I. PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates can

- Apply their technical competence in computer science to solve real world problems, with technical and people leadership.
- Conduct cutting edge research and develop solutions on problems of social relevance.
- Work in a business environment, exhibiting team skills, work ethics, adaptability and lifelong learning.

II. PROGRAM OUTCOMES (POs)

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication**: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11 **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12 **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

III. PROGRAM SPECIFIC OUTCOMES (PSOs)

The Students will be able to

- Exhibit design and programming skills to build and automate business solutions using cutting edge technologies.
- Strong theoretical foundation leading to excellence and excitement towards research, to provide elegant solutions to complex problems.
<table>
<thead>
<tr>
<th>Year</th>
<th>Sem</th>
<th>Course name</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>Induction Programme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional English - I</td>
<td>1.6</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Matrices and Calculus</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Physics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Chemistry</td>
<td>2.8</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem Solving and Python Programming</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heritage of Tamils (Problem Solving and Python Programming Laboratory)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics and Chemistry Laboratory</td>
<td>3</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>English Laboratory $</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Professional English - II</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Statistics and Numerical Methods</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics for Information Science</td>
<td>3</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic Electrical and Electronics Engineering</td>
<td>2</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Graphics</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Programming in C</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tamil Language and Technology</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Engineering Practices Laboratory</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Programming in C Laboratory</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication Laboratory / Foreign Language $</td>
<td>2.4</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discrete Mathematics</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Foundations of Data Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signals and Systems</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Structures and Algorithms</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Mapping of Course Outcome and Programme Outcome
IV	Communication Systems	3 3 3 3 2.5 1 1 - - - 1 1
IV	Artificial Intelligence and Machine Learning	3 1 1.8 0.8 2.2 0.6 - - - - 2 2 3 2
IV	Operating Systems	2 2 2 2 1 - - - - - - 1 1
IV	Database Management Systems	2 2 3 2 1 - - - 2 2 2 2 2 2
IV	Object Oriented Programming	2 1 2 2 2 - - - 2 2 1 2 1 1
IV	Environmental Sciences and Sustainability	2.8 1.8 1 1 - 2.2 2.4 - - - - 1.8 - -
IV	Communication Systems Laboratory	3 3 3 3 3 2.5 - - - - 1 1 1
IV	Database Management Systems Laboratory	2 3 2 2 1 - - - 2 1 3 2 2 2
IV	Object Oriented Programming Laboratory	2 2 2 2 2 - - - 2 2 2 2 2 2
III	Digital Signal Processing	3 3 2 2 2 2 2 - - - - 1 1 2 2
III	Computer Networks	- 2 1 - 1 - - - - - - - 1
III	Distributed Computing	1.8 2.4 1.8 2.4 2 - - - 2.6 2.2 2.2 1.6 2 1.8
III	Cryptography and Cyber Security	3 2.6 2.6 2.6 2.8 - - - 2 - - 1.2 2.8 2.8
III	Mobile Application Development Laboratory	3 3 3 2 2 3 2 1 1 2 1 1 1 2 2
VI	Object Oriented Software Engineering	2 3 1 2 2 - - - - - - 1 3 2
VI	Embedded Systems and IoT	2.6 2 3 2.4 1.5 - - - 1 2.2 2.2 2.4 2.2 1.6
VII	Human Values and Ethics	
VII	Summer internship	
VIII	Project Work / Internship	

1 - low, 2 - medium, 3 - high, '-' - no correlation
SEMESTER I

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP3151</td>
<td>Induction Programme</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS3152</td>
<td>Professional English - I</td>
<td>HSMC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MA3151</td>
<td>Matrices and Calculus</td>
<td>BSC</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH3151</td>
<td>Engineering Physics</td>
<td>BSC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CY3151</td>
<td>Engineering Chemistry</td>
<td>BSC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE3151</td>
<td>Problem Solving and Python Programming</td>
<td>ESC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE3152</td>
<td>தமிழர் மரபு / Heritage of Tamils</td>
<td>HSMC</td>
<td>1 0 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE3171</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>ESC</td>
<td>0 0 4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>BS3171</td>
<td>Physics and Chemistry Laboratory</td>
<td>BSC</td>
<td>0 0 4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>GE3172</td>
<td>English Laboratory $^\text{&}$</td>
<td>EEC</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td>10</td>
<td>27</td>
<td>22</td>
</tr>
</tbody>
</table>

$^\text{\&}$ Skill Based Course

SEMESTER II

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS3252</td>
<td>Professional English - II</td>
<td>HSMC</td>
<td>2 0 0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>MA3251</td>
<td>Statistics and Numerical Methods</td>
<td>BSC</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH3256</td>
<td>Physics for Information Science</td>
<td>BSC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BE3251</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>ESC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE3251</td>
<td>Engineering Graphics</td>
<td>ESC</td>
<td>2 0 0</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>CS3251</td>
<td>Programming in C</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>GE3252</td>
<td>தமிழக ஸய்யா விளக்கங்கள்/Tamil and Technology</td>
<td>HSMC</td>
<td>1 0 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>NCC Credit Course Level 1$^\text{#}$</td>
<td>-</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2$^\text{#}$</td>
</tr>
<tr>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>GE3271</td>
<td>Engineering Practices Laboratory</td>
<td>ESC</td>
<td>0 0 4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>CS3271</td>
<td>Programming in C Laboratory</td>
<td>PCC</td>
<td>0 0 4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>11.</td>
<td>GE3272</td>
<td>Communication Laboratory / Foreign Language $^\text{&}$</td>
<td>EEC</td>
<td>0 0 4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>17</td>
<td>16</td>
<td>34</td>
<td>26</td>
</tr>
</tbody>
</table>

$^\text{\#}$ NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

$^\text{\&}$ Skill Based Course
SEMESTER III

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGOR Y</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>MA3354</td>
<td>Discrete Mathematics</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>CS3352</td>
<td>Foundations of Data Science</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>EC3354</td>
<td>Signals and Systems</td>
<td>PCC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>CD3291</td>
<td>Data Structures and Algorithms</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>CS3351</td>
<td>Digital Principles and Computer Organization</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

PRACTICALS

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGOR Y</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>6.</td>
<td>CD3281</td>
<td>Data Structures and Algorithms Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>CS3361</td>
<td>Data Science Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>GE3361</td>
<td>Professional Development§</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL 15 2 12 29 23

§ Skill Based Course

SEMESTER IV

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGOR Y</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>EC3491</td>
<td>Communication Systems</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>CS3491</td>
<td>Artificial Intelligence and Machine Learning</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>AL3452</td>
<td>Operating Systems</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>CS3492</td>
<td>Database Management Systems</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>CS3391</td>
<td>Object Oriented Programming</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>GE3451</td>
<td>Environmental Sciences and Sustainability</td>
<td>BSC</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>NCC Credit Course Level 2§</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PRACTICALS

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGOR Y</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>8.</td>
<td>EC3461</td>
<td>Communication Systems Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>CS3481</td>
<td>Database Management Systems Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>CS3381</td>
<td>Object Oriented Programming Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL 17 0 13 30 23.5

§ NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.
SEMESTER V

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATE GORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>EC3492</td>
<td>Digital Signal Processing</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>CS3591</td>
<td>Computer Networks</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>CS3551</td>
<td>Distributed Computing</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>CB3491</td>
<td>Cryptography and Cyber Security</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective I</td>
<td>PEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective II</td>
<td>PEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Mandatory Course-I*</td>
<td>MC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PRACTICALS

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATE GORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>8.</td>
<td>IT3681</td>
<td>Mobile Application Development Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL

- **Theory**: 21.5

* Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under Mandatory Course-I)

SEMESTER VI

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATE GORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>CCS356</td>
<td>Object Oriented Software Engineering</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>ET3491</td>
<td>Embedded Systems and IoT Design</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Open Elective – I*</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Professional Elective III</td>
<td>PEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective IV</td>
<td>PEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective V</td>
<td>PEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Professional Elective VI</td>
<td>PEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>Mandatory Course-II &</td>
<td>MC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>NCC Credit Course Level 3#</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL

- **Theory**: 23

*Open Elective – I Shall be chosen from the list of open electives offered by other Programmes

* Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under Mandatory Course-II)

* NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA
SEMESTER VII / VIII*

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>GE3791</td>
<td>Human Values and Ethics</td>
<td>HSMC</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Elective - Management#</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Open Elective – II**</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Open Elective – III**</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Open Elective – IV**</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PRACTICALS

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>6.</td>
<td>CO3711</td>
<td>Summer internship</td>
<td>EEC</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

** Open Elective II - IV (Shall be chosen from the list of open electives offered by other Programmes).

* Elective - Management shall be chosen from the Elective Management courses.

SEMESTER VIII / VII*

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>CO3811</td>
<td>Project Work/Internship</td>
<td>EEC</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

*If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

Total Credits: 165

ELECTIVE – MANAGEMENT COURSES

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>GE3751</td>
<td>Principles of Management</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>GE3752</td>
<td>Total Quality Management</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>GE3753</td>
<td>Engineering Economics and Financial Accounting</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>GE3754</td>
<td>Human Resource Management</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>GE3755</td>
<td>Knowledge Management</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>GE3792</td>
<td>Industrial Management</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
MANDATORY COURSES I

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MX3081</td>
<td>Introduction to Women and Gender Studies</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>MX3082</td>
<td>Elements of Literature</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>MX3083</td>
<td>Film Appreciation</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>MX3084</td>
<td>Disaster Risk Reduction and Management</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Mandatory Courses are offered as Non-Credit Courses

MANDATORY COURSES II

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MX3085</td>
<td>Well Being with Traditional Practices - Yoga, Ayurveda and Siddha</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>MX3086</td>
<td>History of Science and Technology in India</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>MX3087</td>
<td>Political and Economic Thought for a Humane Society</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>MX3088</td>
<td>State, Nation Building and Politics in India</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>MX3089</td>
<td>Industrial Safety</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Mandatory Courses are offered as Non-Credit Courses
Provision of Professional Elective Courses: Verticals

<table>
<thead>
<tr>
<th>Vertical I</th>
<th>Vertical II</th>
<th>Vertical III</th>
<th>Vertical IV</th>
<th>Vertical V</th>
<th>Vertical VI</th>
<th>Vertical VII</th>
<th>Vertical VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Science</td>
<td>Full Stack Development</td>
<td>Cloud Computing and Data Center Technologies</td>
<td>Cyber Security and Data Privacy</td>
<td>Creative Media</td>
<td>Emerging Technologies</td>
<td>Communication</td>
<td>High Speed Communications</td>
</tr>
<tr>
<td>Exploratory Data Analysis</td>
<td>Web Technologies</td>
<td>Cloud Computing</td>
<td>Ethical Hacking</td>
<td>Augmented Reality/Virtual Reality</td>
<td>Augmented Reality/Virtual Reality</td>
<td>Digital Communication</td>
<td>Optical Communication & Networks</td>
</tr>
<tr>
<td>Recommender Systems</td>
<td>App Development</td>
<td>Virtualization</td>
<td>Digital and Mobile Forensics</td>
<td>Multimedia and Animation</td>
<td>Robotic Process Automation</td>
<td>Wireless Broad Band Networks</td>
<td>Wireless Broad Band Networks</td>
</tr>
<tr>
<td>Neural Networks and Deep Learning</td>
<td>Cloud Services Management</td>
<td>Cloud Services Management</td>
<td>Social Network Security</td>
<td>Video Creation and Editing</td>
<td>Neural Networks and Deep Learning</td>
<td>4G/5G Communication Networks</td>
<td>4G/5G Communication Networks</td>
</tr>
<tr>
<td>Text and Speech Analysis</td>
<td>UI and UX Design</td>
<td>Data Warehousing</td>
<td>Modern Cryptography</td>
<td>UI and UX Design</td>
<td>Cyber security</td>
<td>Radar Technologies</td>
<td>Software Defined Networks</td>
</tr>
<tr>
<td>Image and Video Analytics</td>
<td>Web Application Security</td>
<td>Software Defined Networks</td>
<td>Cryptocurrency and Blockchain Technologies</td>
<td>Visual Effects</td>
<td>Cryptocurrency and Blockchain Technologies</td>
<td>Telecommunication Switching and Networks</td>
<td>Advanced Wireless Communication Techniques</td>
</tr>
<tr>
<td>Computer Vision</td>
<td>DevOps</td>
<td>Stream Processing</td>
<td>Network Security</td>
<td>Game Development</td>
<td>Game Development</td>
<td>Optical Communication & Networks</td>
<td>Network Security</td>
</tr>
</tbody>
</table>

Registration of Professional Elective Courses from Verticals:

Refer to the Regulations 2021, Clause 6.3. (Amended on 27.07.2023)
PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL 1: DATA SCIENCE

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CCS346</td>
<td>Exploratory Data Analysis</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CCS360</td>
<td>Recommender Systems</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CCS355</td>
<td>Neural Networks and Deep Learning</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CCS369</td>
<td>Text and Speech Analysis</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CCW331</td>
<td>Business Analytics</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CCS349</td>
<td>Image and Video Analytics</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CCS338</td>
<td>Computer Vision</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CCS334</td>
<td>Big Data Analytics</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 2: FULL STACK DEVELOPMENT

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CCS375</td>
<td>Web Technologies</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CCS332</td>
<td>App Development</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CCS336</td>
<td>Cloud Services Management</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CCS370</td>
<td>UI and UX Design</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CCS366</td>
<td>Software Testing and Automation</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CCS374</td>
<td>Web Application Security</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CCS342</td>
<td>DevOps</td>
<td>PEC</td>
<td>2 L 0 T 2 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CCS358</td>
<td>Principles of Programming Languages</td>
<td>PEC</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
VERTICAL 3: CLOUD COMPUTING AND DATA CENTER TECHNOLOGIES

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CCS335</td>
<td>Cloud Computing</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CCS372</td>
<td>Virtualization</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CCS336</td>
<td>Cloud Services Management</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CCS341</td>
<td>Data Warehousing</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CCS367</td>
<td>Storage Technologies</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CCS365</td>
<td>Software Defined Networks</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CCS368</td>
<td>Stream Processing</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CCS362</td>
<td>Security and Privacy in Cloud</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 4: CYBER SECURITY AND DATA PRIVACY

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CCS344</td>
<td>Ethical Hacking</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CCS343</td>
<td>Digital and Mobile Forensics</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CCS363</td>
<td>Social Network Security</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CCS351</td>
<td>Modern Cryptography</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CB3591</td>
<td>Engineering Secure Software Systems</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CCS339</td>
<td>Cryptocurrency and Blockchain Technologies</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CCS354</td>
<td>Network Security</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CCS362</td>
<td>Security and Privacy in Cloud</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>S. No.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>PERIODS PER WEEK</td>
<td>TOTAL CONTACT PERIODS</td>
<td>CREDITS</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>CCS333</td>
<td>Augmented Reality/Virtual Reality</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CCS352</td>
<td>Multimedia and Animation</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CCS371</td>
<td>Video Creation and Editing</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CCS370</td>
<td>UI and UX Design</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CCW332</td>
<td>Digital Marketing</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CCS373</td>
<td>Visual Effects</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CCS347</td>
<td>Game Development</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CCS353</td>
<td>Multimedia Data Compression and Storage</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CCS333</td>
<td>Augmented Reality/Virtual Reality</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CCS361</td>
<td>Robotic Process Automation</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CCS355</td>
<td>Neural Networks and Deep Learning</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CCS340</td>
<td>Cyber Security</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CCS359</td>
<td>Quantum Computing</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CCS339</td>
<td>Cryptocurrency and Blockchain Technologies</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CCS347</td>
<td>Game Development</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CCS331</td>
<td>3D Printing and Design</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
VERTICAL 7: COMMUNICATIONS

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CO3001</td>
<td>Digital Communication</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CEC364</td>
<td>Wireless Broad Band Networks</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CEC331</td>
<td>4G/5G Communication Networks</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CEC347</td>
<td>Radar Technologies</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>ET3001</td>
<td>Mobile Communication</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>ET3002</td>
<td>Telecommunication Switching and Networks</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CEC345</td>
<td>Optical Communication & Networks</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CEC352</td>
<td>Satellite Communication</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 8: HIGH SPEED COMMUNICATIONS

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CEC345</td>
<td>Optical Communication & Networks</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CEC364</td>
<td>Wireless Broad Band Networks</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CEC331</td>
<td>4G/5G Communication Networks</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CEC354</td>
<td>Software Defined Networks</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CEC371</td>
<td>Massive MIMO Networks</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CEC333</td>
<td>Advanced Wireless Communication Techniques</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CCS354</td>
<td>Network Security</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CEC352</td>
<td>Satellite Communication</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
OPEN ELECTIVES
(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories).

OPEN ELECTIVES – I

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OAS351</td>
<td>Space Science</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OIE351</td>
<td>Introduction to Industrial Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OBT351</td>
<td>Food, Nutrition and Health</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>OCE351</td>
<td>Environment and Social Impact Assessment</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>OEE351</td>
<td>Renewable Energy System</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>OEI351</td>
<td>Introduction to Industrial Instrumentation and Control</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OMA351</td>
<td>Graph Theory</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

OPEN ELECTIVES – II

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OIE352</td>
<td>Resource Management Techniques</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OMG351</td>
<td>Fintech Regulation</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OFD351</td>
<td>Holistic Nutrition</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>AI3021</td>
<td>IT in Agricultural System</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>OEI352</td>
<td>Introduction to Control Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>OPY351</td>
<td>Pharmaceutical Nanotechnology</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OAE351</td>
<td>Aviation Management</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

OPEN ELECTIVES – III

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OHS351</td>
<td>English for Competitive Examinations</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OMG352</td>
<td>NGOs and Sustainable Development</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OMG353</td>
<td>Democracy and Good Governance</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Department</td>
<td>Credits</td>
<td>ECTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>------------</td>
<td>---------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CME365</td>
<td>Renewable Energy Technologies</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OME354</td>
<td>Applied Design Thinking</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF3003</td>
<td>Reverse Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPR351</td>
<td>Sustainable Manufacturing</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU3791</td>
<td>Electric and Hybrid Vehicles</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAS352</td>
<td>Space Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OIM351</td>
<td>Industrial Management</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OIE354</td>
<td>Quality Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSF351</td>
<td>Fire Safety Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OML351</td>
<td>Introduction to Non-Destructive Testing</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMR351</td>
<td>Mechatronics</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORA351</td>
<td>Foundation of Robotics</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAE352</td>
<td>Fundamentals of Aeronautical engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OGI351</td>
<td>Remote Sensing Concepts</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAI351</td>
<td>Urban Agriculture</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEN351</td>
<td>Drinking Water Supply and Treatment</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEE352</td>
<td>Electric Vehicle technology</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEI353</td>
<td>Introduction to PLC Programming</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCH351</td>
<td>Nano Technology</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCH352</td>
<td>Functional Materials</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFD352</td>
<td>Traditional Indian Foods</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFD353</td>
<td>Introduction to Food Processing</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPY352</td>
<td>IPR for Pharma Industry</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTT351</td>
<td>Basics of Textile Finishing</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTT352</td>
<td>Industrial Engineering for Garment Industry</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTT353</td>
<td>Basics of Textile Manufacture</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPE351</td>
<td>Introduction to Petroleum Refining and Petrochemicals</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPE334</td>
<td>Energy Conservation and Management</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPT351</td>
<td>Basics of Plastics Processing</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBM348</td>
<td>Foundation Skills in Integrated Product Development</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBM333</td>
<td>Assistive Technology</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMA352</td>
<td>Operations Research</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMA353</td>
<td>Algebra and Number Theory</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMA354</td>
<td>Linear Algebra</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCE353</td>
<td>Lean Concepts, Tools and Practices</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBT352</td>
<td>Basics of Microbial Technology</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. NO.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>PERIODS PER WEEK</td>
<td>TOTAL CONTACT PERIODS</td>
<td>CREDITS</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>40.</td>
<td>OBT353</td>
<td>Basics of Biomolecules</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>41.</td>
<td>OBT354</td>
<td>Fundamentals of Cell and Molecular Biology</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

OPEN ELECTIVES – IV

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OHS352</td>
<td>Project Report Writing</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OMA355</td>
<td>Advanced Numerical Methods</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OMA356</td>
<td>Random Processes</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>OMA357</td>
<td>Queuing and Reliability Modelling</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>OMG354</td>
<td>Production and Operations Management for Entrepreneurs</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>OMG355</td>
<td>Multivariate Data Analysis</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OME352</td>
<td>Additive Manufacturing</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CME343</td>
<td>New Product Development</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>OME355</td>
<td>Industrial Design & Rapid Prototyping Techniques</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>MF3010</td>
<td>Micro and Precision Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>OMF354</td>
<td>Cost Management of Engineering Projects</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>AU3002</td>
<td>Batteries and Management system</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>AU3008</td>
<td>Sensors and Actuators</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>OAS353</td>
<td>Space Vehicles</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>OIM352</td>
<td>Management Science</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>OIM353</td>
<td>Production Planning and Control</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>OIE353</td>
<td>Operations Management</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>OSF352</td>
<td>Industrial Hygiene</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>19.</td>
<td>OSF353</td>
<td>Chemical Process Safety</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>OML352</td>
<td>Electrical, Electronic and Magnetic materials</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>21.</td>
<td>OML353</td>
<td>Nanomaterials and applications</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>22.</td>
<td>OMR352</td>
<td>Hydraulics and Pneumatics</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>23.</td>
<td>OMR353</td>
<td>Sensors</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>24.</td>
<td>ORA352</td>
<td>Concepts in Mobile Robots</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>25.</td>
<td>MV3501</td>
<td>Marine Propulsion</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>26.</td>
<td>OMV351</td>
<td>Marine Merchant Vessels</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>27.</td>
<td>OMV352</td>
<td>Elements of Marine Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>28.</td>
<td>CRA332</td>
<td>Drone Technologies</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Department</td>
<td>Credits</td>
<td>Lectures</td>
<td>Labs</td>
<td>Practicals</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>OGI352</td>
<td>Geographical Information System</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OAI352</td>
<td>Agriculture Entrepreneurship Development</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OEN352</td>
<td>Biodiversity Conservation</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OEE353</td>
<td>Introduction to Control Systems</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OEI354</td>
<td>Introduction to Industrial Automation Systems</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OCH353</td>
<td>Energy Technology</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OCH354</td>
<td>Surface Science</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OFD354</td>
<td>Fundamentals of Food Engineering</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OFD355</td>
<td>Food safety and Quality Regulations</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OPY353</td>
<td>Nutraceuticals</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OTT354</td>
<td>Basics of Dyeing and Printing</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>FT3201</td>
<td>Fibre Science</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OTT355</td>
<td>Garment Manufacturing Technology</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OPE353</td>
<td>Industrial safety</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OPE354</td>
<td>Unit Operations in Petro Chemical Industries</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OPT352</td>
<td>Plastic Materials for Engineers</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OPT353</td>
<td>Properties and Testing of Plastics</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CBM370</td>
<td>Wearable Devices</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CBM356</td>
<td>Medical Informatics</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OCE354</td>
<td>Basics of Integrated Water Resources Management</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OBT355</td>
<td>Biotechnology for Waste Management</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OBT356</td>
<td>Lifestyle Diseases</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OBT357</td>
<td>Biotechnology in Health Care</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
SUMMARY

Name of the Programme: B.E. Computer and Communication Engineering

<table>
<thead>
<tr>
<th>S.No</th>
<th>Subject Area</th>
<th>Credits per Semester</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1</td>
<td>HSMC</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>BSC</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>ESC</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>PCC</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>PEC</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>OEC</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>EEC</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Non-Credit /Mandatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>22</td>
<td>26</td>
</tr>
</tbody>
</table>

ENROLLMENT FOR B.E. / B. TECH. (HONOURS) / MINOR DEGREE (OPTIONAL)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E. / B. Tech. (Honours) or Minor Degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes. Moreover, for minor degree the student can register for courses from any one of the following verticals also.

Complete details are available in clause 4.10 (Amendments) of Regulations 2021.
VERTICALS FOR MINOR DEGREE
(In addition to all the verticals of other programmes)

<table>
<thead>
<tr>
<th>Vertical I: Fintech and Block Chain</th>
<th>Vertical II: Entrepreneurship</th>
<th>Vertical III: Public Administration</th>
<th>Vertical IV: Business Data Analytics</th>
<th>Vertical V: Environment and Sustainability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Management</td>
<td>Foundations of Entrepreneurship</td>
<td>Principles of Public Administration</td>
<td>Statistics for Management</td>
<td>Sustainable Infrastructure Development</td>
</tr>
<tr>
<td>Fundamentals of Investment</td>
<td>Team Building & Leadership Management for Business</td>
<td>Constitution of India</td>
<td>Datamining for Business Intelligence</td>
<td>Sustainable Agriculture and Environmental Management</td>
</tr>
<tr>
<td>Banking, Financial Services and Insurance</td>
<td>Creativity & Innovation in Entrepreneurship</td>
<td>Public Personnel Administration</td>
<td>Human Resource Analytics</td>
<td>Sustainable Bio Materials</td>
</tr>
<tr>
<td>Introduction to Blockchain and its Applications</td>
<td>Principles of Marketing Management for Business</td>
<td>Administrative Theories</td>
<td>Marketing and Social Media Web Analytics</td>
<td>Materials for Energy Sustainability</td>
</tr>
<tr>
<td>Fintech Personal Finance and Payments</td>
<td>Human Resource Management for Entrepreneurs</td>
<td>Indian Administrative System</td>
<td>Operation and Supply Chain Analytics</td>
<td>Green Technology</td>
</tr>
<tr>
<td>Introduction to Fintech</td>
<td>Financing New Business Ventures</td>
<td>Public Policy Administration</td>
<td>Financial Analytics</td>
<td>Environmental Quality Monitoring and Analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Integrated Energy Planning for Sustainable Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Fintech</td>
<td></td>
<td></td>
<td></td>
<td>Energy Efficiency for Sustainable Development</td>
</tr>
</tbody>
</table>

PROGRESS THROUGH KNOWLEDGE
(choice of courses for Minor degree is to be made from any one vertical of other programmes or from anyone of the following verticals)

VERTICAL 1: FINTECH AND BLOCK CHAIN

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGOR Y</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CMG331</td>
<td>Financial Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CMG332</td>
<td>Fundamentals of Investment</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CMG333</td>
<td>Banking, Financial Services and Insurance</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CMG334</td>
<td>Introduction to Blockchain and its Applications</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CMG335</td>
<td>Fintech Personal Finance and Payments</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CMG336</td>
<td>Introduction to Fintech</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 2: ENTREPRENEURSHIP

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGOR Y</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CMG337</td>
<td>Foundations of Entrepreneurship</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CMG338</td>
<td>Team Building & Leadership Management for Business</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CMG339</td>
<td>Creativity & Innovation in Entrepreneurship</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CMG340</td>
<td>Principles of Marketing Management for Business</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CMG341</td>
<td>Human Resource Management for Entrepreneurs</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CMG342</td>
<td>Financing New Business Ventures</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
VERTICAL 3: PUBLIC ADMINISTRATION

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CMG343</td>
<td>Principles of Public Administration</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CMG344</td>
<td>Constitution of India</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CMG345</td>
<td>Public Personnel Administration</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CMG346</td>
<td>Administrative Theories</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CMG347</td>
<td>Indian Administrative System</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CMG348</td>
<td>Public Policy Administration</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 4: BUSINESS DATA ANALYTICS

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CMG349</td>
<td>Statistics for Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CMG350</td>
<td>Datamining for Business Intelligence</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CMG351</td>
<td>Human Resource Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CMG352</td>
<td>Marketing and Social Media Web Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CMG353</td>
<td>Operation and Supply Chain Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CMG354</td>
<td>Financial Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>S. NO.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>PERIODS PER WEEK</td>
<td>TOTAL CONTACT PERIODS</td>
<td>CREDITS</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sustainable Infrastructure Development</td>
<td>PEC</td>
<td>L 3 T 0 P 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CES332</td>
<td>Sustainable Agriculture and Environmental Management</td>
<td>PEC</td>
<td>L 3 T 0 P 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CES333</td>
<td>Sustainable Bio Materials</td>
<td>PEC</td>
<td>L 3 T 0 P 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CES334</td>
<td>Materials for Energy Sustainability</td>
<td>PEC</td>
<td>L 3 T 0 P 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CES335</td>
<td>Green Technology</td>
<td>PEC</td>
<td>L 3 T 0 P 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CES336</td>
<td>Environmental Quality Monitoring and Analysis</td>
<td>PEC</td>
<td>L 3 T 0 P 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CES337</td>
<td>Integrated Energy Planning for Sustainable Development</td>
<td>PEC</td>
<td>L 3 T 0 P 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CES338</td>
<td>Energy Efficiency for Sustainable Development</td>
<td>PEC</td>
<td>L 3 T 0 P 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
This is a mandatory 2 week programme to be conducted as soon as the students enter the institution. Normal classes start only after the induction program is over.

The induction programme has been introduced by AICTE with the following objective:

“Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have a broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.”

“One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character.”

Hence, the purpose of this programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

(i) Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.

(ii) Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it everyday for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, grow into engineering design later.

(iii) Universal Human Values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, make decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and don'ts,
but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing. Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It would be effective that the faculty mentor assigned is also the faculty advisor for the student for the full duration of the UG programme.

(iv) Literary Activity

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

(v) Proficiency Modules

This would address some lacunas that students might have, for example, English, computer familiarity etc.

(vi) Lectures by Eminent People

Motivational lectures by eminent people from all walks of life should be arranged to give the students exposure to people who are socially active or in public life.

(vii) Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the underprivileged.

(viii) Familiarization to Dept./Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

(ix) Department Specific Activities

About a week can be spent introducing activities (games, quizzes, social interactions, small experiments, design thinking etc.) that are relevant to the particular branch of Engineering / Technology / Architecture that can serve as a motivation and kindle interest in building things (become a maker) in that particular field. This can be conducted in the form of a workshop. For example, CSE and IT students may be introduced to activities that kindle computational thinking, and get them to build simple games. ECE students may be introduced to building simple circuits as an extension of their knowledge in Science, and so on. Students may be asked to build stuff using their knowledge of science.

Induction Programme is totally an activity based programme and therefore there shall be no tests / assessments during this programme.

References:

Guide to Induction program from AICTE
COURSE OBJECTIVES:

- To improve the communicative competence of learners
- To learn to use basic grammatical structures in suitable contexts
- To acquire lexical competence and use them appropriately in a sentence and understand their meaning in a text
- To help learners use language effectively in professional contexts
- To develop learners’ ability to read and write complex texts, summaries, articles, blogs, definitions, essays and user manuals.

UNIT I INTRODUCTION TO EFFECTIVE COMMUNICATION

What is effective communication? (Explain using activities) Why is communication critical for excellence during study, research and work? What are the seven C’s of effective communication? What are key language skills? What is effective listening? What does it involve? What is effective speaking? What does it mean to be an excellent reader? What should you be able to do? What is effective writing? How does one develop language and communication skills? What does the course focus on? How are communication and language skills going to be enhanced during this course? What do you as a learner need to do to enhance your English language and communication skills to get the best out of this course?

INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION

Reading - Reading brochures (technical context), telephone messages / social media messages relevant to technical contexts and emails. Writing - Writing emails / letters introducing oneself. Grammar - Present Tense (simple and progressive); Question types: Wh/ Yes or No/ and Tags. Vocabulary - Synonyms; One word substitution; Abbreviations & Acronyms (as used in technical contexts).

UNIT II NARRATION AND SUMMATION

Reading - Reading biographies, travelogues, newspaper reports, Excerpts from literature, and travel & technical blogs. Writing - Guided writing -- Paragraph writing Short Report on an event (field trip etc.) Grammar –Past tense (simple); Subject-Verb Agreement; and Prepositions. Vocabulary - Word forms (prefixes& suffixes); Synonyms and Antonyms. Phrasal verbs.

UNIT III DESCRIPTION OF A PROCESS / PRODUCT

Reading – Reading advertisements, gadget reviews; user manuals. Writing - Writing definitions; instructions; and Product /Process description. Grammar - Imperatives; Adjectives; Degrees of comparison; Present & Past Perfect Tenses. Vocabulary - Compound Nouns, Homonyms; and Homophones, discourse markers (connectives & sequence words).

UNIT IV CLASSIFICATION AND RECOMMENDATIONS

Reading – Newspaper articles; Journal reports –and Non Verbal Communication (tables, pie charts etc.). Writing – Note-making / Note-taking (*Study skills to be taught, not tested); Writing recommendations; Transferring information from non verbal (chart, graph etc, to verbal mode) Grammar – Articles; Pronouns - Possessive & Relative pronouns. Vocabulary - Collocations; Fixed / Semi fixed expressions.
UNIT V EXPRESSION
Reading – Reading editorials; and Opinion Blogs; Writing – Essay Writing (Descriptive or narrative).
Grammar – Future Tenses, Punctuation; Negation (Statements & Questions); and Simple, Compound & Complex Sentences. Vocabulary - Cause & Effect Expressions – Content vs Function words.

TOTAL : 45 PERIODS

LEARNING OUTCOMES :
At the end of the course, learners will be able
CO1: To use appropriate words in a professional context
CO2: To gain understanding of basic grammatic structures and use them in right context.
CO3: To read and infer the denotative and connotative meanings of technical texts
CO4: To write definitions, descriptions, narrations and essays on various topics

TEXT BOOKS :
1. English for Engineers & Technologists Orient Blackswan Private Ltd. Department of English, Anna University, (2020 edition)
 Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

REFERENCES:

ASSESSMENT PATTERN
Two internal assessments and an end semester examination to test students’ reading and writing skills along with their grammatical and lexical competence.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.6</td>
<td>2.2</td>
<td>1.8</td>
<td>2.2</td>
<td>1.5</td>
<td>3</td>
<td>3</td>
<td>1.6</td>
<td>3</td>
<td>3</td>
<td>1.6</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

MA3151 MATRICES AND CALCULUS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
• To develop the use of matrix algebra techniques that are needed by engineers for practical applications.
To familiarize the students with differential calculus.
To familiarize the student with functions of several variables. This is needed in many branches of engineering.
To make the students understand various techniques of integration.
To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

UNIT I MATRICES 9 + 3

UNIT II DIFFERENTIAL CALCULUS 9 + 3

UNIT III FUNCTIONS OF SEVERAL VARIABLES 9 + 3

UNIT IV INTEGRAL CALCULUS 9 + 3
Definite and Indefinite integrals - Substitution rule - Techniques of Integration : Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals - Applications : Hydrostatic force and pressure, moments and centres of mass.

UNIT V MULTIPLE INTEGRALS 9 + 3

TOTAL: 60 PERIODS

COURSE OUTCOMES:
At the end of the course the students will be able to
CO1:Use the matrix algebra methods for solving practical problems.
CO2:Apply differential calculus tools in solving various application problems.
CO3:Able to use differential calculus ideas on several variable functions.
CO4:Apply different methods of integration in solving practical problems.
CO5:Apply multiple integral ideas in solving areas, volumes and other practical problems.

TEXT BOOKS:
3. James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015. [For Units II & IV - Sections 1.1, 2.2, 2.3, 2.5, 2.7 (Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1 (Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

PH3151 ENGINEERING PHYSICS L T P C

COURSE OBJECTIVES:
- To make the students effectively achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of oscillations, optics and lasers.
- Equipping the students to successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS
UNIT II

ELECTROMAGNETIC WAVES

The Maxwell's equations - wave equation; Plane electromagnetic waves in vacuum, Conditions on the wave field - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - polarization - Producing electromagnetic waves - Energy and momentum in EM waves: Intensity, waves from localized sources, momentum and radiation pressure - Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

UNIT III

OSCILLATIONS, OPTICS AND LASERS

UNIT IV

BASIC QUANTUM MECHANICS

Photons and light waves - Electrons and matter waves –Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization –Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

UNIT V

APPLIED QUANTUM MECHANICS

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch’s theorem for particles in a periodic potential –Basics of Kronig-Penney model and origin of energy bands.

COURSE OUTCOMES:

After completion of this course, the students should be able to
CO1: Understand the importance of mechanics.
CO2: Express their knowledge in electromagnetic waves.
CO3: Demonstrate a strong foundational knowledge in oscillations, optics and lasers.
CO4: Understand the importance of quantum physics.
CO5: Comprehend and apply quantum mechanical principles towards the formation of energy bands.

TEXT BOOKS:

2. E.M.Purcell and D.J.Morin, Electricity and Magnetism, Cambridge Univ.Press, 2013.

REFERENCES:

COURSE OBJECTIVES:

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage devices.

UNIT I WATER AND ITS TREATMENT

UNIT II NANO CHEMISTRY

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials: Definition, properties and uses of – nanoparticle, nanocluster, nanorod, nanowire and nanotube. Preparation of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, agriculture, energy, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES

Phase rule: Introduction, definition of terms with examples. One component system - water system; Reduced phase rule; Construction of a simple eutectic phase diagram - Thermal analysis; Two component system: lead-silver system - Pattinson process.
Composites: Introduction: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and

UNIT IV FUELS AND COMBUSTION 9
Fuels: Introduction: Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking - octane number, diesel oil - cetane number; Power alcohol and biodiesel.
Combustion of fuels: Introduction: Calorific value - higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis - ORSAT Method. CO₂ emission and carbon footprint.

UNIT V ENERGY SOURCES AND STORAGE DEVICES 9
Stability of nucleus: mass defect (problems), binding energy; Nuclear energy: light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery - dry cell, Secondary battery - lead acid battery and lithium-ion battery; Electric vehicles - working principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell; Supercapacitors: Storage principle, types and examples.

Course Outcomes:
At the end of the course, the students will be able:
CO1: To infer the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
CO2: To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
CO3: To apply the knowledge of phase rule and composites for material selection requirements.
CO4: To recommend suitable fuels for engineering processes and applications.
CO5: To recognize different forms of energy resources and apply them for suitable applications in energy sectors.

Text Books:

References:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO</td>
<td>2.8</td>
<td>1.3</td>
<td>1.6</td>
<td>1</td>
<td>1.5</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

GE3151 PROBLEM SOLVING AND PYTHON PROGRAMMING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

- To understand the basics of algorithmic problem solving.
- To learn to solve problems using Python conditionals and loops.
- To define Python functions and use function calls to solve problems.
- To use Python data structures - lists, tuples, dictionaries to represent complex data.
- To do input/output with files in Python.

UNIT I COMPUTATIONAL THINKING AND PROBLEM SOLVING

UNIT II DATA TYPES, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode, debugging; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment; precedence of operators, comments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT III CONTROL FLOW, FUNCTIONS, STRINGS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.
UNIT IV LISTS, TUPLES, DICTIONARIES
Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: simple sorting, histogram, Students marks statement, Retail bill preparation.

UNIT V FILES, MODULES, PACKAGES
Files and exceptions: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file, Voter’s age validation, Marks range validation (0-100).

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, students will be able to
- CO1: Develop algorithmic solutions to simple computational problems.
- CO2: Develop and execute simple Python programs.
- CO3: Write simple Python programs using conditionals and loops for solving problems.
- CO4: Decompose a Python program into functions.
- CO5: Represent compound data using Python lists, tuples, dictionaries etc.
- CO6: Read and write data from/to files in Python programs.

TEXT BOOKS:

REFERENCES:
5. https://www.python.org/

KO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
UNIT I LANGUAGE AND LITERATURE 3

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE 3

UNIT III FOLK AND MARTIAL ARTS 3
The rukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV THINAI CONCEPT OF TAMILS 3
Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE 3
Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

TOTAL : 15 PERIODS

TEXT-CUM-REFERENCE BOOKS
1. தமிழக வரலொறு – மக்களும் பண பொடும் – கக.கக.பிள்ளள (தவளியீடு: தவளியீடு பாரின் வாழ்வு கலையிலியம் பலிகலா குழும).
2. கலைஷிக கூறிய – அரசாங்க வேலைக் குழு (மீள்வள் விளக்கம்).
3. திருமக் – தமிழக துணைக்கலப்பில் செல்க்குண்டு கால் தக்கானிகம் (ததொல்லியல் துளறதவளியீடு).
4. இரவுகூரா குழு (ததொல்லியல் துளறதவளியீடு).
5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies).
7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by:...
International Institute of Tamil Studies.)
9. Keeladi - ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)

GE3152 தமிழ் முழு நூற்றாண்டு L T P C 1 0 0 1

அத்தில் மாணவர் இலக்கியம்:
3

டீன்றோடெல் கவியம்.
TEXT-CUM-REFERENCE BOOKS

1. Tamil Social History - Civil War Tamil (C. Chelvan: (Tamil: காலமர தமிழ் புத்தகங்கள், தமிழ் பண்புறம்)).

2. Tamil Traditional Tamil – Heritage Tamil. (Sethupathy Ponnadurai).

4. Social Life of Tamil - Classical Period (Dr. S.S. Singaravelu). (Published by: International Institute of Tamil Studies).

5. Social Life of the Tamils (Dr. S.V. Subatamanian, Dr. K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).

6. The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Published by: International Institute of Tamil Studies).

7. Keeladi - ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu).

8. Studies in the History of India with Special Reference to Tamil Nadu (Dr. K.K. Pillay) (Published by: The Author).

9. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu).

COUSE OBJECTIVES:

- To understand the problem solving approaches.
- To learn the basic programming constructs in Python.
- To practice various computing strategies for Python-based solutions to real world problems.
- To use Python data structures - lists, tuples, dictionaries.
- To do input/output with files in Python.
EXPERIMENTS:
Note: The examples suggested in each experiment are only indicative. The lab instructor is expected to design other problems on similar lines. The Examination shall not be restricted to the sample experiments listed here.

1. Identification and solving of simple real life or scientific or technical problems, and developing flow charts for the same. (Electricity Billing, Retail shop billing, Sin series, weight of a motorbike, Weight of a steel bar, compute Electrical Current in Three Phase AC Circuit, etc.)
2. Python programming using simple statements and expressions (exchange the values of two variables, circulate the values of n variables, distance between two points).
3. Scientific problems using Conditionals and Iterative loops. (Number series, Number Patterns, pyramid pattern)
4. Implementing real-time/technical applications using Lists, Tuples. (Items present in a library/Components of a car/ Materials required for construction of a building –operations of list & tuples)
5. Implementing real-time/technical applications using Sets, Dictionaries. (Language, components of an automobile, Elements of a civil structure, etc.- operations of Sets & Dictionaries)
6. Implementing programs using Functions. (Factorial, largest number in a list, area of shape)
7. Implementing programs using Strings. (reverse, palindrome, character count, replacing characters)
9. Implementing real-time/technical applications using File handling. (copy from one file to another, word count, longest word)
10. Implementing real-time/technical applications using Exception handling. (divide by zero error, voter’s age validity, student mark range validation)
12. Developing a game activity using Pygame like bouncing ball, car race etc.

TOTAL: 60 PERIODS

COURSE OUTCOMES:
On completion of the course, students will be able to:

CO1: Develop algorithmic solutions to simple computational problems
CO2: Develop and execute simple Python programs.
CO3: Implement programs in Python using conditionals and loops for solving problems.
CO4: Deploy functions to decompose a Python program.
CO5: Process compound data using Python data structures.
CO6: Utilize Python packages in developing software applications.

TEXT BOOKS:

REFERENCES:
5. https://www.python.org/

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>AVg.</td>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

BS3171 PHYSICS AND CHEMISTRY LABORATORY L T P C
0 0 4 2

PHYSICS LABORATORY : (Any Seven Experiments)

COURSE OBJECTIVES:
- To learn the proper use of various kinds of physics laboratory equipment.
- To learn how data can be collected, presented and interpreted in a clear and concise manner.
- To learn problem solving skills related to physics principles and interpretation of experimental data.
- To determine error in experimental measurements and techniques used to minimize such error.
- To make the student an active participant in each part of all lab exercises.

1. Torsional pendulum - Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects.
2. Simple harmonic oscillations of cantilever.
3. Non-uniform bending - Determination of Young’s modulus
4. Uniform bending – Determination of Young’s modulus
5. Laser- Determination of the wavelength of the laser using grating
6. Air wedge - Determination of thickness of a thin sheet/wire
7. a) Optical fibre - Determination of Numerical Aperture and acceptance angle
 b) Compact disc- Determination of width of the groove using laser.
8. Acoustic grating- Determination of velocity of ultrasonic waves in liquids.
9. Ultrasonic interferometer – determination of the velocity of sound and compressibility of liquids
11. Photoelectric effect
12. Michelson Interferometer.
13. Melde's string experiment
14. Experiment with lattice dynamics kit.

TOTAL: 30 PERIODS

COURSE OUTCOMES:
Upon completion of the course, the students should be able to
CO1: Understand the functioning of various physics laboratory equipment.
CO2: Use graphical models to analyze laboratory data.
CO3: Use mathematical models as a medium for quantitative reasoning and describing physical reality.
CO4: Access, process and analyze scientific information.
CO5: Solve problems individually and collaboratively.

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>AVG</td>
<td>3</td>
<td>2.4</td>
<td>2.6</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

COURSE OBJECTIVES:

- To inculcate experimental skills to test basic understanding of water quality parameters, such as, acidity, alkalinity, hardness, DO, chloride and copper.
- To induce the students to familiarize with electroanalytical techniques such as, pH metry, potentiometry and conductometry in the determination of impurities in aqueous solutions.
- To demonstrate the analysis of metals and alloys.
- To demonstrate the synthesis of nanoparticles.

1. Preparation of Na₂CO₃ as a primary standard and estimation of acidity of a water sample using the primary standard
2. Determination of types and amount of alkalinity in a water sample.
 - Split the first experiment into two
3. Determination of total, temporary & permanent hardness of water by EDTA method.
4. Determination of DO content of water sample by Winkler’s method.
5. Determination of chloride content of water sample by Argentometric method.
6. Estimation of copper content of the given solution by Iodometry.
7. Estimation of TDS of a water sample by gravimetry.
8. Determination of strength of given hydrochloric acid using pH meter.
9. Determination of strength of acids in a mixture of acids using conductivity meter.
10. Conductometric titration of barium chloride against sodium sulphate (precipitation titration)
11. Estimation of iron content of the given solution using potentiometer.
12. Estimation of sodium/potassium present in water using a flame photometer.
13. Preparation of nanoparticles (TiO$_2$/ZnO/CuO) by Sol-Gel method.
14. Estimation of Nickel in steel
15. Proximate analysis of Coal

TOTAL : 30 PERIODS

COURSE OUTCOMES:

CO1: To analyse the quality of water samples with respect to their acidity, alkalinity, hardness and DO.
CO2: To determine the amount of metal ions through volumetric and spectroscopic techniques
CO3: To analyse and determine the composition of alloys.
CO4: To learn simple method of synthesis of nanoparticles
CO5: To quantitatively analyse the impurities in solution by electroanalytical techniques

TEXT BOOKS:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>2.6</td>
<td>1.3</td>
<td>1.6</td>
<td>1</td>
<td>1</td>
<td>1.4</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

GE3172 ENGLISH LABORATORY

L T P C
0 0 2 1

COURSE OBJECTIVES:

- To improve the communicative competence of learners
- To help learners use language effectively in academic/work contexts
- To develop various listening strategies to comprehend various types of audio materials like lectures, discussions, videos etc.
- To build on students' English language skills by engaging them in listening, speaking and grammar learning activities that are relevant to authentic contexts.
- To use language efficiently in expressing their opinions via various media.

UNIT I INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION

Listening for general information-specific details-conversation: Introduction to classmates - Audio/video (formal & informal); Telephone conversation; Listening to voicemail & messages; Listening and filling a form. Speaking - making telephone calls-Self Introduction; Introducing a friend; politeness strategies-making polite requests, making polite offers, replying to polite requests and offers-understanding basic instructions(filling out a bank application for example).
UNIT II NARRATION AND SUMMATION
Listening - Listening to podcasts, anecdotes / stories / event narration; documentaries and interviews with celebrities. Speaking - Narrating personal experiences / events-Talking about current and temporary situations & permanent and regular situations* - describing experiences and feelings- engaging in small talk- describing requirements and abilities.

UNIT III DESCRIPTION OF A PROCESS / PRODUCT
Listening - Listen to product and process descriptions; a classroom lecture; and advertisements about products. Speaking – Picture description- describing locations in workplaces- Giving instruction to use the product- explaining uses and purposes- Presenting a product- describing shapes and sizes and weights- talking about quantities(large & small)-talking about precautions.

UNIT IV CLASSIFICATION AND RECOMMENDATIONS
Listening – Listening to TED Talks; Listening to lectures - and educational videos. Speaking – Small Talk; discussing and making plans-talking about tasks-talking about progress- talking about positions and directions of movement-talking about travel preparations- talking about transportation-

UNIT V EXPRESSION
Listening – Listening to debates/ discussions; different viewpoints on an issue; and panel discussions. Speaking –making predictions- talking about a given topic-giving opinions- understanding a website-describing processes

TOTAL : 30 PERIODS

LEARNING OUTCOMES:
At the end of the course, learners will be able
CO1: To listen to and comprehend general as well as complex academic information
CO2: To listen to and understand different points of view in a discussion
CO3: To speak fluently and accurately in formal and informal communicative contexts
CO4: To describe products and processes and explain their uses and purposes clearly and accurately
CO5: To express their opinions effectively in both formal and informal discussions

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>Avg.</th>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>PSO</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

Note: The average value of this course to be used for program articulation matrix.

ASSESSMENT PATTERN
- One online / app based assessment to test listening /speaking
- End Semester ONLY listening and speaking will be conducted online.
- Proficiency certification is given on successful completion of listening and speaking internal test and end semester exam.
COURSE OBJECTIVES:
- To engage learners in meaningful language activities to improve their reading and writing skills
- To learn various reading strategies and apply in comprehending documents in professional context.
- To help learners understand the purpose, audience, contexts of different types of writing
- To develop analytical thinking skills for problem solving in communicative contexts
- To demonstrate an understanding of job applications and interviews for internship and placements

UNIT I MAKING COMPARISONS 6
Reading - Reading advertisements, user manuals, brochures; Writing – Professional emails, Email etiquette - Compare and Contrast Essay; Grammar – Mixed Tenses, Prepositional phrases

UNIT II EXPRESSING CAUSAL RELATIONS IN SPEAKING AND WRITING 6
Reading - Reading longer technical texts– Cause and Effect Essays, and Letters / emails of complaint, Writing - Writing responses to complaints. Grammar - Active Passive Voice transformations, Infinitive and Gerunds

UNIT III PROBLEM SOLVING 6
Reading - Case Studies, excerpts from literary texts, news reports etc. Writing – Letter to the Editor, Checklists, Problem solution essay / Argumentative Essay. Grammar – Error correction; If conditional sentences

UNIT IV REPORTING OF EVENTS AND RESEARCH 6

UNIT V THE ABILITY TO PUT IDEAS OR INFORMATION COGENTLY 6
Reading – Company profiles, Statement of Purpose, (SOP), an excerpt of interview with professionals; Writing – Job / Internship application – Cover letter & Resume; Grammar – Numerical adjectives, Relative Clauses.

COURSE OUTCOMES:
At the end of the course, learners will be able
CO1: To compare and contrast products and ideas in technical texts.
CO2: To identify and report cause and effects in events, industrial processes through technical texts
CO3: To analyse problems in order to arrive at feasible solutions and communicate them in the written format.
CO4: To present their ideas and opinions in a planned and logical manner
CO5: To draft effective resumes in the context of job search.

TEXT BOOKS:
 Department of English, Anna University.
3. Authored by Dr. Veena Selvam, Dr. Sujatha Priyaradshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

REFERENCE BOOKS:

ASSESSMENT PATTERN
Two internal assessments and an end semester examination to test students’ reading and writing skills along with their grammatical and lexical competence.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.75</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

Note: The average value of this course to be used for program articulation matrix.

MA3251 STATISTICS AND NUMERICAL METHODS L T P C

COURSE OBJECTIVES:
- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT I TESTING OF HYPOTHESIS 9 + 3
Sampling distributions - Tests for single mean, proportion and difference of means (Large and small samples) – Tests for single variance and equality of variances – Chi square test for goodness of fit – Independence of attributes.
UNIT II DESIGN OF EXPERIMENTS 9 + 3
One way and two way classifications - Completely randomized design – Randomized block design – Latin square design - 2^2 factorial design.

UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS 9 + 3

UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION 9 + 3
Lagrange’s and Newton’s divided difference interpolations – Newton’s forward and backward difference interpolation – Approximation of derivates using interpolation polynomials – Numerical single and double integrations using Trapezoidal and Simpson’s 1/3 rules.

UNIT V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 9 + 3

TOTAL: 60 PERIODS

COURSE OUTCOMES:
Upon successful completion of the course, students will be able to:

CO1: Apply the concept of testing of hypothesis for small and large samples in real life problems.

CO2: Apply the basic concepts of classifications of design of experiments in the field of agriculture.

CO3: Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.

CO4: Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.

CO5: Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

TEXT BOOKS:

REFERENCES:
PH3256 PHYSICS FOR INFORMATION SCIENCE L T P C
3 0 0 3

COURSE OBJECTIVES:
- To make the students understand the importance in studying electrical properties of materials.
- To enable the students to gain knowledge in semiconductor physics
- To instill knowledge on magnetic properties of materials.
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications
- To inculcate an idea of significance of nano structures, quantum confinement, ensuing nano device applications and quantum computing.

UNIT I ELECTRICAL PROPERTIES OF MATERIALS

UNIT II SEMICONDUCTOR PHYSICS

UNIT III MAGNETIC PROPERTIES OF MATERIALS
UNIT IV OPTICAL PROPERTIES OF MATERIALS

Classification of optical materials – carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode – solar cell - LED – Organic LED – Laser diodes – Optical data storage techniques.

UNIT V NANODEVICES AND QUANTUM COMPUTING

TOTAL :45 PERIODS

COURSE OUTCOMES:
At the end of the course, the students should be able to
CO1: gain knowledge on classical and quantum electron theories, and energy band structures
CO2: acquire knowledge on basics of semiconductor physics and its applications in various devices
CO3: get knowledge on magnetic properties of materials and their applications in data storage,
CO4: have the necessary understanding on the functioning of optical materials for optoelectronics
CO5: understand the basics of quantum structures and their applications and basics of quantum computing

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PSO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
BE3251 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

| AVG | 3 | 1.3 | 2 | 1.3 | 2.3 | 1 | 1.3 | 2 |

1-Low, 2-Medium, 3-High, "-" - no correlation

Note: the average value of this course to be used for program articulation matrix.

COURSE OBJECTIVES:
- To introduce the basics of electric circuits and analysis
- To impart knowledge in the basics of working principles and application of electrical machines
- To introduce analog devices and their characteristics
- To educate on the fundamental concepts of digital electronics
- To introduce the functional elements and working of measuring instruments

UNIT I ELECTRICAL CIRCUITS
DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor – Ohm’s Law - Kirchhoff’s Laws – Independent and Dependent Sources – Simple problems- Nodal Analysis, Mesh analysis with Independent sources only (Steady state)
Introduction to AC Circuits and Parameters: Waveforms, Average value, RMS Value, Instantaneous power, real power, reactive power and apparent power, power factor – Steady state analysis of RLC circuits (Simple problems only)

UNIT II ELECTRICAL MACHINES

UNIT III ANALOG ELECTRONICS

UNIT IV DIGITAL ELECTRONICS
Review of number systems, binary codes, error detection and correction codes, Combinational logic - representation of logic functions-SOP and POS forms, K-map representations - minimization using K maps (Simple Problems only).

UNIT V MEASUREMENTS AND INSTRUMENTATION

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completing this course, the students will be able to
CO1: Compute the electric circuit parameters for simple problems
CO2: Explain the working principle and applications of electrical machines
CO3: Analyze the characteristics of analog electronic devices
CO4: Explain the basic concepts of digital electronics
CO5: Explain the operating principles of measuring instruments

TEXT BOOKS:

REFERENCES:

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO</td>
<td>2</td>
<td>1.8</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

GE3251 ENGINEERING GRAPHICS

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
• Drawing engineering curves.
• Drawing a freehand sketch of simple objects.
• Drawing orthographic projection of solids and section of solids.
• Drawing development of solids
• Drawing isometric and perspective projections of simple solids.
CONCEPTS AND CONVENTIONS (Not for Examination)
Importance of graphics in engineering applications — Use of drafting instruments — BIS conventions and specifications — Size, layout and folding of drawing sheets — Lettering and dimensioning.

