layer, macro mechanics of laminate, classical lamination theory, failure theories and prediction of inter laminar stresses using at ware

TOTAL: 45 PERIODS

REFERENCES
UNIT I BASICS OF NANOCOMPOSITES 9

UNIT II METAL BASED NANOCOMPOSITES 9
Metal-metal nanocomposites, some simple preparation techniques and their properties. Metal- Oxide or Metal-Ceramic composites, Different aspects of their preparation techniques and their final properties and functionality. Fractal based glass-metal nanocomposites, its designing and fractal dimension analysis. Core-Shell structured nanocomposites

UNIT III POLYMER BASED NANOCOMPOSITES 9
Preparation and characterization of diblock Copolymer based nanocomposites; Polymer Carbon nanotubes based composites, their mechanical properties, and industrial possibilities.

UNIT IV NANOCOMPOSITE FROM BIOMATERIALS 9
Natural nanocomposite systems - spider silk, bones, shells; organic-inorganic nanocomposite formation through self-assembly. Biomimetic synthesis of nanocomposites material; Use of synthetic nanocomposites for bone, teeth replacement.

UNIT V NANOCOMPOSITE TECHNOLOGY 9

TOTAL : 45 PERIODS

REFERENCES:
5. The search for novel, superhard materials- Stan Veprček (Review Article) JVST A, 1999

BY4016 IPR, BIOSAFETY AND ENTREPRENEURSHIP L T P C
3 0 0 3

UNIT I IPR

UNIT II AGREEMENTS, TREATIES AND PATENT FILING PROCEDURES

UNIT III BIOSAFETY

UNIT IV GENETICALLY MODIFIED ORGANISMS

Definition of GMOs & LMOs – Roles of Institutional Biosafety Committee – RCGM – GEAC etc. for GMO applications in food and agriculture – Environmental release of GMOs – Risk Analysis – Risk Assessment – Risk management and communication – Overview of National Regulations and relevant International Agreements including Cartegana Protocol.

UNIT V ENTREPRENEURSHIP DEVELOPMENT

units – Opportunities for an Entrepreneurial career – Role of small enterprise in economic development – Problems of small scale industries – Institutional finance to entrepreneurs - Institutional support to entrepreneurs.

TOTAL : 45 PERIODS

REFERENCES