UNIT I PLANE CURVES 6+12
Basic Geometrical constructions, Curves used in engineering practices: Conics — Construction of ellipse, parabola and hyperbola by eccentricity method — Construction of cycloid — construction of involutes of square and circle — Drawing of tangents and normal to the above curves.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6+12
Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS AND FREEHAND SKETCHING 6+12
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles—Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects.
Practicing three dimensional modeling of simple objects by CAD Software (Not for examination)

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 6+12
Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the principal planes and perpendicular to the other — obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids — Prisms, pyramids cylinders and cones.
Practicing three dimensional modeling of simple objects by CAD Software (Not for examination)

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6+12
Principles of isometric projection — isometric scale — isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids - Prisms, pyramids and cylinders by visual ray method.
Practicing three dimensional modeling of isometric projection of simple objects by CAD Software (Not for examination)

TOTAL: (L=30+P=60) 90 PERIODS

COURSE OUTCOMES:
On successful completion of this course, the student will be able to
CO1: Use BIS conventions and specifications for engineering drawing.
CO2: Construct the conic curves, involutes and cycloid.
CO3: Solve practical problems involving projection of lines.
CO4: Draw the orthographic, isometric and perspective projections of simple solids.
CO5: Draw the development of simple solids.
TEXT BOOK:

REFERENCES:

Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit a solution within A3 size.
4. The examination will be conducted in appropriate sessions on the same day.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
CS3251 PROGRAMMING IN C

COURSE OBJECTIVES:
• To understand the constructs of C Language.
• To develop C Programs using basic programming constructs
• To develop C programs using arrays and strings
• To develop modular applications in C using functions
• To develop applications in C using pointers and structures
• To do input/output and file handling in C

UNIT I BASICS OF C PROGRAMMING
Introduction to programming paradigms – Applications of C Language - Structure of C program - C programming: Data Types - Constants – Enumeration Constants - Keywords – Operators: Precedence and Associativity - Expressions - Input/Output statements, Assignment statements – Decision making statements - Switch statement - Looping statements – Preprocessor directives - Compilation process

UNIT II ARRAYS AND STRINGS
Introduction to Arrays: Declaration, Initialization – One dimensional array –Two dimensional arrays - String operations: length, compare, concatenate, copy – Selection sort, linear and binary search.

UNIT III FUNCTIONS AND POINTERS

UNIT IV STRUCTURES AND UNION

UNIT V FILE PROCESSING
Files – Types of file processing: Sequential access, Random access – Sequential access file - Random access file - Command line arguments.

COURSE OUTCOMES:
Upon completion of the course, the students will be able to
CO1: Demonstrate knowledge on C Programming constructs
CO2: Develop simple applications in C using basic constructs
CO3: Design and implement applications using arrays and strings
CO4: Develop and implement modular applications in C using functions.
CO5: Develop applications in C using structures and pointers.
CO6: Design applications using sequential and random access file processing.

TOTAL : 45 PERIODS

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

GE3252 TAMILS AND TECHNOLOGY L T P C
1 0 0 1

UNIT I WEAVING AND CERAMIC TECHNOLOGY 3
Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY 3
Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)- Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III MANUFACTURING TECHNOLOGY 3

UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY 3
Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries –
UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING

TOTAL : 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

1. Civilization of Tamil Culture - Here is a reference to a specific text, which seems to be a part of a larger work on Tamil civilization.
2. Heritage of Tamil Culture - A reference to a work that explores the heritage of Tamil culture.
3. Journey Book - Information about a book that might be related to Tamil culture or heritage.
4. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
5. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies).
6. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
7. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
8. Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
9. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
10. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

GE3252 கணினியால் தமிழியலியால்

L T P C

1 0 0 1

மதுந்திய பாக்கணும் கணினியால் கற்றியல்கள்: 3

மதுந்திய பாக் கணினியால் கற்றியல்கள் – பாக்கணும் கணினியால் கற்றியல் - மதுந்திய பாக்கணும் கணினியால் கற்றியல்.

மதுந்திய பாக்கணும் கணினியால் கற்றியல்கள்: 3

மதுந்திய பாக்கணும் கணினியால் கற்றியல் - பாக்கணும் கணினியால் கற்றியல் - மதுந்திய பாக்கணும் கணினியால் கற்றியல்.
TEXT-CUM-REFERENCE BOOKS
1. கமிடியின் மரபு - மங்கள் பதவிக்கும் - க.க.ச. பிளேடா (கையாநிக்கல் - கையாநிக்கல் - கையாநிக்கல் - கையாநிக்கல்).
2. கணினியல் குறிப்பு - பல்கலைக் கட்டிடம். (முன்பதிப்பு).
3. செயற்கையில் குறிப்பிட்டுள்ள கணினியல் குறிப்பதிகள் (கையாநிக்கல் குறிப்பு).
4. பார்சுவதா - கணினியில் குறிப்பிட்டுள்ள. (கையாநிக்கல் குறிப்பு).
5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies).
7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
9. Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
NCC Credit Course Level 1*

(ARMY WING)

NCC Credit Course Level - I

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

NCC GENERAL

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC 1</td>
<td>Aims, Objectives & Organization of NCC</td>
</tr>
<tr>
<td>NCC 2</td>
<td>Incentives</td>
</tr>
<tr>
<td>NCC 3</td>
<td>Duties of NCC Cadet</td>
</tr>
<tr>
<td>NCC 4</td>
<td>NCC Camps: Types & Conduct</td>
</tr>
</tbody>
</table>

6 periods

NATIONAL INTEGRATION AND AWARENESS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI 1</td>
<td>National Integration: Importance & Necessity</td>
</tr>
<tr>
<td>NI 2</td>
<td>Factors Affecting National Integration</td>
</tr>
<tr>
<td>NI 3</td>
<td>Unity in Diversity & Role of NCC in Nation Building</td>
</tr>
<tr>
<td>NI 4</td>
<td>Threats to National Security</td>
</tr>
</tbody>
</table>

4 periods

PERSONALITY DEVELOPMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD 1</td>
<td>Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving</td>
</tr>
<tr>
<td>PD 2</td>
<td>Communication Skills</td>
</tr>
<tr>
<td>PD 3</td>
<td>Group Discussion: Stress & Emotions</td>
</tr>
</tbody>
</table>

7 periods

LEADERSHIP

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1</td>
<td>Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code</td>
</tr>
<tr>
<td>L 2</td>
<td>Case Studies: Shivaji, Jhasi Ki Rani</td>
</tr>
</tbody>
</table>

5 periods

SOCIAL SERVICE AND COMMUNITY DEVELOPMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 1</td>
<td>Basics, Rural Development Programmes, NGOs, Contribution of Youth</td>
</tr>
<tr>
<td>SS 4</td>
<td>Protection of Children and Women Safety</td>
</tr>
<tr>
<td>SS 5</td>
<td>Road / Rail Travel Safety</td>
</tr>
<tr>
<td>SS 6</td>
<td>New Initiatives</td>
</tr>
<tr>
<td>SS 7</td>
<td>Cyber and Mobile Security Awareness</td>
</tr>
</tbody>
</table>

8 periods

TOTAL: 30 PERIODS
NX3252 NCC Credit Course Level 1*
NAVAL WING

NCC Credit Course Level - I

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Course Number</th>
<th>Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC GENERAL</td>
<td>NCC 1</td>
<td>Aims, Objectives & Organization of NCC</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NCC 2</td>
<td>Incentives</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>NCC 3</td>
<td>Duties of NCC Cadet</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NCC 4</td>
<td>NCC Camps: Types & Conduct</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>NATIONAL INTEGRATION AND AWARENESS</td>
<td>NI 1</td>
<td>National Integration: Importance & Necessity</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NI 2</td>
<td>Factors Affecting National Integration</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NI 3</td>
<td>Unity in Diversity & Role of NCC in Nation Building</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NI 4</td>
<td>Threats to National Security</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PERSONALITY DEVELOPMENT</td>
<td>PD 1</td>
<td>Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PD 2</td>
<td>Communication Skills</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PD 3</td>
<td>Group Discussion: Stress & Emotions</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>LEADERSHIP</td>
<td>L 1</td>
<td>Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>L 2</td>
<td>Case Studies: Shivaji, Jhasi Ki Rani</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>SOCIAL SERVICE AND COMMUNITY DEVELOPMENT</td>
<td>SS 1</td>
<td>Basics, Rural Development Programmes, NGOs, Contribution of Youth</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SS 4</td>
<td>Protection of Children and Women Safety</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SS 5</td>
<td>Road / Rail Travel Safety</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SS 6</td>
<td>New Initiatives</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SS 7</td>
<td>Cyber and Mobile Security Awareness</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL: 30 PERIODS
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX3253</td>
<td>NCC Credit Course Level 1* (AIR FORCE WING)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NCC Credit Course Level - I</td>
<td>L2 T0 P0 C2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200002</td>
</tr>
<tr>
<td>NCC GENERAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCC 1</td>
<td>Aims, Objectives & Organization of NCC</td>
<td>6</td>
</tr>
<tr>
<td>NCC 2</td>
<td>Incentives</td>
<td>1</td>
</tr>
<tr>
<td>NCC 3</td>
<td>Duties of NCC Cadet</td>
<td>2</td>
</tr>
<tr>
<td>NCC 4</td>
<td>NCC Camps: Types & Conduct</td>
<td>2</td>
</tr>
<tr>
<td>NATIONAL INTEGRATION AND AWARENESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI 1</td>
<td>National Integration: Importance & Necessity</td>
<td>1</td>
</tr>
<tr>
<td>NI 2</td>
<td>Factors Affecting National Integration</td>
<td>1</td>
</tr>
<tr>
<td>NI 3</td>
<td>Unity in Diversity & Role of NCC in Nation Building</td>
<td>1</td>
</tr>
<tr>
<td>NI 4</td>
<td>Threats to National Security</td>
<td>1</td>
</tr>
<tr>
<td>PERSONALITY DEVELOPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD 1</td>
<td>Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving</td>
<td>7</td>
</tr>
<tr>
<td>PD 2</td>
<td>Communication Skills</td>
<td>3</td>
</tr>
<tr>
<td>PD 3</td>
<td>Group Discussion: Stress & Emotions</td>
<td>2</td>
</tr>
<tr>
<td>LEADERSHIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 1</td>
<td>Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code</td>
<td>5</td>
</tr>
<tr>
<td>L 2</td>
<td>Case Studies: Shivaji, Jhasi Ki Rani</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SERVICE AND COMMUNITY DEVELOPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 1</td>
<td>Basics, Rural Development Programmes, NGOs, Contribution of Youth</td>
<td>8</td>
</tr>
<tr>
<td>SS 4</td>
<td>Protection of Children and Women Safety</td>
<td>3</td>
</tr>
<tr>
<td>SS 5</td>
<td>Road / Rail Travel Safety</td>
<td>1</td>
</tr>
<tr>
<td>SS 6</td>
<td>New Initiatives</td>
<td>1</td>
</tr>
<tr>
<td>SS 7</td>
<td>Cyber and Mobile Security Awareness</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL : 30 PERIODS
COURSE OBJECTIVES: The main learning objective of this course is to provide hands on training to the students in:

1. Drawing pipe line plan; laying and connecting various pipe fittings used in common household plumbing work; Sawing; planing; making joints in wood materials used in common household wood work.

2. Wiring various electrical joints in common household electrical wire work.

3. Welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipments; Making a tray out of metal sheet using sheet metal work.

4. Soldering and testing simple electronic circuits; Assembling and testing simple electronic components on PCB.

GROUP – A (CIVIL & ELECTRICAL)

PART I CIVIL ENGINEERING PRACTICES 15

PLUMBING WORK:
 a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in household.
 b) Preparing plumbing line sketches.
 c) Laying pipe connection to the suction side of a pump
 d) Laying pipe connection to the delivery side of a pump.
 e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK:
 a) Sawing,
 b) Planing and
 c) Making joints like T-Joint, Mortise joint and Tenon joint and Dovetail joint.

Wood Work Study:
 a) Studying joints in door panels and wooden furniture
 b) Studying common industrial trusses using models.

PART II ELECTRICAL ENGINEERING PRACTICES 15

a) Introduction to switches, fuses, indicators and lamps - Basic switch board wiring with lamp, fan and three pin socket
b) Staircase wiring
c) Fluorescent Lamp wiring with introduction to CFL and LED types.
d) Energy meter wiring and related calculations/ calibration
e) Study of Iron Box wiring and assembly
f) Study of Fan Regulator (Resistor type and Electronic type using Diac/Triac/quadrac)
g) Study of emergency lamp wiring/Water heater

GROUP – B (MECHANICAL AND ELECTRONICS)

PART III MECHANICAL ENGINEERING PRACTICES 15

WELDING WORK:
a) Welding of Butt Joints, Lap Joints, and Tee Joints using arc welding.
b) Practicing gas welding.

BASIC MACHINING WORK:
a) (simple) Turning.
b) (simple) Drilling.
c) (simple) Tapping.

ASSEMBLY WORK:
a) Assembling a centrifugal pump.
b) Assembling a household mixer.
c) Assembling an airconditioner.

SHEET METAL WORK:
a) Making of a square tray

FOUNDRY WORK:
a) Demonstrating basic foundry operations.

PART IV ELECTRONIC ENGINEERING PRACTICES 15

SOLDERING WORK:
a) Soldering simple electronic circuits and checking continuity.

ELECTRONIC ASSEMBLY AND TESTING WORK:
a) Assembling and testing electronic components on a small PCB.

ELECTRONIC EQUIPMENT STUDY:
a) Study an elements of smart phone.
b) Assembly and dismantle of LED TV.
c) Assembly and dismantle of computer/laptop

TOTAL: 60 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
- Draw pipe line plan; lay and connect various pipe fittings used in common household plumbing work; Saw; plan; make joints in wood materials used in common household wood work.
- Wire various electrical joints in common household electrical wire work.
- Weld various joints in steel plates using arc welding work; Machine various simple
processes like turning, drilling, tapping in parts; Assemble simple mechanical assembly of common household equipments; Make a tray out of metal sheet using sheet metal work.

- Solder and test simple electronic circuits; Assemble and test simple electronic components on PCB.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CS3271 PROGRAMMING IN C LABORATORY

<table>
<thead>
<tr>
<th>L T P C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 4 2</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

- To familiarise with C programming constructs.
- To develop programs in C using basic constructs.
- To develop programs in C using arrays.
- To develop applications in C using strings, pointers, functions.
- To develop applications in C using structures.
- To develop applications in C using file processing.

LIST OF EXPERIMENTS:

Note: The lab instructor is expected to design problems based on the topics listed. The Examination shall not be restricted to the sample experiments designed.

1. I/O statements, operators, expressions
2. decision-making constructs: if-else, goto, switch-case, break-continue
3. Loops: for, while, do-while
4. Arrays: 1D and 2D, Multi-dimensional arrays, traversal
5. Strings: operations
6. Functions: call, return, passing parameters by (value, reference), passing arrays to function.
7. Recursion
8. Pointers: Pointers to functions, Arrays, Strings, Pointers to Pointers, Array of Pointers
10. Files: reading and writing, File pointers, file operations, random access, processor directives.

COURSE OUTCOMES:

Upon completion of the course, the students will be able to

- **CO1**: Demonstrate knowledge on C programming constructs.
- **CO2**: Develop programs in C using basic constructs.
- **CO3**: Develop programs in C using arrays.
- **CO4**: Develop applications in C using strings, pointers, functions.
- **CO5**: Develop applications in C using structures.
- **CO6**: Develop applications in C using file processing.

TEXT BOOKS:

REFERENCES:

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

GE3272
COMMUNICATION LABORATORY

COURSE OBJECTIVES
- To identify varied group discussion skills and apply them to take part in effective discussions in a professional context.
- To analyse concepts and problems and make effective presentations explaining them clearly and precisely.
- To be able to communicate effectively through formal and informal writing.
- To be able to use appropriate language structures to write emails, reports and essays
- To give instructions and recommendations that are clear and relevant to the context

UNIT I
12
Speaking-Role Play Exercises Based on Workplace Contexts, - talking about competition-discussing progress toward goals-talking about experiences- talking about events in life- discussing past events-Writing: writing emails (formal & semi-formal).

UNIT II
12
Speaking: discussing news stories-talking about frequency-talking about travel problems-discussing travel procedures- talking about travel problems- making arrangements-describing arrangements-discussing plans and decisions- discussing purposes and reasons- understanding common technology terms-Writing: - writing different types of emails.
UNIT III
Speaking: discussing predictions-describing the climate-discussing forecasts and scenarios-talking about purchasing-discussing advantages and disadvantages-making comparisons-discussing likes and dislikes-discussing feelings about experiences-discussing imaginary scenarios Writing: short essays and reports-formal/semi-formal letters.

UNIT IV
Speaking: discussing the natural environment-describing systems-describing position and movement-explaining rules-(example-discussing rental arrangements)-understanding technical instructions-Writing: writing instructions-writing a short article.

UNIT V
Speaking: describing things relatively-describing clothing-discussing safety issues (making recommendations) talking about electrical devices-describing controlling actions-Writing: job application(Cover letter + Curriculum vitae)-writing recommendations.

LEARNING OUTCOMES
CO1: Speak effectively in group discussions held in a formal/semi formal contexts.
CO2: Discuss, analyse and present concepts and problems from various perspectives to arrive at suitable solutions
CO3: Write emails, letters and effective job applications.
CO4: Write critical reports to convey data and information with clarity and precision
CO5: Give appropriate instructions and recommendations for safe execution of tasks

Assessment Pattern
- One online/app based assessment to test speaking and writing skills
- Proficiency certification is given on successful completion of speaking and writing.

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.4</td>
<td>2.8</td>
<td>3</td>
<td>3</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation
Note: The average value of this course to be used for program articulation matrix.

MA3354 DISCRETE MATHEMATICS

COURSE OBJECTIVES:
- To extend student’s logical and mathematical maturity and ability to deal with abstraction.
- To introduce most of the basic terminologies used in computer science courses and application of ideas to solve practical problems.
- To understand the basic concepts of combinatorics and graph theory.
- To familiarize the applications of algebraic structures.
- To understand the concepts and significance of lattices and boolean algebra which are widely used in computer science and engineering.
UNIT I LOGIC AND PROOFS 9+3
Propositional logic – Propositional equivalences - Predicates and quantifiers – Nested quantifiers –
Rules of inference - Introduction to proofs – Proof methods and strategy.

UNIT II COMBINATORICS 9+3
Mathematical induction – Strong induction and well ordering – The basics of counting – The
pigeonhole principle – Permutations and combinations – Recurrence relations – Solving linear
recurrence relations – Generating functions – Inclusion and exclusion principle and its applications.

UNIT III GRAPHS 9+3
Graphs and graph models – Graph terminology and special types of graphs – Matrix representation
of graphs and graph isomorphism – Connectivity – Euler and Hamilton paths.

UNIT IV ALGEBRAIC STRUCTURES 9+3
Algebraic systems – Semi groups and monoids - Groups – Subgroups – Homomorphism’s – Normal
subgroup and cosets – Lagrange’s theorem – Definitions and examples of Rings and Fields.

UNIT V LATTICES AND BOOLEAN ALGEBRA 9+3
Partial ordering – Posets – Lattices as posets – Properties of lattices - Lattices as algebraic systems
– Sub lattices – Direct product and homomorphism – Some special lattices – Boolean algebra – Sub
Boolean Algebra – Boolean Homomorphism.

TOTAL: 60 PERIODS

COURSE OUTCOMES:
At the end of the course, students would:
CO1: Have knowledge of the concepts needed to test the logic of a program.
CO2: Have an understanding in identifying structures on many levels.
CO3: Be aware of a class of functions which transform a finite set into another finite set which relates
to input and output functions in computer science.
CO4: Be aware of the counting principles.
CO5: Be exposed to concepts and properties of algebraic structures such as groups, rings and fields.

TEXT BOOKS
2. Tremblay. J.P. and Manohar. R, "Discrete Mathematical Structures with Applications to

REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>
CS3352 FOUNDATIONS OF DATA SCIENCE L T P C
 3 0 0 3

COURSE OBJECTIVES:

- To understand the data science fundamentals and process.
- To learn to describe the data for the data science process.
- To learn to describe the relationship between data.
- To utilize the Python libraries for Data Wrangling.
- To present and interpret data using visualization libraries in Python

UNIT I INTRODUCTION
Data Science: Benefits and uses – facets of data - Data Science Process: Overview – Defining research goals – Retrieving data – Data preparation - Exploratory Data analysis – build the model– presenting findings and building applications - Data Mining - Data Warehousing – Basic Statistical descriptions of Data

UNIT II DESCRIBING DATA
Types of Data - Types of Variables -Describing Data with Tables and Graphs –Describing Data with Averages - Describing Variability - Normal Distributions and Standard (z) Scores

UNIT III DESCRIBING RELATIONSHIPS

UNIT IV PYTHON LIBRARIES FOR DATA WRANGLING

UNIT V DATA VISUALIZATION

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO1: Define the data science process
CO2: Understand different types of data description for data science process
CO3: Gain knowledge on relationships between data
CO4: Use the Python Libraries for Data Wrangling
CO5: Apply visualization Libraries in Python to interpret and explore data

TOTAL: 45 PERIODS
TEXTBOOKS

REFERENCE:

<table>
<thead>
<tr>
<th>CO’s-PO’s & PSO’s MAPPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO’s</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>A V g.</td>
</tr>
</tbody>
</table>

EC3354 SIGNALS AND SYSTEMS L T P C 3 1 0 4

COURSE OBJECTIVES:
- To understand the basic properties of signal & systems
- To know the methods of characterization of LTI systems in time domain
- To analyze continuous time signals and system in the Fourier and Laplace domain
- To analyze discrete time signals and system in the Fourier and Z transform domain

UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS 6+6
Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and Sinusoids Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals - Classification of systems- CT systems and DT systems- – Linear & Nonlinear, Time-variant& Time-invariant, Causal & Non-causal, Stable & Unstable.

UNIT II ANALYSIS OF CONTINUOUS TIME SIGNALS 6+6
Fourier series for periodic signals - Fourier Transform – properties- Laplace Transforms and Properties

UNIT III LINEAR TIME IN Variant CONTINUOUS TIME SYSTEMS 6+6

UNIT IV ANALYSIS OF DISCRETE TIME SIGNALS 6+6
Baseband signal Sampling–Fourier Transform of discrete time signals (DTFT)– Properties of DTFT - Z Transform & Properties
UNIT V LINEAR TIME INARIANT-DISCRETE TIME SYSTEMS 6+6

TOTAL: 30+30 PERIODS

COURSE OUTCOMES:
At the end of the course, the student will be able to:
CO1:determine if a given system is linear/causal/stable
CO2: determine the frequency components present in a deterministic signal
CO3:characterize continuous LTI systems in the time domain and frequency domain
CO4:characterize continuous LTI systems in the time domain and frequency domain
CO5:compute the output of an LTI system in the time and frequency domains

TEXT BOOKS:

REFERENCES :

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CD3291 DATA STRUCTURES AND ALGORITHMS L T P C
3 0 0 3

COURSE OBJECTIVES:
• To understand the concepts of ADTs
• To design linear data structures – lists, stacks, and queues
• To understand sorting, searching, and hashing algorithms
• To apply Tree and Graph structures

UNIT I ABSTRACT DATA TYPES 9
Abstract Data Types (ADTs) – ADTs and classes – introduction to OOP – classes in Python – inheritance – namespaces – shallow and deep copying
Introduction to analysis of algorithms – asymptotic notations – divide & conquer – recursion – analyzing recursive algorithms
UNIT II LINEAR STRUCTURES 9

UNIT III SORTING AND SEARCHING 9

UNIT IV TREE STRUCTURES 9

UNIT V GRAPH STRUCTURES 9

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course, the student should be able to:
CO1: Explain abstract data types
CO2: Design, implement, and analyze linear data structures, such as lists, queues, and stacks, according to the needs of different applications
CO3: Design, implement, and analyze efficient tree structures to meet requirements such as searching, indexing, and sorting
CO4: Model problems as graph problems and implement efficient graph algorithms to solve them

TEXT BOOK:

REFERENCES:

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>1</td>
<td>1 2 2 3 1 - - - 2 - 2 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>2</td>
<td>2 3 2 2 2 - - - 2 - 2 2</td>
<td>3 2 2 3</td>
</tr>
<tr>
<td>3</td>
<td>2 2 3 2 3 - - - 3 - 2 2</td>
<td>3 2 2 2</td>
</tr>
<tr>
<td>4</td>
<td>3 3 3 3 1 - - - 3 - 2 2</td>
<td>3 2 3 3</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To analyze and design combinational circuits.
- To analyze and design sequential circuits.
- To understand the basic structure and operation of a digital computer.
- To study the design of data path unit, control unit for processor and to familiarize with the hazards.
- To understand the concept of various memories and I/O interfacing.

UNIT I COMBINATIONAL LOGIC

UNIT II SYNCHRONOUS SEQUENTIAL LOGIC

Introduction to Sequential Circuits – Flip-Flops – operation and excitation tables, Triggering of FF, Analysis and design of clocked sequential circuits – Design – Moore/Mealy models, state minimization, state assignment, circuit implementation - Registers – Counters.

UNIT III COMPUTER FUNDAMENTALS

UNIT IV PROCESSOR

Instruction Execution – Building a Data Path – Designing a Control Unit – Hardwired Control, Microprogrammed Control – Pipelining – Data Hazard – Control Hazards.

UNIT V MEMORY AND I/O

PRACTICAL EXERCISES:

1. Verification of Boolean theorems using logic gates.
2. Design and implementation of combinational circuits using gates for arbitrary functions.
3. Implementation of 4-bit binary adder/subtractor circuits.
4. Implementation of code converters.
5. Implementation of BCD adder, encoder and decoder circuits
7. Implementation of the synchronous counters
8. Implementation of a Universal Shift register.
9. Simulator based study of Computer Architecture

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO1 : Design various combinational digital circuits using logic gates
CO2 : Design sequential circuits and analyze the design procedures
CO3 : State the fundamentals of computer systems and analyze the execution of an instruction
CO4 : Analyze different types of control design and identify hazards
CO5 : Identify the characteristics of various memory systems and I/O communication

TEXT BOOKS

REFERENCES

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

TOTAL:75 PERIODS

CD3281 DATA STRUCTURES AND ALGORITHMS LABORATORY

COURSE OBJECTIVES:
- To implement ADTs in Python
- To design and implement linear data structures – lists, stacks, and queues
- To implement sorting, searching and hashing algorithms
- To solve problems using tree and graph structures

LIST OF EXPERIMENTS:
1. Implement simple ADTs as Python classes
2. Implement recursive algorithms in Python
3. Implement List ADT using Python arrays
4. Linked list implementations of List
5. Implementation of Stack and Queue ADTs
6. Applications of List, Stack and Queue ADTs
7. Implementation of sorting and searching algorithms
8. Implementation of Hash tables
9. Tree representation and traversal algorithms
10. Implementation of Binary Search Trees
11. Implementation of Heaps
12. Graph representation and Traversal algorithms
13. Implementation of single source shortest path algorithm
14. Implementation of minimum spanning tree algorithms

COURSE OUTCOMES:
At the end of the course, the student should be able to:

CO1: Implement ADTs as Python classes
CO2: Design, implement, and analyse linear data structures, such as lists, queues, and stacks, according to the needs of different applications
CO3: Design, implement, and analyse efficient tree structures to meet requirements such as searching, indexing, and sorting
CO4: Model problems as graph problems and implement efficient graph algorithms to solve them

TOTAL: 60 PERIODS

TEXT BOOK:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.75</td>
<td>2</td>
<td>1.75</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1.25</td>
<td>2.5</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:
- To understand the python libraries for data science
- To understand the basic Statistical and Probability measures for data science.
- To learn descriptive analytics on the benchmark data sets.
- To apply correlation and regression analytics on standard data sets.
- To present and interpret data using visualization packages in Python.

LIST OF EXPERIMENTS:
1. Download, install and explore the features of NumPy, SciPy, Jupyter, Statsmodels and Pandas packages.
2. Working with Numpy arrays
3. Working with Pandas data frames
4. Reading data from text files, Excel and the web and exploring various commands for doing descriptive analytics on the Iris data set.
5. Use the diabetes data set from UCI and Pima Indians Diabetes data set for performing the following:
 a. Univariate analysis: Frequency, Mean, Median, Mode, Variance, Standard Deviation, Skewness and Kurtosis.
 b. Bivariate analysis: Linear and logistic regression modeling
 c. Multiple Regression analysis
 d. Also compare the results of the above analysis for the two data sets.
6. Apply and explore various plotting functions on UCI data sets.
 a. Normal curves
 b. Density and contour plots
 c. Correlation and scatter plots
 d. Histograms
 e. Three dimensional plotting
7. Visualizing Geographic Data with Basemap

List of Equipments:(30 Students per Batch)
Tools: Python, Numpy, Scipy, Matplotlib, Pandas, statmodels, seaborn, plotly, bokeh
Note: Example data sets like: UCI, Iris, Pima Indians Diabetes etc.

TOTAL: 60 PERIODS

COURSE OUTCOMES:
At the end of this course, the students will be able to:
- CO1: Make use of the python libraries for data science
- CO2: Make use of the basic Statistical and Probability measures for data science.
- CO3: Perform descriptive analytics on the benchmark data sets.
- CO4: Perform correlation and regression analytics on standard data sets
- CO5: Present and interpret data using visualization packages in Python.

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
GE3361 PROFESSIONAL DEVELOPMENT

COURSE OBJECTIVES:

To be proficient in important Microsoft Office tools: MS WORD, EXCEL, POWERPOINT.

- To be proficient in using MS WORD to create quality technical documents, by using standard templates, widely acceptable styles and formats, variety of features to enhance the presentability and overall utility value of content.

- To be proficient in using MS EXCEL for all data manipulation tasks including the common statistical, logical, mathematical etc., operations, conversion, analytics, search and explore, visualize, interlink, and utilizing many more critical features offered.

- To be able to create and share quality presentations by using the features of MS PowerPoint, including: organization of content, presentability, aesthetics, using media elements and enhance the overall quality of presentations.

MS WORD:

Create and format a document

Working with tables

Working with Bullets and Lists

Working with styles, shapes, smart art, charts

Inserting objects, charts and importing objects from other office tools

Creating and Using document templates

Inserting equations, symbols and special characters

Working with Table of contents and References, citations

Insert and review comments

Create bookmarks, hyperlinks, endnotes footnote

Viewing document in different modes

Working with document protection and security

Inspect document for accessibility

MS EXCEL:

Create worksheets, insert and format data

Work with different types of data: text, currency, date, numeric etc.
Split, validate, consolidate, Convert data
Sort and filter data
Perform calculations and use functions: (Statistical, Logical, Mathematical, date, Time etc.,)
Work with Lookup and reference formulae
Create and Work with different types of charts
Use pivot tables to summarize and analyse data
Perform data analysis using own formulae and functions
Combine data from multiple worksheets using own formulae and built-in functions to generate results
Export data and sheets to other file formats
Working with macros
Protecting data and Securing the workbook

MS POWERPOINT: 10 Hours
Select slide templates, layout and themes
Formatting slide content and using bullets and numbering
Insert and format images, smart art, tables, charts
Using Slide master, notes and handout master
Working with animation and transitions
Organize and Group slides
Import or create and use media objects: audio, video, animation
Perform slideshow recording and Record narration and create presentable videos

TOTAL: 30 PERIODS

COURSE OUTCOMES:
On successful completion the students will be able to
CO1: Use MS Word to create quality documents, by structuring and organizing content for their day to day technical and academic requirements
CO2: Use MS EXCEL to perform data operations and analytics, record, retrieve data as per requirements and visualize data for ease of understanding
CO3: Use MS PowerPoint to create high quality academic presentations by including common tables, charts, graphs, interlinking other elements, and using media objects.

EC3491 COMMUNICATION SYSTEMS

COURSE OBJECTIVES:
- To introduce Analog Modulation Schemes
- To impart knowledge in random process
To study various Digital techniques
To introduce the importance of sampling & quantization
To impart knowledge in demodulation techniques
To enhance the class room teaching using smart connectivity instruments

UNIT I AMPLITUDE MODULATION

UNIT II RANDOM PROCESS & SAMPLING
Review of probability and random process. Gaussian and white noise characteristics, Noise in amplitude modulation systems, Noise in Frequency modulation systems. Pre-emphasis and De-emphasis, Threshold effect in angle modulation

Low pass sampling – Aliasing- Signal Reconstruction-Quantization - Uniform & non-uniform quantization - quantization noise - Nyquist criterion- Logarithmic Companding –PAM, PPM, PWM, PCM – TDM, FDM

UNIT III DIGITAL TECHNIQUES
Pulse modulation. Differential pulse code modulation. Delta modulation, Noise considerations in PCM., Digital Multiplexers, Channel coding theorem - Linear Block codes - Hamming codes - Cyclic codes - Convolutional codes - Viterbi Decoder

UNIT IV DIGITAL MODULATION SCHEME
Geometric Representation of signals - Generation, detection, IQ representation, PSD & BER of Coherent BPSK, BFSK, & QPSK - QAM - Carrier Synchronization - Structure of Non-coherent Receivers Synchronization and Carrier Recovery for Digital modulation, Spectrum Analysis – Occupied bandwidth – Adjacent channel power, EVM, Principle of DPSK

UNIT V DEMODULATION TECHNIQUES

TOTAL:45 PERIODS

COURSE OUTCOMES:
At the end of the course students will be able to
CO1: Gain knowledge in amplitude modulation techniques
CO2: Understand the concepts of Random Process to the design of communication systems
CO3: Gain knowledge in digital techniques
CO4: Gain knowledge in sampling and quantization
CO5: Understand the importance of demodulation techniques

TEXT BOOKS:

REFERENCES:
5. H P Hsu, Schaum Outline Series - “Analog and Digital Communications” TMH 2006

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.5</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CS3491 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING L T P C 3 0 2 4

COURSE OBJECTIVES:
The main objectives of this course are to:
- Study about uninformed and Heuristic search techniques.
- Learn techniques for reasoning under uncertainty
- Introduce Machine Learning and supervised learning algorithms
- Study about ensembling and unsupervised learning algorithms
- Learn the basics of deep learning using neural networks

UNIT I PROBLEM SOLVING 9

UNIT II PROBABILISTIC REASONING 9

UNIT III SUPERVISED LEARNING 9
Introduction to machine learning – Linear Regression Models: Least squares, single & multiple variables, Bayesian linear regression, gradient descent, Linear Classification Models: Discriminant
function – Probabilistic discriminative model - Logistic regression, Probabilistic generative model – Naive Bayes, Maximum margin classifier – Support vector machine, Decision Tree, Random forests

UNIT IV ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING 9
Combining multiple learners: Model combination schemes, Voting, Ensemble Learning - bagging, boosting, stacking, Unsupervised learning: K-means, Instance Based Learning: KNN, Gaussian mixture models and Expectation maximization

UNIT V NEURAL NETWORKS 9
Perceptron - Multilayer perceptron, activation functions, network training – gradient descent optimization – stochastic gradient descent, error backpropagation, from shallow networks to deep networks –Unit saturation (aka the vanishing gradient problem) – ReLU, hyperparameter tuning, batch normalization, regularization, dropout.

PRACTICAL EXERCISES:
1. Implementation of Uninformed search algorithms (BFS, DFS)
2. Implementation of Informed search algorithms (A*, memory-bounded A*)
3. Implement naive Bayes models
4. Implement Bayesian Networks
5. Build Regression models
6. Build decision trees and random forests
7. Build SVM models
8. Implement ensembling techniques
9. Implement clustering algorithms
10. Implement EM for Bayesian networks
11. Build simple NN models
12. Build deep learning NN models

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO1: Use appropriate search algorithms for problem solving
CO2: Apply reasoning under uncertainty
CO3: Build supervised learning models
CO4: Build ensembling and unsupervised models
CO5: Build deep learning neural network models

TEXT BOOKS:

REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>1.8</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

AL3452 OPERATING SYSTEMS L T P C
3 0 2 4

COURSE OBJECTIVES:
- To understand the basics and functions of operating systems.
- To understand Processes and Threads.
- To analyze Scheduling algorithms and process synchronization.
- To understand the concept of Deadlocks.
- To analyze various memory management schemes.
- To be familiar with I/O management and File systems.
- To be familiar with the basics of virtual machines and Mobile OS like iOS and Android.

UNIT I INTRODUCTION

UNIT II PROCESS MANAGEMENT

UNIT III MEMORY MANAGEMENT
Main Memory - Swapping - Contiguous Memory Allocation – Paging - Structure of the Page Table - Segmentation, Segmentation with paging; Virtual Memory - Demand Paging – Copy on Write - Page Replacement - Allocation of Frames –Thrashing.
UNIT IV STORAGE MANAGEMENT

UNIT V VIRTUAL MACHINES AND MOBILE OS
Virtual Machines – History, Benefits and Features, Building Blocks, Types of Virtual Machines and their Implementations, Virtualization and Operating-System Components; Mobile OS - iOS and Android.

PRACTICAL EXERCISES:
1. Installation of Operating system : Windows/ Linux
2. Illustrate UNIX commands and Shell Programming
4. Write C programs to implement the various CPU Scheduling Algorithms
5. Illustrate the inter process communication strategy
6. Implement mutual exclusion by Semaphores
7. Write a C program to avoid Deadlock using Banker's Algorithm
8. Write a C program to Implement Deadlock Detection Algorithm
9. Write C program to implement Threading
10. Implement the paging Technique using C program
11. Write C programs to implement the following Memory Allocation Methods
 a. First Fit b. Worst Fit c. Best Fit
12. Write C programs to implement the various Page Replacement Algorithms
13. Write C programs to Implement the various File Organization Techniques
14. Implement the following File Allocation Strategies using C programs
 a. Sequential b. Indexed c. Linked
15. Write C programs for the implementation of various disk scheduling algorithms

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO1: Analyze various scheduling algorithms and process synchronization.
CO2: Explain deadlock, prevention and avoidance algorithms.
CO3: Compare and contrast various memory management schemes.
CO4: Explain the functionality of file systems I/O systems, and Virtualization
CO5: Compare iOS and Android Operating Systems.

TEXTBOOKS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s 1</th>
<th>PO’s 2</th>
<th>PO’s 3</th>
<th>PO’s 4</th>
<th>PO’s 5</th>
<th>PO’s 6</th>
<th>PO’s 7</th>
<th>PO’s 8</th>
<th>PO’s 9</th>
<th>PO’s 10</th>
<th>PO’s 11</th>
<th>PO’s 12</th>
<th>PSO’s 1</th>
<th>PSO’s 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AVg.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CS3492 DATABASE MANAGEMENT SYSTEMS

COURSE OBJECTIVES:
- To learn the fundamentals of data models, relational algebra and SQL
- To represent a database system using ER diagrams and to learn normalization techniques
- To understand the fundamental concepts of transaction, concurrency and recovery processing
- To understand the internal storage structures using different file and indexing techniques which will help in physical DB design
- To have an introductory knowledge about the Distributed databases, NOSQL and database security

UNIT I RELATIONAL DATABASES

UNIT II DATABASE DESIGN

UNIT III TRANSACTIONS
UNIT IV IMPLEMENTATION TECHNIQUES

UNIT V ADVANCED TOPICS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to
CO1: Construct SQL Queries using relational algebra
CO2: Design database using ER model and normalize the database
CO3: Construct queries to handle transaction processing and maintain consistency of the database
CO4: Compare and contrast various indexing strategies and apply the knowledge to tune the performance of the database
CO5: Appraise how advanced databases differ from Relational Databases and find a suitable database for the given requirement.

TEXT BOOKS

REFERENCES:

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-'- no correlation

TOTAL:45 PERIODS
CS3391 OBJECT ORIENTED PROGRAMMING

L T P C
3 0 0 3

COURSE OBJECTIVES:
- To understand Object Oriented Programming concepts and basics of Java programming language
- To know the principles of packages, inheritance and interfaces
- To develop a java application with threads and generics classes
- To define exceptions and use I/O streams
- To design and build Graphical User Interface Application using JAVAFX

UNIT I INTRODUCTION TO OOP AND JAVA 9

UNIT II INHERITANCE, PACKAGES AND INTERFACES 9

UNIT III EXCEPTION HANDLING AND MULTITHREADING 9

UNIT IV I/O, GENERIC, STRING HANDLING 9

UNIT V JAVAFX EVENT HANDLING, CONTROLS AND COMPONENTS 9

COURSE OUTCOMES:
On completion of this course, the students will be able to
CO1: Apply the concepts of classes and objects to solve simple problems
CO2: Develop programs using inheritance, packages and interfaces
CO3: Make use of exception handling mechanisms and multithreaded model to solve real world problems
CO4: Build Java applications with I/O packages, string classes, Collections and generics concepts
CO5: Integrate the concepts of event handling and JavaFX components and controls for developing GUI based applications

TOTAL:45 PERIODS

73
TEXT BOOKS

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

GE3451 ENVIRONMENTAL SCIENCES AND SUSTAINABILITY L T P C 2 0 0 2

COURSE OBJECTIVES:
- To introduce the basic concepts of environment, ecosystems and biodiversity and emphasize on the biodiversity of India and its conservation.
- To impart knowledge on the causes, effects and control or prevention measures of environmental pollution and natural disasters.
- To facilitate the understanding of global and Indian scenario of renewable and nonrenewable resources, causes of their degradation and measures to preserve them.
- To familiarize the concept of sustainable development goals and appreciate the interdependence of economic and social aspects of sustainability, recognize and analyze climate changes, concept of carbon credit and the challenges of environmental management.
- To inculcate and embrace sustainability practices and develop a broader understanding on green materials, energy cycles and analyze the role of sustainable urbanization.

UNIT I ENVIRONMENT AND BIODIVERSITY 6
UNIT II ENVIRONMENTAL POLLUTION 9

UNIT III RENEWABLE SOURCES OF ENERGY 6
Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of- Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

UNIT IV SUSTAINABILITY AND MANAGEMENT 6
Development, GDP ,Sustainability-concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global, Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

UNIT V SUSTAINABILITY PRACTICES 6

TOTAL: 30 PERIODS

COURSE OUTCOMES:
- To recognize and understand the functions of environment, ecosystems and biodiversity and their conservation.
- To identify the causes, effects of environmental pollution and natural disasters and contribute to the preventive measures in the society.
- To identify and apply the understanding of renewable and non-renewable resources and contribute to the sustainable measures to preserve them for future generations.
- To recognize the different goals of sustainable development and apply them for suitable technological advancement and societal development.
- To demonstrate the knowledge of sustainability practices and identify green materials, energy cycles and the role of sustainable urbanization.

TEXT BOOKS:
5. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg. 2.8</td>
<td>1.8</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

NCC Credit Course Level 2*
NX3451
(ARMY WING) NCC Credit Course Level - II
L T P C
3 0 0 3

PERSONALITY DEVELOPMENT
PD 3 Group Discussion: Change your mindset, Time Management, Social Skills
PD 5 Public Speaking

LEADERSHIP
L 2 Case Studies: APJ Abdul Kalam, Deepa Malik, Maharana Pratap, N Narayan Murty, Ratan Tata, Rabindra Nath Tagore, Role of NCC cadets in 1965

DISASTER MANAGEMENT
DM 1 Disaster Management Capsule: Organisation, Types of Disasters, Essential Services, Assistance, Civil Defence Organisation
DM 2 Initiative Training, Organising Skills, Do's & Don'ts, Natural Disasters, Man Made Disasters
DM 3 Fire Service & Fire Fighting

76
ENIRONMENTAL AWARENESS & CONSERVATION 3
EA 1 Environmental Awareness and Conservation 3

GENERAL AWARENESS 4
GA 1 General Knowledge 4

ARMED FORCES 6
AF 1 Armed Forces, Army, CAPF, Police 6

ADVENTURE 1
AD 1 Introduction to Adventure Activities 1

BORDER & COASTAL AREAS 2
BCA 1 History, Geography & Topography of Border/Coastal areas 2

TOTAL: 45 PERIODS

NCC Credit Course Level 2*
NX3452 (NAVAL WING) NCC Credit Course Level - II L T P C 3 0 0 3

PERSONALITY DEVELOPMENT 9
PD 3 Group Discussion: Change your mindset, Time Management, Social Skills 6
PD 5 Public Speaking 3

LEADERSHIP 7
L 2 Case Studies: APJ Abdul Kalam, Deepa Malik, Maharana Pratap, N Narayan Murty, Ratan Tata, Rabindra Nath Tagore, Role of NCC cadets in 1965 7

DISASTER MANAGEMENT 13
DM 1 Disaster Management Capsule: Organisation, Types of Disasters, Essential Services, Assistance, Civil Defence Organisation 3
DM 2 Initiative Training, Organising Skills, Do's & Don't's, Natural Disasters, Man Made Disasters 9
DM 3 Fire Service & Fire Fighting 1

ENVIRONMENTAL AWARENESS & CONSERVATION 3
EA 1 Environmental Awareness and Conservation 3

GENERAL AWARENESS 4
GA 1 General Knowledge 4

NAVAL ORIENTATION 6
AF 1 Armed Forces and Navy Capsule 3
EEZ 1 EEZ Maritime Security and ICG 3

ADVENTURE 1
AD 1 Introduction to Adventure Activities 1
BORDER & COASTAL AREAS
BCA 1 History, Geography & Topography of Border/Coastal areas

TOTAL: 45 PERIODS

NCC Credit Course Level 2*
NX3453 (AIR FORCE WING) NCC Credit Course Level - II

TOTAL: 45 PERIODS

PERSONALITY DEVELOPMENT
PD 3 Group Discussion: Change your mindset, Time Management, Social Skills
PD 5 Public Speaking

LEADERSHIP
L 2 Case Studies: APJ Abdul Kalam, Deepa Malik, Maharana Pratap, N Narayan Murty,
Ratan Tata, Rabindra Nath Tagore, Role of NCC cadets in 1965

DISASTER MANAGEMENT
DM 1 Disaster Management Capsule: Organisation, Types of Disasters, Essential Services,
Assistance, Civil Defence Organisation
DM 2 Initiative Training, Organising Skills, Do's & Don't's,
Natural Disasters, Man Made Disasters
DM 3 Fire Service & Fire Fighting

ENVIRONMENTAL AWARENESS & CONSERVATION
EA 1 Environmental Awareness and Conservation

GENERAL AWARENESS
GA 1 General Knowledge

GENERAL SERVICE KNOWLEDGE
GSK 1 Armed Forces & IAF Capsule
GSK 2 Modes of Entry in IAF, Civil Aviation
GSK 3 Aircrafts - Types, Capabilities & Role

ADVENTURE
AD 1 Introduction to Adventure Activities

BORDER & COASTAL AREAS
BCA 1 History, Geography & Topography of Border/Coastal areas

TOTAL: 45 PERIODS
COURSE OBJECTIVES

- To study the AM & FM Modulation and Demodulation.
- To learn and realize the effects of sampling and TDM.
- To understand the PCM & Digital Modulation.
- To Simulate Digital Modulation Schemes.
- To Implement Equalization Algorithms and Error Control Coding Schemes.

LIST OF EXPERIMENTS

1. AM- Modulator and Demodulator
2. FM - Modulator and Demodulator
4. Signal sampling and TDM.
5. Pulse Code Modulation and Demodulation.
6. Pulse Amplitude Modulation and Demodulation.
7. Pulse Position Modulation and Demodulation and Pulse Width Modulation and Demodulation.
8. Digital Modulation – ASK, PSK, FSK.
10. Simulation of ASK, FSK, and BPSK Generation and Detection Schemes.
12. Simulation of Linear Block and Cyclic Error Control coding Schemes.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of the laboratory course, the student will be able to understand the:

CO1: Design AM, FM & Digital Modulators for specific applications.

CO2: Compute the sampling frequency for digital modulation.

CO3: Simulate & validate the various functional modules of a Communication system.

CO4: Demonstrate their knowledge in base band signaling schemes through implementation of digital modulation schemes.

CO5: Apply various channel coding schemes & demonstrate their capabilities towards the improvement of the noise performance of Communication system.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation
COURSE OBJECTIVES:

- To learn and implement important commands in SQL.
- To learn the usage of nested and joint queries.
- To understand functions, procedures and procedural extensions of databases.
- To understand design and implementation of typical database applications.
- To be familiar with the use of a front end tool for GUI based application development.

LIST OF EXPERIMENTS:

1. Create a database table, add constraints (primary key, unique, check, Not null), insert rows, update and delete rows using SQL DDL and DML commands.
2. Create a set of tables, add foreign key constraints and incorporate referential integrity.
3. Query the database tables using different ‘where’ clause conditions and also implement aggregate functions.
4. Query the database tables and explore sub queries and simple join operations.
5. Query the database tables and explore natural, equi and outer joins.
6. Write user defined functions and stored procedures in SQL.
7. Execute complex transactions and realize DCL and TCL commands.
8. Write SQL Triggers for insert, delete, and update operations in a database table.
9. Create View and index for database tables with a large number of records.
12. Develop a simple GUI based database application and incorporate all the above-mentioned features.
13. Case Study using any of the real life database applications from the following list:
 a) Inventory Management for a EMart Grocery Shop
 b) Society Financial Management
 c) Cop Friendly App – Eseva
 d) Property Management – eMall
 e) Star Small and Medium Banking and Finance
 - Build Entity Model diagram. The diagram should align with the business and functional goals stated in the application.
 - Apply Normalization rules in designing the tables in scope.
 - Prepared applicable views, triggers (for auditing purposes), functions for enabling enterprise grade features.
 - Build PL SQL / Stored Procedures for Complex Functionalities, ex EOD Batch Processing for calculating the EMI for Gold Loan for each eligible Customer.
 - Ability to showcase ACID Properties with sample queries with appropriate settings.

TOTAL: 45 PERIODS

List of Equipments:(30 Students per Batch)
MYSQL / SQL : 30 Users

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO1: Create databases with different types of key constraints.
CO2: Construct simple and complex SQL queries using DML and DCL commands.
CO3: Use advanced features such as stored procedures and triggers and incorporate in GUI based application development.

CO4: Create an XML database and validate with meta-data (XML schema).

CO5: Create and manipulate data using NOSQL database.

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 1 2 3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3 3 3 3 - - - 3 1 3 - 2 2 3 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 2 3 2 2 - - - 1 2 3 3 2 1 2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3 3 2 1 1 - - - 1 1 1 3 2 3 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 3 3 3 1 - - - 1 1 3 2 3 1 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3 2 1 1 1 - - - 2 2 3 1 3 1 2</td>
<td></td>
</tr>
<tr>
<td>AVg.</td>
<td>2 3 2 2 1 - - - 2 1 3 2 2 2 2</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CS3381 OBJECT ORIENTED PROGRAMMING LABORATORY

COURSE OBJECTIVES:
- To build software development skills using java programming for real-world applications.
- To understand and apply the concepts of classes, packages, interfaces, inheritance, exception handling and file processing.
- To develop applications using generic programming and event handling.

LIST OF EXPERIMENTS

1. Solve problems by using sequential search, binary search, and quadratic sorting algorithms (selection, insertion)
2. Develop stack and queue data structures using classes and objects.
3. Develop a java application with an Employee class with Emp_name, Emp_id, Address, Mail_id, Mobile_no as members. Inherit the classes, Programmer, Assistant Professor, Associate Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club funds. Generate pay slips for the employees with their gross and net salary.
4. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named printArea(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method printArea() that prints the area of the given shape.
5. Solve the above problem using an interface.
6. Implement exception handling and creation of user defined exceptions.
7. Write a java program that implements a multi-threaded application that has three threads. First thread generates a random integer every 1 second and if the value is even, the second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of the cube of the number.
8. Write a program to perform file operations.
9. Develop applications to demonstrate the features of generics classes.
10. Develop applications using JavaFX controls, layouts and menus.
11. Develop a mini project for any application using Java concepts.

Lab Requirements: for a batch of 30 students
Operating Systems: Linux / Windows
Front End Tools: Eclipse IDE / Netbeans IDE

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On completion of this course, the students will be able to

CO1: Design and develop java programs using object oriented programming concepts
CO2: Develop simple applications using object oriented concepts such as package, exceptions
CO3: Implement multithreading, and generics concepts
CO4: Create GUIs and event driven programming applications for real world problems
CO5: Implement and deploy web applications using Java

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

EC3492 DIGITAL SIGNAL PROCESSING

COURSE OBJECTIVES:
- To learn discrete fourier transform, properties of DFT and its application to linear filtering
- To understand the characteristics of digital filters, design digital IIR and FIR filters and apply these filters to filter undesirable signals in various frequency bands
- To understand the effects of finite precision representation on digital filters
- To understand the fundamental concepts of multi rate signal processing and its applications
- To introduce the concepts of adaptive filters and its application to communication engineering

UNIT I DISCRETE FOURIER TRANSFORM

UNIT II INFINITE IMPULSE RESPONSE FILTERS

UNIT III FINITE IMPULSE RESPONSE FILTERS
Design of FIR filters - symmetric and Anti-symmetric FIR filters - design of linear phase FIR filters using Fourier series method - FIR filter design using windows (Rectangular, Hamming and Hanning window), Frequency sampling method. FIR filter structures - linear phase structure, direct form realizations.

UNIT IV FINITE WORD LENGTH EFFECTS
Fixed point and floating point number representation - ADC - quantization - truncation and rounding - quantization noise - input / output quantization - coefficient quantization error - product quantization error - overflow error - limit cycle oscillations due to product quantization and summation - scaling to prevent overflow.

UNIT V DSP APPLICATIONS
Multirate signal processing: Decimation, Interpolation, Sampling rate conversion by a rational factor – Adaptive Filters: Introduction, Applications of adaptive filtering to equalization-DSP Architecture-Fixed and Floating point architecture principles

PRACTICAL EXERCISES:
1. Generation of elementary Discrete-Time sequences
2. Linear and Circular convolutions
3. Auto correlation and Cross Correlation
4. Frequency Analysis using DFT
5. Design of FIR filters (LPF/HPF/BPF/BSF) and demonstrates the filtering operation
6. Design of Butterworth and Chebyshev IIR filters (LPF/HPF/BPF/BSF) and demonstrate the filtering operations
7. Study of architecture of Digital Signal Processor
8. Perform MAC operation using various addressing modes
9. Generation of various signals and random noise
10. Design and demonstration of FIR Filter for Low pass, High pass, Band pass and Band stop filtering
11. Design and demonstration of Butter worth and Chebyshev IIR Filters for Low pass, High pass, Band pass and Band stop filtering
12. Implement an Up-sampling and Down-sampling operation in DSP Processor

COURSE OUTCOMES:
At the end of the course students will be able to:
CO1: Apply DFT for the analysis of digital signals and systems
CO2: Design IIR and FIR filters
CO3: Characterize the effects of finite precision representation on digital filters
CO4: Design multirate filters
CO5: Apply adaptive filters appropriately in communication systems

TOTAL: 75 PERIODS

TEXT BOOK

REFERENCES
3. Andreas Antoniou, “Digital Signal Processi

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CS3591 COMPUTER NETWORKS L T P C 3 0 2 4

COURSE OBJECTIVES:
- To understand the concept of layering in networks.
- To know the functions of protocols of each layer of TCP/IP protocol suite.
- To visualize the end-to-end flow of information.
- To learn the functions of network layer and the various routing protocols.
- To familiarize the functions and protocols of the Transport layer.

UNIT I INTRODUCTION AND APPLICATION LAYER 10
UNIT II TRANSPORT LAYER 9
Introduction - Transport-Layer Protocols: UDP – TCP: Connection Management – Flow control -
Congestion Control - Congestion avoidance (DECbit, RED) – SCTP – Quality of Service

UNIT III NETWORK LAYER 7
Switching : Packet Switching - Internet protocol - IPV4 – IP Addressing – Subnetting - IPV6, ARP,
RARP, ICMP, DHCP

UNIT IV ROUTING 7
Routing and protocols: Unicast routing - Distance Vector Routing - RIP - Link State Routing – OSPF
– Path-vector routing - BGP - Multicast Routing: DVMRP – PIM.

UNIT V DATA LINK AND PHYSICAL LAYERS 12
- Physical Layer: Data and Signals - Performance – Transmission media- Switching – Circuit
Switching.

PRACTICAL EXERCISES: 45 PERIODS
1. Learn to use commands like tcpdump, netstat, ifconfig, nslookup and traceroute. Capture ping
and trace route PDUs using a network protocol analyzer and examine.
2. Write a HTTP web client program to download a web page using TCP sockets.
3. Applications using TCP sockets like: a) Echo client and echo server b) Chat
4. Simulation of DNS using UDP sockets.
5. Use a tool like Wireshark to capture packets and examine the packets
6. Write a code simulating ARP /RARP protocols.
7. Study of Network simulator (NS) and Simulation of Congestion Control Algorithms using NS.
9. Simulation of Distance Vector/ Link State Routing algorithm.
10. Simulation of an error correction code (like CRC)

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO 1: Explain the basic layers and its functions in computer networks.
CO 2: Understand the basics of how data flows from one node to another.
CO 3: Analyze routing algorithms.
CO 4: Describe protocols for various functions in the network.
CO 5: Analyze the working of various application layer protocols.

TOTAL:75 PERIODS

TEXT BOOKS
1. James F. Kurose, Keith W. Ross, Computer Networking, A Top-Down Approach Featuring the
2. Behrouz A. Forouzan, Data Communications and Networking with TCP/IP Protocol Suite, Sixth
Edition TMH, 2022

REFERENCES
CO’s - PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '*' - no correlation

CS3551 DISTRIBUTED COMPUTING L T P C
3 0 0 3

COURSE OBJECTIVES:
- To introduce the computation and communication models of distributed systems
- To illustrate the issues of synchronization and collection of information in distributed systems
- To describe distributed mutual exclusion and distributed deadlock detection techniques
- To elucidate agreement protocols and fault tolerance mechanisms in distributed systems
- To explain the cloud computing models and the underlying concepts

UNIT I INTRODUCTION 8

UNIT II LOGICAL TIME AND GLOBAL STATE 10

UNIT III DISTRIBUTED MUTEX AND DEADLOCK 10
UNIT IV CONSENSUS AND RECOVERY

UNIT V CLOUD COMPUTING

COURSE OUTCOMES:
Upon the completion of this course, the student will be able to
CO1: Explain the foundations of distributed systems (K2)
CO2: Solve synchronization and state consistency problems (K3)
CO3: Use resource sharing techniques in distributed systems (K3)
CO4: Apply working model of consensus and reliability of distributed systems (K3)
CO5: Explain the fundamentals of cloud computing (K2)

TOTAL: 45 PERIODS

TEXT BOOKS

REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AVG.</td>
<td>1.8</td>
<td>2.4</td>
<td>1.8</td>
<td>2.4</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.6</td>
<td>2.2</td>
<td>2.2</td>
<td>1.6</td>
<td>2</td>
<td>1.8</td>
<td>1.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
CB3491 CRYPTOGRAPHY AND CYBER SECURITY L T P C
3 0 0 3

COURSE OBJECTIVES:
- Learn to analyze the security of in-built cryptosystems.
- Know the fundamental mathematical concepts related to security.
- Develop cryptographic algorithms for information security.
- Comprehend the various types of data integrity and authentication schemes
- Understand cyber crimes and cyber security.

UNIT I INTRODUCTION TO SECURITY

UNIT II SYMMETRIC CIPHERS
Number theory – Algebraic Structures – Modular Arithmetic - Euclid’s algorithm – Congruence and matrices – Group, Rings, Fields, Finite Fields

UNIT III ASYMMETRIC CRYPTOGRAPHY
MATHEMATICS OF ASYMMETRIC KEY CRYPTOGRAPHY: Primes – Primality Testing – Factorization – Euler’s totient function, Fermat’s and Euler’s Theorem – Chinese Remainder Theorem – Exponentiation and logarithm

ASYMMETRIC KEY CIPHERS: RSA cryptosystem – Key distribution – Key management – Diffie Hellman key exchange — Elliptic curve arithmetic – Elliptic curve cryptography.

UNIT IV INTEGRITY AND AUTHENTICATION ALGORITHMS

MUTUAL TRUST: Key management and distribution – Symmetric key distribution using symmetric and asymmetric encryption – Distribution of public keys – X.509 Certificates.

UNIT V CYBER CRIMES AND CYBER SECURITY

TOTAL:45 PERIODS

COURSE OUTCOMES:
CO1: Understand the fundamentals of networks security, security architecture, threats and vulnerabilities
CO2: Apply the different cryptographic operations of symmetric cryptographic algorithms
CO3: Apply the different cryptographic operations of public key cryptography
CO4: Apply the various Authentication schemes to simulate different applications.
CO5: Understand various cyber crimes and cyber security.

TEXT BOOKS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.8</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>2.8</td>
<td>2.8</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

IT3681 MOBILE APPLICATION DEVELOPMENT LABORATORY L T P C
0 0 3 1.5

COURSE OBJECTIVES:
The objective of this course is to enable the students to
- Use Flutter/Kotlin multi-platform environment for building cross-platform mobile applications.
- Demonstrate the knowledge of different programming techniques and patterns for mobile application development.
- Identify the components and structure of mobile application development frameworks.
- Understand the capabilities and limitations of different platforms.
- Design and develop real-time mobile applications.

LIST OF EXPERIMENTS:
- Study and installation of Flutter/Kotlin multi-platform environment
- Develop an application that uses Widgets, GUI components, Fonts, and Colors.
- Develop a native calculator application.
- Develop a gaming application that uses 2-D animations and gestures.
- Develop a movie rating application (similar to IMDB)
- Develop an application to connect to a web service and to retrieve data with HTTP.
• Develop a simple shopping application.
• Design a web server supporting push notifications.
• Develop an application by integrating Google maps
• Mini Projects involving Flutter/Kotlin multi-platform

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On successful completion of this course, the student should be able to
CO1: Design and build simple mobile applications supporting multiple platforms.
CO2: Apply various programming techniques and patterns to build mobile applications.
CO3: Build real-time mobile applications for society/environment
CO4: Build gaming and multimedia-based mobile applications
CO5: Build AI-based mobile applications for society/environment following ethical practices

TEXTBOOKS:
1. Simone Alessandria, Flutter Projects: A practical project-based guide to building real-world cross-platform mobile applications and games, Packt publishing.
2. Carmine Zaccagnino, Programming Flutter: Native, Cross-Platform Apps the Easy Way (The Pragmatic Programmers), Packt publishing.

REFERENCES
1. Gergely Orosz, Building Mobile Applications at Scale: 39 Engineering Challenges
2. Souvik Biswas & Codemagic, Flutter Libraries we love
3. ED Freitas, Daniel Jebaraj, Flutter Succinctly
4. Antonio Leiva, Kotlin for Android Developers Learn Kotlin the easy way while developing an Android Applications

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's PO's</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AVG.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS356 OBJECT ORIENTED SOFTWARE ENGINEERING
L T P C
3 0 2 4

COURSE OBJECTIVES:
• To understand Software Engineering Lifecycle Models
• To Perform software requirements analysis
• To gain knowledge of the System Analysis and Design concepts using UML.
• To understand software testing and maintenance approaches
• To work on project management scheduling using DevOps
UNIT I SOFTWARE PROCESS AND AGILE DEVELOPMENT

UNIT II REQUIREMENTS ANALYSIS AND SPECIFICATION

UNIT III SOFTWARE DESIGN

UNIT IV SOFTWARE TESTING AND MAINTENANCE

Testing – Unit testing – Black box testing– White box testing – Integration and System testing– Regression testing – Debugging - Program analysis – Symbolic execution – Model Checking-Case Study

UNIT V PROJECT MANAGEMENT

COURSE OUTCOMES:
CO1: Compare various Software Development Lifecycle Models
CO2: Evaluate project management approaches as well as cost and schedule estimation strategies.
CO3: Perform formal analysis on specifications.
CO4: Use UML diagrams for analysis and design.
CO5: Architect and design using architectural styles and design patterns, and test the system

PRACTICAL EXERCISES:

LIST OF EXPERIMENTS:
1. Identify a software system that needs to be developed.
2. Document the Software Requirements Specification (SRS) for the identified system.
3. Identify use cases and develop the Use Case model.
4. Identify the conceptual classes and develop a Domain Model and also derive a Class Diagram from that.
5. Using the identified scenarios, find the interaction between objects and represent them using UML Sequence and Collaboration Diagrams
6. Draw relevant State Chart and Activity Diagrams for the same system.
7. Implement the system as per the detailed design
8. Test the software system for all the scenarios identified as per the usecase diagram
9. Improve the reusability and maintainability of the software system by applying appropriate design patterns.

45 PERIODS

30 PERIODS
10. Implement the modified system and test it for various scenarios.

SUGGESTED DOMAINS FOR MINI-PROJECT:
1. Passport automation system.
2. Book bank
3. Exam registration
4. Stock maintenance system.
5. Online course reservation system
6. Airline/Railway reservation system
7. Software personnel management system
8. Credit card processing
9. e-book management system
10. Recruitment system
11. Foreign trading system
12. Conference management system
13. BPO management system
14. Library management system
15. Student information system

TOTAL: 75 PERIODS

TEXT BOOKS

REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:

- To learn the internal architecture and programming of an embedded processor.
- To introduce interfacing I/O devices to the processor.
- To introduce the evolution of the Internet of Things (IoT).
- To build a small low-cost embedded and IoT system using Arduino/Raspberry Pi/ open platform.
- To apply the concept of Internet of Things in real world scenario.

UNIT I 8-BIT EMBEDDED PROCESSOR 9

UNIT II EMBEDDED C PROGRAMMING 9

UNIT III IOT AND ARDUINO PROGRAMMING 9

UNIT IV IOT COMMUNICATION AND OPEN PLATFORMS 9

UNIT V APPLICATIONS DEVELOPMENT 9

45 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

1. Write 8051 Assembly Language experiments using simulator.
2. Test data transfer between registers and memory.
3. Perform ALU operations.
4. Write Basic and arithmetic Programs Using Embedded C.
5. Introduction to Arduino platform and programming
6. Explore different communication methods with IoT devices (Zigbee, GSM, Bluetooth)
7. Introduction to Raspberry PI platform and python programming
8. Interfacing sensors with Raspberry PI
9. Communicate between Arduino and Raspberry PI using any wireless medium
10. Setup a cloud platform to log the data
11. Log Data using Raspberry PI and upload to the cloud platform
12. Design an IOT based system

COURSE OUTCOMES:
CO1: Explain the architecture of embedded processors.
CO2: Write embedded C programs.
CO3: Design simple embedded applications.
CO4: Compare the communication models in IOT
CO5: Design IoT applications using Arduino/Raspberry Pi /open platform.

TOTAL PERIODS: 75

TEXTBOOKS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.6</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

NCC Credit Course Level 3*
NX3651 (ARMY WING) NCC Credit Course - III

PERSONALITY DEVELOPMENT
PD 3 Group Discussion: Team Work 2
PD 4 Career Counselling, SSB Procedure & Interview Skills 3
PD 5 Public Speaking 4
<table>
<thead>
<tr>
<th>COURSE</th>
<th>PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BORDER & COASTAL AREAS</td>
<td>4</td>
</tr>
<tr>
<td>BCA 2 Security Setup and Border/Coastal management in the area</td>
<td>2</td>
</tr>
<tr>
<td>BCA 3 Security Challenges & Role of cadets in Border management</td>
<td>2</td>
</tr>
<tr>
<td>ARMEED FORCES</td>
<td>3</td>
</tr>
<tr>
<td>AF 2 Modes of Entry to Army, CAPF, Police</td>
<td>3</td>
</tr>
<tr>
<td>COMMUNICATION</td>
<td>3</td>
</tr>
<tr>
<td>C 1 Introduction to Communication & Latest Trends</td>
<td>3</td>
</tr>
<tr>
<td>INFANTRY</td>
<td>3</td>
</tr>
<tr>
<td>INF 1 Organisation of Infantry Battalion & its weapons</td>
<td>3</td>
</tr>
<tr>
<td>MILITARY HISTORY</td>
<td>23</td>
</tr>
<tr>
<td>MH 1 Biographies of Renowned Generals</td>
<td>4</td>
</tr>
<tr>
<td>MH 2 War Heroes - PVC Awardees</td>
<td>4</td>
</tr>
<tr>
<td>MH 3 Study of Battles - Indo Pak War 1965, 1971 & Kargil</td>
<td>9</td>
</tr>
<tr>
<td>MH 4 War Movies</td>
<td>6</td>
</tr>
<tr>
<td>NAVAL ORIENTATION</td>
<td>6</td>
</tr>
<tr>
<td>NO 3 Modes of Entry - IN, ICG, Merchant Navy</td>
<td>3</td>
</tr>
<tr>
<td>AF 2 Naval Expeditions & Campaigns</td>
<td>3</td>
</tr>
<tr>
<td>NAVAL COMMUNICATION</td>
<td>2</td>
</tr>
<tr>
<td>NC 1 Introduction to Naval Communications</td>
<td>1</td>
</tr>
<tr>
<td>NC 2 Semaphore</td>
<td>1</td>
</tr>
<tr>
<td>NAVIGATION</td>
<td>2</td>
</tr>
<tr>
<td>N 1 Navigation of Ship - Basic Requirements</td>
<td>1</td>
</tr>
<tr>
<td>N 2 Chart Work</td>
<td>1</td>
</tr>
<tr>
<td>SEAMANSHIP</td>
<td>15</td>
</tr>
<tr>
<td>MH 1 Introduction to Anchor Work</td>
<td>2</td>
</tr>
<tr>
<td>MH 2 Rigging Capsule</td>
<td>6</td>
</tr>
<tr>
<td>MH 3 Boatwork - Parts of Boat</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL: 45 PERIODS

NCC Credit Course Level 3*
NX3652 (NAVAL WING) NCC Credit Course - III

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

PERSONALITY DEVELOPMENT
P 3 Group Discussion: Team Work
P 4 Career Counselling, SSB Procedure & Interview Skills
P 5 Public Speaking

BORDER & COASTAL AREAS

NAVAL ORIENTATION
NO 3 Modes of Entry - IN, ICG, Merchant Navy
AF 2 Naval Expeditions & Campaigns

NAVAL COMMUNICATION
NC 1 Introduction to Naval Communications
NC 2 Semaphore

NAVIGATION
N 1 Navigation of Ship - Basic Requirements
N 2 Chart Work

SEAMANSHIP
MH 1 Introduction to Anchor Work
MH 2 Rigging Capsule
MH 3 Boatwork - Parts of Boat

95
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH 4</td>
<td>Boat Pulling Instructions</td>
<td>2</td>
</tr>
<tr>
<td>MH 5</td>
<td>Whaler Sailing Instructions</td>
<td>3</td>
</tr>
<tr>
<td>FFDC 1</td>
<td>Fire Fighting</td>
<td>2</td>
</tr>
<tr>
<td>FFDC 2</td>
<td>Damage Control</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SHIP MODELLING</td>
<td>3</td>
</tr>
<tr>
<td>SM</td>
<td>Ship Modelling Capsule</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TOTAL : 45 PERIODS</td>
<td>45</td>
</tr>
</tbody>
</table>

NCC Credit Course Level 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX3653</td>
<td>(AIR FORCE WING) NCC Credit Course Level - III</td>
<td>L T P C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 0 0 3</td>
</tr>
<tr>
<td></td>
<td>PERSONALITY DEVELOPMENT</td>
<td>9</td>
</tr>
<tr>
<td>PD 3</td>
<td>Group Discussion: Team Work</td>
<td>2</td>
</tr>
<tr>
<td>PD 4</td>
<td>Career Counselling, SSB Procedure & Interview Skills</td>
<td>3</td>
</tr>
<tr>
<td>PD 5</td>
<td>Public Speaking</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BORDER & COASTAL AREAS</td>
<td>4</td>
</tr>
<tr>
<td>BCA 2</td>
<td>Security Setup and Border/Coastal management in the area</td>
<td>2</td>
</tr>
<tr>
<td>BCA 3</td>
<td>Security Challenges & Role of cadets in Border management</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>AIRMANSHIP</td>
<td>1</td>
</tr>
<tr>
<td>A 1</td>
<td>Airmanship</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BASIC FLIGHT INSTRUMENTS</td>
<td>3</td>
</tr>
<tr>
<td>FI 1</td>
<td>Basic Flight Instruments</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AERO MODELLING</td>
<td>3</td>
</tr>
<tr>
<td>AM 1</td>
<td>Aero Modelling Capsule</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GENERAL SERVICE KNOWLEDGE</td>
<td>2</td>
</tr>
<tr>
<td>GSK 4</td>
<td>Latest Trends & Acquisitions</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>AIR CAMPAIGNS</td>
<td>6</td>
</tr>
<tr>
<td>AC 1</td>
<td>Air Campaigns</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>PRINCIPLES OF FLIGHT</td>
<td>6</td>
</tr>
<tr>
<td>PF 1</td>
<td>Principles of Flight</td>
<td>3</td>
</tr>
<tr>
<td>PF 2</td>
<td>Forces acting on Aircraft</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>NAVIGATION</td>
<td>5</td>
</tr>
<tr>
<td>NM 1</td>
<td>Navigation</td>
<td>2</td>
</tr>
<tr>
<td>NM 2</td>
<td>Introduction to Met and Atmosphere</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AERO ENGINES</td>
<td>6</td>
</tr>
<tr>
<td>E 1</td>
<td>Introduction and types of Aero Engine</td>
<td>3</td>
</tr>
<tr>
<td>E 2</td>
<td>Aircraft Controls</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL : 45 PERIODS
COURSE DESCRIPTION
This course aims to provide a broad understanding about the modern values and ethical principles that have evolved and are enshrined in the Constitution of India with regard to the democratic, secular and scientific aspects. The course is designed for undergraduate students so that they could study, understand and apply these values in their day to day life.

COURSE OBJECTIVES:
- To create awareness about values and ethics enshrined in the Constitution of India
- To sensitize students about the democratic values to be upheld in the modern society.
- To inculcate respect for all people irrespective of their religion or other affiliations.
- To instill the scientific temper in the students’ minds and develop their critical thinking.
- To promote sense of responsibility and understanding of the duties of citizen.

UNIT I DEMOCRATIC VALUES
Reading Text: Excerpts from John Stuart Mills' On Liberty

UNIT II SECULAR VALUES
Understanding Secular values – Interpretation of secularism in Indian context - Disassociation of state from religion – Acceptance of all faiths – Encouraging non-discriminatory practices.
Reading Text: Excerpt from Secularism in India: Concept and Practice by Ram Puniyani

UNIT III SCIENTIFIC VALUES
Reading Text: Excerpt from The Scientific Temper by Antony Michaelis R

UNIT IV SOCIAL ETHICS
Application of ethical reasoning to social problems – Gender bias and issues – Gender violence – Social discrimination – Constitutional protection and policies – Inclusive practices.
Reading Text: Excerpt from 21 Lessons for the 21st Century by Yuval Noah Harari

UNIT V SCIENTIFIC ETHICS
Transparency and Fairness in scientific pursuits – Scientific inventions for the betterment of society - Unfair application of scientific inventions – Role and Responsibility of Scientist in the modern society.

TOTAL: 30 PERIODS
REFERENCES:
4. The Civic Culture: Political Attitudes and Democracy in Five Nations by Gabriel A. Almond and Sidney Verba, Princeton University Press,
5. Research Methodology for Natural Sciences by Soumitro Banerjee, IISc Press, January 2022

COURSE OUTCOMES
Students will be able to
CO1 : Identify the importance of democratic, secular and scientific values in harmonious functioning of social life
CO2 : Practice democratic and scientific values in both their personal and professional life.
CO3 : Find rational solutions to social problems.
CO4 : Behave in an ethical manner in society
CO5 : Practice critical thinking and the pursuit of truth.

CO3711 SUMMER INTERNSHIP L T P C
0 0 0 2

COURSE OBJECTIVES:
To enable the students to

- Get connected with reputed industry/ laboratory/academia / research institute
- Get practical knowledge on Product Development / Services and operations / Software Design and Development / Testing / Analytics/ research/ startups/ professionalism / business processes and insights / domain knowledge/ Industry Practices/ and other related aspects and develop skills to solve related problems
- Develop technical, soft, team skills to cater to the needs of the industry / academia / businesses / research / organizations in the core aspects of Automation, Digitalization

The students individually undergo training in reputed firms/ research institutes / laboratories for the specified duration. After the completion of training, a detailed report should be submitted within ten days from the commencement of next semester. The students will be evaluated as per the Regulations.

No. of Weeks: 04

COURSE OUTCOMES:
On completion of the course, the student will know about
CO1: Industry Practices, Processes, Techniques, technology, automation and other core aspects of software industry
CO2: Analyze, Design solutions to complex business problems
CO3: Build and deploy solutions for target platform
CO4: Preparation of Technical reports and presentation
COURSE OBJECTIVES:

- To train the students
- For gaining domain knowledge, and technical skills to solve potential business / research problems
- Gather requirements and Design suitable software solutions and evaluate alternatives
- To work in small teams and understand the processes and practices in the ‘industry.
- Implement, Test and deploy solutions for target platforms
- Preparing project reports and presentation

The students shall individually / or as group work on business/research domains and related problems approved by the Department / organization that offered the internship / project.

The student can select any topic which is relevant to his/her specialization of the programme. The student should continue the work on the selected topic as per the formulated methodology. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work, results and discussion, conclusion and references should be prepared as per the format prescribed by the University and submitted to the Head of the department. The students will be evaluated based on the report and viva-voce examination by a panel of examiners as per the Regulations.

COURSE OUTCOMES:

At the end of the project, the student will be able to

CO1: Gain Domain knowledge and technical skill set required for solving industry / research problems
CO2: Provide solution architecture, module level designs, algorithms
CO3: Implement, test and deploy the solution for the target platform
CO4: Prepare detailed technical report, demonstrate and present the work

TOTAL: 300 PERIODS
COURSE OBJECTIVES:

- To outline an overview of exploratory data analysis.
- To implement data visualization using Matplotlib.
- To perform univariate data exploration and analysis.
- To apply bivariate data exploration and analysis.
- To use Data exploration and visualization techniques for multivariate and time series data.

UNIT I EXPLORATORY DATA ANALYSIS

EDA fundamentals – Understanding data science – Significance of EDA – Making sense of data – Comparing EDA with classical and Bayesian analysis – Software tools for EDA - Visual Aids for EDA- Data transformation techniques-merging database, reshaping and pivoting, Transformation techniques.

UNIT II EDA USING PYTHON

UNIT III UNIVARIATE ANALYSIS

Introduction to Single variable: Distribution Variables - Numerical Summaries of Level and Spread - Scaling and Standardizing – Inequality.

UNIT IV BIVARIATE ANALYSIS

Relationships between Two Variables - Percentage Tables - Analysing Contingency Tables - Handling Several Batches - Scatterplots and Resistant Lines.

UNIT V MULTIVARIATE AND TIME SERIES ANALYSIS

PRACTICAL EXERCISES:

1. Install the data Analysis and Visualization tool: R/ Python /Tableau Public/ Power BI.
2. Perform exploratory data analysis (EDA) with datasets like email data set. Export all your emails as a dataset, import them inside a pandas data frame, visualize them and get different insights from the data.
3. Working with Numpy arrays, Pandas data frames, Basic plots using Matplotlib.
4. Explore various variable and row filters in R for cleaning data. Apply various plot features in R on sample data sets and visualize.
5. Perform Time Series Analysis and apply the various visualization techniques.
6. Perform Data Analysis and representation on a Map using various Map data sets with Mouse Rollover effect, user interaction, etc.
7. Build cartographic visualization for multiple datasets involving various countries of the world; states and districts in India etc.
8. Perform EDA on Wine Quality Data Set.
9. Use a case study on a data set and apply the various EDA and visualization techniques and present an analysis report.

COURSE OUTCOMES:
At the end of this course, the students will be able to:
- **CO1**: Understand the fundamentals of exploratory data analysis.
- **CO2**: Implement the data visualization using Matplotlib.
- **CO3**: Perform univariate data exploration and analysis.
- **CO4**: Apply bivariate data exploration and analysis.
- **CO5**: Use Data exploration and visualization techniques for multivariate and time series data.

TEXT BOOKS:

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AVg.</td>
<td>2.2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS360 RECOMMENDER SYSTEMS L T P C
2 0 2 3

COURSE OBJECTIVES:
- To understand the foundations of the recommender system.
- To learn the significance of machine learning and data mining algorithms for Recommender systems
- To learn about collaborative filtering
- To make students design and implement a recommender system.
- To learn collaborative filtering.
UNIT I INTRODUCTION
Introduction and basic taxonomy of recommender systems - Traditional and non-personalized Recommender Systems - Overview of data mining methods for recommender systems- similarity measures- Dimensionality reduction – Singular Value Decomposition (SVD)

Suggested Activities:
- Practical learning – Implement Data similarity measures.
- External Learning – Singular Value Decomposition (SVD) applications

Suggested Evaluation Methods:
- Quiz on Recommender systems.
- Quiz of python tools available for implementing Recommender systems

UNIT II CONTENT-BASED RECOMMENDATION SYSTEMS
High-level architecture of content-based systems - Item profiles, Representing item profiles, Methods for learning user profiles, Similarity-based retrieval, and Classification algorithms.

Suggested Activities:
- Assignment on content-based recommendation systems
- Assignment of learning user profiles

Suggested Evaluation Methods:
- Quiz on similarity-based retrieval.
- Quiz of content-based filtering

UNIT III COLLABORATIVE FILTERING
A systematic approach, Nearest-neighbor collaborative filtering (CF), user-based and item-based CF, components of neighborhood methods (rating normalization, similarity weight computation, and neighborhood selection

Suggested Activities:
- Practical learning – Implement collaborative filtering concepts
- Assignment of security aspects of recommender systems

Suggested Evaluation Methods:
- Quiz on collaborative filtering
- Seminar on security measures of recommender systems

UNIT IV ATTACK-RESISTANT RECOMMENDER SYSTEMS

Suggested Activities:
- Group Discussion on attacks and their mitigation
- Study of the impact of group attacks
- External Learning – Use of CAPTCHAs
Suggested Evaluation Methods:
- Quiz on attacks on recommender systems
- Seminar on preventing attacks using the CAPTCHAs

UNIT V EVALUATING RECOMMENDER SYSTEMS

Suggested Activities:
- Group Discussion on goals of evaluation design
- Study of accuracy metrics

Suggested Evaluation Methods:
- Quiz on evaluation design
- Problems on accuracy measures

PRACTICAL EXERCISES
1. Implement Data similarity measures using Python
2. Implement dimension reduction techniques for recommender systems
3. Implement user profile learning
4. Implement content-based recommendation systems
5. Implement collaborative filter techniques
6. Create an attack for tampering with recommender systems
7. Implement accuracy metrics like Receiver Operated Characteristic curves

COURSE OUTCOMES:
On completion of the course, the students will be able to:
CO1: Understand the basic concepts of recommender systems.
CO2: Implement machine-learning and data-mining algorithms in recommender systems data sets.
CO3: Implementation of Collaborative Filtering in carrying out performance evaluation of recommender systems based on various metrics.
CO4: Design and implement a simple recommender system.
CO5: Learn about advanced topics of recommender systems.
CO6: Learn about advanced topics of recommender systems applications

TEXTBOOKS:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
- To understand the basics in deep neural networks
- To understand the basics of associative memory and unsupervised learning networks
- To apply CNN architectures of deep neural networks
- To analyze the key computations underlying deep learning, then use them to build and train deep neural networks for various tasks.
- To apply autoencoders and generative models for suitable applications.

UNIT I	INTRODUCTION
Neural Networks-Application Scope of Neural Networks-Artificial Neural Network: An Introduction-
Evolution of Neural Networks-Basic Models of Artificial Neural Network- Important Terminologies of ANN's-Supervised Learning Network.

UNIT II ASSOCIATIVE MEMORY AND UNSUPERVISED LEARNING NETWORKS

UNIT III THIRD-GENERATION NEURAL NETWORKS

UNIT IV DEEP FEEDFORWARD NETWORKS

UNIT V RECURRENT NEURAL NETWORKS
Processing. Complete Auto encoder, Regularized Autoencoder, Stochastic Encoders and Decoders, Contractive Encoders.

LAB EXPERIMENTS:

1. Implement simple vector addition in TensorFlow.
2. Implement a regression model in Keras.
4. Implement a Feed-Forward Network in TensorFlow/Keras.
5. Implement an Image Classifier using CNN in TensorFlow/Keras.
6. Improve the Deep learning model by fine tuning hyper parameters.
7. Implement a Transfer Learning concept in Image Classification.
8. Using a pre trained model on Keras for Transfer Learning
9. Perform Sentiment Analysis using RNN
10. Implement an LSTM based Autoencoder in TensorFlow/Keras.
11. Image generation using GAN

Additional Experiments:
12. Train a Deep learning model to classify a given image using pre trained model
13. Recommendation system from sales data using Deep Learning
14. Implement Object Detection using CNN
15. Implement any simple Reinforcement Algorithm for an NLP problem

TOTAL: 60 PERIODS

COURSE OUTCOMES:
At the end of this course, the students will be able to:

CO1: Apply Convolution Neural Network for image processing.
CO2: Understand the basics of associative memory and unsupervised learning networks.
CO3: Apply CNN and its variants for suitable applications.
CO4: Analyze the key computations underlying deep learning and use them to build and train deep neural networks for various tasks.
CO5: Apply autoencoders and generative models for suitable applications.

TEXT BOOKS:

REFERENCES:
4. Learn Keras for Deep Neural Networks, Jojo Moolayil, Apress, 2018

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.6</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CCS369 TEXT AND SPEECH ANALYSIS

COURSE OBJECTIVES:
- Understand natural language processing basics
- Apply classification algorithms to text documents
- Build question-answering and dialogue systems
- Develop a speech recognition system
- Develop a speech synthesizer

UNIT I NATURAL LANGUAGE BASICS

Suggested Activities
- Flipped classroom on NLP
- Implementation of Text Preprocessing using NLTK
- Implementation of TF-IDF models

Suggested Evaluation Methods
- Quiz on NLP Basics
- Demonstration of Programs

UNIT II TEXT CLASSIFICATION

Suggested Activities
- Flipped classroom on Feature extraction of documents
• Implementation of SVM models for text classification
• External learning: Text summarization and Topic models

Suggested Evaluation Methods
• Assignment on above topics
• Quiz on RNN, Transformers
• Implementing NLP with RNN and Transformers

UNIT III QUESTION ANSWERING AND DIALOGUE SYSTEMS 9

Suggested Activities:
• Flipped classroom on language models for QA
• Developing a knowledge-based question-answering system
• Classic QA model development

Suggested Evaluation Methods
• Assignment on the above topics
• Quiz on knowledge-based question answering system
• Development of simple chatbots

UNIT IV TEXT-TO-SPEECH SYNTHESIS 6

Suggested Activities:
• Flipped classroom on Speech signal processing
• Exploring Text normalization
• Data collection
• Implementation of TTS systems

Suggested Evaluation Methods
• Assignment on the above topics
• Quiz on wavenet, deep learning-based TTS systems
• Finding accuracy with different TTS systems

UNIT V AUTOMATIC SPEECH RECOGNITION 6

Speech recognition: Acoustic modelling – Feature Extraction - HMM, HMM-DNN systems

Suggested Activities:
• Flipped classroom on Speech recognition.
• Exploring Feature extraction

Suggested Evaluation Methods
• Assignment on the above topics
• Quiz on acoustic modelling
PRACTICAL EXERCISES

1. Create Regular expressions in Python for detecting word patterns and tokenizing text
2. Getting started with Python and NLTK - Searching Text, Counting Vocabulary, Frequency Distribution, Collocations, Bigrams
3. Accessing Text Corpora using NLTK in Python
4. Write a function that finds the 50 most frequently occurring words of a text that are not stop words.
5. Implement the Word2Vec model
6. Use a transformer for implementing classification
7. Design a chatbot with a simple dialog system
8. Convert text to speech and find accuracy
9. Design a speech recognition system and find the error rate

TOTAL: 60 PERIODS

COURSE OUTCOMES:
On completion of the course, the students will be able to

CO1: Explain existing and emerging deep learning architectures for text and speech processing
CO2: Apply deep learning techniques for NLP tasks, language modelling and machine translation
CO3: Explain coreference and coherence for text processing
CO4: Build question-answering systems, chatbots and dialogue systems
CO5: Apply deep learning models for building speech recognition and text-to-speech systems

TEXTBOOK

REFERENCES:
4. Steven Bird, Ewan Klein, and Edward Loper, “Natural language processing with Python”, O’REILLY.

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:

- To understand the Analytics Life Cycle.
- To comprehend the process of acquiring Business Intelligence
- To understand various types of analytics for Business Forecasting
- To model the supply chain management for Analytics.
- To apply analytics for different functions of a business

UNIT I INTRODUCTION TO BUSINESS ANALYTICS 6

UNIT II BUSINESS INTELLIGENCE 6
Data Warehouses and Data Mart - Knowledge Management –Types of Decisions - Decision Making Process - Decision Support Systems – Business Intelligence –OLAP – Analytic functions

UNIT III BUSINESS FORECASTING 6
Introduction to Business Forecasting and Predictive analytics - Logic and Data Driven Models – Data Mining and Predictive Analysis Modelling –Machine Learning for Predictive analytics.

UNIT IV HR & SUPPLY CHAIN ANALYTICS 6
Human Resources – Planning and Recruitment – Training and Development - Supply chain network - Planning Demand, Inventory and Supply – Logistics – Analytics applications in HR & Supply Chain - Applying HR Analytics to make a prediction of the demand for hourly employees for a year.

UNIT V MARKETING & SALES ANALYTICS 6
Marketing Strategy, Marketing Mix, Customer Behaviour –selling Process – Sales Planning – Analytics applications in Marketing and Sales - predictive analytics for customers' behaviour in marketing and sales.

LIST OF EXPERIMENTS: 30 PERIODS
Use MS-Excel and Power-BI to perform the following experiments using a Business data set, and make presentations.
Students may be encouraged to bring their own real-time socially relevant data set.

I Cycle – MS Excel
1. Explore the features of Ms-Excel.
2. (i) Get the input from user and perform numerical operations (MAX, MIN, AVG, SUM, SQRT, ROUND)
 ii) Perform data import/export operations for different file formats.
3. Perform statistical operations - Mean, Median, Mode and Standard deviation, Variance, Skewness, Kurtosis
4. Perform Z-test, T-test & ANOVA
5. Perform data pre-processing operations i) Handling Missing data ii) Normalization
6. Perform dimensionality reduction operation using PCA, KPCA & SVD
7. Perform bivariate and multivariate analysis on the dataset.
8. Apply and explore various plotting functions on the data set.
II Cycle – Power BI Desktop
9. Explore the features of Power BI Desktop
10. Prepare & Load data
11. Develop the data model
12. Perform DAX calculations
13. Design a report
14. Create a dashboard and perform data analysis
15. Presentation of a case study

COURSE OUTCOMES:
CO1: Explain the real world business problems and model with analytical solutions.
CO2: Identify the business processes for extracting Business Intelligence
CO3: Apply predictive analytics for business forecasting
CO4: Apply analytics for supply chain and logistics management
CO5: Use analytics for marketing and sales.

TOTAL: 60 PERIODS

TEXT BOOKS

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ no correlation

CCS349 IMAGE AND VIDEO ANALYTICS

COURSE OBJECTIVES:
- To understand the basics of image processing techniques for computer vision.
- To learn the techniques used for image pre-processing.
- To discuss the various object detection techniques.
- To understand the various Object recognition mechanisms.
- To elaborate on the video analytics techniques.
UNIT I
INTRODUCTION
6

UNIT II
IMAGE PRE-PROCESSING
6
Local pre-processing - Image smoothing - Edge detectors - Zero-crossings of the second derivative - Scale in image processing - Canny edge detection - Parametric edge models - Edges in multi-spectral images - Local pre-processing in the frequency domain - Line detection by local pre-processing operators - Image restoration.

UNIT III
OBJECT DETECTION USING MACHINE LEARNING
6

UNIT IV
FACE RECOGNITION AND GESTURE RECOGNITION
6

UNIT V
VIDEO ANALYTICS
6
Video Processing – use cases of video analytics-Vanishing Gradient and exploding gradient problem- RestNet architecture-RestNet and skip connections-Inception Network-GoogleNet architecture- Improvement in Inception v2-Video analytics-RestNet and Inception v3.

LIST OF EXERCISES
30 PERIODS

1. Write a program that computes the T-pyramid of an image.
2. Write a program that derives the quad tree representation of an image using the homogeneity criterion of equal intensity
3. Develop programs for the following geometric transforms: (a) Rotation (b) Change of scale (c) Skewing (d) Affine transform calculated from three pairs of corresponding points (e) Bilinear transform calculated from four pairs of corresponding points.
4. Develop a program to implement Object Detection and Recognition
5. Develop a program for motion analysis using moving edges, and apply it to your image sequences.
6. Develop a program for Facial Detection and Recognition
7. Write a program for event detection in video surveillance system

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO1: Understand the basics of image processing techniques for computer vision and video analysis.
CO2: Explain the techniques used for image pre-processing.
CO3: Develop various object detection techniques.
CO4: Understand the various face recognition mechanisms.
CO5: Elaborate on deep learning-based video analytics.

TOTAL: 60 PERIODS
TEXT BOOK:

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AVg.</td>
<td>2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS338 COMPUTER VISION L T P C
2 0 2 3

COURSE OBJECTIVES:
- To understand the fundamental concepts related to Image formation and processing.
- To learn feature detection, matching and detection
- To become familiar with feature based alignment and motion estimation
- To develop skills on 3D reconstruction
- To understand image based rendering and recognition

UNIT I INTRODUCTION TO IMAGE FORMATION AND PROCESSING 6

UNIT II FEATURE DETECTION, MATCHING AND SEGMENTATION 6
Points and patches - Edges - Lines - Segmentation - Active contours - Split and merge - Mean shift and mode finding - Normalized cuts - Graph cuts and energy-based methods.

UNIT III FEATURE-BASED ALIGNMENT & MOTION ESTIMATION 6
2D and 3D feature-based alignment - Pose estimation - Geometric intrinsic calibration - Triangulation - Two-frame structure from motion - Factorization - Bundle adjustment - Constrained structure and

UNIT IV 3D RECONSTRUCTION 6
Shape from X - Active rangefinding - Surface representations - Point-based representations - Volumetric representations - Model-based reconstruction - Recovering texture maps and albedosos.

UNIT V IMAGE-BASED RENDERING AND RECOGNITION 6

PRACTICAL EXERCISES:
LABORATORY EXPERIMENTS:
Software needed:
OpenCV computer vision Library for OpenCV in Python / PyCharms or C++ / Visual Studio or or equivalent

- OpenCV Installation and working with Python
- Basic Image Processing - loading images, Cropping, Resizing, Thresholding, Contour analysis, Blob detection
- Image Annotation – Drawing lines, text circle, rectangle, ellipse on images
- Image Enhancement - Understanding Color spaces, color space conversion, Histogram equalization, Convolution, Image smoothing, Gradients, Edge Detection
- Image Features and Image Alignment – Image transforms – Fourier, Hough, Extract ORB Image features, Feature matching, cloning, Feature matching based image alignment
- Image segmentation using Graphcut / Grabcut
- Camera Calibration with circular grid
- Pose Estimation
- 3D Reconstruction – Creating Depth map from stereo images
- Object Detection and Tracking using Kalman Filter, Camshift

1. docs.opencv.org
2. https://opencv.org/opencv-free-course/

TOTAL : 60 PERIODS

COURSE OUTCOMES:
At the end of this course, the students will be able to:

CO1: To understand basic knowledge, theories and methods in image processing and computer vision.

CO2: To implement basic and some advanced image processing techniques in OpenCV.

CO3: To apply 2D a feature-based based image alignment, segmentation and motion estimations.

CO4: To apply 3D image reconstruction techniques

CO5: To design and develop innovative image processing and computer vision applications.
TEXT BOOKS:
REFERENCES:
2. Christopher M. Bishop; Pattern Recognition and Machine Learning, Springer, 2006

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AVG.</td>
<td>2.6</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CCS334 BIG DATA ANALYTICS L T P C 2 0 2 3

COURSE OBJECTIVES:
- To understand big data.
- To learn and use NoSQL big data management.
- To learn mapreduce analytics using Hadoop and related tools.
- To work with map reduce applications
- To understand the usage of Hadoop related tools for Big Data Analytics

UNIT I UNDERSTANDING BIG DATA 5

UNIT II NOSQL DATA MANAGEMENT 7
UNIT III MAP REDUCE APPLICATIONS
6

UNIT IV BASICS OF HADOOP
6

UNIT V HADOOP RELATED TOOLS
6
Pig – Grunt – pig data model – Pig Latin – developing and testing Pig Latin scripts.
Hive – data types and file formats – HiveQL data definition – HiveQL data manipulation – HiveQL queries.

COURSE OUTCOMES:
After the completion of this course, students will be able to:
CO1: Describe big data and use cases from selected business domains.
CO2: Explain NoSQL big data management.
CO3: Install, configure, and run Hadoop and HDFS.
CO4: Perform map-reduce analytics using Hadoop.
CO5: Use Hadoop-related tools such as HBase, Cassandra, Pig, and Hive for big data analytics.

LIST OF EXPERIMENTS:
30 PERIODS
1. Downloading and installing Hadoop; Understanding different Hadoop modes. Startup scripts, Configuration files.
2. Hadoop Implementation of file management tasks, such as Adding files and directories, retrieving files and Deleting files
3. Implement of Matrix Multiplication with Hadoop Map Reduce
4. Run a basic Word Count Map Reduce program to understand Map Reduce Paradigm.
5. Installation of Hive along with practice examples.
6. Installation of HBase, Installing thrift along with Practice examples
7. Practice importing and exporting data from various databases.

Software Requirements:
Cassandra, Hadoop, Java, Pig, Hive and HBase.

TOTAL:60 PERIODS

TEXT BOOKS:
3. Sadalage, Pramod J. “NoSQL distilled”, 2013

REFERENCES:

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.8</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS375 WEB TECHNOLOGIES

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To understand different Internet Technologies
- To learn java-specific web services architecture
- To Develop web applications using frameworks

UNIT I WEBSITE BASICS, HTML 5, CSS 3, WEB 2.0

UNIT II CLIENT SIDE PROGRAMMING

UNIT III SERVER SIDE PROGRAMMING
Servlets: Java Servlet Architecture- Servlet Life Cycle- Form GET and POST actions- Session Handling- Understanding Cookies- DATABASE CONNECTIVITY: JDBC.

UNIT IV PHP and XML
An introduction to PHP: PHP- Using PHP- Variables- Program control- Built-in functions- Form Validation. XML: Basic XML- Document Type Definition- XML Schema, XML Parsers and Validation, XSL.

UNIT V INTRODUCTION TO ANGULAR and WEB APPLICATIONS FRAMEWORKS
Introduction to AngularJS, MVC Architecture, Understanding ng attributes, Expressions and data binding, Conditional Directives, Style Directives, Controllers, Filters, Forms, Routers, Modules,
Services; Web Applications Frameworks and Tools – Firebase- Docker- Node JS- React- Django- UI & UX.

COURSE OUTCOMES:

CO1: Construct a basic website using HTML and Cascading Style Sheets
CO2: Build dynamic web page with validation using Java Script objects and by applying different event handling mechanisms.
CO3: Develop server side programs using Servlets and JSP.
CO4: Construct simple web pages in PHP and to represent data in XML format.
CO5: Develop interactive web applications.

30 PERIODS

PRACTICAL EXERCISES:

30 PERIODS

List Of Experiments:

1. Create a web page with the following using HTML.
 - To embed an image map in a web page.
 - To fix the hot spots.
 - Show all the related information when the hot spots are clicked.

2. Create a web page with all types of Cascading style sheets.

3. Client Side Scripts for Validating Web Form Controls using DHTML.

4. Installation of Apache Tomcat web server.

5. Write programs in Java using Servlets:
 - To invoke servlets from HTML forms.
 - Session Tracking.

6. Write programs in Java to create three-tier applications using JSP and Databases
 - For conducting on-line examination.
 - For displaying student mark list. Assume that student information is available in a database which has been stored in a database server.

7. Programs using XML – Schema – XSLT/XSL.

TOTAL: 60 PERIODS

TEXTBOOKS

REFERENCES:

5. Angular: Up and Running: Learning Angular, Step by Step, Shyam Seshadri, 1st edition, O'Reilly
CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AVg.</td>
<td>1.8</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CCS332 \hspace{1cm} APP DEVELOPMENT \hspace{1cm} L T P C
\[\text{UNIT I} \hspace{0.5cm} \text{FUNDAMENTALS OF MOBILE \& WEB APPLICATION DEVELOPMENT} \hspace{0.5cm} 6 \]

\text{UNIT II} \hspace{0.5cm} \text{NATIVE APP DEVELOPMENT USING JAVA} \hspace{0.5cm} 6
Native Web App, Benefits of Native App, Scenarios to create Native App, Tools for creating Native App, Cons of Native App, Popular Native App Development Frameworks, Java & Kotlin for Android, Swift & Objective-C for iOS, Basics of React Native, Native Components, JSX, State, Props

\text{UNIT III} \hspace{0.5cm} \text{HYBRID APP DEVELOPMENT} \hspace{0.5cm} 6

\text{UNIT IV} \hspace{0.5cm} \text{CROSS-PLATFORM APP DEVELOPMENT USING REACT-NATIVE} \hspace{0.5cm} 6

\text{UNIT V} \hspace{0.5cm} \text{NON-FUNCTIONAL CHARACTERISTICS OF APP FRAMEWORKS} \hspace{0.5cm} 6
Comparison of different App frameworks, Build Performance, App Performance, Debugging capabilities, Time to Market, Maintainability, Ease of Development, UI/UX, Reusability

COURSE OUTCOMES:
CO1: Develop Native applications with GUI Components.
CO2: Develop hybrid applications with basic event handling.
CO3: Implement cross-platform applications with location and data storage capabilities.
CO4: Implement cross-platform applications with basic GUI and event handling.
CO5: Develop web applications with cloud database access.

PRACTICAL EXERCISES:

1. Using react native, build a cross platform application for a BMI calculator.
2. Build a cross platform application for a simple expense manager which allows entering expenses and income on each day and displays category wise weekly income and expense.
3. Develop a cross platform application to convert units from imperial system to metric system (km to miles, kg to pounds etc.)
4. Design and develop a cross platform application for day to day task (to-do) management.
5. Design an android application using Cordova for a user login screen with username, password, reset button and a submit button. Also, include header image and a label. Use layout managers.
6. Design and develop an android application using Apache Cordova to find and display the current location of the user.
7. Write programs using Java to create Android application having Databases
 - For a simple library application.
 - For displaying books available, books lend, book reservation. Assume that student information is available in a database which has been stored in a database server.

TOTAL: 60 PERIODS

TEXT BOOKS
1. Head First Android Development, Dawn Griffiths, O'Reilly, 1st edition
2. Apache Cordova in Action, Raymond K. Camden, Manning. 2015
3. Full Stack React Native: Create beautiful mobile apps with JavaScript and React Native, Anthony Accomazzo, Houssein Djirdeh, Sophia Shoemaker, Devin Abbott, FullStack publishing

REFERENCES
2. Native Mobile Development by Shaun Lewis, Mike Dunn
3. Building Cross-Platform Mobile and Web Apps for Engineers and Scientists: An Active Learning Approach, Pawan Lingras, Matt Triff, Rucha Lingras

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AVg.</td>
<td>1.6</td>
<td>1.8</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation
COURSE OBJECTIVES:
- Introduce Cloud Service Management terminology, definition & concepts
- Compare and contrast cloud service management with traditional IT service management
- Identify strategies to reduce risk and eliminate issues associated with adoption of cloud services
- Select appropriate structures for designing, deploying and running cloud-based services in a business environment
- Illustrate the benefits and drive the adoption of cloud-based services to solve real world problems

UNIT I CLOUD SERVICE MANAGEMENT FUNDAMENTALS 6

UNIT II CLOUD SERVICES STRATEGY 6
Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, IT Capacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture

UNIT III CLOUD SERVICE MANAGEMENT 6

UNIT IV CLOUD SERVICE ECONOMICS 6
Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models

UNIT V CLOUD SERVICE GOVERNANCE & VALUE 6
IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership

COURSE OUTCOMES:
CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies.
CO2: Possess Strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services
CO3: Solve the real world problems using Cloud services and technologies

PRACTICAL EXERCISES:
1. Create a Cloud Organization in AWS/Google Cloud/or any equivalent Open Source cloud softwares like Openstack, Eucalyptus, OpenNebula with Role-based access control
2. Create a Cost-model for a web application using various services and do Cost-benefit analysis
3. Create alerts for usage of Cloud resources
4. Create Billing alerts for your Cloud Organization
5. Compare Cloud cost for a simple web application across AWS, Azure and GCP and suggest the best one

TOTAL: 60 PERIODS

TEXT BOOKS
1. Cloud Service Management and Governance: Smart Service Management in Cloud Era by Enamul Haque, Enel Publications
3. Cloud Computing Design Patterns by Thomas Erl, Robert Cope, Amin Naserpour

REFERENCES
1. Economics of Cloud Computing by Praveen Ayyappa, LAP Lambert Academic Publishing

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s PO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

AVG. 1.8 1.8 2.2 1.8 2.2 1.8 2.4 2.2 1.4 1.8 1.8

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS370 UI AND UX DESIGN L T P C 2 0 2 3

COURSE OBJECTIVES:
- To provide a sound knowledge in UI & UX
- To understand the need for UI and UX
- To understand the various Research Methods used in Design
- To explore the various Tools used in UI & UX
- Creating a wireframe and prototype

UNIT I FOUNDATIONS OF DESIGN 6
UI vs. UX Design - Core Stages of Design Thinking - Divergent and Convergent Thinking - Brainstorming and Gamestorming - Observational Empathy

UNIT II FOUNDATIONS OF UI DESIGN 6
Visual and UI Principles - UI Elements and Patterns - Interaction Behaviors and Principles – Branding - Style Guides
UNIT III FOUNDATIONS OF UX DESIGN 6

UNIT IV WIREFRAMING, PROTOTYPING AND TESTING 6

UNIT V RESEARCH, DESIGNING, IDEATING, & INFORMATION ARCHITECTURE 6

LIST OF EXPERIMENTS
1. Designing a Responsive layout for an societal application
2. Exploring various UI Interaction Patterns
3. Developing an interface with proper UI Style Guides
4. Developing Wireflow diagram for application using open source software
5. Exploring various open source collaborative interface Platform
6. Hands on Design Thinking Process for a new product
7. Brainstorming feature for proposed product
8. Defining the Look and Feel of the new Project
9. Create a Sample Pattern Library for that product (Mood board, Fonts, Colors based on UI principles)
10. Identify a customer problem to solve
11. Conduct end-to-end user research - User research, creating personas, Ideation process (User stories, Scenarios), Flow diagrams, Flow Mapping
12. Sketch, design with popular tool and build a prototype and perform usability testing and identify improvements

TOTAL: 60 PERIODS

COURSE OUTCOMES:
On completion of the course, the students will be able to:
CO1: Build UI for user Applications
CO2: Evaluate UX design of any product or application
CO3: Demonstrate UX Skills in product development
CO4: Implement Sketching principles
CO5: Create Wireframe and Prototype

TEXT BOOKS
1. Joel Marsh, “UX for Beginners”, O'Reilly, 2022
REFERENCES
2. Steve Schoger, Adam Wathan “Refactoring UI”, 2018

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

AVG. 1.6 2.2 2.6 1.4 - - 2.2 2.2 1.4 1.8 2.2 2.6

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS366 SOFTWARE TESTING AND AUTOMATION L T P C 2023

COURSE OBJECTIVES:
- To understand the basics of software testing
- To learn how to do the testing and planning effectively
- To build test cases and execute them
- To focus on wide aspects of testing and understanding multiple facets of testing
- To get an insight about test automation and the tools used for test automation

UNIT I FOUNDATIONS OF SOFTWARE TESTING

UNIT II TEST PLANNING

UNIT III TEST DESIGN AND EXECUTION
UNIT IV ADVANCED TESTING CONCEPTS 6

UNIT V TEST AUTOMATION AND TOOLS 6

PRACTICAL EXERCISES: 30 PERIODS
1. Develop the test plan for testing an e-commerce web/mobile application (www.amazon.in).
2. Design the test cases for testing the e-commerce application.
3. Test the e-commerce application and report the defects in it.
4. Develop the test plan and design the test cases for an inventory control system.
5. Execute the test cases against a client server or desktop application and identify the defects.
6. Test the performance of the e-commerce application.
7. Automate the testing of e-commerce applications using Selenium.
8. Integrate TestNG with the above test automation.
9. Mini Project:
 a) Build a data-driven framework using Selenium and TestNG
 b) Build Page object Model using Selenium and TestNG
 c) Build BDD framework with Selenium, TestNG and Cucumber

COURSE OUTCOMES:
CO1: Understand the basic concepts of software testing and the need for software testing
CO2: Design Test planning and different activities involved in test planning
CO3: Design effective test cases that can uncover critical defects in the application
CO4: Carry out advanced types of testing
CO5: Automate the software testing using Selenium and TestNG

TOTAL: 60 PERIODS

TEXTBOOKS

REFERENCES
COURSE OBJECTIVES:
- To understand the fundamentals of web application security
- To focus on wide aspects of secure development and deployment of web applications
- To learn how to build secure APIs
- To learn the basics of vulnerability assessment and penetration testing
- To get an insight about Hacking techniques and Tools

UNIT I
FUNDAMENTALS OF WEB APPLICATION SECURITY

UNIT II
SECURE DEVELOPMENT AND DEPLOYMENT

UNIT III
SECURE API DEVELOPMENT

UNIT IV
VULNERABILITY ASSESSMENT AND PENETRATION TESTING
UNIT V Hacking Techniques and Tools

Social Engineering, Injection, Cross-Site Scripting (XSS), Broken Authentication and Session Management, Cross-Site Request Forgery, Security Misconfiguration, Insecure Cryptographic Storage, Failure to Restrict URL Access, Tools: Comodo, OpenVAS, Nexpose, Nikto, Burp Suite, etc.

30 PERIODS

PRACTICAL EXERCISES:
1. Install Wireshark and explore the various protocols
 a. Analyze the difference between HTTP vs HTTPS
 b. Analyze the various security mechanisms embedded with different protocols.
2. Identify the vulnerabilities using OWASP ZAP tool
3. Create simple REST API using python for following operation
 a. GET
 b. POST
 c. DELETE
4. Install Burp Suite to do following vulnerabilities:
 a. SQL injection
 b. cross-site scripting (XSS)
5. Attack the website using Social Engineering method

COURSE OUTCOMES:
CO1: Understanding the basic concepts of web application security and the need for it
CO2: Be acquainted with the process for secure development and deployment of web applications
CO3: Acquire the skill to design and develop Secure Web Applications that use Secure APIs
CO4: Be able to get the importance of carrying out vulnerability assessment and penetration testing
CO5: Acquire the skill to think like a hacker and to use hackers tool sets

TOTAL:60 PERIODS

TEXT BOOKS

REFERENCES
CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.2</td>
</tr>
</tbody>
</table>

CCS342

DEVOPS

L T P C

2 0 2 3

COURSE OBJECTIVES:

- To introduce DevOps terminology, definition & concepts
- To understand the different Version control tools like Git, Mercurial
- To understand the concepts of Continuous Integration/Continuous Testing/Continuous Deployment
- To understand Configuration management using Ansible
- Illustrate the benefits and drive the adoption of cloud-based DevOps tools to solve real world problems

UNIT I INTRODUCTION TO DEVOPS

Devops Essentials - Introduction To AWS, GCP, Azure - Version control systems: Git and Github.

UNIT II COMPILE AND BUILD USING MAVEN & GRADLE

Introduction, Installation of Maven, POM files, Maven Build lifecycle, Build phases (compile build, test, package) Maven Profiles, Maven repositories (local, central, global), Maven plugins, Maven create and build Artificats, Dependency management, Installation of Gradle, Understand build using Gradle

UNIT III CONTINUOUS INTEGRATION USING JENKINS

Install & Configure Jenkins, Jenkins Architecture Overview, Creating a Jenkins Job, Configuring a Jenkins job, Introduction to Plugins, Adding Plugins to Jenkins, Commonly used plugins (Git Plugin, Parameter Plugin, HTML Publisher, Copy Artifact and Extended choice parameters). Configuring Jenkins to work with Java, Git and Maven, Creating a Jenkins Build and Jenkins workspace.

UNIT IV CONFIGURATION MANAGEMENT USING ANSIBLE

Ansible Introduction, Installation, Ansible master/slave configuration, YAML basics, Ansible modules, Ansible Inventory files, Ansible playbooks, Ansible Roles, adhoc commands in ansible

UNIT V BUILDING DEVOPS PIPELINES USING AZURE

Create Github Account, Create Repository, Create Azure Organization, Create a new pipeline, Build a sample code, Modify azure-pipelines.yaml file

COURSE OUTCOMES:

CO1: Understand different actions performed through Version control tools like Git.
CO2: Perform Continuous Integration and Continuous Testing and Continuous Deployment using Jenkins by building and automating test cases using Maven & Gradle.
CO3: Ability to Perform Automated Continuous Deployment
CO4: Ability to do configuration management using Ansible
CO5: Understand to leverage Cloud-based DevOps tools using Azure DevOps

PRACTICAL EXERCISES:
1. Create Maven Build pipeline in Azure
2. Run regression tests using Maven Build pipeline in Azure
3. Install Jenkins in Cloud
4. Create CI pipeline using Jenkins
5. Create a CD pipeline in Jenkins and deploy in Cloud
6. Create an Ansible playbook for a simple web application infrastructure
7. Build a simple application using Gradle
8. Install Ansible and configure ansible roles and to write playbooks

TOTAL: 60 PERIODS

TEXT BOOKS

REFERENCES
2. by Mitesh Soni

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:
- To understand and describe syntax and semantics of programming languages
- To understand data, data types, and basic statements
- To understand call-return architecture and ways of implementing them
- To understand object-orientation, concurrency, and event handling in programming languages
- To develop programs in non-procedural programming paradigms

UNIT I SYNTAX AND SEMANTICS 9

UNIT II DATA, DATA TYPES, AND BASIC STATEMENTS 9

UNIT III SUBPROGRAMS AND IMPLEMENTATIONS 9

UNIT IV OBJECT-ORIENTATION, CONCURRENCY, AND EVENT HANDLING 9

UNIT V FUNCTIONAL AND LOGIC PROGRAMMING LANGUAGES 9
Introduction to lambda calculus – fundamentals of functional programming languages – Programming with Scheme – Programming with ML – Introduction to logic and logic programming – Programming with Prolog – multi-paradigm languages

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Describe syntax and semantics of programming languages
CO2: Explain data, data types, and basic statements of programming languages
CO3: Design and implement subprogram constructs
CO4: Apply object-oriented, concurrency, and event handling programming constructs and Develop programs in Scheme, ML, and Prolog
CO5: Understand and adopt new programming languages

TEXT BOOKS

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3 2 3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3 2 3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3 2 3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3 2 3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3 3 3</td>
</tr>
</tbody>
</table>

AVg. 2.8 2.8 3 2.4 2 2.5

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS335 CLOUD COMPUTING

COURSE OBJECTIVES:

- To understand the principles of cloud architecture, models and infrastructure.
- To understand the concepts of virtualization and virtual machines.
- To gain knowledge about virtualization Infrastructure.
- To explore and experiment with various Cloud deployment environments.
- To learn about the security issues in the cloud environment.

UNIT I CLOUD ARCHITECTURE MODELS AND INFRASTRUCTURE

UNIT II VIRTUALIZATION BASICS

UNIT III VIRTUALIZATION INFRASTRUCTURE AND DOCKER

UNIT IV CLOUD DEPLOYMENT ENVIRONMENT

Google App Engine – Amazon AWS – Microsoft Azure; Cloud Software Environments – Eucalyptus – OpenStack.
UNIT V CLOUD SECURITY

PRACTICAL EXERCISES:

1. Install Virtualbox/VMware/ Equivalent open source cloud Workstation with different flavours of Linux or Windows OS on top of windows 8 and above.
2. Install a C compiler in the virtual machine created using a virtual box and execute Simple Programs
3. Install Google App Engine. Create a hello world app and other simple web applications using python/java.
4. Use the GAE launcher to launch the web applications.
5. Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.
6. Find a procedure to transfer the files from one virtual machine to another virtual machine.
7. Install Hadoop single node cluster and run simple applications like wordcount.
9. Run a Container from Docker Hub

COURSE OUTCOMES:

CO1: Understand the design challenges in the cloud.
CO2: Apply the concept of virtualization and its types.
CO3: Experiment with virtualization of hardware resources and Docker.
CO4: Develop and deploy services on the cloud and set up a cloud environment.
CO5: Explain security challenges in the cloud environment.

TEXT BOOKS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>AVg.</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>2.2</td>
<td>1</td>
<td>2.6</td>
<td>1.6</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation
COURSE OBJECTIVES:

- To Learn the basics and types of Virtualization
- To understand the Hypervisors and its types
- To Explore the Virtualization Solutions
- To Experiment the virtualization platforms

UNIT I INTRODUCTION TO VIRTUALIZATION 7
Virtualization and cloud computing - Need of virtualization – cost, administration, fast deployment, reduce infrastructure cost – limitations- Types of hardware virtualization: Full virtualization - partial virtualization - Paravirtualization-Types of Hypervisors

UNIT II SERVER AND DESKTOP VIRTUALIZATION 6

UNIT III NETWORK VIRTUALIZATION 6
Introduction to Network Virtualization-Advantages - Functions-Tools for Network Virtualization-VLAN-WAN Architecture-WAN Virtualization

UNIT IV STORAGE VIRTUALIZATION 5
Memory Virtualization-Types of Storage Virtualization-Block, File-Address space Remapping-Risks of Storage Virtualization-SAN-NAS-RAID

UNIT V VIRTUALIZATION TOOLS 6
VMWare-Amazon AWS-Microsoft HyperV- Oracle VM Virtual Box - IBM PowerVM- Google Virtualization- Case study.

PRACTICAL EXERCISES: 30 PERIODS
1. Create type 2 virtualization in VMWARE or any equivalent Open Source Tool. Allocate memory and storage space as per requirement. Install Guest OS on that VMWARE.
2. (a) Shrink and extend virtual disk
 (b) Create, Manage, Configure and schedule snapshots
 (c) Create Spanned, Mirrored and Striped volume
 (d) Create RAID 5 volume
3. (a) Desktop Virtualization using VNC
 (b) Desktop Virtualization using Chrome Remote Desktop
4. Create type 2 virtualization on ESXI 6.5 server
5. Create a VLAN in CISCO packet tracer
6. Install KVM in Linux
7. Create Nested Virtual Machine(VM under another VM)
COURSE OUTCOMES:
CO1: Analyse the virtualization concepts and Hypervisor
CO2: Apply the Virtualization for real-world applications
CO3: Install & Configure the different VM platforms
CO4: Experiment with the VM with various software

TOTAL: 60 PERIODS

TEXT BOOKS

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.8</td>
<td>2.2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS341 DATA WAREHOUSING

COURSE OBJECTIVES:
- To know the details of data warehouse Architecture
- To understand the OLAP Technology
- To understand the partitioning strategy
- To differentiate various schema
- To understand the roles of process manager & system manager

UNIT I INTRODUCTION TO DATA WAREHOUSE
Data warehouse Introduction - Data warehouse components- operational database Vs data warehouse – Data warehouse Architecture – Three-tier Data Warehouse Architecture - Autonomous Data Warehouse- Autonomous Data Warehouse Vs Snowflake - Modern Data Warehouse

UNIT II ETL AND OLAP TECHNOLOGY
What is ETL – ETL Vs ELT – Types of Data warehouses - Data warehouse Design and Modeling - Delivery Process - Online Analytical Processing (OLAP) - Characteristics of OLAP - Online
Transaction Processing (OLTP) Vs OLAP - OLAP operations- Types of OLAP- ROLAP Vs MOLAP Vs HOLAP.

UNIT III META DATA, DATA MART AND PARTITION STRATEGY

UNIT IV DIMENSIONAL MODELING AND SCHEMA

UNIT V SYSTEM & PROCESS MANAGERS
Data Warehousing System Managers: System Configuration Manager- System Scheduling Manager - System Event Manager - System Database Manager - System Backup Recovery Manager - Data Warehousing Process Managers: Load Manager – Warehouse Manager- Query Manager – Tuning – Testing

PRACTICAL EXERCISES:
1. Data exploration and integration with WEKA
2. Apply weka tool for data validation
3. Plan the architecture for real time application
4. Write the query for schema definition
5. Design data ware house for real time applications
6. Analyse the dimensional Modeling
7. Case study using OLAP
8. Case study using OTLP
9. Implementation of warehouse testing.

COURSE OUTCOMES:
At the end of the course the students should be able to
CO1: Design data warehouse architecture for various Problems
CO2: Apply the OLAP Technology
CO3: Analyse the partitioning strategy
CO4: Critically analyze the differentiation of various schema for given problem
CO5: Frame roles of process manager & system manager

TEXT BOOKS

REFERENCES
CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2.6</td>
<td>2.6</td>
<td>1.2</td>
<td>2.5</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>2</td>
<td>2.6</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS367 STORAGE TECHNOLOGIES

COURSE OBJECTIVES:
- Characterize the functionalities of logical and physical components of storage
- Describe various storage networking technologies
- Identify different storage virtualization technologies
- Discuss the different backup and recovery strategies
- Understand common storage management activities and solutions

UNIT I STORAGE SYSTEMS

Introduction to Information Storage: Digital data and its types, Information storage, Key characteristics of data center and Evolution of computing platforms. Information Lifecycle Management. Third Platform Technologies: Cloud computing and its essential characteristics, Cloud services and cloud deployment models, Big data analytics, Social networking and mobile computing, Characteristics of third platform infrastructure and Imperatives for third platform transformation. Data Center Environment: Building blocks of a data center, Compute systems and compute virtualization and Software-defined data center.

UNIT II INTELLIGENT STORAGE SYSTEMS AND RAID

Components of an intelligent storage system, Components, addressing, and performance of hard disk drives and solid-state drives, RAID, Types of intelligent storage systems, Scale-up and scale-out storage Architecture.

UNIT III STORAGE NETWORKING TECHNOLOGIES AND VIRTUALIZATION

Block-Based Storage System, File-Based Storage System, Object-Based and Unified Storage. Fibre Channel SAN: Software-defined networking, FC SAN components and architecture, FC SAN topologies, link aggregation, and zoning, Virtualization in FC SAN environment. Internet Protocol SAN: iSCSI protocol, network components, and connectivity, Link aggregation, switch aggregation, and VLAN, FCIP protocol, connectivity, and configuration. Fibre Channel over Ethernet SAN: Components of FCoE SAN, FCoE SAN connectivity, Converged Enhanced Ethernet, FCoE architecture.
UNIT IV BACKUP, ARCHIVE AND REPLICATION

Introduction to Business Continuity, Backup architecture, Backup targets and methods, Data deduplication, Cloud-based and mobile device backup, Data archive, Uses of replication and its characteristics, Compute based, storage-based, and network-based replication, Data migration, Disaster Recovery as a Service (DRaaS).

UNIT V SECURING STORAGE INFRASTRUCTURE

Information security goals, Storage security domains, Threats to a storage infrastructure, Security controls to protect a storage infrastructure, Governance, risk, and compliance, Storage infrastructure management functions, Storage infrastructure management processes.

COURSE OUTCOMES:
CO1: Demonstrate the fundamentals of information storage management and various models of Cloud infrastructure services and deployment
CO2: Illustrate the usage of advanced intelligent storage systems and RAID
CO3: Interpret various storage networking architectures - SAN, including storage subsystems and virtualization
CO4: Examine the different role in providing disaster recovery and remote replication technologies
CO5: Infer the security needs and security measures to be employed in information storage management

TOTAL:45 PERIODS

TEXTBOOKS
1. EMC Corporation, Information Storage and Management, Wiley, India

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>AVG.</td>
<td>1.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS365 SOFTWARE DEFINED NETWORKS

COURSE OBJECTIVES:
- To understand the need for SDN and its data plane operations
- To understand the functions of control plane
- To comprehend the migration of networking functions to SDN environment
To explore various techniques of network function virtualization
To comprehend the concepts behind network virtualization

UNIT I SDN: INTRODUCTION 6
Evolving Network Requirements – The SDN Approach – SDN architecture - SDN Data Plane , Control plane and Application Plane

UNIT II SDN DATA PLANE AND CONTROL PLANE- 6
Data Plane functions and protocols - OpenFlow Protocol - Flow Table - Control Plane Functions - Southbound Interface, Northbound Interface – SDN Controllers - Ryu, OpenDaylight, ONOS - Distributed Controllers

UNIT III SDN APPLICATIONS 6

UNIT IV NETWORK FUNCTION VIRTUALIZATION 6

UNIT V NFV FUNCTIONALITY 6
NFV Infrastructure – Virtualized Network Functions – NFV Management and Orchestration – NFV Use cases – SDN and NFV

PRACTICAL EXERCISES: 30 PERIODS
1) Setup your own virtual SDN lab
 i) Virtualbox/Mininet Environment for SDN - http://mininet.org
 ii) https://www.kathara.org
 iii) GNS3
2) Create a simple mininet topology with SDN controller and use Wireshark to capture and visualize the OpenFlow messages such as OpenFlow FLOW MOD, PACKET IN, PACKET OUT etc.
3) Create a SDN application that uses the Northbound API to program flow table rules on the switch for various use cases like L2 learning switch, Traffic Engineering, Firewall etc.
4) Create a simple end-to-end network service with two VNFs using vim-emu https://github.com/containernet/vim-emu
5) Install OSM and onboard and orchestrate network service.

COURSE OUTCOMES:
After the successful completion of this course, the student will be able to
CO1: Describe the motivation behind SDN
CO2: Identify the functions of the data plane and control plane
CO3: Design and develop network applications using SDN
CO4: Orchestrate network services using NFV
CO5: Explain various use cases of SDN and NFV

TOTAL:60 PERIODS

TEXTBOOKS:
REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS368 STREAM PROCESSING L T P C 2 0 2 3

COURSE OBJECTIVES:
- Introduce Data Processing terminology, definition & concepts
- Define different types of Data Processing
- Explain the concepts of Real-time Data processing
- Select appropriate structures for designing and running real-time data services in a business environment
- Illustrate the benefits and drive the adoption of real-time data services to solve real world problems

UNIT I FOUNDATIONS OF DATA SYSTEMS 6
Introduction to Data Processing, Stages of Data processing, Data Analytics, Batch Processing, Stream processing, Data Migration, Transactional Data processing, Data Mining, Data Management Strategy, Storage, Processing, Integration, Analytics, Benefits of Data as a Service, Challenges

UNIT II REAL-TIME DATA PROCESSING 6
Introduction to Big data, Big data infrastructure, Real-time Analytics, Near real-time solution, Lambda architecture, Kappa Architecture, Stream Processing, Understanding Data Streams, Message Broker, Stream Processor, Batch & Real-time ETL tools, Streaming Data Storage

UNIT III DATA MODELS AND QUERY LANGUAGES 6
Relational Model, Document Model, Key-Value Pairs, NoSQL, Object-Relational Mismatch, Many-to-One and Many-to-Many Relationships, Network data models, Schema Flexibility, Structured...
Query Language, Data Locality for Queries, Declarative Queries, Graph Data models, Cypher Query Language, Graph Queries in SQL, The Semantic Web, CODASYL, SPARQL

UNIT IV
EVENT PROCESSING WITH APACHE KAFKA 6
Apache Kafka, Kafka as Event Streaming platform, Events, Producers, Consumers, Topics, Partitions, Brokers, Kafka APIs, Admin API, Producer API, Consumer API, Kafka Streams API, Kafka Connect API

UNIT V
REAL-TIME PROCESSING USING SPARK STREAMING 6

PRACTICAL EXERCISES: 30 PERIODS
1. Install MongoDB
2. Design and Implement Simple application using MongoDB
3. Query the designed system using MongoDB
4. Create a Event Stream with Apache Kafka
5. Create a Real-time Stream processing application using Spark Streaming
6. Build a Micro-batch application
7. Real-time Fraud and Anomaly Detection,
8. Real-time personalization, Marketing, Advertising

COURSE OUTCOMES:
CO1: Understand the applicability and utility of different streaming algorithms.
CO2: Describe and apply current research trends in data-stream processing.
CO3: Analyze the suitability of stream mining algorithms for data stream systems.
CO4: Program and build stream processing systems, services and applications.
CO5: Solve problems in real-world applications that process data streams.

TOTAL: 60 PERIODS

TEXT BOOKS
1. Streaming Systems: The What, Where, When and How of Large-Scale Data Processing by Tyler Akidau, Slava Chemyak, Reuven Lax, O'Reilly publication
2. Designing Data-Intensive Applications by Martin Kleppmann, O'Reilly Media

REFERENCES
2. Kafka.apache.org

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3</td>
<td>4 5 6</td>
</tr>
<tr>
<td>1</td>
<td>3 3 2</td>
<td>3 1 -</td>
</tr>
<tr>
<td>2</td>
<td>2 1 2</td>
<td>2 2 -</td>
</tr>
<tr>
<td>3</td>
<td>3 1 2</td>
<td>3 3 -</td>
</tr>
<tr>
<td>4</td>
<td>2 1 3</td>
<td>3 3 -</td>
</tr>
</tbody>
</table>

139
CCS362 SECURITY AND PRIVACY IN CLOUD

COURSE OBJECTIVES:
- To Introduce Cloud Computing terminology, definition & concepts
- To understand the security design and architectural considerations for Cloud
- To understand the Identity, Access control in Cloud
- To follow best practices for Cloud security using various design patterns
- To be able to monitor and audit cloud applications for security

UNIT I FUNDAMENTALS OF CLOUD SECURITY CONCEPTS
Overview of cloud security - Security Services - Confidentiality, Integrity, Authentication, Non-repudiation, Access Control - Basic of cryptography - Conventional and public-key cryptography, hash functions, authentication, and digital signatures.

UNIT II SECURITY DESIGN AND ARCHITECTURE FOR CLOUD
Security design principles for Cloud Computing - Comprehensive data protection - End-to-end access control - Common attack vectors and threats - Network and Storage - Secure Isolation Strategies - Virtualization strategies - Inter-tenant network segmentation strategies - Data Protection strategies: Data retention, deletion and archiving procedures for tenant data, Encryption, Data Redaction, Tokenization, Obfuscation, PKI and Key

UNIT III ACCESS CONTROL AND IDENTITY MANAGEMENT

UNIT IV CLOUD SECURITY DESIGN PATTERNS
Introduction to Design Patterns, Cloud bursting, Geo-tagging, Secure Cloud Interfaces, Cloud Resource Access Control, Secure On-Premise Internet Access, Secure External Cloud

UNIT V MONITORING, AUDITING AND MANAGEMENT
Proactive activity monitoring - Incident Response, Monitoring for unauthorized access, malicious traffic, abuse of system privileges - Events and alerts - Auditing – Record generation, Reporting and Management, Tamper-proofing audit logs, Quality of Services, Secure Management, User management, Identity management, Security Information and Event Management

PRACTICAL EXERCISES:
1. Simulate a cloud scenario using Cloud Sim and run a scheduling algorithm not present in Cloud Sim
2. simulate resource management using cloud sim
3. simulate log forensics using cloud sim
4. simulate a secure file sharing using a cloud sim

140
5. Implement data anonymization techniques over the simple dataset (masking, k-anonymization, etc)
6. Implement any encryption algorithm to protect the images
7. Implement any image obfuscation mechanism
8. Implement a role-based access control mechanism in a specific scenario
9. Implement an attribute-based access control mechanism based on a particular scenario
10. Develop a log monitoring system with incident management in the cloud

COURSE OUTCOMES:

CO1: Understand the cloud concepts and fundamentals.

CO2: Explain the security challenges in the cloud.

CO3: Define cloud policy and Identity and Access Management.

CO4: Understand various risks and audit and monitoring mechanisms in the cloud.

CO5: Define the various architectural and design considerations for security in the cloud.

TEXTBOOKS

REFERENCES

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>2.24</td>
<td>2.24</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

COURSE OBJECTIVES:

- To understand the basics of computer based vulnerabilities.
- To explore different foot printing, reconnaissance and scanning methods.
- To expose the enumeration and vulnerability analysis methods.
- To understand hacking options available in Web and wireless applications.
- To explore the options for network protection.
- To practice tools to perform ethical hacking to expose the vulnerabilities.
UNIT I INTRODUCTION 6

UNIT II FOOTPRINTING, RECONNAISSANCE AND SCANNING NETWORKS 6

UNIT III ENUMERATION AND VULNERABILITY ANALYSIS 6

UNIT IV SYSTEM HACKING 6

UNIT V NETWORK PROTECTION SYSTEMS 6

30 PERIODS

PRACTICAL EXERCISES: 30 PERIODS
1. Install Kali or Backtrack Linux / Metasploitable/ Windows XP
2. Practice the basics of reconnaissance.
3. Using FOCA / SearchDiggity tools, extract metadata and expanding the target list.
4. Aggregates information from public databases using online free tools like Paterva’s Maltego.
5. Information gathering using tools like Robtex.
6. Scan the target using tools like Nessus.
7. View and capture network traffic using Wireshark.
8. Automate dig for vulnerabilities and match exploits using Armitage

Kali or Backtrack Linux, Metasploitable, Windows XP
COURSE OUTCOMES:
At the end of this course, the students will be able:
CO1: To express knowledge on basics of computer based vulnerabilities
CO2: To gain understanding on different footprinting, reconnaissance and scanning methods.
CO3: To demonstrate the enumeration and vulnerability analysis methods
CO4: To gain knowledge on hacking options available in Web and wireless applications.
CO5: To acquire knowledge on the options for network protection.
CO6: To use tools to perform ethical hacking to expose the vulnerabilities.

TOTAL: 60 PERIODS

TEXTBOOKS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.8</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

UNIT I
INTRODUCTION TO DIGITAL FORENSICS
UNIT II DIGITAL CRIME AND INVESTIGATION 6

UNIT III DIGITAL FORENSIC READINESS 6

UNIT IV iOS FORENSICS 6

UNIT V ANDROID FORENSICS 6

30 PERIODS

COURSE OUTCOMES:
On completion of the course, the students will be able to:
CO1: Have knowledge on digital forensics.
CO2: Know about digital crime and investigations.
CO3: Be forensic ready.
CO4: Investigate, identify and extract digital evidence from iOS devices.
CO5: Investigate, identify and extract digital evidence from Android devices.

PERIODES:30

LAB EXPERIMENTS:
1. Installation of Sleuth Kit on Linux. List all data blocks. Analyze allocated as well as unallocated blocks of a disk image.
2. Data extraction from call logs using Sleuth Kit.
3. Data extraction from SMS and contacts using Sleuth Kit.
4. Install Mobile Verification Toolkit or MVT and decrypt encrypted iOS backups.
5. Process and parse records from the iOS system.
7. Extract diagnostic information from Android devices through the adb protocol.
8. Generate a unified chronological timeline of extracted records.

TOTAL:60 PERIODS

TEXT BOOK:

REFERENCES
CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s PO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS363 SOCIAL NETWORK SECURITY L T P C 2 0 2 3

COURSE OBJECTIVES:
- To develop semantic web related simple applications
- To explain Privacy and Security issues in Social Networking
- To explain the data extraction and mining of social networks
- To discuss the prediction of human behavior in social communities
- To describe the Access Control, Privacy and Security management of social networks

UNIT I FUNDAMENTALS OF SOCIAL NETWORKING 6
Introduction to Semantic Web, Limitations of current Web, Development of Semantic Web, Emergence of the Social Web, Social Network analysis, Development of Social Network Analysis, Key concepts and measures in network analysis, Historical overview of privacy and security, Major paradigms, for understanding privacy and security

UNIT II SECURITY ISSUES IN SOCIAL NETWORKS 6
The evolution of privacy and security concerns with networked technologies, Contextual influences on privacy attitudes and behaviors, Anonymity in a networked world

UNIT III EXTRACTION AND MINING IN SOCIAL NETWORKING DATA 6
Extracting evolution of Web Community from a Series of Web Archive, Detecting communities in social networks, Definition of community, Evaluating communities, Methods for community detection and mining, Applications of community mining algorithms, Tools for detecting communities social network infrastructures and communities, Big data and Privacy

UNIT IV PREDICTING HUMAN BEHAVIOR AND PRIVACY ISSUES 6
Understanding and predicting human behavior for social communities, User data Management, Inference and Distribution, Enabling new human experiences, Reality mining, Context, Awareness, Privacy in online social networks, Trust in online environment, What is Neo4j, Nodes, Relationships, Properties

UNIT V ACCESS CONTROL, PRIVACY AND IDENTITY MANAGEMENT 6
Understand the access control requirements for Social Network, Enforcing Access Control Strategies, Authentication and Authorization, Roles-based Access Control, Host, storage and network access control options, Firewalls, Authentication, and Authorization in Social Network,
Identity & Access Management, Single Sign-on, Identity Federation, Identity providers and service consumers, The role of Identity provisioning

COURSE OUTCOMES:

CO1: Develop semantic web related simple applications
CO2: Address Privacy and Security issues in Social Networking
CO3: Explain the data extraction and mining of social networks
CO4: Discuss the prediction of human behavior in social communities
CO5: Describe the applications of social networks

PRACTICAL EXERCISES:

1. Design own social media application
2. Create a Network model using Neo4j
3. Read and write Data from Graph Database
4. Find “Friend of Friends” using Neo4j
5. Implement secure search in social media
6. Create a simple Security & Privacy detector

TOTAL: 60 PERIODS

TEXT BOOKS

3. Learning Neo4j 3.x Second Edition By Jérôme Baton, Rik Van Bruggen, Packt publishing

REFERENCES

CO’s - PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AVG</td>
<td>2.2</td>
<td>2</td>
<td>2</td>
<td>2.8</td>
<td>2.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.4</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>2.2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, - ' - no correlation
COURSE OBJECTIVES:

- To learn about Modern Cryptography.
- To focus on how cryptographic algorithms and protocols work and how to use them.
- To build a Pseudorandom permutation.
- To construct Basic cryptanalytic techniques.
- To provide instruction on how to use the concepts of block ciphers and message authentication codes.

UNIT I INTRODUCTION 6

UNIT II FORMAL NOTIONS OF ATTACKS 6
Attacks under Message Indistinguishability: Chosen Plaintext Attack (IND-CPA), Chosen Ciphertext Attacks (IND-CCA1 and IND-CCA2), Attacks under Message Non-malleability: NM-CPA and NM-CCA2, Inter-relations among the attack model

UNIT III RANDOM ORACLES 6

UNIT IV BUILDING A PSEUDORANDOM PERMUTATION 6
The LubyRackoff Construction: Formal Definition, Application of the LubyRackoff Construction to the construction of Block Ciphers, The DES in the light of LubyRackoff Construction.

UNIT V MESSAGE AUTHENTICATION CODES 6

PRACTICAL EXERCISES:
1. Implement Feige-Fiat-Shamir identification protocol.
2. Implement GQ identification protocol.
3. Implement Schnorr identification protocol.
4. Implement Rabin one-time signature scheme.
5. Implement Merkle one-time signature scheme.
6. Implement Authentication trees and one-time signatures.
7. Implement GMR one-time signature scheme.
COURSE OUTCOMES:
CO1: Interpret the basic principles of cryptography and general cryptanalysis.
CO2: Determine the concepts of symmetric encryption and authentication.
CO3: Identify the use of public key encryption, digital signatures, and key establishment.
CO4: Articulate the cryptographic algorithms to compose, build and analyze simple cryptographic solutions.
CO5: Express the use of Message Authentication Codes.

TOTAL: 60 PERIODS

TEXT BOOKS:
2. Wenbo Mao, Modern Cryptography, Theory and Practice, Pearson Education (Low Priced Edition)

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.2</td>
<td>2.4</td>
<td>2.2</td>
<td>2.2</td>
<td>1.4</td>
<td>1.2</td>
<td>1.2</td>
<td>2</td>
<td>2</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CB3591 ENGINEERING SECURE SOFTWARE SYSTEMS L T P C

COURSE OBJECTIVES:
- Know the importance and need for software security.
- Know about various attacks.
- Learn about secure software design.
- Understand risk management in secure software development.
- Know the working of tools related to software security.

UNIT I NEED OF SOFTWARE SECURITY AND LOW-LEVEL ATTACKS 6
Software Assurance and Software Security - Threats to software security - Sources of software insecurity - Benefits of Detecting Software Security - Properties of Secure Software – Memory-Based Attacks: Low-Level Attacks Against Heap and Stack - Defense Against Memory-Based Attacks

148
UNIT II SECURE SOFTWARE DESIGN 7

UNIT III SECURITY RISK MANAGEMENT 5

UNIT IV SECURITY TESTING 8

UNIT V SECURE PROJECT MANAGEMENT 4
Governance and security - Adopting an enterprise software security framework - Security and project management - Maturity of Practice

PRACTICAL EXERCISES 30 PERIODS
1. Implement the SQL injection attack.
2. Implement the Buffer Overflow attack.
3. Implement Cross Site Scripting and Prevent XSS.
4. Perform Penetration testing on a web application to gather information about the system, then initiate XSS and SQL injection attacks using tools like Kali Linux.
5. Develop and test the secure test cases
6. Penetration test using kali Linux

COURSE OUTCOMES:
Upon completion of the course, the student will be able to
CO1. Identify various vulnerabilities related to memory attacks.
CO2. Apply security principles in software development.
CO3. Evaluate the extent of risks.
CO4. Involve selection of testing techniques related to software security in the testing phase of software development.
CO5. Use tools for securing software.

TEXT BOOKS:
REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.8</td>
<td>2.2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS339 CRYPTOCURRENCY AND BLOCKCHAIN TECHNOLOGIES L T P C 2 0 2 3

COURSE OBJECTIVES:
- To understand the basics of Blockchain
- To learn Different protocols and consensus algorithms in Blockchain
- To learn the Blockchain implementation frameworks
- To understand the Blockchain Applications
- To experiment the Hyperledger Fabric, Ethereum networks

UNIT I INTRODUCTION TO BLOCKCHAIN
Blockchain- Public Ledgers, Blockchain as Public Ledgers - Block in a Blockchain, Transactions- The Chain and the Longest Chain - Permissioned Model of Blockchain, Cryptographic -Hash Function, Properties of a hash function-Hash pointer and Merkle tree

UNIT II BITCOIN AND CRYPTOCURRENCY
A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay
UNIT III BITCOIN CONSENSUS
Bitcoin Consensus, Proof of Work (PoW) - Hashcash PoW, Bitcoin PoW, Attacks on PoW, monopoly problem - Proof of Stake - Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases.

UNIT IV HYPERLEDGER FABRIC & ETHEREUM

UNIT V BLOCKCHAIN APPLICATIONS
Smart contracts, Truffle Design and issue - DApps - NFT. Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance, etc - Case Study.

COURSE OUTCOMES:
CO1: Understand emerging abstract models for Blockchain Technology
CO2: Identify major research challenges and technical gaps existing between theory and practice in the crypto currency domain.
CO3: It provides conceptual understanding of the function of Blockchain as a method of securing distributed ledgers, how consensus on their contents is achieved, and the new applications that they enable.
CO4: Apply hyperledger Fabric and Ethereum platform to implement the Blockchain Application.

PRACTICAL:
1. Install and understand Docker container, Node.js, Java and Hyperledger Fabric, Ethereum and perform necessary software installation on local machine/create instance on cloud to run.
2. Create and deploy a blockchain network using Hyperledger Fabric SDK for Java Set up and initialize the channel, install and instantiate chain code, and perform invoke and query on your blockchain network.
3. Interact with a blockchain network. Execute transactions and requests against a blockchain network by creating an app to test the network and its rules.
4. Deploy an asset-transfer app using blockchain. Learn app development within a Hyperledger Fabric network.
5. Use blockchain to track fitness club rewards. Build a web app that uses Hyperledger Fabric to track and trace member rewards.

TOTAL: 60 PERIODS

TEXT BOOKS

REFERENCES:

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2.75</td>
<td>2.75</td>
<td>2.5</td>
<td>1.75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.25</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS354 NETWORK SECURITY

COURSE OBJECTIVES:
- To learn the fundamentals of cryptography.
- To learn the key management techniques and authentication approaches.
- To explore the network and transport layer security techniques.
- To understand the application layer security standards.
- To learn the real time security practices.

UNIT I INTRODUCTION
Basics of cryptography, conventional and public-key cryptography, hash functions, authentication, and digital signatures.

UNIT II KEY MANAGEMENT AND AUTHENTICATION

UNIT III ACCESS CONTROL AND SECURITY

UNIT IV APPLICATION LAYER SECURITY
UNIT V SECURITY PRACTICES

PRACTICALEXERCISES:
1. Implement symmetric key algorithms
2. Implement asymmetric key algorithms and key exchange algorithms
3. Implement digital signature schemes
4. Installation of Wire shark, tcpdump and observe data transferred in client-server communication using UDP/TCP and identify the UDP/TCP datagram.
5. Check message integrity and confidentiality using SSL
6. Experiment Eavesdropping, Dictionary attacks, MITM attacks
7. Experiment with Sniff Traffic using ARP Poisoning
8. Demonstrate intrusion detection system using any tool.
9. Explore network monitoring tools
10. Study to configure Firewall, VPN

COURSE OUTCOMES:
At the end of this course, the students will be able:
CO1: Classify the encryption techniques
CO2: Illustrate the key management technique and authentication.
CO3 Evaluate the security techniques applied to network and transport layer
CO4: Discuss the application layer security standards.
CO5: Apply security practices for real time applications.

TOTAL:60 PERIODS

TEXT BOOKS:

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

153
CCS333 AUGMENTED REALITY/VIRTUAL REALITY L T P C
2 0 2 3

COURSE OBJECTIVES:
- To impart the fundamental aspects and principles of AR/VR technologies.
- To know the internals of the hardware and software components involved in the development of AR/VR enabled applications.
- To learn about the graphical processing units and their architectures.
- To gain knowledge about AR/VR application development.
- To know the technologies involved in the development of AR/VR based applications.

UNIT I INTRODUCTION

UNIT II VR MODELING

UNIT III VR PROGRAMMING
VR Programming – Toolkits and Scene Graphs – World ToolKit – Java 3D – Comparison of World ToolKit and Java 3D

UNIT IV APPLICATIONS

UNIT V AUGMENTED REALITY
Introduction to Augmented Reality-Computer vision for AR-Interaction-Modelling and Annotation-Navigation-Wearable devices

30 PERIODS
PRACTICAL EXERCISES: 30 PERIODS

1. Study of tools like Unity, Maya, 3DS MAX, AR toolkit, Vuforia and Blender.
2. Use the primitive objects and apply various projection types by handling camera.
3. Download objects from asset store and apply various lighting and shading effects.
4. Model three dimensional objects using various modelling techniques and apply textures over them.
5. Create three dimensional realistic scenes and develop simple virtual reality enabled mobile applications which have limited interactivity.
6. Add audio and text special effects to the developed application.
7. Develop VR enabled applications using motion trackers and sensors incorporating full haptic interactivity.
8. Develop AR enabled applications with interactivity like E learning environment, Virtual walkthroughs and visualization of historic places.
10. Develop simple MR enabled gaming applications.

COURSE OUTCOMES:
On completion of the course, the students will be able to:
CO1: Understand the basic concepts of AR and VR
CO2: Understand the tools and technologies related to AR/VR
CO3: Know the working principle of AR/VR related Sensor devices
CO4: Design of various models using modeling techniques
CO5: Develop AR/VR applications in different domains

TOTAL: 60 PERIODS

TEXTBOOKS:
1. Charles Palmer, John Williamson, “Virtual Reality Blueprints: Create compelling VR experiences for mobile”, Packt Publisher, 2018

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3 2 2</td>
<td>- 3</td>
</tr>
<tr>
<td>2</td>
<td>3 2 2</td>
<td>1 3</td>
</tr>
<tr>
<td>3</td>
<td>3 3 2</td>
<td>2 3</td>
</tr>
<tr>
<td>4</td>
<td>3 3 2</td>
<td>3 3</td>
</tr>
<tr>
<td>5</td>
<td>3 3 2</td>
<td>3 3</td>
</tr>
<tr>
<td>Avg.</td>
<td>3.00 2.60 2.40 2.00 3.00</td>
<td>- 2.80 2.20 1.80 2.60 2.80 1.80 2.20</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation
COURSE OBJECTIVES:

- To grasp the fundamental knowledge of Multimedia elements and systems
- To get familiar with Multimedia file formats and standards
- To learn the process of Authoring multimedia presentations
- To learn the techniques of animation in 2D and 3D and for the mobile UI
- To explore different popular applications of multimedia

UNIT I INTRODUCTION TO MULTIMEDIA 6

UNIT II MULTIMEDIA FILE FORMATS AND STANDARDS 6

UNIT III MULTIMEDIA AUTHORING 6

UNIT IV ANIMATION 6
Principles of animation: staging, squash and stretch, timing, onion skinning, secondary action, 2D, 2 ½ D, and 3D animation, Animation techniques: Keyframe, Morphing, Inverse Kinematics, Hand Drawn, Character rigging, vector animation, stop motion, motion graphics, fluid Simulation, skeletal animation, skinning Virtual Reality, Augmented Reality.

UNIT V MULTIMEDIA APPLICATIONS 6
Multimedia Big data computing, social networks, smart phones, surveillance, Analytics, Multimedia Cloud Computing, Multimedia streaming cloud, media on demand, security and forensics, Online social networking, multimedia ontology, Content based retrieval from digital libraries.

30 PERIODS

LIST OF EXPERIMENTS:

- 30 PERIODS

Working with Image Editing tools:

- Install tools like GIMP/ InkScape / Krita / Pencil and perform editing operations:
 - Use different selection and transform tools to modify or improve an image
 - Create logos and banners for home pages of websites.

Working with Audio Editing tools:

- Install tools like, Audacity / Ardour for audio editing, sound mixing and special effects like fade-in or fade-out etc.,
- Perform audio compression by choosing a proper codec.
Working with Video Editing and conversion tools:
Install tools like OpenShot / Cinelerra / HandBrake for editing video content.
Ø Edit and mix video content, remove noise, create special effects, add captions.
Ø Compress and convert video file format to other popular formats.

Working with web/mobile authoring tools:
Adapt / KompoZer/ BlueGriffon / BlueFish / Aptana Studio/ NetBeans / WordPress /Expression Web:
Ø Design simple Home page with banners, logos, tables quick links etc
Ø Provide a search interface and simple navigation from the home page to the inside pages of the website.
Ø Design Responsive web pages for use on both web and mobile interfaces.

Working with Animation tools:
Install tools like, Krita, Wick Editor, Blender:
Ø Perform a simple 2D animation with sprites
Ø Perform simple 3D animation with keyframes, kinematics
• Working with Mobile UI animation tools: Origami studio / Lottie / Framer etc.,

Working with E-Learning authoring tools:
Install tools like EdApp / Moovly / CourseLab/ IsEazy and CamStudio/Ampache, VideoLAN:
Ø Demonstrate screen recording and further editing for e-learning content.
Ø Create a simple E-Learning module for a topic of your choice.

Creating VR and AR applications:
Ø Any affordable VR viewer like Google Cardboard and any development platform like Openspace 3D / ARCore etc.

Note: all tools listed are open source. Usage of any proprietary tools in place of open source tools is not restricted.

TOTAL: 60 PERIODS

WEB REFERENCES:
1. https://itsfoss.com/
2. https://www.ucl.ac.uk/slade/know/3396
3. https://handbrake.fr/
https://camstudio.org/
5. https://developer.android.com/training/animation/overview
COURSE OUTCOMES:
- Get the bigger picture of the context of Multimedia and its applications
- Use the different types of media elements of different formats on content pages
- Author 2D and 3D creative and interactive presentations for different target multimedia applications.
- Use different standard animation techniques for 2D, 21/2 D, 3D applications
- Understand the complexity of multimedia applications in the context of cloud, security, bigdata streaming, social networking, CBIR etc.,

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

AVg. 3.00 2.80 3.00 2.80 3.00 2.00 - - 3.00 2.80 2.20 2.60 3.00 2.40 3.00

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:

- To introduce the broad perspective of linear and nonlinear editing concepts.
- To understand the concept of Storytelling styles.
- To be familiar with audio and video recording. To apply different media tools.
- To learn and understand the concepts of AVID XPRESS DV 4.

UNIT I FUNDAMENTALS 6
Evolution of filmmaking - linear editing - non-linear digital video - Economy of Expression - risks associated with altering reality through editing.

UNIT II STORYTELLING 6
Storytelling styles in a digital world through jump cuts, L-cuts, match cuts, cutaways, dissolves, split edits - Consumer and pro NLE systems - digitizing images - managing resolutions - mechanics of digital editing - pointer files - media management.

UNIT III USING AUDIO AND VIDEO 6
Capturing digital and analog video importing audio putting video on exporting digital video to tape recording to CDs and VCDs.

UNIT IV WORKING WITH FINAL CUT PRO 6
Working with clips and the Viewer - working with sequences, the Timeline, and the canvas - Basic Editing - Adding and Editing Testing Effects - Advanced Editing and Training Techniques - Working with Audio - Using Media Tools - Viewing and Setting Preferences.

UNIT V WORKING WITH AVID XPRESS DV 4 6
Starting Projects and Working with Project Window - Using Basic Tools and Logging - Preparing to Record and Recording - Importing Files - Organizing with Bins - Viewing and Making Footage - Using Timeline and Working in Trim Mode - Working with Audio - Output Options.

30 PERIODS

LIST OF EXPERIMENTS

1. Write a Movie Synopsis (Individual/Team Writing)
2. Present team stories in class.
3. Script/Storyboard Writing(Individual Assignment)
4. Pre-Production: Personnel, budgeting, scheduling, location scouting, casting, contracts & agreements
5. Production: Single camera production personnel & equipment, Documentary Production
6. Writing The Final Proposal: Overview, Media Treatments, Summary, Pitching
7. Write Documentary & Animation Treatment
8. Post-production: Editing, Sound design, Finishing

TOTAL: 60 PERIODS

COURSE OUTCOMES:
On completion of the course, the students will be able to:
CO1: Compare the strengths and limitations of Nonlinear editing.
CO2: Identify the infrastructure and significance of storytelling.
CO3: Apply suitable methods for recording to CDs and VCDs.
CO4: Address the core issues of advanced editing and training techniques.
CO5: Design and develop projects using AVID XPRESS DV 4

TEXT BOOKS

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>AVG.</td>
<td>2.2</td>
<td>1.8</td>
<td>2.6</td>
<td>2.4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>1.6</td>
<td>1.6</td>
<td>1.4</td>
<td>2</td>
<td>1.4</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' no correlation

CCW332 DIGITAL MARKETING

COURSE OBJECTIVES:
- The primary objective of this module is to examine and explore the role and importance of digital marketing in today’s rapidly changing business environment.
- It also focuses on how digital marketing can be utilized by organizations and how its effectiveness can be measured.

UNIT I INTRODUCTION TO ONLINE MARKET 6
Online Market space- Digital Marketing Strategy- Components - Opportunities for building Brand Website - Planning and Creation - Content Marketing.

UNIT II SEARCH ENGINE OPTIMISATION 6

UNIT III E-MAIL MARKETING 6
E-Mail Marketing - Types of E-Mail Marketing - Email Automation - Lead Generation - Integrating Email with Social Media and Mobile- Measuring and maximizing email campaign effectiveness. Mobile Marketing- Mobile Inventory/channels- Location based; Context based; Coupons and offers, Mobile Apps, Mobile Commerce, SMS Campaigns-Profiling and targeting
UNIT IV SOCIAL MEDIA MARKETING

UNIT V DIGITAL TRANSFORMATION
Digital Transformation & Channel Attribution - Analytics - Ad-words, Email, Mobile, Social Media, Web Analytics - Changing your strategy based on analysis - Recent trends in Digital marketing.

PRACTICAL EXERCISES:
1. Subscribe to a weekly/quarterly newsletter and analyze how its content and structure aid with the branding of the company and how it aids its potential customer segments.
2. Perform keyword search for a skincare hospital website based on search volume and competition using Google keyword planner tool.
3. Demonstrate how to use the Google WebMasters Indexing API
4. Discuss an interesting case study regarding how an insurance company manages leads.
5. Discuss negative and positive impacts and ethical implications of using social media for political advertising.
6. Discuss how Predictive analytics is impacting marketing automation

COURSE OUTCOMES:
CO1: To examine and explore the role and importance of digital marketing in today’s rapidly changing business environment.
CO2: To focuses on how digital marketing can be utilized by organizations and how its effectiveness can be measured.
CO3: To know the key elements of a digital marketing strategy.
CO4: To study how the effectiveness of a digital marketing campaign can be measured.
CO5: To demonstrate advanced practical skills in common digital marketing tools such as SEO, SEM, Social media and Blogs.

TOTAL: 60 PERIODS

TEXT BOOKS
1. Fundamentals of Digital Marketing by Puneet Singh Bhatia; Publisher: Pearson Education;
7. Pulizzi, J Beginner's Guide to Digital Marketing, Mcgraw Hill Education

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

161
<table>
<thead>
<tr>
<th>3</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>-</th>
<th>-</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.2</td>
<td>2.2</td>
<td>1.6</td>
<td>2</td>
<td>2.4</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>2.4</td>
<td>2</td>
<td>2.4</td>
<td>2.4</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS373 VISUAL EFFECTS

COURSE OBJECTIVES

- To get a basic idea on animation principles and techniques
- To get exposure to CGI, color and light elements of VFX
- To have a better understanding of basic special effects techniques
- To have a knowledge of state of the art vfx techniques
- To become familiar with popular compositing techniques

UNIT I ANIMATION BASICS

VFX production pipeline, Principles of animation, Techniques: Keyframe, kinematics, Full animation, limited animation, Rotoscoping, stop motion, object animation, pixilation, rigging, shape keys, motion paths.

UNIT II CGI, COLOR, LIGHT

CGI – virtual worlds, Photorealism, physical realism, function realism, 3D Modeling and Rendering: color - Color spaces, color depth, Color grading, color effects, HDRI, Light – Area and mesh lights, image based lights, PBR lights, photometric light, BRDF shading model

UNIT III SPECIAL EFFECTS

Special Effects – props, scaled models, animatronics, pyrotechniques, Schüfftan process, Particle effects – wind, rain, fog, fire

UNIT IV VISUAL EFFECTS TECHNIQUES

Motion Capture, Matt Painting, Rigging, Front Projection. Rotoscoping, Match Moving – Tracking, camera reconstruction, planar tracking, Calibration, Point Cloud Projection, Ground plane determination, 3D Match Moving

UNIT V COMPOSING

Compositing – chroma key, blue screen/green screen, background projection, alpha compositing, deep image compositing, multiple exposure, matting, VFX tools - Blender, Natron, GIMP.

LABORATORY EXPERIMENTS:

Using Natron:

- Understanding Natron Environment:
- Working with color and using color grading
- using Channels
- Merging images
- Using Rotopaint

30 PERIODS

30 PERIODS
- performing Tracking and stabilizing
- Transforming elements
- Stereoscopic compositing

Using Blender:
Ø Motion Tracking – camera and object tracking
Ø Camera fx, color grading, vignettes
Ø Compositing images and video files
Ø Multilayer rendering

TOTAL: 60 PERIODS

COURSE OUTCOMES
At the end of the course, the student will be able to:

- **CO1:** To implement animation in 2D / 3D following the principles and techniques
- **CO2:** To use CGI, color and light elements in VFX applications
- **CO3:** To create special effects using any of the state of the art tools
- **CO4:** To apply popular visual effects techniques using advanced tools
- **CO5:** To use compositing tools for creating VFX for a variety of applications

TEXT BOOKS:

REFERENCES:
5. Eran Dinur, “The Complete guide to Photorealism, for Visual Effects, Visualization
7. https://www.blender.org/features/vfx/

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>2</td>
<td>2.8</td>
<td>2.4</td>
<td>2</td>
<td>1.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.8</td>
<td>2.4</td>
<td>1.6</td>
<td>2</td>
<td>2</td>
<td>2.4</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:

- To know the basics of 2D and 3D graphics for game development.
- To know the stages of game development.
- To understand the basics of a game engine.
- To survey the gaming development environment and tool kits.
- To learn and develop simple games using Pygame environment

UNIT I 3D GRAPHICS FOR GAME DESIGN 6
Genres of Games, Basics of 2D and 3D Graphics for Game Avatar, Game Components – 2D and 3D Transformations – Projections – Color Models – Illumination and Shader Models – Animation – Controller Based Animation.

UNIT II GAME DESIGN PRINCIPLES 6

UNIT III GAME ENGINE DESIGN 6

UNIT IV OVERVIEW OF GAMING PLATFORMS AND FRAMEWORKS 6
Pygame Game development – Unity – Unity Scripts – Mobile Gaming, Game Studio, Unity Single player and Multi-Player games.

UNIT V GAME DEVELOPMENT USING PYGAME 6

COURSE OUTCOMES:

CO1: Explain the concepts of 2D and 3D Graphics
CO2: Design game design documents.
CO3: Implementation of gaming engines.
CO4: Survey gaming environments and frameworks.
CO5: Implement a simple game in Pygame.

EXPERIMENTS: 30 PERIODS

1. Installation of a game engine, e.g., Unity, Unreal Engine, familiarization of the GUI. Conceptualize the theme for a 2D game.
2. Character design, sprites, movement and character control
3. Level design: design of the world in the form of tiles along with interactive and collectible objects.
4. Design of interaction between the player and the world, optionally using the physics engine.
5. Developing a 2D interactive using Pygame
6. Developing a Puzzle game
7. Design of menus and user interaction in mobile platforms.
8. Developing a 3D Game using Unreal
9. Developing a Multiplayer game using unity

TOTAL: 60 PERIODS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CCS353 MULTIMEDIA DATA COMPRESSION AND STORAGE

COURSE OBJECTIVES:
- To understand the basics of compression techniques
- To understand the categories of compression for text, image and video
- To explore the modalities of text, image and video compression algorithms
- To know about basics of consistency of data availability in storage devices
- To understand the concepts of data streaming services

UNIT I BASICS OF DATA COMPRESSION
Introduction —Lossless and LossyCompression– Basics of Huffmann coding- Arithmetic coding- Dictionary techniques- Context based compression – Applications

UNIT II IMAGE COMPRESSION
UNIT III VIDEO COMPRESSION

UNIT IV DATA PLACEMENT ON DISKS

Statistical placement on Disks – Striping on Disks – Replication Placement on Disks – Constraint allocation on Disks – Tertiary storage Devices – Continuous Placement on Hierarchical storage system – Statistical placement on Hierarchical storage systems – Constraint allocation on Hierarchical storage system

UNIT V DISK SCHEDULING METHODS

Scheduling methods for disk requests – Feasibility conditions of concurrent streams– Scheduling methods for request streams

LIST OF EXPERIMENTS

1. Construct Huffman codes for given symbol probabilities.
2. Encode run lengths with fixed-length code.
3. Lempel-Ziv algorithm for adaptive variable-length encoding
4. Compress the given word using arithmetic coding based on the frequency of the letters.
5. Write a shell script, which converts all images in the current directory in JPEG.
6. Write a program to split images from a video without using any primitives.
7. Create a photo album of a trip by applying appropriate image dimensions and format.
8. Write the code for identifying the popularity of content retrieval from media server.
9. Write the code for ensuring data availability in disks using strip based method.
10. Program for scheduling requests for data streams.

TOTAL : 60 PERIODS

COURSE OUTCOMES:

CO1: Understand the basics of text, Image and Video compression
CO2: Understand the various compression algorithms for multimedia content
CO3: Explore the applications of various compression techniques
CO4: Explore knowledge on multimedia storage on disks
CO5: Understand scheduling methods for request streams

TEXT BOOKS

REFERENCES

3. Yun-Qing Shi, Image And Video Compression For Multimedia Engineering Fundamentals Algorithms And Standards, Taylor& Francis,2019
CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS361 ROBOTIC PROCESS AUTOMATION L T P C
2 0 2 3

COURSE OBJECTIVES:
- To understand the basic concepts of Robotic Process Automation.
- To expose to the key RPA design and development strategies and methodologies.
- To learn the fundamental RPA logic and structure.
- To explore the Exception Handling, Debugging and Logging operations in RPA.
- To learn to deploy and Maintain the software bot.

UNIT I INTRODUCTION TO ROBOTIC PROCESS AUTOMATION

UNIT II AUTOMATION PROCESS ACTIVITIES
Sequence, Flowchart & Control Flow: Sequencing the Workflow, Activities, Flowchart, Control Flow for Decision making. Data Manipulation: Variables, Collection, Arguments, Data Table, Clipboard management, File operations Controls: Finding the control, waiting for a control, Act on a control, UiExplorer, Handling Events

UNIT III APP INTEGRATION, RECORDING AND SCRAPING
App Integration, Recording, Scraping, Selector, Workflow Activities. Recording mouse and keyboard actions to perform operation, Scraping data from website and writing to CSV. Process Mining.

UNIT IV EXCEPTION HANDLING AND CODE MANAGEMENT

UNIT V DEPLOYMENT AND MAINTENANCE
Publishing using publish utility, Orchestration Server, Control bots, Orchestration Server to deploy bots, License management, Publishing and managing updates. RPA Vendors - Open Source RPA, Future of RPA

30 PERIODS
PRACTICAL EXERCISES: 30 PERIODS

Setup and Configure a RPA tool and understand the user interface of the tool:
1. Create a Sequence to obtain user inputs display them using a message box;
2. Create a Flowchart to navigate to a desired page based on a condition;
3. Create a State Machine workflow to compare user input with a random number.
4. Build a process in the RPA platform using UI Automation Activities.
5. Create an automation process using key System Activities, Variables and Arguments
6. Also implement Automation using System Trigger
7. Automate login to (web)Email account
8. Recording mouse and keyboard actions.
9. Scraping data from website and writing to CSV
10. Implement Error Handling in RPA platform
11. Web Scraping
12. Email Query Processing

TOTAL:60 PERIODS

COURSE OUTCOMES:
By the end of this course, the students will be able to:

- Enunciate the key distinctions between RPA and existing automation techniques and platforms.
- Use UiPath to design control flows and work flows for the target process
- Implement recording, web scraping and process mining by automation
- Use UiPath Studio to detect, and handle exceptions in automation processes
- Implement and use Orchestrator for creation, monitoring, scheduling, and controlling of automated bots and processes.

TEXT BOOKS:

REFERENCES:
1. Frank Casale (Author), Rebecca Dilla (Author), Heidi Jaynes (Author), Lauren Livingston (Author), Introduction to Robotic Process Automation: a Primer, Institute of Robotic Process Automation, Amazon Asia-Pacific Holdings Private Limited, 2018

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVG</td>
<td>2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:
- To learn cybercrime and cyberlaw.
- To understand the cyber attacks and tools for mitigating them.
- To understand information gathering.
- To learn how to detect a cyber attack.
- To learn how to prevent a cyber attack.

UNIT I INTRODUCTION

UNIT II ATTACKS AND COUNTERMEASURES

UNIT III RECONNAISSANCE

UNIT IV INTRUSION DETECTION

UNIT V INTRUSION PREVENTION

PRACTICAL EXERCISES:
1. Install Kali Linux on Virtual box
2. Explore Kali Linux and bash scripting
3. Perform open source intelligence gathering using Netcraft, Whois Lookups, DNS Reconnaissance, Harvester and Maltego
4. Understand the nmap command d and scan a target using nmap
5. Install metasploitable2 on the virtual box and search for unpatched vulnerabilities
6. Use Metasploit to exploit an unpatched vulnerability
7. Install Linus server on the virtual box and install ssh
8. Use Fail2banto scan log files and ban ips that show the malicious signs
10. Perform real-time network traffic analysis and data pocket logging using Snort

COURSE OUTCOMES:
On successful completion of this course, the student will be able to

CO1: Explain the basics of cyber security, cyber crime and cyber law (K2)
CO2: Classify various types of attacks and learn the tools to launch the attacks (K2)
CO3 Apply various tools to perform information gathering (K3)
CO4: Apply intrusion techniques to detect intrusion (K3)
CO5: Apply intrusion prevention techniques to prevent intrusion (K3)

TOTAL: 60 PERIODS

TEXTBOOKS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AVg.</td>
<td>2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS359 QUANTUM COMPUTING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To know the background of classical computing and quantum computing.
- To learn the fundamental concepts behind quantum computation.
- To study the details of quantum mechanics and its relation to Computer Science.
- To gain knowledge about the basic hardware and mathematical models of quantum computation.
To learn the basics of quantum information and the theory behind it.

UNIT I QUANTUM COMPUTING BASIC CONCEPTS 6
Complex Numbers - Linear Algebra - Matrices and Operators - Global Perspectives Postulates of Quantum Mechanics – Quantum Bits - Representations of Qubits - Superpositions

UNIT II QUANTUM GATES AND CIRCUITS 5
Universal logic gates - Basic single qubit gates - Multiple qubit gates - Circuit development - Quantum error correction

UNIT III QUANTUM ALGORITHMS 7
Quantum parallelism - Deutsch’s algorithm - The Deutsch–Jozsa algorithm - Quantum Fourier transform and its applications - Quantum Search Algorithms: Grover’s Algorithm

UNIT IV QUANTUM INFORMATION THEORY 6
Data compression - Shannon’s noiseless channel coding theorem - Schumacher’s quantum noiseless channel coding theorem - Classical information over noisy quantum channels

UNIT V QUANTUM CRYPTOGRAPHY 6
Classical cryptography basic concepts - Private key cryptography - Shor’s Factoring Algorithm - Quantum Key Distribution - BB84 - Ekart 91

PRACTICAL EXERCISES
1. Single qubit gate simulation - Quantum Composer
2. Multiple qubit gate simulation - Quantum Composer
3. Composing simple quantum circuits with q-gates and measuring the output into classical bits.
4. IBM Qiskit Platform Introduction
5. Implementation of Shor’s Algorithms
6. Implementation of Grover’s Algorithm
7. Implementation of Deutsch’s Algorithm
8. Implementation of Deutsch-Jozsa’s Algorithm
9. Integer factorization using Shor’s Algorithm
10. QKD Simulation
11. Mini Project such as implementing an API for efficient search using Grover’s Algorithms or

COURSE OUTCOMES:
On completion of the course, the students will be able to:
CO1: Understand the basics of quantum computing.
CO2: Understand the background of Quantum Mechanics.
CO3: Analyze the computation models.
CO4: Model the circuits using quantum computation.
CO5: Understand the quantum operations such as noise and error–correction.

TOTAL: 60 PERIODS
TEXTBOOKS:

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVG.</td>
<td>3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ' - no correlation

CCS331 3D PRINTING AND DESIGN L T P C
2 0 2 3

COURSE OBJECTIVES:
- To discuss on basics of 3D printing
- To explain the principles of 3D printing technique
- To explain and illustrate inkjet technology
- To explain and illustrate laser technology
- To discuss the applications of 3D printing

UNIT I INTRODUCTION
Introduction; Design considerations – Material, Size, Resolution, Process; Modelling and viewing - 3D; Scanning; Model preparation – Digital; Slicing; Software; File formats

UNIT II PRINCIPLE

UNIT III INKJET TECHNOLOGY
Printer - Working Principle, Positioning System, Print head, Print bed, Frames, Motion control; Print head Considerations – Continuous Inkjet, Thermal Inkjet, Piezoelectric Drop-On-Demand; Material
Formulation for jetting; Liquid based fabrication – Continuous jet, Mulitjet; Powder based fabrication – Colourjet.

UNIT IV LASER TECHNOLOGY 6
Light Sources – Types, Characteristics; Optics – Deflection, Modulation; Material feeding and flow – Liquid, powder; Printing machines – Types, Working Principle, Build Platform, Print bed Movement, Support structures;

UNIT V INDUSTRIAL APPLICATIONS 6
Product Models, manufacturing – Printed electronics, Biopolymers, Packaging, Healthcare, Food, Medical, Biotechnology, Displays; Future trends;

PRACTICAL EXERCISES: 30 PERIODS

1. Study the interface and basic tools in the CAD software.
2. Study 3D printer(s) including print heads, build envelope, materials used and related support removal system(s).
3. Review of geometry terms of a 3D mesh.
4. Commands for moving from 2D to 3D.
5. Advanced CAD commands to navigate models in 3D space
6. Design any four everyday objects
Refer to web sites like Thingiverse, Shapeways and GitFab to design four everyday objects that utilize the advantages of 3D printing

7. Choose four models from a sharing site like Thingiverse, Shapeways or Gitfab.
 a. Improve upon a file and make it your own. Some ideas include:
 - Redesign it with a specific user in mind
 - Redesign it for a slightly different purpose
 - Improve the look of the product

8. Use the CAM software to prepare files for 3D printing.
9. Manipulate machine movement and material layering.
10. Repair a 3D mesh using
 a) Freeware utilities: Autodesk MeshMixer (http://goo.gl/x5nhYc), MeshLab (http://goo.gl/fgztLj) or Netfabb Basic or Cloud Service (http://goo.gl/Q1P47a)
 b) Freeware tool tutorials: Netfabb Basic or Cloud Service (http://goo.gl/Q1P47a), Netfabb and MeshLab (http://goo.gl/WPOVec)
 c) Professional tools: Magics or Netfabb

Equipment: one 3D printer for every 10-15 students

COURSE OUTCOMES:
At the end of this course, the students will be able to:

CO1: Outline and examine the basic concepts of 3D printing technology

CO2: Outline 3D printing workflow

CO3: Explain and categorize the concepts and working principles of 3D printing using inkjet technique

CO4: Explain and categorize the working principles of 3D printing using laser technique

CO5: Explain various method for designing and modeling for industrial applications

TOTAL: 60 PERIODS
TEXT BOOKS

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.8</td>
<td>2.4</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, - - - no correlation

CO3001 DIGITAL COMMUNICATION

COURSE OBJECTIVES:
- To study the limits set by Information Theory
- To study the various waveform coding schemes
- To learn the various baseband transmission schemes
- To understand the various band, pass signalling schemes
- To know the fundamentals of channel coding

UNIT I INFORMATION THEORY

UNIT II WAVEFORM CODING & REPRESENTATION

UNIT III BASEBAND TRANSMISSION & RECEPTION
ISI – Nyquist criterion for distortion less transmission – Pulse shaping – Correlative coding - Eye pattern – Receiving Filters- Matched Filter, Correlation receiver, Adaptive Equalization
UNIT IV DIGITAL MODULATION SCHEME 9
Geometric Representation of signals - Generation, detection, PSD & BER of Coherent BPSK, BFSK & QPSK - QAM - Carrier Synchronization - Structure of Non-coherent Receivers - Principle of DPSK.

UNIT V ERROR CONTROL CODING 9
Introduction to error correction and detection, Channel coding theorem - Linear Block codes - Hamming codes - Cyclic codes(systematic, non-systematic) - Convolutional codes - Viterbi Decoder.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1 : Design PCM systems
CO2 : Design and implement base band transmission schemes
CO3 : Design and implement band pass signalling schemes
CO4 : Analyse the spectral characteristics of band pass signalling schemes and their noise performance.
CO5 : Design error control coding schemes

TEXT BOOKS

REFERENCES
3. H P Hsu, Schaum Outline Series - "Analog and Digital Communications", TMH 2006

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CEC364 WIRELESS BROAD BAND NETWORKS L T P C
3 0 0 3

COURSE OBJECTIVES
- To study the various network layer and transport layer protocols for wireless networks
- To study the architecture and interference mitigation techniques in 3G standards
- To learn about 4G technologies and LTE-A in mobile cellular network.
- To learn about the layer level functionalities in interconnecting networks.
- To study the emerging techniques in 5G network.
UNIT I WIRELESS PROTOCOLS
Mobile network layer- Fundamentals of Mobile IP, data forwarding procedures in mobile IP, IPv4, IPv6, IP mobility management, IP addressing - DHCP, Mobile transport layer-Traditional TCP, congestion control, slow start, fast recovery/fast retransmission, classical TCP improvements-Indirect TCP, snooping TCP, Mobile TCP.

UNIT II 3G EVOLUTION

UNIT III 4G EVOLUTION
Introduction to LTE-A – Requirements and Challenges, network architectures – EPC, E- UTRAN architecture - mobility management, resource management, services, channel -logical and transport channel mapping, downlink/uplink data transfer, MAC control element, PDU packet formats, scheduling services, random access procedure.

UNIT IV LAYER-LEVEL FUNCTIONS
Characteristics of wireless channels - downlink physical layer, uplink physical layer, MAC scheme - frame structure, resource structure, mapping, synchronization, reference signals and channel estimation, SC-FDMA, interference cancellation – CoMP, Carrier aggregation, Services - multimedia broadcast/multicast, location-based services.

UNIT V 5G EVOLUTION

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, the student will be able to
CO1: Design and implement the various protocols in wireless networks.
CO2: Analyze the architecture of 3G network standards.
CO3: Analyze the difference of LTE-A network design from 4G standard.
CO4: Design the interconnecting network functionalities by layer level functions.
CO5: Explore the current generation (5G) network architecture.

TEXTBOOKS

REFERENCES

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CEC331 4G / 5G COMMUNICATION NETWORKS L T P C
2 0 2 3

COURSE OBJECTIVES

● To learn the evolution of wireless networks.
● To get acquainted with the fundamentals of 5G networks.
● To study the processes associated with 5G architecture.
● To study spectrum sharing and spectrum trading.
● To learn the security features in 5G networks.

UNIT I EVOLUTION OF WIRELESS NETWORKS 6

UNIT II 5G CONCEPTS AND CHALLENGES 6
Fundamentals of 5G technologies, overview of 5G core network architecture,5G new radio and cloud technologies, Radio Access Technologies (RATs), EPC for 5G.

UNIT III NETWORK ARCHITECTURE AND THE PROCESSES 6
5G architecture and core, network slicing, multi access edge computing(MEC)visualization of 5G components, end-to-end system architecture, service continuity, relation to EPC, and edge computing. 5G protocols: 5G NAS,NGAP, GTP-U, IPSec and GRE.

UNIT IV DYNAMIC SPECTRUM MANAGEMENT AND MM-WAVES 6
Mobility management, Command and control, spectrum sharing and spectrum trading, cognitive radio based on 5G, millimeter waves.

UNIT V SECURITY IN 5G NETWORKS 6
Security features in 5G networks, network domain security, user domain security, flow based QoS framework,mitigating the threats in 5G.

30 PERIODS

PRACTICAL EXERCISES: SIMULATION USING MATLAB
1. 5G-Compliant waveform generation and testing

177
2. Modeling of 5G Synchronization signal blocks and bursts
3. Channel modeling in 5G networks
4. Multiband OFDM demodulation
5. Perfect Channel estimation
6. Development of 5g New Radio Polar Coding

COURSE OUTCOMES
CO1: To understand the evolution of wireless networks.
CO2: To learn the concepts of 5G networks.
CO3: To comprehend the 5G architecture and protocols.
CO4: To understand the dynamic spectrum management.
CO5: To learn the security aspects in 5G networks.

TOTAL: 60 PERIODS

TEXT BOOKS
1. 5G Core networks: Powering Digitalization, Stephen Rommer, Academic Press, 2019

REFERENCES
1. 5G Simplified: ABCs of Advanced Mobile Communications Jyrki. T.J. Penttinen, Copyrighted Material.

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CEC347 RADAR TECHNOLOGIES

L T P C 3 0 0 3

COURSE OBJECTIVES:
The student should be made to:
- Understand the basics of Radar and Radar equation
- Understand the types of Radar
- Understand tracking Radar
- Understand the various signal processing in Radar
- Understand the Subsystems in Radar

UNIT I INTRODUCTION TO RADAR EQUATION
The Origins of Radar, Radar principles, Basic Block Diagram, Radar classifications based on Frequencies, Wave form and application, Radar Fundamentals: Detection, Range, velocity, The

UNIT II CW, MTI AND PULSE DOPPLER RADAR
CW and Frequency Modulated Radar, Doppler and MTI Radar- Delay Line Cancellers, Staggered Pulse Repetition Frequencies, Doppler Filter Banks, Digital MTI Processing, Moving Target Detector, Limitations to MTI Performance, MTI from a Moving Platform (AMIT), Pulse Doppler Radar.

UNIT III TRACKING RADAR
Tracking with Radar, Monopulse Tracking, Conical Scan, Sequential Lobing, Limitations to Tracking Accuracy, Low-Angle Tracking - Comparison of Trackers- Track while Scan (TWS) Radar- Target prediction, state estimation, Measurement models, alpha – beta tracker, Kalman Filtering, Extended Kalman filtering.

UNIT IV RADAR SIGNAL PROCESSING

UNIT 5 RADAR TRANSMITTERS AND RECEIVERS

COURSE OUTCOMES:
At the end of the course, the student will be able to:

CO1: Identify the Radar parameters
CO2: Differentiate various radar types
CO3: Evaluate different tracking and filtering schemes
CO4: Apply signal processing in target detection
CO5: Design Radar transmitter and receiver blocks

TOTAL: 45 PERIODS

TEXT BOOKS

REFERENCES

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C302.1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C302.2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C302.3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C302.4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C302.5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C302</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '*' - no correlation

ET3001 MOBILE COMMUNICATION L T P C
3 0 0 3

COURSE OBJECTIVES:
- Understand the basic concepts of mobile computing
- Understand Wireless LAN, Bluetooth and WiFi Technologies
- Be familiar with the network protocol stack
- Learn the basics of mobile telecommunication system
- Be exposed to Ad-Hoc networks

UNIT I INTRODUCTION

UNIT II MOBILE TELECOMMUNICATION SYSTEM

UNIT III WIRELESS NETWORKS
Wireless LANs and PANs – IEEE 802.11 Standard – Architecture – Services – Blue Tooth- Wi-Fi – WiMAX

UNIT IV MOBILE NETWORK LAYER

UNIT V MOBILE TRANSPORT AND APPLICATION LAYER

180
COURSE OUTCOMES:
CO1 Explain the basics of mobile telecommunication system
CO2 Illustrate the generations of telecommunication systems in wireless network
CO3 Understand the architecture of Wireless LAN technologies
CO4 Determine the functionality of network layer and Identify a routing protocol for a given Ad-hoc networks
CO5 Explain the functionality of Transport and Application layer

TOTAL : 45 PERIODS

TEXT BOOKS

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-' - no correlation

ET3002 TELECOMMUNICATION SWITCHING AND NETWORKS

COURSE OBJECTIVES:
- To understand basic and some advanced concepts and techniques of telecommunications networks and digital hierarchy namely SONET / SDH.
- To introduce the concepts of different types of switching.
- To introduce the need for network synchronization and study synchronization issues.
- To introduce ISDN, DSL / ADSL, and fiber optic systems in subscriber loop.
- To introduce a mathematical model for the analysis of telecommunication traffic.

UNIT I INTRODUCTION TO TELECOMMUNICATION
Introduction: Evolution of telecommunications, simple telephone communication, manual switching system, strowger switching system, crossbar switching; Electronic Space Division Switching: Stored program control, centralized SPC, distributed SPC. SONET/SDH: SONET Multiplexing Overview,

UNIT II DIGITAL SWITCHING 9
Switching Functions, Space Division Switching, Time Division Switching, two-dimensional Switching: STS Switching, TST Switching, No.4 ESS Toll Switch, Digital Cross-Connect Systems, Digital Switching in an Analog Environment. Elements of SSN07 signaling.

UNIT III NETWORK SYNCHRONIZATION CONTROL AND MANAGEMENT 9

UNIT IV DIGITAL SUBSCRIBER ACCESS 9

UNIT V TRAFFIC ANALYSIS 9

TOTAL :45 PERIODS

COURSE OUTCOMES:
CO1: Have knowledge about telecommunication and digital hierarchy, SONET/SDH
CO2: Differentiate the different types of digital switching.
CO3: Have knowledge about the network control and management issues
CO4: Obtain knowledge about ISDN, DSL / ADSL, and fiber optic systems in subscriber loop.
CO5: Have knowledge about the blocking system characteristics and queuing system characteristics.

TEXT BOOKS

REFERENCES

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

182
COURSE OBJECTIVES:
● To Study About The Various Optical Fiber Modes, Configuration Of Optical Fibers
● To Study Transmission Characteristics Of Optical Fibers.
● To Learn About The Various Optical Sources, Detectors And Transmission Techniques.
● To Explore Various Idea About Optical Fiber Measurements And Various Coupling
● Techniques.
● To Enrich The Knowledge About Optical Communication Systems And Networks.

UNIT-I INTRODUCTION TO OPTICAL FIBER COMMUNICATION
Introduction - The General Systems - Advantages of Optical Fiber Communication- Ray Theory

UNIT-II TRANSMISSION CHARACTERISTICS OF OPTICAL FIBERS

UNIT-III OPTICAL SOURCES AND OPTICAL DETECTORS

UNIT-IV OPTICAL FIBER MEASUREMENTS
UNIT-V OPTICAL NETWORKS

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of the course, the student will be able to understand the

CO1: Realize Basic Elements In Optical Fibers, Different Modes And Configurations.

CO2: Anaylze The Transmission Characteristics Associated With Dispersion And Polarization Techniques.

CO3: Design Optical Sources And Detectors With Their Use In Optical Communication System.

CO4: Construct Fiber Optic Receiver Systems, Measurements And Techniques.

CO5: Design Optical Communication Systems And Its Networks.

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CEC354 SOFTWARE DEFINED NETWORKS L T P C

2 0 2 3

COURSE OBJECTIVES:

- To understand the need for SDN and its data plane operations
To understand the functions of control plane
To comprehend the migration of networking functions to SDN environment
To explore various techniques of network function virtualization
To comprehend the concepts behind network virtualization

UNIT I SDN: BACKGROUND AND DATA PLANE
6

UNIT II SDN CONTROL PLANE
6

UNIT III UNIT TITLE
6

UNIT IV NETWORK FUNCTION VIRTUALIZATION
6

UNIT V NETWORK VIRTUALIZATION
6

PRACTICAL EXERCISES:
1. Installing Mininet simulator
2. Creating a 1 controller, 3 node topology, POX controller
3. Ability to view, read/write Flow table rules (for different applications - say firewall, Learning switch etc.), POX, Open vSwitch
4. Building a SDN based application

COURSE OUTCOMES:
After the successful completion of this course, the student will be able to
CO1: Describe the motivation behind SDN and its data plane (K2)
CO2: Identify the functions of control plane (K3)
CO3: Apply SDN to networking applications (K3)
CO4: Apply various operations of network function virtualization
CO5: Explain various use cases of SDN

TOTAL:60 PERIODS

TEXT BOOKS

REFERENCES

185

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>C</th>
<th>O</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>O</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CEC371 MASSIVE MIMO NETWORKS

COURSE OBJECTIVES:

- To gain knowledge about massive MIMO networks.
- To understand the massive MIMO propagation channels.
- To learn about channel estimation in single cell and multicell massive MIMO systems.
- To comprehend the concepts of massive MIMO deployment in the context of single cell and multicell deployment.

UNIT I MASSIVE MIMO NETWORKS

Definition of Massive MIMO, Correlated Rayleigh Fading, System Model for Uplink and Downlink, Basic Impact of Spatial Channel Correlation, Channel Hardening and Favourable Propagation, Local Scattering Spatial Correlation Model

UNIT II THE MASSIVE MIMO PROPAGATION CHANNEL

UNIT III SINGLE-CELL SYSTEMS

Uplink Pilots and Channel Estimation - Orthogonal Pilots- De-Spreading of the Received Pilot Signal-MMSE Channel Estimation, Uplink Data Transmission - Zero-Forcing -Maximum-Ratio, Downlink Data Transmission-Linear Precoding-Zero-Forcing-Maximum-Ratio, Discussion-Interpretation of the Effective SINR Expressions-Implications for Power Control-Scaling Laws and Upper Bounds on the
UNIT IV MULTICELL SYSTEMS
Uplink Pilots and Channel Estimation, Uplink Data Transmission - Zero-Forcing - Maximum-Ratio, Downlink Data Transmission - Zero-Forcing - Maximum-Ratio, Discussion - Asymptotic Limits with Infinite Numbers of Base Station Antennas - The Effects of Pilot Contamination - Non-Synchronous Pilot Interference

UNIT V CASE STUDIES

PRACTICAL EXERCISES:
Implementation of (Using Matlab)
1. Massive MIMO hybrid beamforming
2. Single cell massive MIMO downlink communications
3. Multicell massive MIMO downlink communications.
4. Precoding in massive MIMO single cell and multicell downlink communications
5. Channel estimation in massive MIMO system

COURSE OUTCOMES:
CO1: Understand and explain massive MIMO networks.
CO2: Analyze massive MIMO propagation channels and their capacity bounds
CO3: Examine channel estimation techniques for single cell system.
CO4: Analyze channel estimation techniques for multi cell system.
CO5: Explain the concepts underlining the deployment of single and multicell massive MIMO systems.

TOTAL: 60 PERIODS

TEXT BOOKS

REFERENCES
CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CEC333 ADVANCED WIRELESS COMMUNICATION TECHNIQUES L T P C
3 0 0 3

COURSE OBJECTIVES
- To understand the evolving paradigm of cooperative communication
- To understand concepts related to green wireless communication
- To enable the student to understand the different power saving strategies and energy efficient signal, system and network design.
- To expose the student to the energy saving techniques adopted in existing wireless components
- To provide understanding on protocols and networks related to green future wireless communication technologies.

UNIT I COOPERATIVE COMMUNICATIONS AND GREEN CONCEPTS 9
Network architectures and research issues in cooperative cellular wireless networks; Cooperative communications in OFDM and MIMO cellular relay networks: issues and approaches; Fundamental trade-offs on the design of green radio networks, Green modulation and coding schemes.

UNIT II COOPERATIVE TECHNIQUES 9
Cooperative techniques for energy efficiency, Cooperative base station techniques for cellular wireless networks; Turbo base stations; Antenna architectures for cooperation; Cooperative communications in 3GPP LTE-Advanced, Partial information relaying and Coordinated multi-point transmission in LTE-Advanced.

UNIT III RELAY-BASED COOPERATIVE CELLULAR NETWORKS 9
Distributed space-time block codes; Collaborative relaying in downlink cellular systems; Radio resource optimization; Adaptive resource allocation; Cross-layer scheduling design for cooperative wireless two-way relay networks; Network coding in relay-based networks.

UNIT IV GREEN RADIO NETWORKS 9
UNIT V ACCESS TECHNIQUES FOR GREEN RADIO NETWORKS

Cross-layer design of adaptive packet scheduling for green radio networks; Energy-efficient relaying for cooperative cellular wireless networks; Energy performance in TDD-CDMA multihop cellular networks; Resource allocation for green communication in relay-based cellular networks; Green Radio Test-Beds and Standardization Activities.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: The student would be able to appreciate the necessity and the design aspects of cooperative communication
CO2: The student would be able to appreciate the necessity and the design aspects of green wireless communication.
CO3: The student would be able to evolve new techniques in wireless communication
CO4: The students would be able to demonstrate the feasibility of using mathematical models using simulation tools.
CO5: The student would be able to demonstrate the impact of the green engineering solutions in a global, economic, environmental and societal context.

TEXT BOOKS

REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation
COURSE OBJECTIVES:
The student should be made to:
● Understand the basics of satellite orbits
● Understand the satellite segment and earth segment
● understand Link Power budget calculation
● Understand the various satellite access and coding technology
● Understand the applications of satellite

UNIT I SATELLITE ORBITS 9

UNIT II SPACE SEGMENT 9
Spacecraft Technology- Structure, Primary power, Attitude and Orbit control, Thermal control and Propulsion, communication Payload and supporting subsystems, Telemetry, Tracking and command-Transponders Antenna Subsystem.

UNIT III SATELLITE LINK DESIGN 9
Basic link analysis, Uplink and Downlink Design equation, Free space loss-Atmospheric effects, Ionospheric scintillation, Rain induced attenuation and interference, system noise temperature, Link Design with and without frequency reuse.

UNIT IV SATELLITE ACCESS AND CODINGTechniques 9

UNIT V SATELLITE APPLICATIONS 9
INTELSAT Series, INSAT, VSAT, Mobile satellite services: GSM, GPS, LEO, MEO, Satellite Navigational System. GPS-Position Location Principles, Differential GPS, Direct Broadcast satellites (DBS/DTH).

COURSE OUTCOMES:
At the end of the course, the student will be able to:
CO1: Identify the satellite orbits
CO2: Analyze the satellite subsystems
CO3: Evaluate the satellite link power budget
CO4: Identify access technology for satellite
CO5: Design various satellite applications

TEXT BOOKS:
REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:
- Sketch the Evolution of Management.
- Extract the functions and principles of management.
- Learn the application of the principles in an organization.
- Study the various HR related activities.
- Analyze the position of self and company goals towards business.

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS 9
Definition of Management – Science or Art – Manager Vs Entrepreneur- types of managers-
managerial roles and skills – Evolution of Management –Scientific, human relations, system and
contingency approaches– Types of Business organization- Sole proprietorship, partnership,
company-public and private sector enterprises- Organization culture and Environment – Current
trends and issues in Management.

UNIT II PLANNING 9
Nature and purpose of planning – Planning process – Types of planning – Objectives – Setting
objectives – Policies – Planning premises – Strategic Management – Planning Tools and
Techniques – Decision making steps and process.

UNIT III ORGANISING 9
Nature and purpose – Formal and informal organization – Organization chart – Organization
structure – Types – Line and staff authority – Departmentalization – delegation of authority –
Centralization and decentralization – Job Design - Human Resource Management – HR Planning,
Recruitment, selection, Training and Development, Performance Management, Career planning
and management.

UNIT IV DIRECTING 9
Foundations of individual and group behaviour– Motivation – Motivation theories – Motivational
techniques – Job satisfaction – Job enrichment – Leadership – types and theories of leadership –
Communication – Process of communication – Barrier in communication – Effective
communication – Communication and IT.

UNIT V CONTROLLING 9
System and process of controlling – Budgetary and non - Budgetary control techniques – Use of
computers and IT in Management control – Productivity problems and management – Control and
performance – Direct and preventive control – Reporting.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Upon completion of the course, students will be able to have clear understanding of
managerial functions like planning, organizing, staffing, leading & controlling.
CO2: Have same basic knowledge on international aspect of management.
CO3: Ability to understand management concept of organizing.
CO4: Ability to understand management concept of directing.
CO5: Ability to understand management concept of controlling.

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.66</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

GE3752 TOTAL QUALITY MANAGEMENT L T P C

3 0 0 3

COURSE OBJECTIVES:
- Teach the need for quality, its evolution, basic concepts, contribution of quality gurus, TQM framework, Barriers and Benefits of TQM.
- Explain the TQM Principles for application.
- Define the basics of Six Sigma and apply Traditional tools, New tools, Benchmarking and FMEA.
- Describe Taguchi’s Quality Loss Function, Performance Measures and apply Techniques like QFD, TPM, COQ and BPR.
- Illustrate and apply QMS and EMS in any organization.

UNIT I INTRODUCTION 9
Introduction - Need for quality - Evolution of quality - Definition of quality - Dimensions of product and service quality –Definition of TQM – Basic concepts of TQM - Gurus of TQM (Brief introduction) -- TQM Framework - Barriers to TQM –Benefits of TQM.

UNIT II TQM PRINCIPLES 9
Supplier selection, Supplier Rating and Relationship development.

UNIT III
TQM TOOLS & TECHNIQUES I
9

UNIT IV
TQM TOOLS & TECHNIQUES II
9
Quality circles – Quality Function Deployment (QFD) - Taguchi quality loss function – TPM – Concepts, improvement needs – Performance measures- Cost of Quality - BPR.

UNIT V
QUALITY MANAGEMENT SYSTEM
9

COURSE OUTCOMES:

CO1: Ability to apply TQM concepts in a selected enterprise.

CO2: Ability to apply TQM principles in a selected enterprise.

CO3: Ability to understand Six Sigma and apply Traditional tools, New tools, Benchmarking and FMEA.

CO4: Ability to understand Taguchi’s Quality Loss Function, Performance Measures and apply QFD, TPM, COQ and BPR.

CO5: Ability to apply QMS and EMS in any organization.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVg.</td>
<td>2.5</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

TEXT BOOK:

REFERENCES:

GE3753 ENGINEERING ECONOMICS AND FINANCIAL ACCOUNTING L T P C 3 0 0 3

COURSE OBJECTIVES:
- Understanding the concept of Engineering Economics.
- Implement various micro economics concept in real life.
- Gaining knowledge in the field of macro economics to enable the students to have better understanding of various components of macro economics.
- Understanding the different procedures of pricing.
- Learn the various cost related concepts in micro economics.

UNIT I DEMAND & SUPPLY ANALYSIS
Managerial Economics - Relationship with other disciplines - Firms: Types, objectives and goals - Managerial decisions - Decision analysis.Demand - Types of demand - Determinants of demand - Demand function – Demand elasticity - Demand forecasting - Supply - Determinants of supply - Supply function -Supply elasticity.

UNIT II PRODUCTION AND COST ANALYSIS

UNIT III PRICING
Determinants of Price - Pricing under different objectives and different market structures - Price discrimination - Pricing methods in practice.

UNIT IV FINANCIAL ACCOUNTING (ELEMENTARY TREATMENT)
Balance sheet and related concepts - Profit & Loss Statement and related concepts - Financial Ratio Analysis - Cash flow analysis - Funds flow analysis - Comparative financial statements - Analysis & Interpretation of financial statements.

UNIT V CAPITAL BUDGETING (ELEMENTARY TREATMENT)
Investments - Risks and return evaluation of investment decision - Average rate of return - Payback Period - Net Present Value - Internal rate of return.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Students able to
CO1: Upon successful completion of this course, students will acquire the skills to apply the basics of economics and cost analysis to engineering and take economically sound decisions
CO2: Evaluate the economic theories, cost concepts and pricing policies
CO3: Understand the market structures and integration concepts
CO4: Understand the measures of national income, the functions of banks and concepts of globalization
CO5: Apply the concepts of financial management for project appraisal

TEXT BOOKS:

REFERENCES:
5. Dr. S. N. Maheswari and Dr. S.K. Maheshwari: Financial Accounting, Vikas, 2009

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

AVg. 2.5 2.4 3 - 2 - - - - - - 2 - - 1.8 2.6 2

1 - low, 2 - medium, 3 - high, '-'- no correlation

GE3754 HUMAN RESOURCE MANAGEMENT L T P C
3 0 0 3

COURSE OBJECTIVE:
- To provide knowledge about management issues related to staffing,
- To provide knowledge about management issues related to training,
- To provide knowledge about management issues related to performance
- To provide knowledge about management issues related to compensation
- To provide knowledge about management issues related to human factors consideration and compliance with human resource requirements.

UNIT I INTRODUCTION TO HUMAN RESOURCE MANAGEMENT 9

UNIT II HUMAN RESOURCE PLANNING 9
UNIT III TRAINING AND EXECUTIVE DEVELOPMENT

Types of training and Executive development methods – purpose – benefits.

UNIT IV EMPLOYEE COMPENSATION

UNIT V PERFORMANCE EVALUATION AND CONTROL

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Students would have gained knowledge on the various aspects of HRM

CO2: Students will gain knowledge needed for success as a human resources professional.

CO3: Students will develop the skills needed for a successful HR manager.

CO4: Students would be prepared to implement the concepts learned in the workplace.

CO5: Students would be aware of the emerging concepts in the field of HRM

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1-1-1-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1-2-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1-2-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1-1-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1-1-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVG.</td>
<td>2.8</td>
<td>2.8</td>
<td>1.8</td>
<td>2.6</td>
<td>2.6</td>
<td>2.2</td>
<td>2.2</td>
<td>1.8</td>
<td>2.4</td>
<td>1</td>
<td>1.4</td>
<td>1</td>
<td>1-1.4-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

GE3755 KNOWLEDGE MANAGEMENT

COURSE OBJECTIVES:

The student should be made to:

- Learn the Evolution of Knowledge management.
- Be familiar with tools.
- Be exposed to Applications.
- Be familiar with some case studies.
UNIT I INTRODUCTION
Introduction: An Introduction to Knowledge Management - The foundations of knowledge management- including cultural issues- technology applications organizational concepts and processes- management aspects- and decision support systems. The Evolution of Knowledge management: From Information Management to Knowledge Management - Key Challenges Facing the Evolution of Knowledge Management - Ethics for Knowledge Management.

UNIT II CREATING THE CULTURE OF LEARNING AND KNOWLEDGE SHARING

UNIT III KNOWLEDGE MANAGEMENT-THE TOOLS
Telecommunications and Networks in Knowledge Management - Internet Search Engines and Knowledge Management - Information Technology in Support of Knowledge Management - Knowledge Management and Vocabulary Control - Information Mapping in Information Retrieval - Information Coding in the Internet Environment - Repackaging Information.

UNIT IV KNOWLEDGE MANAGEMENT APPLICATION
Components of a Knowledge Strategy - Case Studies (From Library to Knowledge Center, Knowledge Management in the Health Sciences, Knowledge Management in Developing Countries).

UNIT V FUTURE TRENDS AND CASE STUDIES
Advanced topics and case studies in knowledge management - Development of a knowledge management map/plan that is integrated with an organization's strategic and business plan - A case study on Corporate Memories for supporting various aspects in the process life -cycles of an organization.

COURSE OUTCOMES:
Upon completion of the course, the student should be able to:
CO1: Understand the process of acquirey knowledge from experts
CO2: Understand the learning organization.
CO3: Use the knowledge management tools.
CO4: Develop knowledge management Applications.
CO5: Design and develop enterprise applications.

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.4</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, \(^-\) - no correlation

TEXT BOOK:
GE3792 INDUSTRIAL MANAGEMENT

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To study the basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.
- To study the planning; organizing and staffing functions of management in professional organization.
- To study the leading; controlling and decision making functions of management in professional organization.
- To learn the organizational theory in professional organization.
- To learn the principles of productivity and modern concepts in management in professional organization.

UNIT – I INTRODUCTION TO MANAGEMENT

Management: Introduction; Definition and Functions – Approaches to the study of Management – Mintzberg’s Ten Managerial Roles – Principles of Taylor; Fayol; Weber; Parker – Forms of Organization: Sole Proprietorship; Partnership; Company (Private and Public); Cooperative – Public Sector Vs Private Sector Organization – Business Environment: Economic; Social; Political; Legal – Trade Union: Definition; Functions; Merits & Demerits.

UNIT – II FUNCTIONS OF MANAGEMENT - I

Planning: Characteristics; Nature; Importance; Steps; Limitation; Planning Premises; Strategic Planning; Vision & Mission statement in Planning – Organizing: Organizing Theory; Principles; Types; Departmentalization; Centralization and Decentralization; Authority & Responsibility – Staffing: Systems Approach; Recruiting and Selection Process; Human Resource Development (HRD) Concept and Design.

UNIT – III FUNCTIONS OF MANAGEMENT - II

Directing (Leading): Leadership Traits; Style; Morale; Managerial Grids (Blake-Mounton, Reddin) – Communication: Purpose; Model; Barriers – Controlling: Process; Types; Levels; Guidelines; Audit (External, Internal, Merits); Preventive Control – Decision Making: Elements; Characteristics; Nature; Process; Classifications.

UNIT – IV ORGANIZATION THEORY

Organizational Conflict: Positive Aspects; Individual; Role; Interpersonal; Intra Group; Inter Group; Conflict Management – Maslow’s hierarchy of needs theory; Herzberg’s motivation-hygience theory; McClelland’s three needs motivation theory; Vroom’s valence-expectancy theory – Change Management: Concept of Change; Lewin’s Process of Change Model; Sources of Resistance; Overcoming Resistance; Guidelines to managing Conflict.
UNIT – V PRODUCTIVITY AND MODERN TOPICS

Productivity: Concept; Measurements; Affecting Factors; Methods to Improve – Modern Topics (concept, feature/characteristics, procedure, merits and demerits): Business Process Reengineering (BPR); Benchmarking; SWOT/SWOC Analysis; Total Productive Maintenance; Enterprise Resource Planning (ERP); Management of Information Systems (MIS).

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course the students would be able to

CO1 Explain basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.

CO2 Discuss the planning; organizing and staffing functions of management in professional organization.

CO3 Apply the leading; controlling and decision making functions of management in professional organization.

CO4 Discuss the organizational theory in professional organization.

CO5 Apply principles of productivity and modern concepts in management in professional organization.

TEXTBOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation
MANDATORY COURSES I

MX3081 INTRODUCTION TO WOMEN AND GENDER STUDIES

COURSE OUTLINE

UNIT I CONCEPTS
Sex vs. Gender, masculinity, femininity, socialization, patriarchy, public/ private, essentialism, binaryism, power, hegemony, hierarchy, stereotype, gender roles, gender relation, deconstruction, resistance, sexual division of labour.

UNIT II FEMINIST THEORY
Liberal, Marxist, Socialist, Radical, Psychoanalytic, postmodernist, ecofeminist.

UNIT III WOMEN’S MOVEMENTS: GLOBAL, NATIONAL AND LOCAL
Rise of Feminism in Europe and America.
Women's Movement in India.

UNIT IV GENDER AND LANGUAGE
Linguistic Forms and Gender.
Gender and narratives.

UNIT V GENDER AND REPRESENTATION
Advertising and popular visual media.
Gender and Representation in Alternative Media.
Gender and social media.

TOTAL : 45 PERIODS

MX3082 ELEMENTS OF LITERATURE

COURSE OBJECTIVE:
• To make the students aware about the finer sensibilities of human existence through an art form. The students will learn to appreciate different forms of literature as suitable modes of expressing human experience.

1. COURSE CONTENTS

Introduction to Elements of Literature

1. Relevance of literature

a) Enhances Reading, thinking, discussing and writing skills.

b) Develops finer sensibility for better human relationship.

c) Increases understanding of the problem of humanity without bias.
d) Providing space to reconcile and get a cathartic effect.

2. **Elements of fiction**

 a) Fiction, fact and literary truth.
 b) Fictional modes and patterns.
 c) Plot character and perspective.

3. **Elements of poetry**

 a) Emotions and imaginations.
 b) Figurative language.
 c) (Simile, metaphor, conceit, symbol, pun and irony).
 d) Personification and animation.
 e) Rhetoric and trend.

4. **Elements of drama**

 a) Drama as representational art.
 b) Content mode and elements.
 c) Theatrical performance.
 d) Drama as narration, mediation and persuasion.
 e) Features of tragedy, comedy and satire.

3. **READINGS:**

3.1 Textbook:

3.2 *Reference Books:: To be decided by the teacher and student, on the basis of individual student so as to enable him or her to write the term paper.

4. **OTHER SESSION:**

4.1 *Tutorials:
4.2**Laboratory:**

4.3**Project:** The students will write a term paper to show their understanding of a particular piece of literature

5. **ASSESSMENT:**

5.1**HA:**

5.2**Quizzes-HA:**

5.3**Periodical Examination:** one

5.4**Project/Lab:** one (under the guidance of the teachers the students will take a volume of poetry, fiction or drama and write a term paper to show their understanding of it in a given context; sociological, psychological, historical, autobiographical etc.

5.5**Final Exam:**

TOTAL : 45 PERIODS

OUTCOME OF THE COURSE:

- Students will be able to understand the relevance of literature in human life and appreciate its aspects in developing finer sensibilities.

MX3083

FILM APPRECIATION

L T P C 3 0 0 0

In this course on film appreciation, the students will be introduced broadly to the development of film as an art and entertainment form. It will also discuss the language of cinema as it evolved over a century. The students will be taught as to how to read a film and appreciate the various nuances of a film as a text. The students will be guided to study film joyfully.

Theme - A: The Component of Films

A-1: The material and equipment
A-2: The story, screenplay and script
A-3: The actors, crew members, and the director
A-4: The process of film making… structure of a film

Theme - B: Evolution of Film Language

B-1: Film language, form, movement etc.
B-2: Early cinema… silent film (Particularly French)
B-3: The emergence of feature films: Birth of a Nation
B-4: Talkies

Theme - C: Film Theories and Criticism/Appreciation

C-1: Realist theory; Auteurists
C-2: Psychoanalytic, Ideological, Feminists
C-3: How to read films?
C-4: Film Criticism / Appreciation

Theme – D: Development of Films

D-1: Representative Soviet films
D-2: Representative Japanese films
D-3: Representative Italian films
D-4: Representative Hollywood film and the studio system

Theme - E: Indian Films

E-1: The early era
E-2: The important films made by the directors
E-3: The regional films
E-4: The documentaries in India

READING:

A Reader containing important articles on films will be prepared and given to the students. The students must read them and present in the class and have discussion on these.

MX3084 DISASTER RISK REDUCTION AND MANAGEMENT L T P C 3 0 0 0

COURSE OBJECTIVE

- To impart knowledge on concepts related to disaster, disaster risk reduction, disaster management
- To acquaint with the skills for planning and organizing disaster response

UNIT I HAZARDS, VULNERABILITY AND DISASTER RISKS 9
Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Types of Disasters: Natural, Human induced, Climate change induced – Earthquake, Landslide, Flood, Drought, Fire etc – Technological disasters- Structural collapse, Industrial accidents, oil spills -Causes, Impacts including social, Economic, political, environmental, health, psychosocial, etc.- Disaster vulnerability profile of India and Tamil Nadu - Global trends in disasters: urban disasters, pandemics, Complex emergencies, - - , Inter relations between Disasters and Sustainable development Goals

UNIT II DISASTER RISK REDUCTION (DRR) 9
Sendai Framework for Disaster Risk Reduction, Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community Based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions / Urban Local Bodies (PRIs/ULBs), States, Centre, and other stakeholders- Early Warning System – Advisories from Appropriate Agencies.- Relevance of indigenous Knowledge, appropriate technology and Local resources.
UNIT III DISASTER MANAGEMENT
Components of Disaster Management – Preparedness of rescue and relief, mitigation, rehabilitation and reconstruction- Disaster Risk Management and post disaster management – Compensation and Insurance- Disaster Management Act (2005) and Policy - Other related policies, plans, programmers and legislation - Institutional Processes and Framework at State and Central Level- (NDMA –SDMA-DDMA-NRDF- Civic Volunteers)

UNIT IV TOOLS AND TECHNOLOGY FOR DISASTER MANAGEMENT

UNIT V DISASTER MANAGEMENT: CASE STUDIES
Discussion on selected case studies to analyse the potential impacts and actions in the contest of disasters-Landslide Hazard Zonation: Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.- Field work-Mock drill -

TOTAL : 45 PERIODS

TEXT BOOKS:
1 Taimpo (2016), Disaster Management and Preparedness, CRC Publications

REFERENCES

COURSE OUTCOME:
CO1: To impart knowledge on the concepts of Disaster, Vulnerability and Disaster Risk reduction (DRR)
CO2: To enhance understanding on Hazards, Vulnerability and Disaster Risk Assessment prevention and risk reduction
CO3: To develop disaster response skills by adopting relevant tools and technology
CO4: Enhance awareness of institutional processes for Disaster response in the country and
CO5: Develop rudimentary ability to respond to their surroundings with potential Disaster response in areas where they live, with due sensitivity

205
CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVG</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

MANDATORY COURSES II

MX3085 WELL-BEING WITH TRADITIONAL PRACTICES-YOGA, AYURVEDA AND SIDDHA L T P C 3 0 0 0

COURSE OBJECTIVES:
- To enjoy life happily with fun filled new style activities that help to maintain health also
- To adapt a few lifestyle changes that will prevent many health disorders
- To be cool and handbill every emotion very smoothly in every walk of life
- To learn to eat cost effective but healthy foods that are rich in essential nutrients
- To develop immunity naturally that will improve resistance against many health disorders

UNIT I HEALTH AND ITS IMPORTANCE 2+4

Health: Definition - Importance of maintaining health - More importance on prevention than treatment
Ten types of health one has to maintain - Physical health - Mental health - Social health - Financial health - Emotional health - Spiritual health - Intellectual health - Relationship health - Environmental health - Occupational/Professional health.

Causes of the above diseases / disorders - Importance of prevention of illness - Takes care of health - Improves quality of life - Reduces absenteeism - Increase satisfaction - Saves time

Simple lifestyle modifications to maintain health - Healthy Eating habits (Balanced diet according to age) Physical Activities (Stretching exercise, aerobics, resisting exercise) - Maintaining BMI-Importance and actions to be taken
UNIT II DIET

Role of diet in maintaining health - energy one needs to keep active throughout the day - nutrients one needs for growth and repair - helps one to stay strong and healthy - helps to prevent diet-related illness, such as some cancers - keeps active and - helps one to maintain a healthy weight - helps to reduce risk of developing lifestyle disorders like diabetes – arthritis – hypertension – PCOD – infertility – ADHD – sleeplessness -helps to reduce the risk of heart diseases - keeps the teeth and bones strong.

Food additives and their merits & demerits - Effects of food additives - Types of food additives - Food additives and processed foods - Food additives and their reactions

Definition of BMI and maintaining it with diet
Importance - Consequences of not maintaining BMI - different steps to maintain optimal BMI

Common cooking mistakes
Different cooking methods, merits and demerits of each method

UNIT III ROLE OF AYURVEDA & SIDDHA SYSTEMS IN MAINTAINING HEALTH 4+4

AYUSH systems and their role in maintaining health - preventive aspect of AYUSH - AYUSH as a soft therapy.

Secrets of traditional healthy living - Traditional Diet and Nutrition - Regimen of Personal and Social Hygiene - Daily routine (Dinacharya) - Seasonal regimens (Ritucharya) - basic sanitation and healthy living environment - Sadvritta (good conduct) - for conducive social life.

Principles of Siddha & Ayurveda systems - Macrocosm and Microcosm theory - Pancheekarana Theory / (Five Element Theory) 96 fundamental Principles - Uyir Thathukkal (Tri-Dosha Theory) - Udal Thathukkal

Prevention of illness with our traditional system of medicine
Primary Prevention - To decrease the number of new cases of a disorder or illness - Health promotion/education, and - Specific protective measures - Secondary Prevention - To lower the rate of established cases of a disorder or illness in the population (prevalence) - Tertiary Prevention - To decrease the amount of disability associated with an existing disorder.

UNIT IV MENTAL WELLNESS 3+4

Emotional health - Definition and types - Three key elements: the subjective experience - the physiological response - the behavioral response - Importance of maintaining emotional health - Role of emotions in daily life - Short term and long term effects of emotional disturbances - Leading a healthy life with emotions - Practices for emotional health - Recognize how thoughts influence emotions - Cultivate positive thoughts - Practice self-compassion - Expressing a full range of emotions.

Sleep - Sleep and its importance for mental wellness - Sleep and digestion.
Immunity - Types and importance - Ways to develop immunity

UNIT V YOGA
Definition and importance of yoga - Types of yoga - How to Choose the Right Kind for individuals according to their age - The Eight Limbs of Yoga - Simple yogasanas for cure and prevention of health disorders - What yoga can bring to our life.

TOTAL : 45 PERIODS

TEXT BOOKS:
1. Nutrition and Dietetics - Ashley Martin, Published by White Word Publications, New York, NY 10001, USA
2. Yoga for Beginners. 35 Simple Yoga Poses to Calm Your Mind and Strengthen Your Body, by Cory Martin, Copyright © 2015 by Althea Press, Berkeley, California

REFERENCES:
1. WHAT WE KNOW ABOUT EMOTIONAL INTELLIGENCE How It Affects Learning, Work, Relationships, and Our Mental Health, by Moshe Zeidner, Gerald Matthews, and Richard D. Roberts

1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799645/
2. Simple lifestyle modifications to maintain health https://www.niddk.nih.gov/health-information/diet-nutrition/changing-habits-better-health#:~:text=Make%20your%20new%20healthy%20habit,t%20have%20time%20to%20cook.
3. Read more: https://www.legit.ng/1163909-classes-food-examples-functions.html
7. BMI https://www.hspm.harvard.edu/nutritionsource/healthy-weight/
 https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations
8. Yoga https://www.healthfyme.com/blog/types-of-yoga/
 https://yogamedicine.com/guide-types-yoga-styles/
 Ayurveda: https://vikaspedia.in/health/ayush/ayurveda-1/concept-of-healthy-living-in-ayurveda
10. CAM : https://www.hindawi.com/journals/ecam/2013/376327/
11. Preventive herbs : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847409/

COURSE OUTCOMES:
After completing the course, the students will be able to:
CO1:Learn the importance of different components of health
CO2:Gain confidence to lead a healthy life
CO3:Learn new techniques to prevent lifestyle health disorders
CO4:Understand the importance of diet and workouts in maintaining health
UNIT I CONCEPTS AND PERSPECTIVES
Meaning of History
Objectivity, Determinism, Relativism, Causation, Generalization in History; Moral judgment in history
Extent of subjectivity, contrast with physical sciences, interpretation and speculation, causation versus evidence, concept of historical inevitability, Historical Positivism.
Science and Technology-Meaning, Scope and Importance, Interaction of science, technology & society, Sources of history on science and technology in India.

UNIT II HISTORIOGRAPHY OF SCIENCE AND TECHNOLOGY IN INDIA
Introduction to the works of D.D. Kosambi, Dharmpal, Debiprasad Chattopadhyay, Rehman, S. Irfan Habib, Deepak Kumar, Dhruv Raina, and others.

UNIT III SCIENCE AND TECHNOLOGY IN ANCIENT INDIA
Technology in pre-historic period
Beginning of agriculture and its impact on technology
Science and Technology during Vedic and Later Vedic times
Science and technology from 1st century AD to C-1200.

UNIT IV SCIENCE AND TECHNOLOGY IN MEDIEVAL INDIA
Legacy of technology in Medieval India, Interactions with Arabs
Development in medical knowledge, interaction between Unani and Ayurveda and alchemy
Astronomy and Mathematics: interaction with Arabic Sciences
Science and Technology on the eve of British conquest

UNIT V SCIENCE AND TECHNOLOGY IN COLONIAL INDIA
Science and the Empire
Indian response to Western Science
Growth of techno-scientific institutions

UNIT VI SCIENCE AND TECHNOLOGY IN A POST-INDEPENDENT INDIA
Science, Technology and Development discourse
Shaping of the Science and Technology Policy
Developments in the field of Science and Technology
Science and technology in globalizing India
Social implications of new technologies like the Information Technology and Biotechnology

TOTAL : 45 PERIODS
Pre-Requisite: None. (Desirable: Universal Human Values 1, Universal Human Values 2)

COURSE OBJECTIVES:
- This course will begin with a short overview of human needs and desires and how different political-economic systems try to fulfill them. In the process, we will end with a critique of different systems and their implementations in the past, with possible future directions.

COURSE TOPICS:
Considerations for humane society, holistic thought, human being’s desires, harmony in self, harmony in relationships, society, and nature, societal systems. (9 lectures, 1 hour each)

(Refs: A Nagaraj, M K Gandhi, JC Kumarappa)

Capitalism – Free markets, demand-supply, perfect competition, laissez-faire, monopolies, imperialism. Liberal democracy. (5 lectures)

(Refs: Adam smith, J S Mill)

Fascism and totalitarianism. World war I and II. Cold war. (2 lectures)

Communism – Mode of production, theory of labour, surplus value, class struggle, dialectical materialism, historical materialism, Russian and Chinese models. (5 lectures)

(Refs: Marx, Lenin, Mao, M N Roy)

Welfare state. Relation with human desires. Empowered human beings, satisfaction. (3 lectures)

Gandhian thought. Swaraj, Decentralized economy & polity, Community. Control over one’s lives. Relationship with nature. (6 lectures)

(Refs: M K Gandhi, Schumacher, Kumarappa)

Essential elements of Indian civilization. (3 lectures)

(Refs: Pt Sundarlal, R C Mazumdar, Dharampal)

Technology as driver of society, Role of education in shaping of society. Future directions. (4 lectures) (Refs: Nandkishore Acharya, David Dixon, Levis Mumford)

Conclusion (2 lectures)

Total lectures: 39

Preferred Textbooks: See Reference Books
Reference Books: Authors mentioned along with topics above. Detailed reading list will be provided.

GRADING:

<table>
<thead>
<tr>
<th>Component</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid sems</td>
<td>30</td>
</tr>
<tr>
<td>End sem</td>
<td>20</td>
</tr>
<tr>
<td>Home Assign</td>
<td>10</td>
</tr>
<tr>
<td>Term paper</td>
<td>40</td>
</tr>
</tbody>
</table>

TOTAL : 45 PERIODS

COURSE OUTCOME:

- The students will get an understanding of how societies are shaped by philosophy, political and economic system, how they relate to fulfilling human goals & desires with some case studies of how different attempts have been made in the past and how they have fared.

MX3088 STATE, NATION BUILDING AND POLITICS IN INDIA

COURSE OBJECTIVE:

The objective of the course is to provide an understanding of the state, how it works through its main organs, primacy of politics and political process, the concept of sovereignty and its changing contours in a globalized world. In the light of this, an attempt will be made to acquaint the students with the main development and legacies of national movement and constitutional development in India, reasons for adopting a Parliamentary-federal system, the broad philosophy of the Constitution of India and the changing nature of Indian Political System. Challenges/ problems and issues concerning national integration and nation-building will also be discussed in the contemporary context with the aim of developing a future vision for a better India.

TOPICS:

Understanding the need and role of State and politics.

Development of Nation-State, sovereignty, sovereignty in a globalized world.

Organs of State – Executive, Legislature, Judiciary. Separation of powers, forms of government-unitary-federal, Presidential-Parliamentary,
The idea of India.

1857 and the national awakening.

1885 Indian National Congress and development of national movement – its legacies. Constitution making and the Constitution of India.

Goals, objective and philosophy.

Why a federal system?

National integration and nation-building.

Challenges of nation-building – State against democracy (Kothari)

New social movements.
The changing nature of Indian Political System, the future scenario.
What can we do?

OUTCOME OF THE COURSE:
It is expected that this course will make students aware of the theoretical aspect of the state, its organs, its operationalization aspect, the background and philosophy behind the founding of the present political system, broad streams and challenges of national integration and nation-building in India. It will equip the students with the real understanding of our political system/ process in correct perspective and make them sit up and think for devising ways for better participation in the system with a view to making the governance and delivery system better for the common man who is often left unheard and unattended in our democratic setup besides generating a lot of dissatisfaction and difficulties for the system.

SUGGESTED READING:

TOTAL : 45 PERIODS

MX3089 INDUSTRIAL SAFETY L T P C
3 0 0 0

COURSE OBJECTIVES
- To Understand the Introduction and basic Terminologies safety.
- To enable the students to learn about the Important Statutory Regulations and standards.
- To enable students to Conduct and participate the various Safety activities in the Industry.
- To have knowledge about Workplace Exposures and Hazards.
- To assess the various Hazards and consequences through various Risk Assessment Techniques.

UNIT I SAFETY TERMINOLOGIES
Hazard-Types of Hazard- Risk-Hierarchy of Hazards Control Measures-Lead indicators- lag Indicators-Flammmability- Toxicity Time-weighted Average (TWA) - Threshold LimitValue (TLV) - Short Term Exposure Limit (STEL)- Immediately dangerous to life or health (IDLH)- acute and chronic Effects- Routes of Chemical Entry-Personnel Protective Equipment- Health and Safety Policy-Material Safety Data Sheet MSDS

UNIT II STANDARDS AND REGULATIONS
UNIT III SAFETY ACTIVITIES

UNIT IV WORKPLACE HEALTH AND SAFETY
Noise hazard- Particulate matter- musculoskeletal disorder improper sitting poster and lifting Ergonomics RULE & REBA- Unsafe act & Unsafe Condition- Electrical Hazards- Crane Safety-Toxic gas Release

UNIT V HAZARD IDENTIFICATION TECHNIQUES
Job Safety Analysis-Preliminary Hazard Analysis-Failure mode and Effects Analysis- Hazard and Operability- Fault Tree Analysis- Event Tree Analysis Qualitative and Quantitative Risk Assessment- Checklist Analysis- Root cause analysis- What-If Analysis- and Hazard Identification and Risk Assessment

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Course outcomes on completion of this course the student will be able:
CO1: Understand the basic concept of safety.
CO2: Obtain knowledge of Statutory Regulations and standards.
CO3: Know about the safety Activities of the Working Place.
CO4: Analyze on the impact of Occupational Exposures and their Remedies
CO5: Obtain knowledge of Risk Assessment Techniques.

TEXTBOOKS
2. L. M. Deshmukh Industrial Safety Management: Hazard Identification and Risk Control McGraw-Hill Education

REFERENCES
5. Society of Safety Engineers, USA

ONLINE RESOURCES
<table>
<thead>
<tr>
<th>Course Outcome(s)</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 P O1 O2 PS O1 PS O2 PS O3</td>
</tr>
<tr>
<td>CO1</td>
<td>Understand the basic concept of safety.</td>
<td>3 3 3 1 1 3 2 2 3 3 1 3 3 3</td>
</tr>
<tr>
<td>CO2</td>
<td>Obtain knowledge of Statutory Regulations and standards.</td>
<td>2 3 2 2 1 3 2 3 3 2 1 3 3 3</td>
</tr>
<tr>
<td>CO3</td>
<td>Know about the safety Activities of the Working Place.</td>
<td>2 2 2 2 1 2 2 2 3 2 1 2 3 3 3</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyze on the impact of Occupational Exposures and their Remedies</td>
<td>3 3 3 2 2 3 2 2 3 2 1 3 3 3 3</td>
</tr>
<tr>
<td>CO5</td>
<td>Obtain knowledge of Risk Assessment Techniques.</td>
<td>3 2 3 2 2 3 2 2 3 2 2 3 3 3 3</td>
</tr>
<tr>
<td></td>
<td>Industrial safety</td>
<td>3 3 3 2 1 3 2 2 3 2 1 3 3 3 3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation
OPEN ELECTIVE I

OAS351 SPACE SCIENCE

COURSE OBJECTIVES:
- To outline the space environment and their effects.
- To extend the origin of universe and development.
- To classify the galaxies and their evolution.
- To interpret the variable stars in the galaxies.
- To explain theory of formation of our solar system.

UNIT I INTRODUCTION

UNIT II ORIGIN OF UNIVERSE
Early history of the universe – Big-Bang and Hubble expansion model of the universe – cosmic microwave background radiation – dark matter and dark energy.

UNIT III GALAXIES
Galaxies, their evolution and origin – active galaxies and quasars – Galactic rotation – Stellar populations – galactic magnetic field and cosmic rays.

UNIT IV STARS

UNIT V SOLAR SYSTEM

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On successful completion of this course, the student will be able to
CO1: Obtain a broad, basic knowledge of the space sciences.
CO2: Explain the scientific concepts such as evolution by means of natural selection, age of the Earth and solar system and the Big-Bang.
CO3: Describe the main features and formation theories of the various types of observed galaxies, in particular the Milky Way.
CO4: Explain stellar evolution, including red giants, supernovas, neutron stars, pulsars, white dwarfs and black holes, using evidence and presently accepted theories;
CO5: Describe the presently accepted formation theories of the solar system based upon observational and physical constraints;

TEXT BOOKS:

REFERENCES:

OIE351 INTRODUCTION TO INDUSTRIAL ENGINEERING L T P C 3 0 0 3

COURSE OBJECTIVES:
The objective of this course is to provide foundation in Industrial Engineering in order to enable the students to make significant contributions for improvements in diverse organizations.
- Explain the concepts productivity and productivity measurement approaches.
- Explain the basic principles in facilities planning and plant location.
- Apply work study and ergonomic principles to design workplaces for the improvement of human performance
- Impart knowledge to design and implement Statistical Process control in any industry.
- Recognize the concept of Production and Operations Management in creating and enhancing a firm’s competitive advantages

UNIT I INTRODUCTION 9

UNIT II PLANT LOCATION AND LAYOUT 9

UNIT III WORK SYSTEM DESIGN& ERGONOMICS 9

UNIT IV STATISTICAL QUALITY CONTROL 9
UNIT V PRODUCTION PLANNING AND CONTROL

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course, Students will be able to
CO1: Ability To define the concepts of productivity and productivity measurement approaches.
CO2: Ability to evaluate appropriate location models for various facility types and design various facility layouts
CO3: Ability To conduct a method study and time study to improve the efficiency of the system.
CO4: Ability to Control the quality of processes using control charts in manufacturing/service industries.
CO5: Ability to define the Planning strategies and Material Requirement Plan.

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AVG. 2.2</td>
<td>2.5</td>
<td>1.3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-" - no correlation

TEXT BOOK:

REFERENCES:
2. Martand Telsang, 2006, Industrial Engineering and Production Management, S. Chand and Company

OBT351 FOOD, NUTRITION AND HEALTH L T P C 3 0 0 3

COURSE OBJECTIVES:
- Build knowledge and an overview on general aspects of nutrition and health.
- Distinguish the nutritive value of various food items, BMI calculation differentiating super junk, and functional foods in the market.
- To Solve the real-world problems based on nutrition and health

UNIT I FOOD AND MICROBIOLOGY OF HEALTH:
Food resources (plant, animal, microbes); Overview of current production systems; constraints and necessity of novel strategies. Functional and “Super” Foods - role in optimal nutrition. Sugar, protein and fat substitutes. Food and behavior- physiological disturbances in alcoholism, drug abuse and

UNIT II NUTRIENTS AND FOOD ADDITIVES:
9

UNIT III NANO FOOD TECHNOLOGY:
9

Nano materials as food components, food packaging and nano materials, policies on usage of nanomaterials in foods. Food product development: steps involved in food product development, shelf-life assessment.

UNIT IV FOOD RELATED NUTRITIONAL DISORDERS AND ENERGY CALCULATION:
9

UNIT V CONSUMERS ON GM FOODS AND CONTEMPORARY ISSUES:
9

Global perspective of consumers on GM foods; Major concerns of transgenic, foods GM ingredients in food products. (labeling, bioavailability, safety aspects); regulatory agencies involved in GM foods, Case studies- GM foods.

TOTAL:45 PERIODS

TEXT BOOK(S):

REFERENCE BOOKS:

Expected Course Outcome:
1. To be able to understand the nutritional values of the various types of foods
2. To be able to Analyze the role of food in the metabolic activity of the healthy diet
3. To be able to infer the BMI calculation and stress related diseases.

4. To be able to elaborate the independent decision on the choice of food to prevent lifestyle disorders and diseases.

5. To be able to assess about the food laws governance.

6. To be able to compare junk, modified and super foods.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L T P C</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCE351</td>
<td>Environmental and Social Impact Assessment</td>
<td>3 0 0 3</td>
</tr>
</tbody>
</table>

Course Objective:
- To impart the knowledge and skills to identify, assess and mitigate the environmental and social impacts of developmental projects.

Unit I: Introduction
- Impacts of Development on Environment – Rio Principles of Sustainable Development
- Environmental Impact Assessment (EIA) – Objectives
- Historical development
- EIA Types
- EIA in project cycle
- EIA Notification and Legal Framework
- Stakeholders and their Role in EIA
- Selection & Registration Criteria for EIA Consultants

Unit II: Environmental Assessment
- Screening and Scoping in EIA
- Drafting of Terms of Reference
- Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise and energy, flora and fauna
- Matrices – Networks
- Checklist Methods
- Mathematical models for Impact prediction
- Analysis of alternatives

Unit III: Environmental Management Plan
- Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna
- Environmental Monitoring Plan
- EIA Report Preparation
- Review of EIA Reports
- Public Hearing
- Environmental Clearance Post Project Monitoring

Unit IV: Socio Economic Assessment
- Baseline monitoring of Socio economic environment
- Identification of Project Affected Personal
- Rehabilitation and Resettlement Plan
- Economic valuation of Environmental impacts
- Cost benefit Analysis

Unit V: Case Studies
- EIA case studies pertaining to Infrastructure Projects
- Real Estate Development
- Roads and Bridges
- Mass Rapid Transport Systems
- Ports and Harbor
- Airports
- Dams and Irrigation projects
- Power plants
- CETPs
- Waste Processing and Disposal facilities
- Mining Projects

Total: 45 Periods

Course Outcomes:
The students completing the course will have ability to

- **CO1:** carry out scoping and screening of developmental projects for environmental and social assessments

- **CO2:** explain different methodologies for environmental impact prediction and assessment

- **CO3:** plan environmental impact assessments and environmental management plans

- **CO4:** evaluate environmental impact assessment reports
TEXTBOOKS:

REFERENCES:

OEE351 RENEWABLE ENERGY SYSTEM L T P C 3 0 0 3

COURSE OBJECTIVES:
- To Provide knowledge about various renewable energy technologies
- To enable students to understand and design a PV system.
- To provide knowledge about wind energy system.
- To Provide knowledge about various possible hybrid energy systems
- To gain knowledge about application of various renewable energy technologies

UNIT I INTRODUCTION
Primary energy sources, renewable vs. non-renewable primary energy sources, renewable energy resources in India, Current usage of renewable energy sources in India, future potential of renewable energy in power production and development of renewable energy technologies.

UNIT II SOLAR ENERGY

UNIT III WIND ENERGY
Wind energy principles, wind site and its resource assessment, wind assessment, Factors influencing wind, wind turbine components, wind energy conversion systems (WECS), Classification of WECS devices, wind electric generating and control systems, characteristics and applications.
UNIT IV BIO-ENERGY

UNIT V OTHER TYPES OF ENERGY
Energy conversion from Hydrogen and Fuel cells, Geo thermal energy Resources, types of wells, methods of harnessing the energy, potential in India. OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants and their economics.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course students will be able to:
CO1: Attained knowledge about various renewable energy technologies
CO2: Ability to understand and design a PV system.
CO3: Understand the concept of various wind energy system.
CO4: Gained knowledge about various possible hybrid energy systems
CO5: Attained knowledge about various application of renewable energy technologies

REFERENCES
2. Tiwari and Ghosal/ Narosa, ‘Renewable energy resources’.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Av.</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-'- no correlation

OEI351 INTRODUCTION TO INDUSTRIAL INSTRUMENTATION AND CONTROL

COURSE OBJECTIVES:
- To introduce common unit operations carried out in process industries.
- To impact knowledge about the important unit operations taking place in process industries.
- To prepare them to take up a case study on selected process industries like petrochemical industry, power plant industry and paper & pulp industry to make the students understand the different measurement and control techniques for important processes.

- Facilitate the students to apply knowledge to select appropriate measurement technique and control strategy for a given process.

UNIT I COMMON UNIT OPERATIONS IN PROCESS INDUSTRIES -I 9
Unit Operation, Measurement and Control: Transport of solid, liquid and gases - Evaporators – Crystallizers-Dryers.

UNIT II COMMON UNIT OPERATIONS IN PROCESS INDUSTRIES -II 9
Unit Operation, Measurement and Control: Distillation – Refrigeration processes – Chemical reactors.

UNIT III PROCESS MEASUREMENT AND CONTROL IN PETROCHEMICAL INDUSTRY 9
Process flow diagram of Petro Chemical Industry - Gas oil separation in production platform – wet gas processing – Fractionation Column – Catalytic Cracking unit – Catalytic reforming unit

UNIT IV PROCESS MEASUREMENT AND CONTROL IN THERMAL POWER PLANT INDUSTRY 9
Process flow diagram of Coal fired thermal Power Plant – Coal pulverizer - Deaerator – Boiler drum - Superheater – Turbines.

UNIT V PROCESS MEASUREMENT AND CONTROL IN PAPER & PULP INDUSTRY 9
Process flow diagram of paper and pulp industry – Batch digestor – Continuous sulphated digestor – Control problems on the paper machine.

TOTAL: 45 PERIODS

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc) 5
Study the characteristics of various processing units involved in chemical plant.
Develop the process model by using predefined unit operations (e.g. mixing, distillation, heating) from the library of any process simulator.
Analyse the functioning of each processing units with help of virtual unit operations packages.
Perform a physical property analysis using simulation packages.
Implement distillation column analysis using simulation software.
Create process flow models and diagrams

COURSE OUTCOMES:
Students able to

CO1 understand common unit operations in process industries. L2
CO2 Identify the dynamics of important unit operations in petro chemical industry. L2
CO3 develop understanding of important processes taking place selected case studies namely petrochemical industry, power plant industry and paper & pulp industry. L5
CO4 Select appropriate measurement techniques for selective processes. L5
CO5 Develop controller structure based on the process knowledge. L5
CO6 Analyze the operation and challenges in integrated industrial processes. L4

TEXT BOOKS:

REFERENCES:

List of Open Source Software/ Learning website:
5. https://www.cocosimulator.org/
6. https://dwsim.fossee.in/

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PQ</th>
<th>PSO</th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO6</td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td></td>
<td>3</td>
<td>3</td>
<td>1.5</td>
<td>3</td>
<td>2.5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1.16</td>
<td>1.5</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1- low, 2-medium, 3-high, ‘-‘= no correlation

223
COURSE OBJECTIVES

- To understand the graph models and basic concepts of graphs.
- To study the characterization and properties of trees and graph connectivity.
- To provide an exposure to the Eulerian and Hamiltonian graphs.
- To introduce Graph colouring and explain its significance.
- To provide an understanding of Optimization Graph Algorithms.

UNIT I INTRODUCTION TO GRAPHS

UNIT II TREES AND CONNECTIVITY
Bridges – Trees – Characterization and properties of trees – Cut vertices – Connectivity.

UNIT III TRAVERSABILITY

UNIT IV PLANARITY AND COLOURING

UNIT V OPTIMIZATION GRAPH ALGORITHMS

COURSE OUTCOMES
At the end of this course, the student will be able to

CO1: Apply graph models for solving real world problem.
CO2: Understand the importance the natural applications of trees and graph connectivity.
CO3: Understand the characterization study of Eulerian graphs and Hamiltonian graphs.
CO4: Apply the graph colouring concepts in partitioning problems.
CO5: Apply the standard optimization graph algorithms in solving application problems.

TEXT BOOKS

REFERENCES

<table>
<thead>
<tr>
<th>CO’s-PO’s & PSO’s MAPPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO</td>
</tr>
<tr>
<td>01</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
<tr>
<td>CO6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

OPEN ELECTIVE II

OIE352 RESOURCE MANAGEMENT TECHNIQUES

COURSE OBJECTIVES:
- Learn to formulate linear programming problems and solve LPP using simple algorithm
- Learn to solve networking problems
- Learn to formulate and solve integer programming problems
- Learn to solve Non Linear programming problems
- Learn to understand and solve project management problems

UNIT I LINEAR PROGRAMMING

UNIT II DUALITY AND NETWORKS

UNIT III INTEGER PROGRAMMING
Cutting plan algorithm – Branch and bound methods, Multistage (Dynamic) programming.

UNIT IV CLASSICAL OPTIMISATION THEROY:

UNIT V OBJECT SCHEDULING:
Network diagram representation – Critical path method – Time charts and resource leveling – PERT.

COURSE OUTCOMES:
Upon Completion of the course, the students should be able to:
CO1 : Understand to formulate linear programming problems and solve LPP using simple algorithm
CO2: Understand to solve networking problems
CO3: Understand to formulate and solve integer programming problems
CO4: Understand to solve Non Linear programming problems
CO5: Understand to understand and solve project management problems

CO's-PO's & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's 1</th>
<th>PO's 2</th>
<th>PO's 3</th>
<th>PO's 4</th>
<th>PO's 5</th>
<th>PO's 6</th>
<th>PO's 7</th>
<th>PO's 8</th>
<th>PO's 9</th>
<th>PO's 10</th>
<th>PO's 11</th>
<th>PO's 12</th>
<th>PSO's 1</th>
<th>PSO's 2</th>
<th>PSO's 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>AVG.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-"- no correlation

TEXT BOOK:

REFERENCES:

OMG351 FINTECH REGULATION L T P C
3 0 0 3

COURSE OBJECTIVES:
- To learn about Laws and Regulation
- To acquire the knowledge of Regulations of Fintech firm and their role in Market

UNIT I INTRODUCTION 9
The Role of the Regulators, Equal Treatment and Competition, Need for a regulatory assessment of Fintech, India Regulations, The Risks to Consider, Regtech and SupTech, The rise of TechFins, Regulatory sandboxes, compliance and whistleblowing.

UNIT II INNOVATION AND REGULATION 9

UNIT III CROWDFUNDING AND DIGITAL ASSETS 9
Types of crowdfunding, The Jobs Act, Regulation crowdfunding, Regulation A+, Regulation D crowdfunding, Intrastate offerings, Digital Assets – Three uses of Digital Assets, A world of Alcoins,

UNIT IV MARKETPLACE LENDING AND MOBILE PAYMENTS
9

UNIT V ANTI-MONEY LAUNDERING AND CYBERSECURITY
9
Reporting requirements under the Bank Secrecy Act, Patriot Act, Penalties for violating the BSA, Virtual currencies and the Bank Secrecy Act, Cybersecurity Frameworks, Cybersecurity Act of 2015, Contractual and Self Regulatory obligations.

TOTAL: 45 PERIODS

REFERENCES
6. Lee Reiners, FinTech Law and Policy, 2018

OFD351 HOLISTIC NUTRITION

UNIT I NUTRITION AND HEALTH
9
Introduction to the principles of nutrition; Basics of nutrition including; micronutrients (vitamins and minerals), the energy-yielding nutrients (Carbohydrates, Lipids and Proteins), metabolism, digestion, absorption and energy balance. Lipids: their functions, classification, dietary requirements, digestion & absorption, metabolism and links to the major fatal diseases, heart disease and cancer.

UNIT II AYURVEDA – MIND/BODY HEALING
9
Philosophy of Holistic Nutrition with spiritual and psychological approaches towards attaining optimal health; Principles and practical applications of Ayurveda, the oldest healing system in the world. Three forces – Vata, Pitta and Kapha, that combine in each being into a distinct constitution. Practical dietary and lifestyle recommendations for different constitutions will also be explored in real case studies.

UNIT III NUTRITION AND ENVIRONMENT
9
Based on an underlying philosophy that environments maintain and promote health and that individuals have a right to self-determination and self-knowledge, Nutrition principles which promote
health and prevent disease. Safety of our food supply, naturally occurring and environmental toxins in foods, microbes and food poisoning.

UNIT IV COMPARATIVE DIETS
Evaluating principles of food dynamics, nutrient proportions, holistic individuality, the law of opposites, food combining, and more. Therapeutic benefits and limitations of several alternative diet approaches, including: modern diets (intermittent fasting, macrobiotics), food combining (colour-therapy/rainbow diet), high protein diets (Ketogenic, Paleo), Vegetarian approaches (plant-based/vegetarian/vegan variations, fruitarian, raw food), as well as cleansing and detoxification diets (caffeine, alcohol, and nicotine detoxes, juice fasts).

UNIT V PREVENTIVE HEALTH CARE
Proper nutrition protection against, reverse and/or retard many ailments including: osteoporosis, diabetes, atherosclerosis and high blood pressure, arthritis, cancer, anemia, kidney disease and colon cancer. Current research developments on phytochemicals, antioxidants and nutraceuticals will be explored.

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1 Discuss the role of essential nutrients in physical, mental and emotional wellness
CO2 Discuss the role of deficiencies in essential nutrients in the disease process
CO3 Explain how the standard American diet relates to the disease process
CO4 Identify five contemporary eating “styles” and lists the pros and cons of each
CO5 Discuss the concept of whole foods nutrition and its relationship to wellness

TEXTBOOKS

REFERENCES
1. Modern Nutrition in Health & Disease by Young & Shils.

AI3021 IT IN AGRICULTURAL SYSTEM

COURSE OBJECTIVES:
• To introduce the students to areas of agricultural systems in which IT and computers play a major role.
• To also expose the students to IT applications in precision farming, environmental control systems, agricultural systems management and weather prediction models.

UNIT I PRECISION FARMING
Precision agriculture and agricultural management – Ground based sensors, Remote sensing, GPS, GIS and mapping software, Yield mapping systems, Crop production modeling.
UNIT II ENVIRONMENT CONTROL SYSTEMS 9
Artificial light systems, management of crop growth in greenhouses, simulation of CO$_2$ consumption in greenhouses, on-line measurement of plant growth in the greenhouse, models of plant production and expert systems in horticulture.

UNIT III AGRICULTURAL SYSTEMS MANAGEMENT 9
Agricultural systems - managerial overview, Reliability of agricultural systems, Simulation of crop growth and field operations, Optimizing the use of resources, Linear programming, Project scheduling, Artificial intelligence and decision support systems.

UNIT IV WEATHER PREDICTION MODELS 9
Importance of climate variability and seasonal forecasting, Understanding and predicting world’s climate system, Global climatic models and their potential for seasonal climate forecasting, General systems approach to applying seasonal climate forecasts.

UNIT V E-GOVERNANCE IN AGRICULTURAL SYSTEMS 9
Expert systems, decision support systems, Agricultural and biological databases, e-commerce, e-business systems & applications, Technology enhanced learning systems and solutions, e-learning, Rural development and information society.

TOTAL: 45 PERIODS

TEXTBOOKS:

REFERENCES:

COURSE OUTCOME:
CO1: The students shall be able to understand the applications of IT in remote sensing applications such as Drones etc.
CO2: The students will be able to get a clear understanding of how a greenhouse can be automated and its advantages.
CO3: The students will be able to apply IT principles and concepts for management of field operations.
CO4: The students will get an understanding about weather models, their inputs and applications.
CO5: The students will get an understanding of how IT can be used for e-governance in agriculture.
CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>Course Outcome</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>Overall correlation of CO s to POs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Knowledge of Engineering Sciences</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PO2</td>
<td>Problem Analysis</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO3</td>
<td>Design/ Development of Solutions</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO4</td>
<td>Investigations</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO6</td>
<td>Individual and Team work</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>PO7</td>
<td>Communication</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO8</td>
<td>The Engineer and Society</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO9</td>
<td>Ethics</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PO10</td>
<td>Environment and Sustainability</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO11</td>
<td>Project Management and Finance</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO12</td>
<td>Life Long Learning</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PSO1</td>
<td>To make expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>PSO2</td>
<td>To enhance students ability to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies.</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>PSO3</td>
<td>To inculcate entrepreneurial skills through strong Industry-Institution linkage.</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’- no correlation

OEI352 INTRODUCTION TO CONTROL ENGINEERING

COURSE OBJECTIVES:
- To introduce the control system components and transfer function model with their graphical representation
- To understand the analysis of system in time domain along with steady state error.
To introduce frequency response analysis of systems.
To accord basic knowledge in design of compensators.
To introduce the state space models.

UNIT I MATHEMATICAL MODELLING 9
Introduction – transfer function – simple electrical, mechanical, pneumatic, hydraulic and thermal systems–analogies

UNIT II FEEDBACK CONTROL SYSTEMS 9
Control system components - Block diagram representation of control systems, Reduction of block diagrams, Signal flow graphs, Output to input ratios

UNIT III TIME DOMAIN ANALYSIS 9
Response of systems to different inputs viz., Step impulse, pulse, parabolic and sinusoidal inputs, Time response of first and second order systems, steady state errors and error constants of unity feedback circuit.

UNIT IV STABILITY ANALYSIS 9
Necessary and sufficient conditions, Routh-Hurwitz criteria of stability, Rootlocus and Bodetechniques, Concept and construction, frequency response.

UNIT V STATE SPACE TECHNIQUE 9
State vectors–state space models-Digital Controllers–design aspects.

TOTAL: 45 PERIODS
SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc) 5
1. Explore various controllers presently used in industries.
2. Develop control structures for industrial processes.
3. Implement the controllers for various transfer functions of industrial systems.
4. Using software tools for practical exposures to the controllers used in industries by undergoing training.
5. Realisation of various stability criterion techniques for economical operation of process.

COURSE OUTCOMES:
CO1 To represent and develop systems in different forms using the knowledge gained (L5).
CO2 To analyses the system in time and frequency domain (L4).
CO3 Ability to Derive Transfer function Model of Electrical and Mechanical Systems. (L2)
CO4 Ability to Obtain the transfer Function by the Reduction of Block diagram & Signal flow graph (L3)
CO5 To analyses the stability of physical systems(L4).
CO6 To acquire and analyse knowledge in State variable model for MIMO systems(L1)

TEXT BOOKS:
REFERENCES:

List of Open Source Software/ Learning website:
1. https://nptel.ac.in/courses/112107240
2. https://onlinecourses.nptel.ac.in/noc20_me25/preview
3. https://onlinecourses.nptel.ac.in/noc20_ee90/preview

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 L5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2 L4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>3 L2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>4 L5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5 L4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>6 L4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>AVg.</td>
<td>2.8</td>
<td>2.6</td>
<td>3</td>
<td>2.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
1-low, 2-medium, 3-high, ‘-‘- no correlation
Note: The average value of this course to be used for program articulation matrix.

OPY351 PHARMACEUTICAL NANOTECHNOLOGY L T P C 3 0 0 3

COURSE OBJECTIVES:
- The goal of this course is to provide an insight into the fundamentals of nanotechnology in biomedical and Pharmaceutical research. It will also guide the students to understand how nanomaterials can be used for a diversity of analytical and medicinal rationales.

UNIT I NANOSTRUCTURES
Preparation, properties and characterization - Self-assembling nanostructure - vesicular and micellar polymerization-nanofilms - Metal Nanoparticles- lipid nanoparticles- nanoemulsion - Molecular nanomaterials: dendrimers, etc.,

UNIT II NANOTECHNOLOGY IN BIOMEDICAL INDUSTRY
UNIT III NANOTECHNOLOGY IN CANCER THERAPY 9

UNIT IV NANOTECHNOLOGY IN COSMETICS 9

UNIT V NANOTOXICITY 9
NanoToxicology- introduction, dose relationship- Hazard Classification-Risk assessment and management - factors affecting nano toxicity- Dermal Effects of Nanomaterials, Pulmonary, Neuro and Cardiovascular effects of Nanoparticles - Gene–Cellular and molecular Interactions of Nanomaterials.

TOTAL:45 PERIODS

COURSE OUTCOMES:
The student will be able to
CO1:Identify the process for the preparation and characterization of the different nanostructured materials.
CO2:Apply the nanotechnology in biomedical discipline with related to drug delivery and disease diagnosis
CO3:Develop the process, experiments and apply in identifying in a societal and global context.
CO4:Design and develop the process with suitable equipment for the preparation of nanomaterials in developing cosmetic products.
CO5:Understand the ethical principles to confirm the safety of the nano products with respect to risk assessment and its management.
CO6:Have the knowledge about nanotechnology products and its different applications in a societal and global context.

TEXT BOOKS:

REFERENCES:
CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>Course Outcome Statements</th>
<th>Programme Outcomes (PO)</th>
<th>Programme Specific Outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, 'x' - no correlation
(1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.)

OAE351 AVIATION MANAGEMENT

COURSE OBJECTIVES:

- To acquire solid background of managerial skills in aviation management
- To develop personality to face business difficulties.
- To control multicultural conditions.
- To identify the relevant analytical and logical skills to deal with problems in the airline industry.
- To learn the concepts of performing well in teams, professionalism, and the knowledge acquired in the field of airport planning, airport security, passengers forecasting, aerodromes work etc

UNIT I INTRODUCTION

History of aviation – organisation, global, social & ethical environment – history of Aviation in India – major players in the airline industry - swot analysis of the different Airline companies in India – market potential of airline industry in India – new airport Development plans – current challenges in the airline industry - competition in the Airline industry – domestic and international from an Indian perspective

UNIT II AIRPORT INFRASTRUCTURE AND MANAGEMENT

Airport planning – terminal planning design and operation – airport operations – Airport functions – organisation structure in an airline - airport authority of India - Comparison of global and Indian airport management – role of AAI -airline privatisation - full Privatisation - gradual privatisation – partial privatization

UNIT III AIR TRANSPORT SERVICES

Various airport services - international air transport services – Indian scenario – an Overview of airports in Delhi, Mumbai, Hyderabad and Bangalore – the role of private Operators – airport development fees, rates, tariffs
UNIT IV INSTITUTIONAL FRAMEWORK
Role of DGCA - slot allocation – methodology followed by AFC and DGCA - management of Bilaterals – economic regulations

UNIT V CONTROLLING
Role of air traffic control - airspace and navigational aids – control process – case Studies in airline industry – Mumbai Delhi airport privatisation – Navi Mumbai airport Tendering process – 6 cases in the airline industry

TOTAL : 45 PERIODS

TEXT BOOKS

REFERENCES
5.. Manual of Aerodrome licensing of AAI airports – AAI website – freely downloadable – issue may 2010

COURSE OUTCOMES:
CO1:To interpret business difficulties.
CO2:To Dissect multicultural conditions.
CO3:To identify and apply the relevant analytical and logical skills to deal with problems in the airline industry.
CO4:To Develop well in teams, professionalism etc.
CO5:To apply the knowledge acquired in the field of airport planning, airport security, passengers forecasting, aerodromes work etc.
OPEN ELCTIVE III

OHS351 ENGLISH FOR COMPETITIVE EXAMINATIONS
 L T P C
 3 0 0 3

Course Description:
Students aspiring to take up competitive exams of which the English language is a vital component will find this course useful. Designed for students in the higher semesters, the course will help students to familiarise themselves with those aspects of English that are tested in these examinations.

COURSE OBJECTIVES:
- To train the students in the language components essential to face competitive examinations both at the national (UPSC, Banking, Railway, Defence) and the international level (GRE, TOEFL, IELTS).
- To enhance an awareness of the specific patterns in language testing and the respective skills to tackle verbal reasoning and verbal ability tests.
- To inculcate effective practices in language-learning in order to improve accuracy in usage of grammar and coherence in writing.
- To improve students’ confidence to express their ideas and opinions in formal contexts
- To create awareness of accuracy and precision in communication

UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V
Listening and Speaking – Contextual listening – Listening to instructions – Listening for specific information – Identifying detail, main ideas – Following signpost words – Stress, rhythm and intonation - Speaking to respond and elicit ideas – Guided speaking – Opening phrases – Interactive

LEARNING OUTCOMES:
At the end of the course, learners will be able
- expand their vocabulary and gain practical techniques to read and comprehend a wide range of texts with the emphasis required
- identify errors with precision and write with clarity and coherence
- understand the importance of task fulfilment and the usage of task-appropriate vocabulary
- communicate effectively in group discussions, presentations and interviews
- write topic based essays with precision and accuracy

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

Note: The average value of this course to be used for program articulation matrix.

Teaching Methods:
Instructional methods will involve discussions, taking mock tests on various question papers – Objective, multiple-choice and descriptive. Peer evaluation, self-check on improvement and peer feedback - Practice sessions on speaking assessments, interview and discussion – Using multimedia.

Evaluative Pattern:
Internal Tests – 50%
End Semester Exam - 50%

TEXTBOOKS:

REFERENCEBOOKS:
OMG352 NGOS AND SUSTAINABLE DEVELOPMENT L T P C
 3 0 0 3

COURSE OBJECTIVES

• to understand the importance of sustainable development
• to acquire a reasonable knowledge on the legal frameworks pertaining to pollution control and environmental management
• to comprehend the role of NGOs in attaining sustainable development

Unit I ENVIRONMENTAL CONCERNS 9
Introduction to sustainable development goals, Global responsibility of environmental concern, Importance of environmental preservation, Environmental threats, Pollution and its types, Effects of Pollution, Pollution control, Treatment of wastes

UNIT II ROLE OF NGOS 9
Role of NGO’s in national development, NGO’s and participatory management, Challenges and limitations of NGO’s, Community Development programmes, Role of NGO’s in Community Development programmes, Participation of NGO’s in environment management, Corporate Social responsibility, NGO’s and corporate social responsibility

UNIT III SUSTAINABLE DEVELOPMENT 9
Issues and Challenges of Sustainable Development, Bioenergy, Sustainable Livelihoods and Rural Poor in Sustainable Development, Protecting ecosystem services for sustainable development, Non-renewable sources of energy and its effect, Renewable sources of energy for sustainability, Nuclear resources and Legal Regulation of Hazardous Substances, Sustainable Development: Programme and Policies, Sustainability assessment and Indicators

UNIT IV NGO’S FOR SUSTAINABILITY 9
Civil Society Initiatives in Environment Management, Civil Society Initiatives for Sustainable Development, Global Initiatives in Protecting Global Environment, World Summit on Sustainable Development (Johannesburg Summit 2002), Ecological economics, Environmental sustainability, Social inclusion, Health for all, education for all, Food security and Water security, NGOs and Sustainable Development strategies

UNIT V LEGAL FRAMEWORKS 9
Need for a Legal framework and its enforcement, Legal measures to control pollution, Environmental Legislations in India, Mechanism to implement Environmental Laws in India, Legal Protection of Forests Act 1927, Legal Protection of Wild Life, Role of NGO’s in implementing environmental laws, Challenges in the implementation of environmental legislation

TOTAL 45 : PERIODS

COURSE OUTCOMES

Upon completion of this course, the student will:
CO1 Have a thorough grounding on the issues and challenges being faced in attaining sustainable development

CO2 have a knowledge on the role of NGOs towards sustainable development

CO3 present strategies for NGOs in attaining sustainable development

CO4 recognize the importance of providing energy, food security and health equity to all members of the society without damaging the environment

CO5 understand the environmental legislations

REFERENCE BOOKS

OMG353 DEMOCRACY AND GOOD GOVERNANCE L T P C
3 0 0 3

UNIT I (9)
Structure and Process of Governance: Indian Model of Democracy, Parliament, Party Politics and Electoral Behaviour, Federalism, the Supreme Court and Judicial Activism, Units of Local Governance

UNIT II (9)
Regulatory Institutions – SEBI, TRAI, Competition Commission of India,

UNIT III (9)
Lobbying Institutions: Chambers of Commerce and Industries, Trade Unions, Farmers Associations, etc.

UNIT IV (9)
Contemporary Political Economy of Development in India: Policy Debates over Models of Development in India, Recent trends of Liberalisation of Indian Economy in different sectors, E-governance

UNIT V (9)
Dynamics of Civil Society: New Social Movements, Role of NGO’s, Understanding the political significance of Media and Popular Culture.

TOTAL 45 : PERIODS

REFERENCES:
4. Saima Saeed: Screening the Public Sphere: Media and Democracy in India, 2013

CME365 RENEWABLE ENERGY TECHNOLOGIES

COURSE OBJECTIVES

- To know the Indian and global energy scenario
- To learn the various solar energy technologies and its applications.
- To educate the various wind energy technologies.
- To explore the various bio-energy technologies.
- To study the ocean and geothermal technologies.

UNIT I ENERGY SCENARIO
Indian energy scenario in various sectors – domestic, industrial, commercial, agriculture, transportation and others – Present conventional energy status – Present renewable energy status - Potential of various renewable energy sources - Global energy status - Per capita energy consumption - Future energy plans

UNIT II SOLAR ENERGY

UNIT III WIND ENERGY

UNIT IV BIO-ENERGY

UNIT V OCEAN AND GEOTHERMAL ENERGY

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course the students would be able to
- Discuss the Indian and global energy scenario.
- Describe the various solar energy technologies and its applications.
- Explain the various wind energy technologies.
- Explore the various bio-energy technologies.
- Discuss the ocean and geothermal technologies.

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

1 - low, 2 - medium, 3 - high, ‘-’- no correlation

OME354

APPLIED DESIGN THINKING

COURSE OBJECTIVES:

The course aims to
- Introduce tools & techniques of design thinking for innovative product development
- Illustrate customer-centric product innovation using on simple use cases
- Demonstrate development of Minimum usable Prototypes
- Outline principles of solution concepts & their evaluation
- Describe system thinking principles as applied to complex systems

UNIT I

DESIGN THINKING PRINCIPLES

Exploring Human-centered Design - Understanding the Innovation process, discovering areas of opportunity, Interviewing & empathy-building techniques, Mitigate validation risk with FIR [Forge Innovation rubric] - Case studies
UNIT II ENDUSER-CENTRIC INNOVATION
Importance of customer-centric innovation - Problem Validation and Customer Discovery - Understanding problem significance and problem incidence - Customer Validation. Target user, User persona & user stories. Activity: Customer development process - Customer interviews and field visit.

UNIT III APPLIED DESIGN THINKING TOOLS
Concept of Minimum Usable Prototype [MUP] - MUP challenge brief - Designing & Crafting the value proposition - Designing and Testing Value Proposition; Design a compelling value proposition; Process, tools and techniques of Value Proposition Design.

UNIT IV CONCEPT GENERATION
Solution Exploration, Concepts Generation and MUP design- Conceptualize the solution concept; explore, iterate and learn; build the right prototype; Assess capability, usability and feasibility. Systematic concept generation; evaluation of technology alternatives and the solution concepts.

UNIT V SYSTEM THINKING
System Thinking, Understanding Systems, Examples and Understandings, Complex Systems

TOTAL: 45 PERIODS

COURSE OUTCOMES
At the end of the course, learners will be able to:
CO1: Define & test various hypotheses to mitigate the inherent risks in product innovations.
CO2: Design the solution concept based on the proposed value by exploring alternate solutions to achieve value-price fit.
CO3: Develop skills in empathizing, critical thinking, analyzing, storytelling & pitching.
CO4: Apply system thinking in a real-world scenario.

TEXT BOOKS
1. Steve Blank, (2013), The four steps to epiphany: Successful strategies for products that win, Wiley.

REFERENCES
1. https://www.idealou.com/pages/design-thinking#process
4. https://blog.forgeforward.in/evaluating-product-innovations-e8178e58b86e
6. https://blog.forgeforward.in/startup-failure-is-like-true-lie-7812cdfe9b85

242
MF3003 REVERSE ENGINEERING L T P C 3 0 0 3

COURSE OBJECTIVES:
- The main learning objective of this course is to prepare students for:
 - Applying the fundamental concepts and principles of reverse engineering in product design and development.
 - Applying the concept and principles material characteristics, part durability and life limitation in reverse engineering of product design and development.
 - Applying the concept and principles of material identification and process verification in reverse engineering of product design and development.
 - Analysing the various legal aspect and applications of reverse engineering in product design and development.
 - Understand about 3D scanning hardware & software operations and procedure to generate 3D model

UNIT I INTRODUCTION & GEOMETRIC FORM 9 Hours

UNIT II MATERIAL CHARACTERISTICS AND PROCESS IDENTIFICATION 9 Hours

UNIT III DATA PROCESSING 9 Hours

UNIT IV 3D SCANNING AND MODELLING 9 Hours

UNIT V INDUSTRIAL APPLICATIONS 9 Hours

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
CO1: Apply the fundamental concepts and principles of reverse engineering in product design and development.
CO2: Apply the concept and principles material characteristics, part durability and life limitation in reverse engineering of product design and development.
CO3: Apply the concept and principles of material identification and process verification in reverse engineering.
engineering of product design and development.

CO4: Apply the concept and principles of data processing, part performance and system compatibility in reverse engineering of product design and development.

CO5: Analyze the various legal aspect

CO6: Applications of reverse engineering in product design and development.

TEXT BOOKS:

REFERENCES:

OPR351 SUSTAINABLE MANUFACTURING

COURSE OBJECTIVES:
- To be acquainted with sustainability in manufacturing and its evaluation.
- To provide knowledge in environment and social sustainability.
- To provide the student with the knowledge of strategy to achieve sustainability.
- To familiarize with trends in sustainable operations.
- To create awareness in current sustainable practices in manufacturing industry.

UNIT I ECONOMIC SUSTAINABILITY

UNIT II SOCIAL AND ENVIRONMENTAL SUSTAINABILITY
Social sustainability – Introduction-Work management -Human rights - Societal commitment - Customers -Business practices -Modelling and assessing social sustainability. Environmental issues pertaining to the manufacturing sector: Pollution - Use of resources -Pressure to reduce costs - Environmental management: Processes that minimize negative environmental impacts - environmental legislation and energy costs - need to reduce the carbon footprint of manufacturing Operations-Modelling and assessing environmental sustainability

UNIT III SUSTAINABILITY PRACTICES
Sustainability awareness - Measuring Industry Awareness-Drivers and barriers -Availability of sustainability indicators -Analysis of sustainability practicing -Modeling and assessment of sustainable practicing -Sustainability awareness -Sustainability drivers and barriers - Availability of
UNIT IV MANUFACTURING STRATEGY FOR SUSTAINABILITY

Concepts of competitive strategy and manufacturing strategies and development of a strategic improvement programme - Manufacturing strategy in business success strategy formation and formulation - Structured strategy formulation - Sustainable manufacturing system design options - Approaches to strategy formulation - Realization of new strategies/system designs.

UNIT V TRENDS IN SUSTAINABLE OPERATIONS

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

CO1: Discuss the importance of economic sustainability.
CO2: Describe the importance of sustainable practices.
CO3: Identify drivers and barriers for the given conditions.
CO4: Formulate strategy in sustainable manufacturing.
CO5: Plan for sustainable operation of industry with environmental, cost consciousness.

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>COs/Pos & PSOs</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

245
AU3791 ELECTRIC AND HYBRID VEHICLES L T P C 3 0 0 3

COURSE OBJECTIVES:
- The objective of this course is to prepare the students to know about the general aspects of Electric and Hybrid Vehicles (EHV), including architectures, modelling, sizing, and sub system design and hybrid vehicle control.

UNIT I DESIGN CONSIDERATIONS FOR ELECTRIC VEHICLES 9

UNIT II ENERGY SOURCES 9

UNIT III MOTORS AND DRIVES 9
Types of Motors- DC motors- AC motors, PMSM motors, BLDC motors, Switched reluctance motors working principle, construction and characteristics.

UNIT IV POWER CONVERTERS AND CONTROLLERS 9
Solid state Switching elements and characteristics – BJT, MOSFET, IGBT, SCR and TRIAC - Power Converters – rectifiers, inverters and converters - Motor Drives - DC, AC motor, PMSM motors, BLDC motors, Switched reluctance motors – four quadrant operations –operating modes

UNIT V HYBRID AND ELECTRIC VEHICLES 9
Main components and working principles of a hybrid and electric vehicles, Different configurations of hybrid and electric vehicles. Power Split devices for Hybrid Vehicles - Operation modes - Control Strategies for Hybrid Vehicle - Economy of hybrid Vehicles - Case study on specification of electric and hybrid vehicles.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of this course, the student will be able to
CO1: Understand the operation and architecture of electric and hybrid vehicles
CO2: Identify various energy source options like battery and fuel cell
CO3: Select suitable electric motor for applications in hybrid and electric vehicles.
CO4: Explain the role of power electronics in hybrid and electric vehicles
CO5: Analyze the energy and design requirement for hybrid and electric vehicles.
TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123456789101112</td>
<td>123</td>
</tr>
<tr>
<td>2</td>
<td>123456789101112</td>
<td>123</td>
</tr>
<tr>
<td>3</td>
<td>123456789101112</td>
<td>123</td>
</tr>
<tr>
<td>4</td>
<td>123456789101112</td>
<td>123</td>
</tr>
<tr>
<td>5</td>
<td>123456789101112</td>
<td>123</td>
</tr>
<tr>
<td>Avg.</td>
<td>123456789101112</td>
<td>123</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

OAS352 SPACE ENGINEERING

COURSE OBJECTIVES:
- Use the standard atmosphere tables and equations.
- Find lift and drag coefficient data from NACA plots.
- Apply the concept of static stability to flight vehicles.
- Describe the concepts of stress, strain, Young’s modulus, Poisson’s ratio, yield strength.
- Demonstrate a basic knowledge of dynamics relevant to orbital mechanics.

UNIT I STANDARD ATMOSPHERE

History of aviation – standard atmosphere - pressure, temperature and density altitude.

UNIT II AERODYNAMICS

Aerodynamic forces – Lift generation Viscosity and its implications - Shear stress in a velocity profile - Lagrangian and Eulerian flow field - Concept of a streamline – Aircraft terminology and geometry - Aircraft types - Lift and drag coefficients using NACA data.

UNIT III PERFORMANCE AND PROPULSION

Viscous and pressure drag - flow separation - aerodynamic drag - thrust calculations - thrust/power available and thrust/power required.

UNIT IV AIRCRAFT STABILITY AND STRUCTURAL THEORY

UNIT V SPACE APPLICATIONS

History of space research - spacecraft trajectories and basic orbital manoeuvres - six orbital elements - Kepler's laws of orbits - Newton's law of gravitation.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Illustrate the history of aviation & developments over the years
CO2: Ability to identify the types & classifications of components and control systems
CO3: Explain the basic concepts of flight & Physical properties of Atmosphere
CO4: Identify the types of fuselage and constructions.
CO5: Distinguish the types of Engines and explain the principles of Rocket

TEXT BOOKS:

REFERENCE:

OIM351 INDUSTRIAL MANAGEMENT

COURSE OBJECTIVES:
- To introduce fundamental concepts of industrial management
- To understand the approaches to the study of Management
- To learn about Decision Making, Organizing and leadership
- To analyze the Managerial Role and functions
- To know about the Supply Chain Management

UNIT I INTRODUCTION

UNIT II FUNCTIONS OF MANAGEMENT
UNIT III ORGANIZATIONAL BEHAVIOUR

UNIT IV GROUPDYNAMICS

UNIT V MODERN CONCEPTS
Management by Objectives (MBO) - Management by Exception (MBE), Strategic Management - Planning for Future direction - SWOT Analysis -Evolving development strategies, information technology in management Decisions support system-Management Games Business Process Re-engineering(BPR) –Enterprises Resource Planning (ERP) - Supply Chain Management (SCM) - Activity Based Management (AM) - Global Perspective - Principles and Steps Advantages and disadvantage

COURSE OUTCOMES:
CO1: Understand the basic concepts of industrial management
CO2: Identify the group conflicts and its causes.
CO3: Perform swot analysis
CO4: Analyze the learning curves
CO5: Understand the placement and performance appraisal

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td></td>
<td>2</td>
<td>2.2</td>
<td>2.3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
<td>2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ^-^- no correlation
COURSE OBJECTIVES

- Developing a clear knowledge in the basics of various quality concepts.
- Facilitating the students in understanding the application of control charts and its techniques.
- Developing the special control procedures for service and process-oriented industries.
- Analyzing and understanding the process capability study.
- Developing the acceptance sampling procedures for incoming raw material.

UNIT I INTRODUCTION

UNIT II CONTROL CHARTS
Chance and assignable causes of process variation, statistical basis of the control chart, control charts for variables - X, R and S charts, attribute control charts - p, np, c and u- Construction and application.

UNIT III SPECIAL CONTROL PROCEDURES
Warning and modified control limits, control chart for individual measurements, multi-vari chart, Xchart with a linear trend, chart for moving averages and ranges, cumulative-sum and exponentially weighted moving average control charts.

UNIT IV STATISTICAL PROCESS CONTROL
Process stability, process capability analysis using a Histogram or probability plots and control chart. Gauge capability studies, setting specification limits.

UNIT V ACCEPTANCE SAMPLING
The acceptance sampling fundamental, OC curve, sampling plans for attributes, simple, double, multiple and sequential, sampling plans for variables, MIL-STD-105D and MIL-STD-414E & IS2500 standards.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Students will be able to:

CO1: Control the quality of processes using control charts for variables in manufacturing industries.

CO2: Control the occurrence of defective product and the defects in manufacturing companies.

CO3: Control the occurrence of defects in services.

CO4: Analyzing and understanding the process capability study.

CO5: Developing the acceptance sampling procedures for incoming raw material.

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

250
COURSE OBJECTIVES

- To enable the students to acquire knowledge of Fire and Safety Studies
- To learn about the effect of fire on materials used for construction, the method of test for non-combustibility & fire resistance
- To learn about fire area, fire stopped areas and different types of fire-resistant doors
- To learn about the method of fire protection of structural members and their repair due to fire damage.
- To develop safety professionals for both technical and management through systematic and quality-based study programmes

UNIT I INHERENT SAFETY CONCEPTS 9
Compartment fire-factors controlling fire severity, ventilation controlled and fuel controlled fires; Spread of fire in rooms, within building and between buildings. Effect of temperature on the properties of structural materials- concrete, steel, masonry and wood; Behavior of non-structural materials on fire- plastics, glass, textile fibres and other house hold materials.

UNIT II PLANT LOCATIONS 9
Compartment temperature-time response at pre-flashover and post flashover periods; Equivalence of fire severity of compartment fire and furnace fire; Fire resistance test on structural elements- standard heating condition, Indian standard test method, performance criteria.

UNIT III WORKING CONDITIONS 9
Fire separation between building- principle of calculation of safe distance. Design principles of fire resistant walls and ceilings; Fire resistant screens- solid screens and water curtains; Local barriers; Fire stopped areas-in roof, in fire areas and in connecting structures; Fire doors- Low combustible, Non-combustible and Spark-proof doors; method of suspension of fire doors; Air-tight sealing of doors;

UNIT IV FIRE SEVERITY AND REPAIR TECHNIQUES 9
Fabricated fire proof boards-calcium silicate, Gypsum, Vermiculite, and Perlite boards; Fire protection of structural elements - Wooden, Steel and RCC.. Reparability of fire damaged structures- Assessment of damage to concrete, steel, masonry and timber structures, Repair techniques- repair methods to reinforced concrete Columns, beams and slabs, Repair to steel structural members, Repair to masonry structures.

UNIT V WORKING AT HEIGHTS 9

COURSE OUTCOMES
On completion of the course the student will be able to
CO1: Understand the effect of fire on materials used for construction
CO2: Understand the method of test for non-combustibility and fire resistance; and will be able to select different structural elements and their dimensions for a particular fire resistance rating of a building.
CO3: To understand the design concept of fire walls, fire screens, local barriers and fire doors and able to select them appropriately to prevent fire spread.
CO4: To decide the method of fire protection to RCC, steel, and wooden structural elements and their repair methods if damaged due to fire.
CO5: Describe the safety techniques and improve the analytical and intelligence to take the right decision at right time.

TEXT BOOKS

REFERENCES:

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>AVG.</td>
<td>1.3</td>
<td>1.75</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-" - no correlation

OML351 INTRODUCTION TO NON-DESTRUCTIVE TESTING

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
- Understanding the basic importance of NDT in quality assurance.
- Imbibing the basic principles of various NDT techniques, its applications, limitations, codes and standards.
- Equipping themselves to locate a flaw in various materials, products.

L T P C 3 0 0 3
Applying apply the testing methods for inspecting materials in accordance with industry specifications and standards.

Acquiring the knowledge on the selection of the suitable NDT technique for a given application.

UNIT I INTRODUCTION TO NDT & VISUAL TESTING

Concepts of Non-destructive testing-relative merits and limitations-NDT Versus mechanical testing, Fundamentals of Visual Testing – vision, lighting, material attributes, environmental factors, visual perception, direct and indirect methods – mirrors, magnifiers, boroscopes and fibroscopes – light sources and special lighting.

UNIT II LIQUID PENETRANT & MAGNETIC PARTICLE TESTING

Liquid Penetrant Inspection: principle, applications, advantages and limitations, dyes, developers and cleaners, Methods & Interpretation.
Magnetic Particle Inspection: Principles, applications, magnetization methods, magnetic particles, Testing Procedure, demagnetization, advantages and limitations, – Interpretation and evaluation of test indications.

UNIT III EDDY CURRENT TESTING & THERMOGRAPHY

Thermography- Principle, Contact & Non-Contact inspection methods, Active & Passive methods, Liquid Crystal – Concept, example, advantages & limitations. Electromagnetic spectrum, infrared thermography- approaches, IR detectors, Instrumentation and methods, applications.

UNIT IV ULTRASONIC TESTING & AET

Ultrasonic Testing: Types of ultrasonic waves, characteristics, attenuation, couplants, probes, EMAT. Inspection methods-pulse echo, transmission and phased array techniques, types of scanning and displays, angle beam inspection of welds, time of flight diffraction (TOFD) technique, Thickness determination by ultrasonic method, Study of A, B and C scan presentations, calibration.

UNIT V RADIOGRAPHY TESTING

Sources-X-rays and Gamma rays and their characteristics-absorption, scattering. Filters and screens, Imaging modalities-film radiography and digital radiography (Computed, Direct, Real Time, CT scan). Problems in shadow formation, exposure factors, inverse square law, exposure charts, Penetrameters, safety in radiography.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of this course, the students will be able to

CO1: Realize the importance of NDT in various engineering fields.

CO2: Have a basic knowledge of surface NDE techniques which enables to carry out various inspection in accordance with the established procedures.

CO3: Calibrate the instrument and inspect for in-service damage in the components by means of Eddy current testing as well as Thermography testing.
CO4: Differentiate various techniques of UT and AET and select appropriate NDT methods for better evaluation.

CO5: Interpret the results of Radiography testing and also have the ability to analyse the influence of various parameters on the testing.

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C02</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C03</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2.8</td>
<td>1.6</td>
<td>1.8</td>
<td>2.2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1.8</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ' - ' - no correlation

OMR351 MECHATRONICS L T P C 3 0 0 3

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
- Selecting sensors to develop mechatronics systems.
- Explaining the architecture and timing diagram of microprocessor, and also interpret and develop programs.
- Designing appropriate interfacing circuits to connect I/O devices with microprocessor.
- Applying PLC as a controller in mechatronics system.
- Designing and develop the apt mechatronics system for an application.

UNIT 1 INTRODUCTION AND SENSORS 9

UNIT II 8085 MICROPROCESSOR 9

UNIT III PROGRAMMABLE PERIPHERAL INTERFACE 9

UNIT IV PROGRAMMABLE LOGIC CONTROLLER 9
Introduction – Architecture – Input / Output Processing – Programming with Timers, Counters and Internal relays – Data Handling – Selection of PLC.

UNIT V ACTUATORS AND MECHATRONICS SYSTEM DESIGN 9

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO1: Select sensors to develop mechatronics systems.
CO2: Explain the architecture and timing diagram of microprocessor, and also interpret and develop programs.
CO3: Design appropriate interfacing circuits to connect I/O devices with microprocessor.
CO4: Apply PLC as a controller in mechatronics system.
CO5: Design and develop the apt mechatronics system for an application.

<table>
<thead>
<tr>
<th>CO's/PO's & PSO's MAPPING</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>COs/POs & PSOs</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO/PO & PSO Average</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-"- no correlation

TEXT BOOKS
REFERENCES

ORA351 FOUNDATION OF ROBOTICS

COURSE OBJECTIVES:
1. To study the kinematics, drive systems and programming of robots.
2. To study the basics of robot laws and transmission systems.
3. To familiarize students with the concepts and techniques of robot manipulator, its kinematics.
4. To familiarize students with the various Programming and Machine Vision application in robots.
5. To build confidence among students to evaluate, choose and incorporate robots in engineering systems.

UNIT I FUNDAMENTALS OF ROBOT

UNIT II ROBOT KINEMATICS
Forward kinematics, inverse kinematics and the difference: forward kinematics and inverse Kinematics of Manipulators with two, three degrees of freedom (in 2 dimensional), four degrees of freedom (in 3 dimensional) – derivations and problems. Homogeneous transformation matrices, translation and rotation matrices.

UNIT III ROBOT DRIVE SYSTEMS AND END EFFECTORS
Pneumatic Drives – Hydraulic Drives – Mechanical Drives – Electrical Drives – D.C. Servo Motors, Stepper Motor, A.C. Servo Motors – Salient Features, Applications and Comparison of All These Drives. End Effectors – Grippers – Mechanical Grippers, Pneumatic and Hydraulic Grippers, Magnetic grippers, vacuum grippers, internal grippers and external grippers, selection and design considerations of a gripper

UNIT IV SENSORS IN ROBOTICS
Force sensors, touch and tactile sensors, proximity sensors, non-contact sensors, safety considerations in robotic cell, proximity sensors, fail safe hazard sensor systems, and compliance mechanism. Machine vision system - camera, frame grabber, sensing and digitizing image data – signal conversion, image storage, lighting techniques, image processing and analysis – data
reduction, segmentation, feature extraction, object recognition, other algorithms, applications – Inspection, identification, visual serving and navigation.

UNIT V PROGRAMMING AND APPLICATIONS OF ROBOT

Teach pendant programming, lead through programming, robot programming languages – VAL programming – Motion Commands, Sensors commands, End-Effecter Commands, and simple programs - Role of robots in inspection, assembly, material handling, underwater, space and medical fields.

TOTAL : 45 PERIODS

COURSE OUTCOMES

At the end of the course, students will be able to:

CO1: Interpret the features of robots and technology involved in the control.

CO2: Apply the basic engineering knowledge and laws for the design of robotics.

CO3: Explain the basic concepts like various configurations, classification and parts of end effectors compare various end effectors and grippers and tools and sensors used in robots.

CO4: Explain the concept of kinematics, degeneracy, dexterity and trajectory planning.

CO5: Demonstrate the image processing and image analysis techniques by machine vision system.

<table>
<thead>
<tr>
<th>CO's-PO's & PSO's MAPPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>COs/POs& PSOs</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
<tr>
<td>CO/PO & PSO Average</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, | - no correlation

TEXT BOOKS:

REFERENCES:

COURSE OBJECTIVES:

- To acquire the knowledge on the Historical evaluation of Airplanes
- To learn the different component systems and functions
- To know the concepts of basic properties and principles behind the flight
- To learn the basics of different structures & construction
- To learn the various types of power plants used in aircrafts

UNIT I HISTORY OF FLIGHT
Balloon flight-ornithopter-Early Airplanes by Wright Brothers, biplanes and monoplanes, Developments in aerodynamics, materials, structures and propulsion over the years.

UNIT II AIRCRAFT CONFIGURATIONS AND ITS CONTROLS
Different types of flight vehicles, classifications-Components of an airplane and their functions- Conventional control, powered control- Basic instruments for flying-Typical systems for control actuation.

UNIT III BASICS OF AERODYNAMICS

UNIT IV BASICS OF AIRCRAFT STRUCTURES

UNIT V BASICS OF PROPULSION
Basic ideas about piston, turboprop and jet engines – use of propeller and jets for thrust production- Comparative merits, Principle of operation of rocket, types of rocket and typical applications, Exploration into space.

COURSE OUTCOMES:

CO1:Illustrate the history of aircraft & developments over the years
CO2:Ability to identify the types & classifications of components and control systems
CO3:Explain the basic concepts of flight & Physical properties of Atmosphere
CO4:Identify the types of fuselage and constructions.
CO5:Distinguish the types of Engines and explain the principles of Rocket

TEXT BOOKS
REFERENCE
1. SADHU SINGH, “INTERNAL COMBUSTION ENGINES AND GAS TURBINE”-, SS Katarai & sons, 2015

OGI351 REMOTE SENSING CONCEPTS L T P C 3 0 0 3

COURSE OBJECTIVES:
- To introduce the concepts of remote sensing processes and its components.
- To expose the various remote sensing platforms and sensors and to introduce the elements of data interpretation

UNIT I REMOTE SENSING AND ELECTROMAGNETIC RADIATION 9

UNIT II EMR INTERACTION WITH ATMOSPHERE AND EARTH MATERIAL 9

UNIT III ORBITS AND PLATFORMS 9
Motions of planets and satellites – Newton's law of gravitation - Gravitational field and potential - Escape velocity - Kepler's law of planetary motion - Orbit elements and types – Orbital perturbations and maneuvers – Types of remote sensing platforms - Ground based, Airborne platforms and Space borne platforms – Classification of satellites – Sun synchronous and Geosynchronous satellites – Lagrange Orbit.

UNIT IV SENSING TECHNIQUES 9

UNIT V DATA PRODUCTS AND INTERPRETATION 9
Photographic and digital products – Types, levels and open source satellite data products – selection and procurement of data– Visual interpretation: basic elements and interpretation keys - Digital interpretation – Concepts of Image rectification, Image enhancement and Image classification

TOTAL:45 PERIODS

COURSE OUTCOMES:
On completion of the course, the student is expected to
CO 1 Understand the concepts and laws related to remote sensing
CO 2 Understand the interaction of electromagnetic radiation with atmosphere and earth material
CO 3 Acquire knowledge about satellite orbits and different types of satellites
CO 4 Understand the different types of remote sensors
CO 5 Gain knowledge about the concepts of interpretation of satellite imagery

TEXTBOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO</th>
<th>Graduate Attribute</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Engineering Knowledge</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PO2</td>
<td>Problem Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO3</td>
<td>Design/Development of Solutions</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO4</td>
<td>Conduct Investigations of Complex Problems</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO6</td>
<td>The Engineer and Society</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and Sustainability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and Team Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO11</td>
<td>Project Management and Finance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long Learning</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSO1</td>
<td>Knowledge of Geoinformatics discipline</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSO2</td>
<td>Critical analysis of Geoinformatics</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSO3</td>
<td>Conceptualization and evaluation of Design solutions</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

*1 - low, 2 - medium, 3 - high, *“*“*- no correlation*
COURSE OBJECTIVES:

- To introduce the students the principles of agricultural crop production and the production practices of crops in modern ways.
- To delineate the role of agricultural engineers in relation to various crop production practices.

UNIT I INTRODUCTION 9
Benefits of urban agriculture - economic benefits, environmental benefits, social and cultural benefits, educational, skill-building and job training benefits, health, nutrition and food accessibility benefits.

UNIT II VERTICAL FARMING 9

UNIT III SOIL LESS CULTIVATION 9
Hydroponics, aeroponics, aquaponics: merits and limitations, costs and Challenges, backyard gardens - tactical gardens - street landscaping - forest gardening, greenhouses, urban beekeeping

UNIT IV MODERN CONCEPTS 9
Growth of plants in vertical pipes in terraces and inside buildings, micro irrigation concepts suitable for roof top gardening, rain hose system, Green house, polyhouse and shade net system of crop production on roof tops

UNIT V WASTE MANAGEMENT 9
Concept, scope and maintenance of waste management - recycle of organic waste, garden wastes - solid waste management - scope, microbiology of waste, other ingredients like insecticide, pesticides and fungicides residues, waste utilization.

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1: Demonstrate the principles behind crop production and various parameters that influences the crop growth on roof tops
CO2: Explain different methods of crop production on roof tops
CO3: Explain nutrient and pest management for crop production on roof tops
CO4: Illustrate crop water requirement and irrigation water management on roof tops
CO5: Explain the concept of waste management on roof tops

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>Overall correlation of COs with POs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Engineering Knowledge</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO2</td>
<td>Problem Analysis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO3</td>
<td>Design/ Development of Solutions</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>PO4</td>
<td>Conduct Investigations of Complex Problems</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO6</td>
<td>The Engineer and Society</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and sustainability</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and team work:</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO11</td>
<td>Project management and finance</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long learning:</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>PSO1</td>
<td>To make expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PSO2</td>
<td>To enhance students ability to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies.</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PSO3</td>
<td>To inculcate entrepreneurial skills through strong Industry-Institution linkage.</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’- no correlation

OEN351

DRINKING WATER SUPPLY AND TREATMENT

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 0 0 3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:
- To equip the students with the principles and design of water treatment units and distribution system.

UNIT I

SOURCES OF WATER

Public water supply system – Planning, Objectives, Design period, Population forecasting; Water demand – Sources of water and their characteristics, Surface and Groundwater – Impounding

UNIT II CONVEYANCE FROM THE SOURCE 9

UNIT III WATER TREATMENT 9
Objectives – Unit operations and processes – Principles, functions, and design of water treatment plant units, aerators of flash mixers, Coagulation and flocculation — sand filters - Disinfection — Construction, Operation and Maintenance aspects.

UNIT IV ADVANCED WATER TREATMENT 9

UNIT V WATER DISTRIBUTION AND SUPPLY 9

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1: an understanding of water quality criteria and standards, and their relation to public health
CO2: the ability to design the water conveyance system
CO3: the knowledge in various unit operations and processes in water treatment
CO4: an ability to understand the various systems for advanced water treatment
CO5: an insight into the structure of drinking water distribution system

TEXTBOOKS:

REFERENCES:
CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1. low, 2-medium, 3-high, “-“- no correlation
Note: The average value of this course to be used for program articulation matrix.

OEE352 ELECTRIC VEHICLE TECHNOLOGY L T P C 3 0 0 3

COURSE OBJECTIVES

- To provide knowledge about electric machines and special machine
- To understand the basics of power converters
- To know the concepts of controlling DC and AC drive systems
- To understand the architecture and power train components.
- To impart knowledge on vehicle control for standard drive cycles of hybrid electrical vehicles (HEVs)

UNIT I ROTATING POWER CONVERTERS

UNIT II STATIC POWER CONVERTERS

Working and Characteristics of Power Diodes, MOSFET and IGBT. Working of uncontrolled rectifiers, controlled rectifiers (Single phase and Three phase), DC choppers, single and three phase inverters, Multilevel inverters and Matrix Converters.

UNIT III CONTROL OF DC AND AC MOTOR DRIVES

Speed control for constant torque, constant HP operation of all electric motors - DC/DC chopper based four quadrant operation of DC motor drives, inverter based V/f Operation (motoring and braking) of induction motor drives, Transformation theory, vector control operation of Induction motor and PMSM, Brushless DC motor drives, Switched reluctance motor (SRM) drives

UNIT IV HYBRID ELECTRIC VEHICLE ARCHITECTURE AND POWER TRAIN COMPONENTS

264
UNIT V MECHANICS OF HYBRID ELECTRIC VEHICLES AND CONTROL OF VEHICLES

Fundamentals of vehicle mechanics - tractive force, power and energy requirements for standard drive cycles of HEVs - motor torque and power rating and battery capacity. HEV supervisory control - Selection of modes - power spilt mode - parallel mode - engine brake mode - regeneration mode - series parallel mode

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Able to understand the principles of conventional and special electrical machines.
CO2: Acquired the concepts of power devices and power converters
CO3: Able to understand the control for DC and AC drive systems.
CO4: Learned the electric vehicle architecture and power train components.
CO5: Acquired the knowledge of mechanics of electric vehicles and control of electric vehicles.

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

REFERENCES:

OEI353 INTRODUCTION TO PLC PROGRAMMING L T P C
3 0 0 3

COURSE OBJECTIVES:
1. Understand basic PLC terminologies digital principles, PLC architecture and operation.
2. Familiarize different programming language of PLC.
3. Develop PLC logic for simple applications using ladder logic.
4. Understand the hardware and software behind PLC and SCADA.
5. Exposures about communication architecture of PLC/SCADA.
UNIT I INTRODUCTION TO PLC
Introduction to PLC: Microprocessor, I/O Ports, Isolation, Filters, Drivers, Microcontrollers/DSP, PLC/DDC- PLC Construction: What is a PLC, PLC Memories, PLC I/O, , PLC Special I/O, PLC Types.

UNIT II PLC INSTRUCTIONS
PLC Basic Instructions: PLC Ladder Language- Function block Programming- Ladder/Function Block functions- PLC Basic Instructions, Basic Examples (Start Stop Rung, Entry/Reset Rung)- Configuration of Sensors, Switches, Solid State Relays-Interlock examples- Timers, Counters, Examples.

UNIT III PLC PROGRAMMING
Different types of PLC program, Basic Ladder logic, logic functions, PLC module addressing, registers basics, basic relay instructions, Latching Relays, arithmetic functions, comparison functions, data handling, data move functions, timer-counter instructions, input-output instructions, sequencer instructions

UNIT IV COMMUNICATION OF PLC AND SCADA
Communication Protocol – Modbus, HART, Profibus- Communication facilities SCADA: - Hardware and software, Remote terminal units, Master Station and Communication architectures

UNIT V CASE STUDIES
Stepper Motor Control- Elevator Control-CNC Machine Control- conveyor control-Interlocking Problems

TOTAL:45 PERIODS

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc) 5
1. Market survey of the recent PLCs and comparison of their features.
2. Summarize the PLC standards
3. Familiarization of any one programming language (Ladder diagram/ Sequential Function Chart/ Function Block Diagram/ Equivalent open source software)
4. Market survey of Communication Network Used for PLC/SCADA.

COURSE OUTCOMES:
CO1 Know the basic requirement of a PLC input/output devices and architecture. (L1)
CO2 Ability to apply Basics Instruction Sets used for ladder Logic and Function Block Programming.(L2)
CO3 Ability to design PLC Programmes by Applying Timer/Counter and Arithmetic and Logic Instructions Studied for Ladder Logic and Function Block.(L3)
CO4 Able to develop a PLC logic for a specific application on real world problem. (L5)
CO5 Ability to Understand the Concepts of Communication used for PLC/SCADA.(L1)

TEXT BOOKS:
1. Frank Petruzzula, Programmable Logic Controllers, Tata Mc-Graw Hill Edition
2. John W. Webb, Ronald A. Reis, Programmable Logic Controllers Principles and Applications, PHI publication
REFERENCES:
2. J. R. Hackworth and F. D. Hackworth, Programmable Logic Controllers Principles andApplications, Pearson publication

List of Open Source Software/ Learning website:
1. https://nptel.ac.in/courses/108105063

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO, PSO CO</th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2.9</td>
<td>2.25</td>
<td>2.6</td>
<td>1.6</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.9</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘= no correlation

OCH351 NANO TECHNOLOGY

UNIT I INTRODUCTION
General definition and size effects–important nano structured materials and nano particles- importance of nano materials- Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials- surface area - band gap energy and applications. Photochemistry and Electrochemistry of nanomaterials –Ionic properties of nanomaterials- Nano catalysis.

UNIT II SYNTHESIS OF NANOMATERIALS
Bottom up and Top-down approach for obtaining nano materials - Precipitation methods – sol gel technique – high energy ball milling, CVD and PVD methods, gas phase condensation, magnetron sputtering and laser deposition methods – laser ablation, sputtering.

UNIT III NANO COMPOSITES
Definition- importance of nanocomposites- nano composite materials-classification of composites- metal/metal oxides, metal-polymer- thermoplastic based, thermostet based and elastomer based- influence of size, shape and role of interface in composites applications.
UNIT IV NANO STRUCTURES AND CHARACTERIZATION TECHNIQUES 10
Classifications of nanomaterials - Zero dimensional, one-dimensional and two-dimensional nanostructures- Kinetics in nanostructured materials- multilayer thin films and superlattice- clusters of metals, semiconductors and nanocomposites. Spectroscopic techniques, Diffraction methods, thermal analysis method, BET analysis method.

UNIT V APPLICATIONS OF NANO MATERIALS 9
Overview of nanomaterials properties and their applications, nano painting, nano coating, nanomaterials for renewable energy, Molecular Electronics and Nanoelectronics – Nanobots- Biological Applications. Emerging technologies for environmental applications- Practice of nanoparticles for environmental remediation and water treatment.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
CO1 understand the basic properties such as structural, physical, chemical properties of nanomaterials and their applications.
CO2 able to acquire knowledge about the different types of nano material synthesis
CO3 describes about the shape, size,structure of composite nano materials and their interference
CO4 understand the different characterization techniques for nanomaterials
CO5 develop a deeper knowledge in the application of nanomaterials in different fields.

TEXT BOOKS

REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>understand the basic properties such as structural, physical, chemical properties of nanomaterials and their applications</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
CO2 acquire knowledge about the different types of nano material synthesis 2 3 1 3 3 - - - 1 1 - 3 2 1 3

CO3 describes about the shape, size, structure of composite nano materials and their interference 2 2 2 3 3 1 1 - 1 1 - 3 2 1 3

CO4 understand the different characterization techniques for nanomaterials 2 2 1 3 3 1 1 1 1 1 1 3 1 1 3

CO5 develop a deeper knowledge in the application of nanomaterials in different fields 2 2 1 3 3 1 1 1 1 1 1 1 3 2 1 3

| Overall CO | 3 | 2 | 2 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 3 |

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

OCH352 **FUNCTIONAL MATERIALS**

COURSE OBJECTIVE:
- The course emphasis on the molecular safe assembly and materials for polymer electronics

UNIT I **INTRODUCTION**

UNIT II **MOLECULAR SELF ASSEMBLY**

UNIT III **BIO-INSPIRED MATERIALS**

UNIT IV **SMART OR INTELLIGENT MATERIALS**
Criteria for Smartness, Significance of Smart Materials, Representative Examples like Smart Gels and Polymers, Electro/Magneto Rheological Fluids, Smart Electroceramics, Technical Limitations and Challenges, Functional Nanocomposites, Polymer-carbon nanotube composites.
UNIT V MATERIALS FOR POLYMER ELECTRONICS

Polymers for Electronics, Organic Light Emitting Diodes, Working Principle of OLEDs, Illustrated Examples, Organic Field-Effect Transistors Operating Principle, Design Considerations, Polymer FETs vs Inorganic FETs, Liquid Crystal Displays, Engineering Aspects of Flat Panel Displays, Intelligent Polymers for Data Storage, Polymer-based Data Storage-Principle, Magnetic Vs. Polymer-based Data Storage.

TOTAL: 45 PERIODS

COURSE OUTCOME:

• Students will be able to differentiate among various functional properties and select appropriate material for certain functional applications, analyze the nature and potential of functional material.

TEXT BOOK:

REFERENCES:

OFD352 TRADITIONAL INDIAN FOODS

COURSE OBJECTIVE:

• To help students acquire a sound knowledge on diversities of foods, food habits and patterns in India with focus on traditional foods.

UNIT I HISTORICAL AND CULTURAL PERSPECTIVES

Food production and accessibility - subsistence foraging, horticulture, agriculture and pastoralization, origin of agriculture, earliest crops grown. Food as source of physical sustenance, food as religious and cultural symbols; importance of food in understanding human culture - variability, diversity, from basic ingredients to food preparation; impact of customs and traditions on food habits, heterogeneity within cultures (social groups) and specific social contexts - festive occasions, specific religious festivals, mourning etc. Kosher, Halal foods; foods for religious and other fasts.

UNIT II TRADITIONAL METHODS OF FOOD PROCESSING

UNIT III TRADITIONAL FOOD PATTERNS

Typical breakfast, meal and snack foods of different regions of India. Regional foods that have gone Pan Indian / Global. Popular regional foods; Traditional fermented foods, pickles and preserves, beverages, snacks, desserts and sweets, street foods; IPR issues in traditional foods
UNIT IV COMMERCIAL PRODUCTION OF TRADITIONAL FOODS 9
Commercial production of traditional breads, snacks, ready-to-eat foods and instant mixes, frozen foods – types marketed, turnover; role of SHGs, SMES industries, national and multinational companies; commercial production and packaging of traditional beverages such as tender coconut water, neera, lassi, buttermilk, dahi. Commercial production of intermediate foods – ginger and garlic pastes, tamarind pastes, masalas (spice mixes), idli and dosa batters.

UNIT V HEALTH ASPECTS OF TRADITIONAL FOODS 9
Comparison of traditional foods with typical fast foods / junk foods – cost, food safety, nutrient composition, bioactive components; energy and environmental costs of traditional foods; traditional foods used for specific ailments /illnesses.

COURSE OUTCOMES:
CO1 To understand the historical and traditional perspective of foods and food habits
CO2 To understand the wide diversity and common features of traditional Indian foods and meal patterns.

TEXT BOOKS:

OFD353 INTRODUCTION TO FOOD PROCESSING L T P C 3 0 0 3

COURSE OBJECTIVE:
The course aims to introduce the students to the area of Food Processing. This is necessary for effective understanding of a detailed study of food processing and technology subjects. This course will enable students to appreciate the importance of food processing with respect to the producer, manufacturer and consumer.

UNIT I PROCESSING OF FOOD AND ITS IMPORTANCE 9
Source of food - plant, animal and microbial origin; different foods and groups of foods as raw materials for processing – cereals, pulses, grains, vegetables and fruits, milk and animal foods, sea weeds, algae, oil seeds & fats, sugars, tea, coffee, cocoa, spices and condiments, additives; need and significance of processing these foods.

UNIT II METHODS OF FOOD HANDLING AND STORAGE 9
Nature of harvested crop, plant and animal; storage of raw materials and products using low temperature, refrigerated gas storage of foods, gas packed refrigerated foods, sub atmospheric storage, Gas atmospheric storage of meat, grains, seeds and flour, roots and tubers; freezing of raw and processed foods.

UNIT III LARGE-SCALE FOOD PROCESSING 12
Milling of grains and pulses; edible oil extraction; Pasteurisation of milk and yoghurt; canning and bottling of foods; drying – Traditional and modern methods of drying, Dehydration of fruits, vegetables, milk, animal products etc; preservation by use of acid, sugar and salt; Pickling and curing with microorganisms, use of salt, and microbial fermentation; frying, baking, extrusion cooking, snack foods.
UNIT IV FOOD WASTES IN VARIOUS PROCESSES
Waste disposal-solid and liquid waste; rodent and insect control; use of pesticides; ETP; selecting and installing necessary equipment.

UNIT V FOOD HYGIENE
Food related hazards – Biological hazards – physical hazards – microbiological considerations in foods. Food adulteration – definition, common food adulterants, contamination with toxic metals, pesticides and insecticides; Safety in food procurement, storage handling and preparation; Relationship of microbes to sanitation, Public health hazards due to contaminated water and food; Personnel hygiene; Training & Education for safe methods of handling and processing food; sterilization and disinfection of manufacturing plant; use of sanitizers, detergents, heat, chemicals, Cleaning of equipment and premises.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On completion of the course the students are expected to
CO1 Be aware of the different methods applied to processing foods.
CO2 Be able to understand the significance of food processing and the role of food and beverage industries in the supply of foods.

TEXT BOOKS/REFERENCES:

OPY352 IPR FOR PHARMA INDUSTRY
L T P C
3 0 0 3

COURSE OBJECTIVES:
- To provide the basic fundamental knowledge of different forms of Intellectual Property Rights in national and international level.
- To provide the significance of the Intellectual Property Rights about the patents, copyrights, industrial design, plant and geographical indications.
- This paper is to study significance of the amended patent act on pharma industry.

UNIT I INTRODUCTION- INTELLECTUAL PROPERTY RIGHTS
Introduction, Types of Intellectual Property Rights - patents, plant varieties protection, geographical indicators, copyright, trademark, trade secrets.

UNIT II PATENTS
Patents-Objective, Introduction, Requirement for patenting- Novelty, Inventive step (Non-obviousness) and industrial application (utility), Non-patentable inventions, rights of patent owner, assignment of patent rights, patent specification (provisional and complete), parts of complete specification, claims, procedure for obtaining patents, compulsory license.
UNIT III PLANT VARIETY-TRADITIONAL KNOWLEDGE –GEOGRAPHICAL INDICATIONS

Plant variety- Justification, criteria for protection of plant variety and protection in India. Traditional knowledge- Concept of traditional knowledge, protection of traditional knowledge under Intellectual Property frame works in national level and Traditional knowledge digital library (TKDL). Geographical Indications – Justification for protection, National and International position.

UNIT IV ENFORCEMENT AND PRACTICAL ASPECTS OF IPR

UNIT V INTERNATIONAL BACKGROUND OF INTELLECTUAL PROPERTY

TOTAL:45 PERIODS

TEXT BOOKS:

REFERENCES:
2. Basic Principles of patent law – Basics principles and acquisition of IPR. Ramakrishna T. CIPRA, NLSIU, Bangalore, 2005

COURSE OUTCOME
The student will be able to

C1 Understand and differentiate the categories of intellectual property rights.
C2 Describe about patents and procedure for obtaining patents.
C3 Distinguish plant variety, traditional knowledge and geographical indications under IPR.
C4 Provide the information about the different enforcements and practical aspects involved in protection of IPR.
C5 Provide different organizations role and responsibilities in the protection of IPR in the international level.
C6 Understand the interrelationships between different Intellectual Property Rights on International Society.
OTT351 BASICS OF TEXTILE FINISHING L T P C 3 0 0 3

COURSE OBJECTIVE:
- To enable the students to understand the basics and different types of finishes required for textile materials and machines used for finishing.

UNIT I RESIN FINISHING 9

UNIT II FLAME PROOF & WATERPROOF 9
Concept of Flame proof & flame retardancy. Flame retardant finishes for cotton. Concept of waterproof and water repellent Finishes, Durable & Semi durable and Temporary finishes, Concept of Antimicrobial finish.

UNIT III SOIL RELEASE AND ANTISTATIC FINISHES 9

UNIT IV MECHANICAL FINISHES 9

UNIT V STIFFENING AND SOFTENING 9
Concept of stiffening and softening of textile materials. Mechanism in the weight reduction of PET. Concept of Micro encapsulation techniques in finishing process, Nano finish, Plasma Treatment and Bio finishing.

COURSE OUTCOMES:
Upon completion of the course, the students will be able to Understand the CO: 1 Basics of Resin Finishing Process.
CO: 2 Concept of Flame proof & flame retardancy, waterproof and water repellent, Antimicrobial finishes.
CO: 3 Concept of Soil Release, Anti Pilling, UV Protection and Antistatic finishes.
CO: 4 Concept of Mechanical finishing.
CO: 5 Basics of Micro encapsulation techniques, Nano finish, Plasma Treatment.

TEXT BOOKS:

REFERENCES:
1. Microencapsulation in finishing, Review of progress of Colouration, SDC, 2001 62

OTT352 INDUSTRIAL ENGINEERING FOR GARMENT INDUSTRY L T P C
3 0 0 3

COURSE OBJECTIVES:
- To enable the students to learn about basics of industrial engineering and different tools of industrial engineering and its application in apparel industry

UNIT I INTRODUCTION 9
Scope of industrial engineering in apparel Industry, role of industrial engineers.
Productivity: Definition - Productivity, Productivity measures .Reduction of work content due to the product and process, Reduction of ineffective time due to the management, due to the worker. Causes for low productivity in apparel industry and measures for improvement.

UNIT II WORK STUDY 9
Definition, Purpose, Basic procedure and techniques of work-study.
Work environment – Lighting, Ventilation, Climatic condition on productivity. Temperature control, humidity control, noise control measures. Safety and ergonomics on work station and work environment.
Material Handling – Objectives, Classification and characteristics of material handling equipments, Specialized material handling equipments.

UNIT III METHOD STUDY 9
Definition, Objectives, Procedure, Process charts and symbols. Various charts – Charts indicating process sequence: Outline process chart, flow process chart (man type, material type and equipment type); Charts using time scale – multiple activity chart. Diagrams indicating movement – flow diagram, string diagram, cycle graph, chrono cycle graph, travel chart
MOTION STUDY: Principle of motion economy, Two handed process chart, micro motion analysis – therbligs, SIMO chart.

UNIT IV WORK MEASUREMENT 9
Definition, purpose, procedure, equipments, techniques. Time study - Definition, basics of
time study - equipments. Time study forms, Stop watch procedure. Predetermined motion time standards (PMTS). Time Study rating, calculation of standard time, Performance rating – relaxation and other allowances. Calculation of SAM for different garments, GSD.

UNIT V WORK STUDY APPLICATION

Application of work study techniques in cutting, stitching and packing in garment industry. Work aids in sewing, Pitch diagram, Line balancing, Capacity planning, scientific method of training.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon the completion of the course the student shall be able to understand
CO1: Fundamental concepts of industrial Engineering and productivity
CO2: Method study
CO3: Motion analysis
CO4: Work measurement and SAM
CO5: Ergonomics and its application to garment industry

TEXTBOOKS:

REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>Course Outcome</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS O1 PS O2 PS O3</td>
</tr>
<tr>
<td>CO1</td>
<td>Fundamental concepts of industrial engineering and productivity</td>
<td>2 2 3 3 2 1 1 2 2 1 2 2 1 1 -</td>
</tr>
<tr>
<td>CO2</td>
<td>Method study</td>
<td>1 2 3 3 2 1 1 2 2 1 2 2 1 1 -</td>
</tr>
<tr>
<td>CO3</td>
<td>Motion analysis</td>
<td>1 2 3 3 2 1 1 2 2 1 2 2 1 1 -</td>
</tr>
<tr>
<td>CO4</td>
<td>Work measurement and SAM</td>
<td>1 2 3 3 2 1 1 2 2 1 3 2 1 1 -</td>
</tr>
<tr>
<td>CO5</td>
<td>Ergonomics and its application to garment industry</td>
<td>1 2 3 3 2 1 2 2 2 1 3 2 1 1 -</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>1.2 2 3 3 2 1 1.2 2 2 1 2.4 2 1 1 -</td>
</tr>
</tbody>
</table>
1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.

OTT353
BASICS OF TEXTILE MANUFACTURE

L T P C
3 0 0 3

COURSE OBJECTIVES:

- To enable the students to learn about the basics of fibre forming, yarn production, fabric formation, coloration of fabrics and garment manufacturing.

UNIT I
NATURAL FIBRES

Introduction: Definition of staple fibre, filament; Classification of natural and man-made fibres, essential and desirable properties of fibres. Production and cultivation of Natural Fibers: Cultivation of cotton, production of silk (sericulture), wool and jute – physical and chemical structure of these fibres.

UNIT II
REGENERATED AND SYNTHETIC FIBRES

Production sequence of regenerated and modified cellulosic fibres: viscose rayon, Acetate Rayon, high wet modulus and high tenacity fibres; synthetic fibres – chemical structure, fibre forming polymers, production principles.

UNIT III
BASICS OF SPINNING

Spinning – principle of yarn formation, sequence of machines for yarn production with short staple fibres and blends, principles of opening and cleaning machines; yarn numbering – calculations.

UNIT IV
BASICS OF WEAVING

Woven fabric – warp, weft, weaving, path of warp; looms – classification, handloom and its parts, powerloom, automatic looms, shuttleless looms, special type of looms; preparatory machines for weaving process and their objectives; basic weaving mechanism - primary, secondary and auxiliary mechanisms.

UNIT V
BASICS OF KNITTING AND NONWOVEN

TOTAL : 45 PERIODS

COURSE OUTCOMES:

On completion of this course, the students shall have the basic knowledge on

CO1: Classification of fibres and production of natural fibres
CO2: Regenerated and synthetic fibres
CO3: Yarn spinning
CO4: Weaving
CO5: Knitting and nonwoven

TEXTBOOKS

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1.</td>
<td>Classification of fibres and production of natural fibres</td>
<td>-</td>
</tr>
<tr>
<td>CO2.</td>
<td>Regenerated and synthetic fibres</td>
<td>-</td>
</tr>
<tr>
<td>CO3.</td>
<td>Yarn spinning</td>
<td>-</td>
</tr>
<tr>
<td>CO4.</td>
<td>Weaving</td>
<td>-</td>
</tr>
<tr>
<td>CO5.</td>
<td>Knitting and nonwoven</td>
<td>-</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, -“- no correlation

OPE351 INTRODUCTION TO PETROLEUM REFINING AND PETROCHEMICALS

COURSE OBJECTIVE:
- The course is aimed to
 Gain knowledge about petroleum refining process and production of petrochemical products.
UNIT I ORIGIN, FORMATION AND REFINING OF CRUDE OIL

UNIT II CRACKING
Cracking, Thermal Cracking, Vis-breaking, Catalytic Cracking (FCC), Hydro Cracking, Coking and Air Blowing of Bitumen

UNIT III REFORMING AND HYDROTREATING

UNIT IV INTRODUCTION TO PETROCHEMICALS
Petrochemicals - Cracking of Naphtha and Feed stock gas for the production of Ethylene, Propylene, Isobutylene and Butadiene. Production of Acetylene from Methane, and Extraction of Aromatics.

UNIT V PRODUCTION OF PETROCHEMICALS
Production of Petrochemicals like Dimethyl Terephthalate(DMT), Ethylene Glycol, Synthetic glycerine, Linear Alkyl Benzene (LAB), Acrylonitrile, Methyl Methacrylate (MMA), Vinyl Acetate Monomer, Phthalic Anhydride, Maleic Anhydride, Phenol, Acetone, Methanol, Formaldehyde, Acetaldehyde, Pentaerythritol and production of Carbon Black.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On the completion of the course students are expected to
CO1: Understand the classification, composition and testing methods of crude petroleum and its products. Learn the mechanism of refining process.
CO2: Understand the insights of primary treatment processes to produce the precursors.
CO3: Study the secondary treatment processes cracking, vis-breaking and coking to produce more petroleum products.
CO4: Appreciate the need of treatment techniques for the removal of sulphur and other impurities from petroleum products.
CO5: Understand the societal impact of petrochemicals and learn their manufacturing processes.
CO6: Learn the importance of optimization of process parameters for the high yield of petroleum products.

TEXT BOOKS

REFERENCES
OBJECTIVES:
At the end of the course, the student is expected to
• understand and analyse the energy data of industries
• carry out energy accounting and balancing
• conduct energy audit and suggest methodologies for energy savings and
• utilise the available resources in optimal ways

UNIT I INTRODUCTION 9

UNIT II ELECTRICAL SYSTEMS 9

UNIT III THERMAL SYSTEMS 9

UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES 9
Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems – Cooling Towers – D.G. sets

UNIT V ECONOMICS 9
Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students can able to analyze the energy data of industries.
CO1: Remember the knowledge for Basic combustion and furnace design and selection of thermal and mechanical energy equipment.
CO2: Study the Importance of Stoichiometry relations, Theoretical air required for complete combustion.
CO3: Skills on combustion thermodynamics and kinetics.
CO4: Apply calculation and design tube still heaters.
CO5: Studied different heat treatment furnace.
CO6: Practical and theoretical knowledge burner design.
TEXT BOOKS:

REFERENCES:

OPT351 BASICS OF PLASTICS PROCESSING L T P C 3 0 0 3

COURSE OBJECTIVES
- Understand the fundamentals of plastics processing, such as the relationships between material structural properties and required processing parameters, and so on
- To gain practical knowledge on the polymer selection and its processing
- Understanding the major plastic material processing techniques (Extrusion, Injection molding, Compression and Transfer molding, Blow molding, Thermoforming and casting)
- To understand suitable additives for plastics compounding
- To Propose troubleshooting mechanisms for defects found in plastics products manufactured by various processing techniques

UNIT I INTRODUCTION TO PLASTICS PROCESSING

UNIT II EXTRUSION

UNIT III INJECTION MOLDING
Injection molding – Principles and processing outline, machinery, accessories and functions, specifications, process variables, mould cycle. Types of clamping: hydraulic and toggle mechanisms.
Start-up and shut down procedures-Cylinder nozzles- Press capacity projected area -Shot weight
Basic theoretical concepts and their relationship to processing - Interaction of moulding process aspect effects in quoted variables. Basic mould types. Reciprocating vs. plunger type injection moulding. Thermoplastic vs. thermosetting injection moulding. Injection moulding vs. other plastic processing techniques. State-of-the art injection moulding techniques - Introduction to trouble shooting

UNIT IV COMPRESSION AND TRANSFER MOLDING 9
Compression moulding – Basic principles of compression and transfer moulding-Meaning of terms-Bulk factor and flow properties, moulding materials, process variables and process cycle, Inter relation between flow properties-Curing time-Mould temperature and Pressure requirements. Preforms and preheating- Techniques of preheating. Machines used-Types of compression mould-positive, semi-positive and flash. Common moulding faults and their correction- Finishing of mouldings. Transfer moulding: working principle, equipment, Press capacity-Integral moulds and auxiliary ram moulds, moulding cycle, moulding tolerances, pot transfer, plunger transfer and screw transfer moulding techniques, advantages over compression moulding

UNIT V BLOW MOLDING, THERMOFORMING AND CASTING 9

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1: Ability to find out the correlation between various processing techniques with product properties.
CO2: Understand the major plastics processing techniques used in moulding (injection, blow, compression, and transfer), extrusion, thermoforming, and casting.
CO3: Acquire knowledge on additives for plastic compounding and methods employed for the same
CO4: Familiarize with the machinery and ancillary equipment associated with various plastic processing techniques.
CO5: Select an appropriate processing technique for the production of a plastic product

REFERENCES
COURSE OBJECTIVES:
- To understand the global trends and development methodologies of various types of products and services
- To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
- To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them into design specification
- To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
- To develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer

UNIT I BASICS OF PRODUCT DEVELOPMENT

UNIT II REQUIREMENTS AND SYSTEM DESIGN

UNIT III DESIGN AND TESTING

UNIT IV SUSTENANCE ENGINEERING AND END-OF-LIFE (EOL) SUPPORT
UNIT V BUSINESS DYNAMICS – ENGINEERING SERVICES INDUSTRY

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, the students will be able to:

CO1: Define, formulate, and analyze a problem

CO2: Solve specific problems independently or as part of a team

CO3: Gain knowledge of the Innovation & Product Development process in the Business Context

CO4: Work independently as well as in teams

CO5: Manage a project from start to finish

TEXT BOOKS:
1. Book specially prepared by NASSCOM as per the MoU.

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AVG.</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

CBM333 ASSISTIVE TECHNOLOGY

COURSE OBJECTIVES:
The student should be made to:

- To know the hardware requirement various assistive devices
- To understand the prosthetic and orthotic devices
- To know the developments in assistive technology

L T P C 3 0 0 3
UNIT I CARDIAC ASSIST DEVICES 9
Cardiac functions and parameters, principle of External counter pulsation techniques, intra aortic balloon pump, Auxiliary ventricle and schematic for temporary bypass of left ventricle, prosthetic heart valves, cardiac pacemaker.

UNIT II HEMODIALYSERS 9
Physiology of kidney, Artificial kidney, Dialysis action, hemodialyser unit, membrane dialysis, portable dialyser monitoring and functional parameters.

UNIT III HEARING AIDS 9
Anatomy of ear, Common tests – audiograms, air conduction, bone conduction, masking techniques, SISI, Hearing aids – principles, drawbacks in the conventional unit, DSP based hearing aids.

UNIT IV PROSTHETIC AND ORTHODIC DEVICES 9
Hand and arm replacement – different types of models, externally powered limb prosthesis, feedback in orthotic system, functional electrical stimulation, sensory assist devices.

UNIT V RECENT TRENDS 9
Transcutaneous electrical nerve stimulator, bio-feedback, assistive devices in drug delivery

TOTAL :45 PERIODS

COURSE OUTCOMES:
On successful completion of this course, the student will be able to
CO1: Interpret the various mechanical techniques that will help in assisting the heart functions.
CO2: Describe the underlying principles of hemodialyzer machine.
CO3: Indicate the methodologies to assess the hearing loss.
CO4: Evaluate the types of assistive devices for mobilization.
CO5: Explain about TENS and biofeedback system.

TEXT BOOKS

REFERENCES
4. Cardiac Assist Devices, Daniel Goldstein (Editor), Mehmet Oz (Editor), Wiley-Blackwell April 2000 ISBN: 978-0-879-93449-1

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's 1</th>
<th>PO's 2</th>
<th>PO's 3</th>
<th>PO's 4</th>
<th>PO's 5</th>
<th>PO's 6</th>
<th>PO's 7</th>
<th>PO's 8</th>
<th>PO's 9</th>
<th>PO's 10</th>
<th>PO's 11</th>
<th>PO's 12</th>
<th>PSO's 1</th>
<th>PSO's 2</th>
<th>PSO's 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
This course will help the students to
- determine the optimum solution for Linear programming problems.
- study the Transportation and assignment models and various techniques to solve them.
- acquire the knowledge of optimality, formulation and computation of integer programming problems.
- acquire the knowledge of optimality, formulation and computation of dynamic programming problems.
- determine the optimum solution for non-linear programming problems.

UNIT I LINEAR PROGRAMMING 9

UNIT II TRANSPORTATION AND ASSIGNMENT PROBLEMS 9

UNIT III INTEGER PROGRAMMING 9

UNIT IV DYNAMIC PROGRAMMING PROBLEMS 9

UNIT V NON - LINEAR PROGRAMMING PROBLEMS 9

TOTAL:45 PERIODS

COURSE OUTCOMES :
At the end of the course, students will be able to
CO1: Could develop a fundamental understanding of linear programming models, able to develop a linear programming model from problem description, apply the simplex method for solving linear programming problems.
CO2: analyze the concept of developing, formulating, modeling and solving transportation and assignment problems.
CO3: solve the integer programming problems using various methods.
CO4: conceptualize the principle of optimality and sub-optimization, formulation and computational procedure of dynamic programming.
CO5: determine the optimum solution for non-linear programming problems.

TEXT BOOKS:

REFERENCES:

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-" no correlation

OMA353 ALGEBRA AND NUMBER THEORY L T P C
3 0 0 3

COURSE OBJECTIVES:
- To introduce the basic notions of groups, rings, fields which will then be used to solve related problems.
- To examine the key questions in the Theory of Numbers.
- To give an integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.

UNIT I GROUPS AND RINGS
Groups: Definition - Properties - Homomorphism - Isomorphism - Cyclic groups - Cosets - Lagrange's theorem.
Rings: Definition - Sub rings - Integral domain - Field - Integer modulo n - Ring homomorphism.
UNIT II
FINITE FIELDS AND POLYNOMIALS
Rings - Polynomial rings - Irreducible polynomials over finite fields - Factorization of polynomials over finite fields.

UNIT III
DIVISIBILITY THEORY AND CANONICAL DECOMPOSITIONS
Division algorithm- Base-b representations – Number patterns – Prime and composite numbers – GCD – Euclidean algorithm – Fundamental theorem of arithmetic – LCM.

UNIT IV
DIOPHANTINE EQUATIONS AND CONGRUENCES
Linear Diophantine equations – Congruence’s – Linear Congruence’s - Applications : Divisibility tests - Modular exponentiation - Chinese remainder theorem – 2x2 linear systems.

UNIT V
CLASSICAL THEOREMS AND MULTIPLICATIVE FUNCTIONS
Wilson’s theorem – Fermat’s Little theorem – Euler’s theorem – Euler’s Phi functions – Tau and Sigma functions.
TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.
CO2: Demonstrate accurate and efficient use of advanced algebraic techniques.
CO3: The students should be able to demonstrate their mastery by solving non-trivial problems related to the concepts, and by proving simple theorems about the, statements proven by the text

TEXT BOOKS:

REFERENCES:

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>PO</th>
<th>PO01</th>
<th>PO02</th>
<th>PO03</th>
<th>PO04</th>
<th>PO05</th>
<th>PO06</th>
<th>PO07</th>
<th>PO08</th>
<th>PO09</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PS01</th>
<th>PS02</th>
<th>PS03</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>2.8</td>
<td>2.4</td>
<td>1.6</td>
<td>0.8</td>
<td>2.4</td>
<td>1</td>
<td>2.2</td>
<td>1</td>
<td>0.8</td>
<td>1</td>
<td>2.2</td>
<td>2.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-'- no correlation
COURSE OBJECTIVES:
- To test the consistency and solve system of linear equations.
- To find the basis and dimension of vector space.
- To obtain the matrix of linear transformation and its eigenvalues and eigenvectors.
- To find orthonormal basis of inner product space and find least square approximation.
- To find eigenvalues of a matrix using numerical techniques and perform matrix decomposition.

UNIT I MATRICES AND SYSTEM OF LINEAR EQUATIONS

UNIT II VECTOR SPACES
Vector spaces over Real and Complex fields - Subspace – Linear space - Linear independence and dependence - Basis and dimension.

UNIT III LINEAR TRANSFORMATION
Linear transformation - Rank space and null space - Rank and nullity - Dimension theorem– Matrix representation of linear transformation - Eigenvalues and eigenvectors of linear transformation – Diagonalization.

UNIT IV INNER PRODUCT SPACES
Inner product and norms - Properties - Orthogonal, Orthonormal vectors - Gram Schmidt orthonormalization process - Least square approximation.

UNIT V EIGEN VALUE PROBLEMS AND MATRIX DECOMPOSITION

COURSE OUTCOMES:
After the completion of the course the student will be able to
CO1: Test the consistency and solve system of linear equations.
CO2: Find the basis and dimension of vector space.
CO3: Obtain the matrix of linear transformation and its eigenvalues and eigenvectors.
CO4: Find orthonormal basis of inner product space and find least square approximation.
CO5: Find eigenvalues of a matrix using numerical techniques and perform matrix decomposition.

TEXT BOOKS

REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.8</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-"- no correlation

OCE353 LEAN CONCEPTS, TOOLS AND PRACTICES

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:

- To impart knowledge about the basics of lean principles, tools and techniques, and implementation in the construction industry.

UNIT I INTRODUCTION

Introduction and overview of the construction project management - Review of Project Management & Productivity Measurement Systems - Productivity in Construction - Daily Progress Report - The state of the industry with respect to its management practices - construction project phases - The problems with current construction management techniques.

UNIT II LEAN MANAGEMENT

Introduction to lean management - Toyota's management principle - Evolution of lean in construction industry - Production theories in construction – Lean construction value - Value in construction - Target value design - Lean project delivery system - Forms of waste in construction industry - Waste Elimination.

UNIT III CORE CONCEPTS IN LEAN

UNIT IV LEAN TOOLS AND TECHNIQUES

UNIT V LEAN IMPLEMENTATION IN CONSTRUCTION INDUSTRY 9
Lean construction implementation- Enabling lean through information technology - Lean in design - Design Structure - BIM (Building Information Modelling) - IPD (Integrated Project Delivery) – Sustainability through lean construction approach.

TOTAL : 45 PERIODS

COURSE OUTCOME:
On completion of this course, the student is expected to be able to

CO1 Explains the contemporary management techniques and the issues in present scenario.
CO2 Apply the basics of lean management principles and their evolution from manufacturing industry to construction industry.
CO3 Develops a better understanding of core concepts of lean construction tools and techniques and their importance in achieving better productivity.
CO4 Apply lean techniques to achieve sustainability in construction projects.
CO5 Apply lean construction techniques in design and modeling.

REFERENCES:

OBT352 BASICS OF MICROBIAL TECHNOLOGY L T P C 3 0 0 3

COURSE OBJECTIVE:
- Enable the Non-biological student’s to understand about the basics of life science and their pro and cons for living organisms.

UNIT I BASICS OF MICROBES AND ITS TYPES 9
Introduction to microbes, existence of microbes, inventions of great scientist and history, types of microorganisms – Bacteria, Virus, Fungi.

UNIT II MICROBIAL TECHNIQUES 9
Sterilization – types – physical and chemical sterilization, Decontamination, Preservation methods, fermentation, Cultivation and growth of microbes, Diagnostic methods.

UNIT III PATHOGENIC MICROBES 9
Infectious Disease – Awareness, Causative agent, Prevention and control - Cholera, Dengu, Malaria, Diarrhea, Tuberculosis, Typhoid, Covid, HIV.
UNIT IV BENEFICIAL MICROBES
Applications of microbes – Clinical microbiology, agricultural microbiology, Food Microbiology, Environmental Microbiology, Animal Microbiology, Marine Microbiology.

UNIT V PRODUCTS FROM MICROBES
Fermented products – Fermented Beverages, Curd, Cheese, Mushroom, Agricultural products – Biopesticide, Biofertilizers, Vermi compost, Pharmaceutical products - Antibiotics, Vaccines

COURSE OUTCOME:
At the end of the course the students will be able to
CO1: Microbes and their types
CO2: Cultivation of microbes
CO3: Pathogens and control measures for safety
CO4: Microbes in different industry for economy.

TEXT BOOKS

OBT353 BASICS OF BIOMOLECULES

COURSE OBJECTIVES:
• The objective is to offer basic concepts of biochemistry to students with diverse background in life sciences including but not limited to the structure and function of various biomolecules and their metabolism.

UNIT I CARBOHYDRATES
Introduction to carbohydrate, classification, properties of monosaccharide, structural aspects of monosaccharides. Introduction to disaccharide (lactose, maltose, sucrose) and polysaccharide (Heparin, starch, and glycogen) biological function of carbohydrate.

UNIT II LIPID AND FATTY ACIDS
Introduction to lipid, occurrence, properties, classification of lipid. Importance of phospholipids, sphingolipid and glycerolipid. Biological function of lipid. Fatty acid, Introduction, Nomenclature and classification of fatty acid Essential and non essential fatty acids.

UNIT III AMINO ACIDS AND PROTEIN.

UNIT IV NUCLEIC ACIDS
Introduction to nucleic acid, Difference between nucleotide and nucleoside, composition of DNA & RNA. Structure of Nitrogen bases in DNA and RNA along with the nomenclature. DNA double helix (Watson and crick) model, types of DNA, RNA.
UNIT V VITAMINS AND HORMONES 9

COURSE OUTCOMES:
CO1: Students will learn about various kinds of biomolecules and their physiological role.
CO2: Students will gain knowledge about various metabolic disorders and will help them to know the importance of various biomolecules in terms of disease correlation.

TOTAL: 45 PERIODS

TEXT BOOKS

REFERENCES

OBT354 FUNDAMENTALS OF CELL AND MOLECULAR BIOLOGY L T P C
3 0 0 3

COURSE OBJECTIVES:
• To provide knowledge on the fundamentals of cell biology.
• To understand the signalling mechanisms.
• Understand basic principles of molecular biology at intracellular level to regulate growth, division and development.

UNIT-I INTRODUCTION TO CELL 9
Cell, cell wall and Extracellular Matrix (ECM), composition, cellular dimensions, Evolution, Organisation, differentiation of prokaryotic and Eukaryotic cells, Virus, bacteria, cyanobacteria, mycoplasma and prions.

UNIT II CELL ORGANELLES 9
Molecular organisation, biogenesis and function Mitochondria, endoplasmic reticulam, golgi apparatus, plastids, chloroplast, leucoplast, centrosome, lysosome, ribosome, peroxisome, Nucleus and nucleolus. Endo membrane system, concept of compartmentalisation.

UNIT III BIO-MEMBRANE TRANSPORT 9
Physiochemical properties of cell membranes. Molecular constitute of membranes, asymmetrical organisation of lipids and proteins. Solute transport across membrane’s-fick’s law, simple diffusion,
passive-facilitated diffusion, active transport- primary and secondary, group translocation, transport ATPases, membrane transport in bacteria and animals. Transport mechanism- mobile carriers and pores mechanisms. Transport by vesicle formation, endocytosis, exocytosis, cell respiration.

UNIT IV CELL CYCLE 9
Cell cycle- Cell division by mitosis and meiosis, Comparison of meiosis and mitosis, regulation of cell cycle, cell lysis, Cytokinesis, Cell signaling, Cell communication, Cell adhesion and Cell junction, cell cycle checkpoints.

UNIT V CENTRAL DOGMA 9

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Understanding of cell at structural and functional level.
CO2: Understand the central dogma of life and its significance.
CO3: Comprehend the basic mechanisms of cell division.

TEXTBOOKS:

REFERENCES:

OPEN ELECTIVE IV

OHS352 PROJECT REPORT WRITING L T P C
3 0 0 3

COURSE OBJECTIVE
The Course will enable Learners to,
• Understand the essentials of project writing.
• Perceive the difference between general writing and technical writing
• Assimilate the fundamental features of report writing.
• Understand the essential differences that exist between general and technical writing.
• Learn the structure of a technical and project report.

UNIT I 9
UNIT II
9

UNIT III
9
Structure of the Project Report: (Part 1) Framing a Title – Content – Acknowledgement – Funding Details -Abstract – Introduction – Aim of the Study – Background - Writing the research question - Need of the Study/Project Significance, Relevance – Determining the feasibility – Theoretical Framework.

UNIT IV
9

UNIT V
9

TOTAL:45 PERIODS

COURSE OUTCOMES
By the end of the course, learners will be able to
CO1:Write effective project reports.
CO2:Use statistical tools with confidence.
CO3:Explain the purpose and intension of the proposed project coherently and with clarity.
CO4:Create writing texts to suit achieve the intended purpose.
CO5:Master the art of writing winning proposals and projects.

CO’s-PO’s & PSO’s MAPPING

| CO | PO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 2 | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 2 | 3 | 3 | 3 | 3 | - | - | - |
| 2 | 2 | 2 | 1 | 1 | 1 | 3 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | - | - | - |
| 3 | 2 | 2 | 2 | 3 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 3 | - | - | - |
| 4 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | - | - | - | - |
| 5 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | - | - | - |
| AVG.| 2.4| 2.2| 2.4| 2.2| 2.2| 2.6| 2.4| 2.2| 2.6| 3 | 2.6| 3 | - | - | - |

1 - low, 2 - medium, 3 - high, "-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

REFERENCES
COURSE OBJECTIVE:

- To impart knowledge on numerical methods that will come in handy to solve numerically the problems that arise in engineering and technology. This will also serve as a precursor for future research.

UNIT I ALGEBRAIC EQUATIONS AND EIGENVALUE PROBLEM 9

UNIT II INTERPOLATION 9
Central difference: Stirling and Bessel's interpolation formulae; Piecewise spline interpolation: Piecewise linear, piecewise quadratic and cubic spline; Least square approximation for continuous data (upto 3rd degree).

UNIT III NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS 9

UNIT IV FINITE DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS 9
Laplace and Poisson's equations in a rectangular region: Five point finite difference schemes - Leibmann's iterative methods - Dirichlet's and Neumann conditions - Laplace equation in polar coordinates: Finite difference schemes.

UNIT V FINITE DIFFERENCE METHOD FOR TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS 9
Parabolic equations: Explicit and implicit finite difference methods - Weighted average approximation - Dirichlet's and Neumann conditions - First order hyperbolic equations - Method of characteristics - Different explicit and implicit methods; Wave equation: Explicit scheme - Stability of above schemes.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:

CO1: demonstrate the understandings of common numerical methods for nonlinear equations, system of linear equations and eigenvalue problems;

CO2: understand the interpolation theory;

CO3: understand the concepts of numerical methods for ordinary differential equations;

CO4: demonstrate the understandings of common numerical methods for elliptic equations;

CO5: understand the concepts of numerical methods for time dependent partial differential equations

TEXT BOOKS:
REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, -: no correlation

OMA356 RANDOM PROCESSES L T P C
3 0 0 3

COURSE OBJECTIVES:
- To introduce the basic concepts of probability, one and two dimensional random variables with applications to engineering which can describe real life phenomenon.
- To understand the basic concepts of random processes which are widely used in communication networks.
- To acquaint with specialized random processes which are apt for modelling the real time scenario.
- To understand the concept of correlation and spectral densities.
- To understand the significance of linear systems with random inputs.

UNIT I RANDOM VARIABLES

UNIT II RANDOM PROCESSES

UNIT III SPECIAL RANDOM PROCESSES
UNIT IV CORRELATION AND SPECTRAL DENSITIES

UNIT V LINEAR SYSTEMS WITH RANDOM INPUTS
Linear time invariant system – System transfer function – Linear systems with random inputs – Auto correlation and cross correlation functions of input and output.

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:

CO1: Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.
CO2: Apply the concept random processes in engineering disciplines.
CO3: Understand and apply the concept of correlation and spectral densities.
CO4: Get an exposure of various distribution functions and help in acquiring skills in handling situations involving more than one variable.
CO5: Analyze the response of random inputs to linear time invariant systems.

TEXT BOOKS

REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS 01</th>
<th>PS 02</th>
<th>PS 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation
COURSE OBJECTIVES:
- To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems in communication engineering.
- To understand the concept of queueing models and apply in engineering.
- To provide the required mathematical support in real life problems and develop probabilistic models which can be used in several areas of science and engineering.
- To study the system reliability and hazard function for series and parallel systems.
- To implement Markovian Techniques for availability and maintainability which opens up new avenues for research.

UNIT I RANDOM PROCESSES

UNIT II MARKOVIAN QUEUEING MODELS
Markovian queues – Birth and death processes – Single and multiple server queueing models – Little’s formula - Queues with finite waiting rooms.

UNIT III ADVANCED QUEUEING MODELS
M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/Ek/1 as special cases – Series queues – Open Jackson networks.

UNIT IV SYSTEM RELIABILITY

UNIT V MAINTAINABILITY AND AVAILABILITY
Maintainability and Availability functions – Frequency of failures – Two Unit parallel system with repair – k out of m systems.

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO1: Enable the students to apply the concept of random processes in engineering disciplines.
CO2: Students acquire skills in analyzing various queueing models.
CO3: Students can understand and characterize phenomenon which evolve with respect to time in a probabilistic manner.
CO4: Students can analyze reliability of the systems for various probability distributions.
CO5: Students can be able to formulate problems using the maintainability and availability analyses by using theoretical approach.

TEXT BOOKS
REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO</th>
<th>PS</th>
<th>PS</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>11</td>
<td>O1</td>
<td>O2</td>
<td>O3</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>1.4</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-" - no correlation

OMG354 PRODUCTION AND OPERATIONS MANAGEMENT FOR ENTREPRENEURS
L T P C
3 0 0 3

COURSE OBJECTIVES:
- To know the basic concept and function of Production and Operation Management for entrepreneurship.
- To understand the Production process and planning.
- To understand the Production and Operations Management Control for business owners.

UNIT I INTRODUCTION TO PRODUCTION AND OPERATIONS MANAGEMENT
9
Functions of Production Management - Relationship between production and other functions – Production management and operations management, Characteristics of modern production and operation management, organisation of production function, recent trends in production /operations management - production as an organisational function, decision making in production Operations research

UNIT II PRODUCTION & OPERATION SYSTEMS
9
Production Systems- principles – Models - CAD and CAM- Automation in Production - Functions and significance- Capacity and Facility Planning: Importance of capacity planning- Capacity measurement – Capacity Requirement Planning (CRP) process for manufacturing and service industry

UNIT III PRODUCTION & OPERATIONS PLANNING
9
Facility Planning – Location of facilities – Location flexibility – Facility design process and techniques – Location break even analysis-Production Process Planning: Characteristic of production process
systems – Steps for production process- Production Planning Control Functions – Planning phase- Action phase- Control phase - Aggregate production planning

UNIT IV PRODUCTION & OPERATIONS MANAGEMENT PROCESS 9

UNIT V CONTROLLING PRODUCTION & OPERATIONS MANAGEMENT 9

COURSE OUTCOMES
Upon completion of this course the learners will be able :
CO 1 To understand the basics and functions of Production and Operation Management for business owners.
CO 2 To learn about the Production & Operation Systems.
CO 3 To acquaint on the Production & Operations Planning Techniques followed by entrepreneurs in Industries.
CO 4 To known about the Production & Operations Management Processes in organisations.
CO 5 To comprehend the techniques of controlling , Production and Operations in industries.

REFERENCES

OMG355 MULTIVARIATE DATA ANALYSIS

COURSE OBJECTIVE:
To know various multivariate data analysis techniques for business research.

UNIT I INTRODUCTION 9
Uni-variate, Bi-variate and Multi-variate techniques – Classification of multivariate techniques – Guidelines for multivariate analysis and interpretation.
UNIT II PREPARING FOR MULTIVARIATE ANALYSIS
Conceptualization of research model with variables, collection of data — Approaches for dealing with missing data – Testing the assumptions of multivariate analysis.

UNIT III MULTIPLE LINEAR REGRESSION ANALYSIS, FACTOR ANALYSIS
Multiple Linear Regression Analysis – Inferences from the estimated regression function – Validation of the model. - Approaches to factor analysis – interpretation of results.

UNIT IV LATENT VARIABLE TECHNIQUES
Confirmatory Factor Analysis, Structural equation modelling, Mediation models, Moderation models, Longitudinal studies.

UNIT V ADVANCED MULTIVARIATE TECHNIQUES
Multiple Discriminant Analysis, Logistic Regression, Cluster Analysis, Conjoint Analysis, multidimensional scaling.

COURSE OUTCOMES :
CO1: Demonstrate a sophisticated understanding of the concepts and methods; know the exact scopes and possible limitations of each method; and show capability of using multivariate techniques to provide constructive guidance in decision making.
CO2: Use advanced techniques to conduct thorough and insightful analysis, and interpret the results correctly with detailed and useful information.
CO3: Show substantial understanding of the real problems; conduct deep analysis using correct methods; and draw reasonable conclusions with sufficient explanation and elaboration.
CO4: Write an insightful and well-organized report for a real-world case study, including thoughtful and convincing details.
CO5: Make better business decisions by using advanced techniques in data analytics.

REFERENCES :

OME352 ADDITIVE MANUFACTURING L T P C
3 0 0 3

COURSE OBJECTIVES:
- To introduce the development, capabilities, applications, of Additive Manufacturing (AM), and its business opportunities.
- To be acquainted with vat polymerization and material extrusion processes
- To be familiar with powder bed fusion and binder jetting processes.
- To gain knowledge on applications of direct energy deposition, and material jetting processes.
- To impart knowledge on sheet lamination and direct write technologies.
UNIT I INTRODUCTION

UNIT II VAT POLYMERIZATION AND MATERIAL EXTRUSION

UNIT III POWDER BED FUSION AND BINDER JETTING

UNIT IV MATERIAL JETTING AND DIRECTED ENERGY DEPOSITION

UNIT V SHEET LAMINATION AND DIRECT WRITE TECHNOLOGY
Ink-Based Direct Writing (DW): Nozzle Dispensing Processes, Inkjet Printing Processes, Aerosol DW - Applications of DW.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of this course students shall be able to:
CO1: Recognize the development of AM technology and how AM technology propagated into various businesses and developing opportunities.
CO2: Acquire knowledge on process vat polymerization and material extrusion processes and its applications.
CO3: Elaborate the process and applications of powder bed fusion and binder jetting.
CO4: Evaluate the advantages, limitations, applications of material jetting and directed energy deposition processes.
CO5: Acquire knowledge on sheet lamination and direct write technology.

TEXT BOOKS:

REFERENCES:
analysis. Tool Design and Detail drawings preparation, release of details to machine shop and CAM programing. Tool assembly and shop floor trials. Initial sample submission with PPAP documents.

UNIT IV CRITERIONS OF NPD

New product qualification for Dimensions, Mechanical & Physical Properties, Internal Soundness proving through X-Ray, Radiography, Ultrasonic Testing, MPT, etc. Agreement with customer for testing frequencies. Market Survey on similar products, Risk analysis, validating samples with simulation results, Lesson Learned & Horizontal deployment in NPD.

UNIT V REPORTING & FORWARD-THINKING OF NPD

Detailed study on PPAP with 18 elements reporting, APQP and its 5 Sections, APQP vs PPAP, Importance of SOP (Standard Operating Procedure) – Purpose & documents, deployment in shop floor. Prototyping & RPT - Concepts, Application and its advantages, 3D Printing – resin models, Sand cores for foundries; Reverse Engineering. Cloud points generation, converting cloud data to 3D model – Advantages & Limitation of RE, CE (Concurrent Engineering) – Basics, Application and its advantages in NPD (to reduce development lead time, time to Market, Improve productivity and product cost.)

TOTAL :45 PERIODS

COURSE OUTCOMES:

At the end of the course the students would be able to

- CO1: Discuss fundamental concepts and customer specific requirements of the New Product development
- CO2: Discuss the Material specification standards, analysis and fabrication, manufacturing process.
- CO3: Develop Feasibility Studies & reporting of New Product development
- CO4: Analyzing the New product qualification and Market Survey on similar products of new product development
- CO5: Develop Reverse Engineering. Cloud points generation, converting cloud data to 3D model

TEXT BOOKS:

1. Product Development – Sten Jonsson
2. Product Design & Development – Karl T. Ulrich, Maria C. Young, Steven D. Eppinger

REFERENCES:

1. Revolutionizing Product Development – Steven C Wheelwright & Kim B. Clark
2. Change by Design
5. Product Design & Value Engineering – Dr. M.A. Bulsara & Dr. H.R. Thakkar

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

1 - low, 2 - medium, 3 - high, *“- no correlation
COURSE OBJECTIVES:
The course aims to
- Outline Fundamental concepts in UI & UX
- Introduce the principles of Design and Building an mobile app
- Illustrate the use of CAD in product design
- Outline the choice and use of prototyping tools
- Understanding design of electronic circuits and fabrication of electronic devices

UNIT I UI/UX 9

UNIT II APP DEVELOPMENT 9
SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup - Reading and writing data to cloud - Embedding ML models to Apps - Deploying application.

UNIT III INDUSTRIAL DESIGN 9
Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation – Assembly - Product design and rendering basics - Dimensioning & Tolerancing

UNIT IV MECHANICAL RAPID PROTOTYPING 9
Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping; 3D Printing and classification - Laser Cutting and engraving - RD Works - Additive manufacturing

UNIT V ELECTRONIC RAPID PROTOTYPING 9
Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA

TOTAL: 45 PERIODS

COURSE OUTCOMES
At the end of the course, learners will be able to:
CO1: Create quick UI/UX prototypes for customer needs
CO2: Develop web application to test product traction / product feature
CO3: Develop 3D models for prototyping various product ideas
CO4: Built prototypes using Tools and Techniques in a quick iterative methodology

TEXT BOOKS
3. Steve Krug, Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability,
COURSE OBJECTIVES:
At the end of this course the student should be able to
- Learn about the precision machine tools
- Learn about the macro and micro components.
- Understand handling and operating of the precision machine tools.
- Learn to work with miniature models of existing machine tools/robots and other instruments.
- Learn metrology for micro system

UNIT I INTRODUCTION TO MICROSYSTEMS 9
Design, and material selection, micro-actuators: hydraulic, pneumatic, electrostatic/ magnetic etc. for medical to general purpose applications. Micro-sensors based on Thermal, mechanical, electrical properties; micro-sensors for measurement of pressure, flow, temperature, inertia, force, acceleration, torque, vibration, and monitoring of manufacturing systems.

UNIT II FABRICATION PROCESSES FOR MICRO-SYSTEMS: 9
Additive, subtractive, forming process, microsystems-Micro-pumps, micro- turbines, micro engines, micro-robot, and miniature biomedical devices

UNIT III INTRODUCTION TO PRECISION ENGINEERING 9
Machine tools, holding and handling devices, positioning fixtures for fabrication/ assembly of microsystems. Precision drives: inch worm motors, ultrasonic motors, stick- slip mechanism and other piezo-based devices.

UNIT IV PRECISION MACHINING PROCESSES 9
Precision machining processes for macro components - Diamond turning, fixed and free abrasive processes, finishing processes.

UNIT V METROLOGY FOR MICRO SYSTEMS 9
Metrology for micro systems - Surface integrity and its characterization.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon the completion of this course the students will be able to
CO1: Select suitable precision machine tools and operate
CO2: Apply the macro and micro components for fabrication of micro systems.
CO3: Apply suitable machining process
CO4: Able to work with miniature models of existing machine tools/robots and other instruments.
CO5: Apply metrology for micro system
TEXT BOOKS:

REFERENCES:

OMF354 COST MANAGEMENT OF ENGINEERING PROJECTS

COURSE OBJECTIVES:
- Summarize the costing concepts and their role in decision making
- Infer the project management concepts and their various aspects in selection
- Interpret costing concepts with project execution
- Develop knowledge of costing techniques in service sector and various budgetary control techniques
- Illustrate with quantitative techniques in cost management

UNIT I INTRODUCTION TO COSTING CONCEPTS
Objectives of a Costing System; Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost; Creation of a Database for operational control.

UNIT II INTRODUCTION TO PROJECT MANAGEMENT
Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities, Detailed Engineering activities, Pre project execution main clearances and documents, Project team: Role of each member, Importance Project site: Data required with significance, Project contracts

UNIT III PROJECT EXECUTION AND COSTING CONCEPTS
Project execution Project cost control, Bar charts and Network diagram, Project commissioning: mechanical and process, Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis, Various decision-making problems, Pricing strategies: Pareto Analysis, Target costing, Life Cycle Costing

UNIT IV COSTING OF SERVICE SECTOR AND BUDGETERY CONTROL
UNIT V QUANTITATIVE TECHNIQUES FOR COST MANAGEMENT 9
Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Learning Curve Theory.

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO1: Understand the costing concepts and their role in decision making.
CO2: Understand the project management concepts and their various aspects in selection.
CO3: Interpret costing concepts with project execution.
CO4: Gain knowledge of costing techniques in service sector and various budgetary control techniques.
CO5: Become familiar with quantitative techniques in cost management.

TEXT BOOKS:

REFERENCES:

AU3002 BATTERIES AND MANAGEMENT SYSTEM L T P C
3 0 0 3

COURSE OBJECTIVES:
The objective of this course is to make the students
• to understand the working and characteristics of different types of batteries and their management .

UNIT I ADVANCED BATTERIES 9
Li-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging. Characteristics-SOC,DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. NCR18650B specifications.

UNIT II BATTERY PACK 9
Battery Pack- design, sizing, calculations, flow chart, real and simulation Model.Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging.
UNIT III BATTERY MODELLING
Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models-Introduction. Battery Modelling software/simulation frameworks

UNIT IV BATTERY STATE ESTIMATION

UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS
Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex Ray-CANedge1 package.ARBIN Battery Tester. BMS Development with Modeling software and Model-Based Design.

TOTAL :45 PERIODS

COURSE OUTCOMES:
At the end of this course, students will be able to
CO1: Acquire knowledge of different Li-ion Batteries performance.
CO2: Design a Battery Pack and make related calculations.
CO3: Demonstrate a Battery Model or Simulation.
CO5: Approach different BMS architectures during real world usage.

TEXT BOOKS

REFERENCE BOOKS
1. Developing Battery Management Systems with Simulink and Model-Based Design-whitepaper
2. Panasonic NCR18650B- DataSheet
3. bq76PL536A-Q1- IC DataSheet
4. CC2662R-Q1- IC DataSheet

COURSE OBJECTIVES:
The objective of this course is to make the students to list common types of sensor and actuators used in automotive vehicles.

UNIT I INTRODUCTION TO MEASUREMENTS AND SENSORS
Sensors: Functions- Classifications- Main technical requirement and trends Units and standards-Calibration methods- Classification of errors- Error analysis- Limiting error- Probable error- Propagation of error- Odds and uncertainty- principle of transduction-Classification. Static
characteristics- mathematical model of transducers- Zero, First and Second order transducers- Dynamic characteristics of first and second order transducers for standard test inputs.

UNIT II VARIABLE RESISTANCE AND INDUCTANCE SENSORS 9
Principle of operation- Construction details- Characteristics and applications of resistive potentiometer- Strain gauges- Resistive thermometers- Thermistors- Piezoresistive sensors Inductive potentiometer- Variable reluctance transducers:- EI pick up and LVDT

UNIT III VARIABLE AND OTHER SPECIAL SENSORS 9
Variable air gap type, variable area type and variable permittivity type- capacitor microphone Piezoelectric, Magnetostrictive, Hall Effect, semiconductor sensor- digital transducers-Humidity Sensor. Rain sensor, climatic condition sensor, solar, light sensor, antiglare sensor.

UNIT IV AUTOMOTIVE ACTUATORS 9

UNIT V AUTOMATIC TEMPERATURE CONTROL ACTUATORS 9
Different types of actuators used in automatic temperature control- Fixed and variable displacement temperature control- Semi Automatic- Controller design for Fixed and variable displacement type air conditioning system. TOTAL =45 PERIODS

COURSE OUTCOMES:
At the end of the course, the student will be able to
CO1:List common types of sensor and actuators used in vehicles.
CO2:Design measuring equipment’s for the measurement of pressure force, temperature and flow.
CO3:Generate new ideas in designing the sensors and actuators for automotive application
CO4:Understand the operation of the sensors, actuators and electronic control.
CO5:Design temperature control actuators for vehicles.

TEXT BOOKS:

REFERENCES:
COURSE OBJECTIVES:
- To interpret the missile space stations, space vs earth environment.
- To explain the life support systems, mission logistics and planning.
- To deploy the skills effectively in the understanding of space vehicle configuration design.
- To explain Engine system and support of space vehicle
- To interpret nose cone configuration of space vehicle

UNIT I FUNDAMENTAL ASPECTS 9
Energy and Efficiencies of power plants for space vehicles – Typical Performance Values – Mission design – Structural design aspects during launch - role of launch environment on launch vehicle integrity.

UNIT II SELECTION OF ROCKET PROPULSION SYSTEMS 9
Ascent flight mechanics – Launch vehicle selection process – Criteria for Selection for different missions – selection of subsystems – types of staging – Interfaces – selection and criteria for stages and their role in launch vehicle configuration design.

UNIT III ENGINE SYSTEMS, CONTROLS, AND INTEGRATION 9

UNIT IV THRUST VECTOR CONTROL 9
TVC Mechanisms with a Single Nozzle – TVC with Multiple Thrust Chambers or Nozzles – Testing – Integration with Vehicle – SITVC method – other jet control methods - exhaust plume problems in space environment

UNIT V NOSE CONE CONFIGURATION 9
Aerodynamic aspects on the selection of nose shape of a launch vehicle - design factors in the finalization of nose configuration with respect to payload - nose cone thermal protection system - separation of fairings - payload injection mechanism

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On successful completion of this course, the student will be able to

CO1: Explain exotic space propulsion concepts, such as nuclear, solar sail, and antimatter.
CO2: Apply knowledge in selecting the appropriate rocket propulsion systems.
CO3: Interpret the air-breathing propulsion suitable for initial stages and fly-back boosters.
CO4: Analyze aerodynamics aspect, including boost-phase lift and drag, hypersonic, and re-entry.
CO5: Adapt from aircraft engineers moving into launch vehicle, spacecraft, and hypersonic vehicle design.
COURSE OBJECTIVES:
Of this course are:
1. To introduce fundamental concepts of management and organization to students.
2. To impart knowledge to students on various aspects of marketing, quality control and marketing strategies.
3. To make students familiarize with the concepts of human resources management.
4. To acquaint students with the concepts of project management and cost analysis.
5. To make students familiarize with the concepts of planning process and business strategies.

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANISATION

UNIT II OPERATIONS AND MARKETING MANAGEMENT
Principles and Types of Plant Layout - Methods of Production (Job, batch and Mass Production), Work Study - Basic procedure involved in Method Study and Work Measurement - Business Process Reengineering (BPR) - Statistical Quality Control: control charts for Variables and Attributes (simple Problems) and Acceptance Sampling, Objectives of Inventory control, EOQ, ABC Analysis, Purchase Procedure, Stores Management and Store Records - JIT System, Supply Chain Management, Functions of Marketing, Marketing Mix, and Marketing Strategies based on Product Life Cycle.

UNIT III HUMAN RESOURCES MANAGEMENT
Concepts of HRM, HRD and Personnel Management and Industrial Relations (PMIR), HRM vs PMIR, Basic functions of HR Manager: Manpower planning, Recruitment, Selection, Training and Development, Wage and Salary Administration, Promotion, Transfer, Performance Appraisal, Grievance Handling and Welfare Administration, Job Evaluation and Merit Rating - Capability Maturity Model (CMM) Levels.

UNIT IV PROJECT MANAGEMENT
Network Analysis, Programme Evaluation and Review Technique (PERT), Critical Path Method (CPM), identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing (simple problems).

UNIT V STRATEGIC MANAGEMENT AND CONTEMPORARY STRATEGIC ISSUES

TOTAL: 45 PERIODS
COURSE OUTCOMES:
Upon completion of the course, Students will be able to

CO1: Plan an organizational structure for a given context in the organization to carry out production operations through Work-study.

CO2: Survey the markets, customers, and competition better and price the given products appropriately.

CO3: Ensure quality for a given product or service.

CO4: Plan, schedule, and control projects through PERT and CPM.

CO5: Evaluate strategy for a business or service organization.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

TEXTBOOKS:

REFERENCES:

OIM353 PRODUCTION PLANNING AND CONTROL

COURSE OBJECTIVES:
• To understand the concept of production planning and control act work study,
• To apply the concept of product planning,
• To analyze the production scheduling,
• To apply the Inventory Control concepts.
• To prepare the manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).
UNIT I INTRODUCTION
Objectives and benefits of planning and control-Functions of production control-Types of production-job- batch and continuous-Product development and design-Marketing aspect - Functional aspects-Operational aspect-Durability and dependability aspect aesthetic aspect. Profit consideration-Standardization, Simplification & specialization- Break even analysis-Economics of a new design.

UNIT II WORK STUDY
Method study, basic procedure-Selection-Recording of process - Critical analysis, Development - Implementation - Micro motion and memo motion study – work measurement - Techniques of work measurement - Time study - Production study - Work sampling - Synthesis from standard data - Predetermined motion time standards.

UNIT III PRODUCT PLANNING AND PROCESS PLANNING
Product planning-Extending the original product information-Value analysis-Problems in lack of product planning-Process planning and routing-Pre requisite information needed for process planning- Steps in process planning-Quantity determination in batch production-Machine capacity, balancing- Analysis of process capabilities in a multi product system.

UNIT IV PRODUCTION SCHEDULING

UNIT V INVENTORY CONTROL AND RECENT TRENDS IN PPC
Inventory control-Purpose of holding stock-Effect of demand on inventories-Ordering procedures. Two bin system - Ordering cycle system-Determination of Economic order quantity and economic lot size- ABC analysis - Recorder procedure-Introduction to computer integrated production planning systems- elements of JUST IN TIME SYSTEMS-Fundamentals of MRP II and ERP.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course,
CO1: The students can able to prepare production planning and control act work study,
CO2: The students can able to prepare product planning,
CO3: The students can able to prepare production scheduling,
CO4: The students can able to prepare Inventory Control.
CO5: They can plan manufacturing requirements manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

TEXT BOOKS:
REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ' - - no correlation

OIE353 OPERATIONS MANAGEMENT

COURSE OBJECTIVE:
- Recognize and appreciate the concept of Production and Operations Management in creating and enhancing a firm’s competitive advantages.
- Describe the concept and contribution of various constituents of Production and Operations Management (both manufacturing and service).
- Relate the interdependence of the operations function with the other key functional areas of a firm.
- Teach analytical skills and problem-solving tools to the analysis of the operations problems.
- Apply scheduling and Lean Concepts for improving System Performance.

UNIT I INTRODUCTION TO OPERATIONS MANAGEMENT
Operations Management – Nature, Importance, historical development, transformation processes, differences between services and goods, a system perspective, functions, challenges, current priorities, recent trends; Operations Strategy – Strategic fit, framework; Supply Chain Management
UNIT II FORECASTING, CAPACITY AND FACILITY DESIGN

UNIT III DESIGN OF PRODUCT, PROCESS AND WORK SYSTEMS

UNIT IV MATERIALS MANAGEMENT

UNIT V SCHEDULING AND PROJECT MANAGEMENT

Project Management – Scheduling Techniques, PERT, CPM; Scheduling - work centers – nature, importance; Priority rules and techniques, shopfloor control; Flow shop scheduling – Johnson’s Algorithm – Gantt charts; personnel scheduling in services.

COURSE OUTCOMES:

CO1: The students will appreciate the role of Production and Operations management in enabling and enhancing a firm's competitive advantages in the dynamic business environment.

CO2: The students will obtain sufficient knowledge and skills to forecast demand for Production and Service Systems.

CO3: The students will be able to Formulate and Assess Aggregate Planning strategies and Material Requirement Plan.

CO4: The students will be able to develop analytical skills to calculate capacity requirements and developing capacity alternatives.

CO5: The students will be able to apply scheduling and Lean Concepts for improving System Performance.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

TOTAL: 45 PERIODS
TEXT BOOKS

REFERENCES

OSF352 INDUSTRIAL HYGIENE L T P C
3 0 0 3

COURSE OBJECTIVES:
1. Demonstrate an understanding of how occupational hygiene standards are set and used in work health and safety.
2. Compare and contrast the roles of environmental and biological monitoring in work health and safety.
3. Outline strategies for identifying, assessing and controlling risks associated with airborne gases, vapours and particulates.
4. Discuss how personal protective equipment can be used to reduce risks associated with workplace exposures.
5. Provide high-level advice on managing and controlling noise and noise-related hazards.

UNIT I INTRODUCTION AND SCOPE

UNIT II MONITORING FOR SAFETY, HEALTH & ENVIRONMENT

UNIT III OCCUPATIONAL HEALTH AND ENVIRONMENTAL SAFETY EDUCATION
UNIT IV OCCUPATIONAL SAFETY, HEALTH AND ENVIRONMENT MANAGEMENT

Bureau of Indian standards on safety and health 14489 - 1998 and 15001 – 2000, OSHA, Process Safety Management (PSM) as per OSHA, PSM principles, OHSAS – 18001, EPA Standards, Performance measurements to determine effectiveness of PSM. Importance of Industrial safety, role of safety department,

UNIT V INDUSTRIAL HAZARDS

i. Radiation: Types and effects of radiation on human body, Measurement and detection of radiation intensity. Effects of radiation on human body, Measurement – disposal of radioactive waste, Control of radiation

COURSE OUTCOMES:
Students able to

CO1: Explain and apply human factors engineering concepts in both evaluation of existing systems and design of new systems

CO2: Specify designs that avoid occupation related injuries

CO3: Define and apply the principles of work design, motion economy, and work environment design.

CO4: Identify the basic human sensory, cognitive, and physical capabilities and limitations with respect to human-machine system performance.

CO5: Acknowledge the impact of workplace design and environment on productivity

TEXT BOOKS:

REFERENCES:
2. Frank P Lees - Loss of prevention in Process Industries, Vol. 1 and 2,

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
AVG | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1
1 - low, 2 - medium, 3 - high, "-" - no correlation

OSF353 CHEMICAL PROCESS SAFETY L T P C
3 0 0 3

COURSE OBJECTIVES
- Teach the principles of safety applicable to the design, and operation of chemical process plants.
- Ensure that potential hazards are identified and mitigation measures are in place to prevent unwanted release of energy.
- Learn about the hazardous chemicals into locations that could expose employees and others to serious harm.
- Focuses on preventing incidents and accidents during large scale manufacturing of chemicals and pharmaceuticals.
- Ensure that the general design of the plant is capable of complying with the dose limits in force and with the radioactive releases.

UNIT I SAFETY IN THE STORAGE AND HANDLING OF CHEMICALS AND GASES 9
Types of storage - general considerations for storage layouts - atmospheric venting, pressure and temperature relief - relief valve sizing calculations - storage and handling of hazardous chemicals and industrial gases, safe disposal methods, reaction with other chemicals, hazards during transportation - pipe line transport - safety in chemical laboratories.

UNIT II CHEMICAL REACTION HAZARDS 9
Hazardous inorganic and organic reactions and processes, Reactivity as a process hazard, Detonations, Deflagrations, and Runaways, Assessment and Testing strategies, Self-heating hazards of solids, Explosive potential of chemicals, Structural groups and instability of chemicals, Thermochemical screening.

UNIT III SAFETY IN THE DESIGN OF CHEMICAL PROCESS PLANTS 9
Design principles - Process design development - types of designs, feasibility survey, preliminary design, Flow diagrams, piping and instrumentation diagram, batch versus continuous operation, factors in equipment scale up and design, equipment specifications - reliability and safety in designing - inherent safety - engineered safety - safety during startup and shutdown - non destructive testing methods - pressure and leak testing - emergency safety devices - scrubbers and flares - new concepts in safety design and operation - Pressure vessel testing standards - Inspection techniques for boilers and reaction vessels.

UNIT IV SAFETY IN THE OPERATION OF CHEMICAL PROCESS PLANTS 9
Properties of chemicals - Material Safety Data Sheets - the various properties and formats used - methods available for property determination. Operational activities and hazards - standards operating procedures - safe operation of pumps, compressors, heaters, column, reactors, pressure vessels, storage vessels, piping systems - effects of pressure, temperature, Flow rate and humidity on operations - corrosion and control measures - condition monitoring - control valves - safety valves - pressure reducing valves, drains, bypass valves, inert gases. Chemical splashes, eye irrigation and automatic showers.
UNIT V SAFETY AND ANALYSIS

Safety vs reliability- quantification of basic events, system safety quantification, Human error analysis, Accident investigation and analysis, OSHAS 18001 and OSHMS.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Students able to
CO1 Differentiate between inherent safety and engineered safety and recognize the importance of safety in the design of chemical process plants.
CO2 Develop thorough knowledge about safety in the operation of chemical plants.
CO3 Apply the principles of safety in the storage and handling of gases.
CO4 Identify the conditions that lead to reaction hazards and adopt measures to prevent them.
CO5 Develop thorough knowledge about

TEXT BOOK

REFERENCES:

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVg.</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>1.5</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1.5</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-" - no correlation

OML352 ELECTRICAL, ELECTRONIC AND MAGNETIC MATERIALS

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
- Understanding the importance of various materials used in electrical, electronics and magnetic applications
- Acquiring knowledge on the properties of electrical, electronics and magnetic materials.
- Gaining knowledge on the selection of suitable materials for the given application
- Knowing the fundamental concepts in Semiconducting materials
- Getting equipped with the materials used in optical and optoelectronic applications.
UNIT I DIELECTRIC MATERIALS
Dielectric as Electric Field Medium, leakage currents, dielectric loss, dielectric strength, breakdown voltage, breakdown in solid dielectrics, flashover, liquid dielectrics, electric conductivity in solid, liquid and gaseous dielectrics, Ferromagnetic materials, properties of ferromagnetic materials in static fields, spontaneous, polarization, curie point, anti-ferromagnetic materials, piezoelectric materials, pyroelectric materials.

UNIT II MAGNETIC MATERIALS
Classification of magnetic materials, spontaneous magnetization in ferromagnetic materials, magnetic Anisotropy, Magnetostriction, diamagnetism, magnetically soft and hard materials, special purpose materials, feebly magnetic materials, Ferrites, cast and cermet permanent magnets, ageing of magnets. Factors effecting permeability and Hysteresis.

UNIT III SEMICONDUCTOR MATERIALS
Properties of semiconductors, Silicon wafers, integration techniques, Large and very large scale Integration techniques. Concept of superconductivity; theories and examples for high temperature superconductivity; discussion on specific superconducting materials; comments on fabrication and engineering applications.

UNIT IV MATERIALS FOR ELECTRICAL APPLICATIONS
Materials used for Resistors, rheostats, heaters, transmission line structures, stranded conductors, bimetals fuses, soft and hard solders, electric contact materials, electric carbon materials, thermocouple materials. Solid, Liquid and Gaseous insulating materials, Effect of moisture on insulation.

UNIT V OPTICAL AND OPTOELECTRONIC MATERIALS

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completion of this course, the students will be able to
CO1: Understand various types of dielectric materials, their properties in various conditions.
CO2: Evaluate magnetic materials and their behavior.
CO3: Evaluate semiconductor materials and technologies.
CO4: Select suitable materials for electrical engineering applications.
CO5: Identify right material for optical and optoelectronic applications.

TEXT BOOKS:

REFERENCE BOOKS:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C02</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C03</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C04</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C05</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>1.8</td>
<td>1.6</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

OML353

NANOMATERIALS AND APPLICATIONS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

1. Understanding the evolution of nanomaterials in the scientific era and make them to understand different types of nanomaterials for the future engineering applications
2. Gaining knowledge on dimensionality effects on different properties of nanomaterials
3. Getting acquainted with the different processing techniques employed for fabricating nanomaterials
4. Having knowledge on the different characterisation techniques employed to characterise the nanomaterials
5. Acquiring knowledge on different applications of nanomaterials in different disciplines of engineering.

UNIT I

NANOMATERIALS

Introduction, Classification: 0D, 1D, 2D, 3D nanomaterials and nano-composites, their mechanical, electrical, optical, magnetic properties; Nanomaterials versus bulk materials.

UNIT II

THERMODYNAMICS & KINETICS OF NANOSTRUCTURED MATERIALS

Size and interface/interphase effects, interfacial thermodynamics, phase diagrams, diffusivity, grain growth, and thermal stability of nanomaterials.

UNIT III

PROCESSING

Bottom-up and top-down approaches for the synthesis of nanomaterials, mechanical alloying, chemical routes, severe plastic deformation, and electrical wire explosion technique.
UNIT IV STRUCTURAL CHARACTERISTICS
Principles of emerging nanoscale X-ray techniques such as small angle X-ray scattering and X-ray absorption fine structure (XAFS), electron and neutron diffraction techniques and their application to nanomaterials; SPM, Nanoindentation, Grain size, phase formation, texture, stress analysis

UNIT V APPLICATIONS
Applications of nanoparticles, quantum dots, nanotubes, nanowires, nanocoatings; applications in electronic, electrical and medical industries

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completion of this course, the students will be able to

CO1: Evaluate nanomaterials and understand the different types of nanomaterials
CO2: Recognise the effects of dimensionality of materials on the properties
CO3: Process different nanomaterials and use them in engineering applications
CO4: Use appropriate techniques for characterising nanomaterials
CO5: Identify and use different nanomaterials for applications in different engineering fields.

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C02</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C03</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C04</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C05</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2.8</td>
<td>1.6</td>
<td>1.7</td>
<td>2.2</td>
<td>2.2</td>
<td>2</td>
<td>1.8</td>
<td>2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-" - no correlation

OMR352 HYDRAULICS AND PNEUMATICS

COURSE OBJECTIVES:
1. To knowledge on fluid power principles and working of hydraulic pumps
2. To obtain the knowledge in hydraulic actuators and control components
3. To understand the basics in hydraulic circuits and systems
4. To obtain the knowledge in pneumatic and electro pneumatic systems
5. To apply the concepts to solve the trouble shooting

UNIT I FLUID POWER PRINCIPLES AND HYDRAULIC PUMPS 9

UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9

UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9
Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Hydrostatic transmission, Electro hydraulic circuits, Mechanical hydraulic servo systems.

UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9

UNIT V TROUBLE SHOOTING AND APPLICATIONS 9

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
 CO 1: Analyze the methods in fluid power principles and working of hydraulic pumps
 CO 2: Recognize the concepts in hydraulic actuators and control components
 CO 3: Obtain the knowledge in basics of hydraulic circuits and systems
 CO 4: Know about the basics concept in pneumatic and electro pneumatic systems
 CO 5: Apply the concepts to solve the trouble shooting hydraulic and pneumatics

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>COs/POs & PSOs</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
TEXT BOOKS

REFERENCES

OMR353 SENSORS

COURSE OBJECTIVES:

- To learn the various types of sensors, transducers, sensor output signal types, calibration techniques, formulation of system equation and its characteristics.
- To understand basic working principle, construction, Application and characteristics of displacement, speed and ranging sensors.
- To understand and analyze the working principle, construction, application and characteristics of force, magnetic and heading sensors.
- To learn and analyze the working principle, construction, application and characteristics of optical, pressure, temperature and other sensors.
- To familiarize students with different signal conditioning circuits design and data acquisition system.

UNIT I SENSORS CLASSIFICATION, CHARACTERISTICS AND SIGNAL TYPES

UNIT II DISPLACEMENT, PROXIMITY AND RANGING SENSORS

UNIT III FORCE, MAGNETIC AND HEADING SENSORS

UNIT IV OPTICAL, PRESSURE, TEMPERATURE AND OTHER SENSORS

UNIT V SIGNAL CONDITIONING

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO1: Understand various sensor effects, sensor characteristics, signal types, calibration methods and obtain transfer function and empirical relation of sensors. They can also analyze the sensor response.
CO2: Analyze and select suitable sensor for displacement, proximity and range measurement.
CO3: Analyze and select suitable sensor for force, magnetic field, speed, position and direction measurement.
CO4: Analyze and Select suitable sensor for light detection, pressure and temperature measurement and also familiar with other miniaturized smart sensors.
CO5: Select and design suitable signal conditioning circuit with proper compensation and linearizing element based on sensor output signal.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>COs/POs & PSOs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO/PO & PSO Average</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td></td>
<td></td>
<td>0.8</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-'- no correlation
TEXT BOOKS

REFERENCES

ORA352 CONCEPTS IN MOBILE ROBOTS

COURSE OBJECTIVES
1. To introduce mobile robotic technology and its types in detail.
2. To learn the kinematics of wheeled and legged robot.
3. To familiarize the intelligence into the mobile robots using various sensors.
4. To acquaint the localization strategies and mapping technique for mobile robot.
5. To aware the collaborative mobile robotics in task planning, navigation and intelligence.

UNIT I INTRODUCTION TO MOBILE ROBOTICS

UNIT II KINEMATICS

UNIT III PERCEPTION

UNIT IV LOCALIZATION
UNIT V PLANNING, NAVIGATION AND COLLABORATIVE ROBOTS

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
CO1: Evaluate the appropriate mobile robots for the desired application.
CO2: Create the kinematics for given wheeled and legged robot.
CO3: Analyse the sensors for the intelligence of mobile robotics.
CO4: Create the localization strategies and mapping technique for mobile robot.
CO5: Create the collaborative mobile robotics for planning, navigation and intelligence for desired applications.

TEXTBOOK

REFERENCES:

MV3501 MARINE PROPULSION

COURSE OBJECTIVES:
- To impart knowledge on basics of propulsion system and ship dynamic movements
- To educate them on basic layout and propulsion equipment’s
- To impart basic knowledge on performance of the ship
- To impart basic knowledge on Ship propeller and its types
- To impart knowledge on ship rudder and its types

UNIT I BASICS SHIP PROPULSION SYSTEM AND EQUIPMENTS
law of floatation - Basics principle of propulsion- Earlier methods of propulsion- ship propulsion machinery- boiler, Marine steam engine, diesel engine, ship power transmission system, ship dynamic structure, Marine propulsion equipment - shaft tunnel, Intermediate shaft and bearing, stern tube, stern tube sealing etc. degree of freedom, Modern propelling methods- water jet propulsion, screw propulsion.
UNIT II SHIPS MOVEMENTS AND SHIP STABILIZATION
Thrust augmented devices, Ship hull, modern ship propulsion design, bow thruster – Advantages, various methods to stabilize the ship- passive and active stabilizer, fin stabilizer, bilge keel - stabilizing and securing ship in port- effect of tides on ship – effect of river water and sea water sailing vessel, Load line and load line of marking- draught markings.

UNIT III SHIPS SPEED AND ITS PERFORMANCE
Ship propulsion factors, factors affecting ships speed, various velocities of ship, hull drag, effects of fouling on ships hull, ship wake, relation between powers, Fuel consumption of ship, cavitations - effects of cavitation’s, ship turning radius.

UNIT IV BASICS OF PROPELLER

UNIT V BASICS OF RUDDER
Rudder dimension, Area of rudder and its design, Rudder arrangements, Rudder fittings- Rudder pintle - Rudder types- Balanced rudder, semi balanced rudder, Spade rudder, merits and demerits of various types of rudders, Propeller and rudder interaction, Rudder stopper, movement of rudders, Basic construction of Rudder

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon successful completion of the course, students should be able to:
CO1: Explain the basics of propulsion system and ship dynamic movements
CO2: Familiarize with various components assisting ship stabilization.
CO3: Demonstrate the performance of the ship.
CO4: Classify the Propeller and its types, Materials etc.
CO5: Categories the Rudder and its types, design criteria of rudder.

TEXT BOOKS:
1. GP. Ghose, “Basic Ship propulsion”,2015

REFERENCES BOOKS:

CO’s-PO’s & PSO’s MAPPING
<table>
<thead>
<tr>
<th>C</th>
<th>O</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-" - no correlation

OMV351 MARINE MERCHANT VESSELS L T P C 3 0 0 3

COURSE OBJECTIVES:
At the end of the course, students are expected to acquire
- Knowledge on basics of Hydrostatics
- Familiarization on types of merchant ships
- Knowledge on Shipbuilding Materials
- Knowledge on marine propeller and rudder
- Awareness on governing bodies in shipping industry

UNIT I INTRODUCTION TO HYDROSTATICS 9

UNIT II TYPES OF SHIP 10
General cargo ship - Refrigerated cargo ships - Container ships - Roll-on Roll-off ships - Oil tankers - Bulk carriers - Liquefied Natural Gas carriers - Liquefied Petroleum Gascarriers - Chemical tankers - Passenger ships

UNIT III SHIPBUILDING MATERIALS 9
Types of Steels used in Shipbuilding - High tensile steels, Corrosion resistant steels, Steel sandwich panels, Steel castings, Steel forgings - Other shipbuilding materials, Aluminium alloys, Aluminium alloy sandwich panels, Fire protection especially for Aluminium Alloys, Fiber Reinforced Composites

UNIT IV MARINE PROPELLER AND RUDDER 8
Types of rudder, construction of Rudder - Types of Propeller, Propeller material - Cavitations and its effects on propeller

UNIT V GOVERNING BODIES FOR SHIPPING INDUSTRY 9
Role of IMO (International Maritime Organization), SOLAS (International Convention for the Safety of Life at Sea), MARPOL (International Convention for the Prevention of Pollution from Ships) , MLC (Maritime Labour Convention), STCW 2010 (International Convention on Standards of Training, Certification and Watch keeping for Seafarers), Classification societies Administration
COURSE OUTCOMES:
Upon completion of this course, students would
CO1: Acquire Knowledge on floatation of ships
CO2: Acquire Knowledge on features of various ships
CO3: Acquire Knowledge of Shipbuilding Materials
CO4: Acquire Knowledge to identify the different types of marine propeller and rudder
CO5: Understand the Roles and responsibilities of governing bodies

TEXT BOOKS:
2. Dr. DA Taylor, “Merchant Ship Naval Architecture” I. Mar EST publications, 2006

REFERENCES:
2. MARPOL Consolidated Edition, Bhandakar Publications, 2018

OMV 352 ELEMENTS OF MARINE ENGINEERING
L T P C
3 0 0 3

COURSE OBJECTIVES:
At the end of the course, students are expected to
1. Understand the role of Marine machinery systems
2. Be familiar with Marine propulsion machinery system
3. Acquaint with Marine Auxiliary machinery system
4. Have acquired basics of Marine Auxiliary boiler system
5. Be aware of ship propellers and steering system

UNIT I ELEMENTARY KNOWLEDGE ON MARINE MACHINERY SYSTEMS
Marine Engineering Terminologies, Parts of Ship, Introduction to Machinery systems on board ships – Propulsion Machinery system, Electricity Generator system, Steering gear system, Air compressors & Air reservoirs, Fuel oil and Lubricating Oil Purifiers, Marine Boiler systems

UNIT II MARINE PROPULSION MACHINERY SYSTEM
Two stroke Large Marine slow speed Diesel Engine – General Construction, Basic knowledge of Air starting and reversing mechanism, Cylinder lubrication oil system, Main lubricating oil system and cooling water system

UNIT III MARINE AUXILIARY MACHINERY SYSTEM
Four stroke medium speed Diesel engine – General Construction, Inline, V-type arrangement of engine, Difference between slow speed and medium speed engines – advantages, limitations and applications
UNIT IV MARINE BOILER SYSTEM
Types of Boiler – Difference between Water tube boiler and Fire tube boiler, Need for boiler on board ships, Uses of steam, Advantages of using steam as working medium, Boiler mountings and accessories – importance of mountings, need for accessories

UNIT V SHIP PROPELLERS AND STEERING MECHANISM
Importance of Propellor and Steering gear, Types of propellers - Fixed pitch propellers, Controllable pitch propellers, Water jet propellers, Steering gear systems - 2-Ram and 4 Ram steering gear, Electric steering gear

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course, students should able to,
CO1:Distinguish the role of various marine machinery systems
CO2:Relate the components of marine propulsion machinery system
CO3:Explain the importance of marine auxiliary machinery system
CO4:Acquire knowledge of marine boiler system
CO5:Understand the importance of ship propellers and steering system

TEXT BOOKS:

REFERENCES:
1. Alan L.Rowen, “Introduction to Practical Marine Engineering, Volume 1&2, The Institute of Marine Engineers (India), Mumbai, 2006
2. A.S.Tambwekar, "Naval Architecture and Ship Construction", The Institute of Marine Engineers (India), Mumbai, 2015

CRA332 DRONE TECHNOLOGIES

COURSE OBJECTIVES:
1. To understand the basics of drone concepts
2. To learn and understand the fundamentals of design, fabrication and programming of drone
3. To impart the knowledge of an flying and operation of drone
4. To know about the various applications of drone
5. To understand the safety risks and guidelines of fly safely

UNIT I INTRODUCTION TO DRONE TECHNOLOGY
Drone Concept - Vocabulary Terminology- History of drone - Types of current generation of drones based on their method of propulsion- Drone technology impact on the businesses- Drone business through entrepreneurship- Opportunities/applications for entrepreneurship and employability

UNIT II DRONE DESIGN, FABRICATION AND PROGRAMMING
Classifications of the UAV -Overview of the main drone parts- Technical characteristics of the parts -Function of the component parts -Assembling a drone- The energy sources- Level of
autonomy - Drones configurations - The methods of programming drone - Download program - Install program on computer - Running Programs - Multi rotor stabilization - Flight modes - Wi-Fi connection.

UNIT III DRONE FLYING AND OPERATION 9
Concept of operation for drone - Flight modes - Operate a small drone in a controlled environment - Drone controls Flight operations - Management tool - Sensors - Onboard storage capacity - Removable storage devices - Linked mobile devices and applications

UNIT IV DRONE COMMERCIAL APPLICATIONS 9
Choosing a drone based on the application - Drones in the insurance sector - Drones in delivering mail, parcels and other cargo - Drones in agriculture - Drones in inspection of transmission lines and power distribution - Drones in filming and panoramic picturing

UNIT V FUTURE DRONES AND SAFETY 9
The safety risks - Guidelines to fly safely - Specific aviation regulation and standardization - Drone license - Miniaturization of drones - Increasing autonomy of drones - The use of drones in swarms

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO1: Know about a various type of drone technology, drone fabrication and programming.
CO2: Execute the suitable operating procedures for functioning a drone
CO3: Select appropriate sensors and actuators for Drones
CO4: Develop a drone mechanism for specific applications
CO5: Create the programs for various drones

<table>
<thead>
<tr>
<th>COs/POs & PSO's MAPPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>COs/POs & PSOs MAPPING</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

POs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Average: 1 - low, 2 - medium, 3 - high, "-" - no correlation

TEXT BOOKS

334
REFERENCES

OGI352 GEOGRAPHICAL INFORMATION SYSTEM L T P C
3 0 0 3

COURSE OBJECTIVES:
- To impart the knowledge on basic components, data preparation and implementation of Geographical Information System.

UNIT I FUNDAMENTALS OF GIS

UNIT II SPATIAL DATA MODELS

UNIT III DATA INPUT AND TOPOLOGY

UNIT IV DATA QUALITY AND STANDARDS
Data quality - Basic aspects - completeness, logical consistency, positional accuracy, temporal accuracy, thematic accuracy and lineage – Metadata – GIS Standards –Interoperability - OGC - Spatial Data Infrastructure

UNIT V DATA MANAGEMENT AND OUTPUT
Import/Export – Data Management functions- Raster to Vector and Vector to Raster Conversion - Data Output - Map Compilation – Chart/Graphs – Multimedia – Enterprise Vs. Desktop GIS-distributed GIS.

TOTAL:45 PERIODS

COURSE OUTCOMES:
On completion of the course, the student is expected to
CO1 Have basic idea about the fundamentals of GIS.
CO2 Understand the types of data models.
CO3 Get knowledge about data input and topology
CO4 Gain knowledge on data quality and standards
CO5 Understand data management functions and data output
TEXTBOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING: GEOGRAPHIC INFORMATION SYSTEM

<table>
<thead>
<tr>
<th>PO</th>
<th>Graduate Attribute</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Engineering Knowledge</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO2</td>
<td>Problem Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO3</td>
<td>Design/Development of Solutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO4</td>
<td>Conduct Investigations of Complex Problems</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PO6</td>
<td>The Engineer and Society</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and Sustainability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and Team Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO11</td>
<td>Project Management and Finance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSO1</td>
<td>Knowledge of Geoinformatics discipline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PSO2</td>
<td>Critical analysis of Geoinformatics Engineering problems and innovations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PSO3</td>
<td>Conceptualization and evaluation of Design solutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

OAI352 AGRICULTURE ENTREPRENEURSHIP DEVELOPMENT L T P C 3 0 0 3

COURSE OBJECTIVES
- To introduce the importance of Agri-business management, its characteristics and principles
- To impart knowledge on the functional areas of Agri-business like Marketing management, Product pricing methods and Market potential assessment.

UNIT I ENTREPRENEURIAL ENVIRONMENT IN INDIAN CONTEXT 9
Entrepreneur Development(ED): Concept of entrepreneur and entrepreneurship assessing overall business environment in Indian economy- Entrepreneurial and managerial characteristics-Entrepreneurship development programmers (EDP)-Generation incubation and commercialization
of ideas and innovations - Motivation and entrepreneurship development - Globalization and the emerging business entrepreneurial environment.

UNIT II AGRIPRENEURSHIP IN GLOBAL ARENA: LEGAL PERSPECTIVE
Importance of agribusiness in Indian economy - International trade-WTO agreements - Provisions related to agreements in agricultural and food commodities - Agreements on Agriculture (AOA) - Domestic supply, market access, export subsidies agreements on sanitary and phyto-sanitary (SPS) measures, Trade related intellectual property rights (TRIPS).

UNIT III ENTREPRENEURSHIP MANAGEMENT: FINANCIAL PERSPECTIVE

UNIT IV ENTREPRENEURIAL OPPORTUNITIES: ECONOMIC GROWTH PERSPECTIVE
Managing an enterprise: Importance of planning, budgeting, monitoring evaluation and follow-up managing competition. Role of ED in economic development of a country - Overview of Indian social, political system and their implications for decision making by individual entrepreneurs - Economic system and its implication for decision making by individual entrepreneurs.

UNIT V ENTREPRENEURIAL PROMOTION MEASURES AND GOVERNMENT SUPPORT
Social responsibility of business. Morals and ethics in enterprise management - SWOT analysis - Government schemes and incentives for promotions of entrepreneurship. Government policy on small and medium enterprises (SMEs)/SSIs/MSME sectors - Venture capital (VC), contract framing (CF) and Joint Venture (JV), public-private partnerships (PPP) - overview of agricultural engineering industry, characteristics of Indian farm machinery industry.

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1: Judge about agricultural finance, banking and cooperation
CO2: Evaluate basic concepts, principles and functions of financial management
CO3: Improve the skills on basic banking and insurance schemes available to customers
CO4: Analyze various financial data for efficient farm management
CO5: Identify the financial institutions

TEXT BOOKS
REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>Overall correlation of COs with POs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1 Engineering Knowledge</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO2 Problem Analysis</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PO3 Design/ Development of Solutions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO4 Conduct/ Investigations of Complex Problems</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO5 Modern Tool Usage</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO6 The Engineer and Society</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO7 Environment and sustainability</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO8 Ethics</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO9 Individual and team work:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO10 Communication</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PO11 Project management and finance</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO12 Life-long learning:</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PSO1 To make expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PSO2 To enhance students ability to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies.</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PSO3 To inculcate entrepreneurial skills through strong Industry-Institution linkage.</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation
COURSE OBJECTIVE:
- The identification of different aspects of biological diversity and conservation techniques.

UNIT I INTRODUCTION 9
Concept of Species, Variation; Introduction to Major Plant Groups; Evolutionary relationships between Plant Groups; Nomenclature and History of plant taxonomy; Systems of Classification and their Application; Study of Plant Groups; Study of Identification Characters; Study of important families of Angiosperms; Plant Diversity Application.

UNIT II INTRODUCTION TO ANIMAL DIVERSITY AND TAXONOMY 9
Principles and Rules of Taxonomy; ICZN Rules, Animal Study Techniques; Concepts of Taxon, Categories, Holotype, Paratype, Topotype etc; Classification of Animal kingdom, Invertebrates, Vertebrates, Evolutionary relationships between Animal Groups.

UNIT III MICROBIAL DIVERSITY 9
Microbes and Earth History, Magnitude, Occurrence and Distribution. Concept of Species, Criteria for Classification, Outline Classification of Microorganisms (Bacteria, Viruses and Protozoa); Criteria for Classification and Identification of Fungi; Chemical and Biochemical Methods of Microbial Diversity Analysis

UNIT IV MEGA DIVERSITY 9
Biodiversity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Red List; Factors affecting Diversity, Impact of Exotic Species and Human Disturbance on Diversity, Dispersal, Diversity-Stability Relationship; Socio-economic Issues of Biodiversity; Sustainable Utilization of Bioresources; National Movements and International Convention/Treaties on Biodiversity.

UNIT V CONSERVATIONS OF BIODIVERSITY 9
In-Situ Conservation- National parks, Wildlife sanctuaries, Biosphere reserves; Ex-situ conservation- Gene bank, Cryopreservation, Tissue culture bank; Long term captive breeding, Botanical gardens, Animal Translocation, Zoological Gardens; Concept of Keystone Species, Endangered Species, Threatened Species, Rare Species, Extinct Species

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
COURSE OUTCOMES
Upon successful completion of this course, students will:
CO1: An insight into the structure and function of diversity for ecosystem stability.
CO2: Understand the concept of animal diversity and taxonomy
CO3: Understand socio-economic issues pertaining to biodiversity
CO4: An understanding of biodiversity in community resource management.
CO5: Student can apply fundamental knowledge of biodiversity conservation to solve problems associated with infrastructure development.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1.low, 2-medium, 3-high, '*'- no correlation

Note: The average value of this course to be used for program articulation matrix.

OEE353 INTRODUCTION TO CONTROL SYSTEMS L T P C

COURSE OBJECTIVES
- To impart knowledge on various representations of systems.
- To familiarize time response analysis of LTI systems and steady state error.
- To analyze the frequency responses and stability of the systems
- To analyze the stability of linear systems in frequency domain and time domain
- To develop linear models mainly state variable model and transfer function model

UNIT I MATHEMATICAL MODELS OF PHYSICAL SYSTEMS
Definition & classification of system – terminology & structure of feedback control theory – Analogous systems - Physical system representation by Differential equations – Block diagram reduction–Signal flow graphs.

UNIT II TIME RESPONSE ANALYSIS & ROOTLOCUSTECHNIQUE

UNIT III FREQUENCY RESPONSE ANALYSIS
Correlation between Time & Frequency response – Polar plots – Bode Plots – Determination of Transfer Function from Bode plot.

UNIT IV STABILITY CONCEPTS & ANALYSIS
UNIT V STATE VARIABLE ANALYSIS
Concept of state – State Variable & State Model – State models for linear & continuous time systems–Solution of state & output equation–controllability & observability.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Ability to
CO1: Design the basic mathematical model of physical System.
CO2: Analyze the time response analysis and techniques.
CO3: Analyze the transfer function from different plots.
CO4: Apply the stability concept in various criterion.
CO5: Assess the state models for linear and continuous Systems.

TEXTBOOKS

REFERENCES
2. Control System Dynamics" by Robert Clark, Cambridge University Press, 1996 USA.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-"- no correlation

OEI354 INTRODUCTION TO INDUSTRIAL AUTOMATION SYSTEMS

COURSE OBJECTIVES:
1. To educate on design of signal conditioning circuits for various applications.
2. To Introduce signal transmission techniques and their design.
3. Study of components used in data acquisition systems interface techniques
4. To educate on the components used in distributed control systems

341
5. To introduce the communication buses used in automation industries.

UNIT I INTRODUCTION

UNIT II AUTOMATION COMPONENTS
Sensors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH measurement. Actuators, process control valves, power electronics devices DIAC, TRIAC, power MOSFET and IGBT. Introduction of DC and AC servo drives for motion control.

UNIT III COMPUTER AIDED MEASUREMENT AND CONTROL SYSTEMS
Role of computers in measurement and control, Elements of computer aided measurement and control, man-machine interface, computer aided process control hardware, process related interfaces, Communication and networking, Industrial communication systems, Data transfer techniques, Computer aided process control software, Computer based data acquisition system, Internet of things (IoT) for plant automation.

UNIT IV PROGRAMMABLE LOGIC CONTROLLERS
Programmable controllers, Programmable logic controllers, Analog digital input and output modules, PLC programming, Ladder diagram, Sequential flow chart, PLC Communication and networking, PLC selection, PLC Installation, Advantage of using PLC for Industrial automation, Application of PLC to process control industries.

UNIT V DISTRIBUTED CONTROL SYSTEM
Overview of DCS, DCS software configuration, DCS communication, DCS Supervisory Computer Tasks, DCS integration with PLC and Computers, Features of DCS, Advantages of DCS.

TOTAL:45 PERIODS

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc) 5
1. Market survey of the recent PLCs and comparison of their features.
2. Summarize the PLC standards
3. Familiarization of any one programming language (Ladder diagram/ Sequential Function Chart/ Function Block Diagram/ Equivalent open source software)

COURSE OUTCOMES:
Students able to
CO1 Design a signal conditioning circuits for various application (L3).
CO2 Acquire a detail knowledge on data acquisition system interface and DCS system (L2).
CO3 Understand the basics and Importance of communication buses in applied automation Engineering (L2).
CO4 Ability to design PLC Programmes by Applying Timer/Counter and Arithmetic and Logic Instructions Studied for Ladder Logic and Function Block.(L3)
CO5 Able to develop a PLC logic for a specific application on real world problem. (L5)
TEXT BOOKS:

REFERENCES:

List of Open Source Software/ Learning website:
1. https://archive.nptel.ac.in/courses/108/105/108105062/
2. https://nptel.ac.in/courses/108105063

<table>
<thead>
<tr>
<th>CO's-PO's & PSO's MAPPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
<tr>
<td>Avg.</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

UNIT I
INTRODUCTION
Units of energy, conversion factors, general classification of energy, world energy resources and energy consumption, Indian energy resources and energy consumption, energy crisis, energy alternatives, Renewable and non-renewable energy sources and their availability. Prospects of Renewable energy sources

UNIT II
CONVENTIONAL ENERGY
Conventional energy resources, Thermal, hydel and nuclear reactors, thermal, hydel and nuclear power plants, efficiency, merits and demerits of the above power plants, combustion processes, fluidized bed combustion.
UNIT III NON-CONVENTIONAL ENERGY 10
Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar energy application in India, energy plantations. Wind energy, types of windmills, types of wind rotors, Darrieus rotor and Gravian rotor, wind electric power generation, wind power in India, economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy.

UNIT IV BIOMASS ENERGY 10
Biomass energy resources, thermo-chemical and biochemical methods of biomass conversion, combustion, gasification, pyrolysis, biogas production, ethanol, fuel cells, alkaline fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, solid polymer electrolyte fuel cell, magneto hydrodynamic power generation, energy storage routes like thermal energy storage, chemical, mechanical storage and electrical storage.

UNIT V ENERGY CONSERVATION 9
Energy conservation in chemical process plants, energy audit, energy saving in heat exchangers, distillation columns, dryers, ovens and furnaces and boilers, steam economy in chemical plants, energy conservation. TOTAL : 45 PERIODS

COURSE OUTCOMES:
On completion of the course, the students will be able to
CO1: Students will be able to describe the fundamentals and main characteristics of renewable energy sources and their differences compared to fossil fuels.
CO2: Students will excel as professionals in the various fields of energy engineering
CO3: Compare different renewable energy technologies and choose the most appropriate based on local conditions.
CO4: Explain the technological basis for harnessing renewable energy sources.
CO5: Identify and critically evaluate current developments and emerging trends within the field of renewable energy technologies and to develop in-depth technical understanding of energy problems at an advanced level.

TEXT BOOKS

REFERENCES
CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
</tr>
</tbody>
</table>

OVERALL CO

| 2 | 2 | 1 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 3 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
COURSE OBJECTIVE:

- To enable the students to analyze properties of a surfaces and correlate them to structure, chemistry, and physics and surface modification technique.

UNIT I SURFACE STRUCTURE AND EXPERIMENTAL PROBES 9
Relevance of surface science to Chemical and Electrochemical Engineering, Heterogeneous Catalysis and Nanoscience; Surface structure and reconstructions, absorbate structure, Band and Vibrational structure, Importance of UHV techniques, Electronic probes and molecular beams, Scanning probes and diffraction, Qualitative introduction to electronic and vibrational spectroscopy

UNIT II ADSORPTION, DYNAMICS, THERMODYNAMICS AND KINETICS AT SURFACES 9
Interactions at the surface, Physisorption, Chemisorption, Diffusion, dynamics and reactions of atoms/molecules on surfaces, Generic reaction mechanism on surfaces, Adsorption isotherms, Kinetics of adsorption, Use of temperature desorption methods

UNIT III LIQUID INTERFACES 9
Structure and Thermodynamics of liquid-solid interface, Self-assembled monolayers, Electrified interfaces, Charge transfer at the liquid-solid interfaces, Photoelectrochemical processes, Gratzel cells

UNIT IV HETEROGENEOUS CATALYSIS 9
Characterization of heterogeneous catalytic processes, Microscopic kinetics to catalysis, Overview of important heterogeneous catalytic processes: Haber-Bosch, Fishcher-Tropsch and Automotive catalysis, Role of promoters and poisons, Bimetallic surfaces, surface functionalization and clusters in catalysis, Role of Sabatier principle in catalyst design, Rate oscillations and spatiotemporal pattern formation

UNIT V EPITAXIAL GROWTH AND NANO SURFACE-STRUCTURES 9

COURSE OUTCOME:

- Upon completion of this course, the students can understand, predict and design surface properties based on surface structure. Students would understand the physics and chemistry behind surface phenomena

TEXT BOOK:

REFERENCE:
COURSE OBJECTIVES
The course aims to

- acquaint and equip the students with different techniques of measurement of engineering properties.
- make the students understand the nature of food constituents in the design of processing equipment.

UNIT I
Engineering properties of food materials: physical, thermal, aerodynamic, mechanical, optical and electromagnetic properties.

UNIT II
Drying and dehydration: Basic drying theory, heat and mass transfer in drying, drying rate curves, calculation of drying times, dryer efficiencies; classification and selection of dryers; tray, vacuum, osmotic, fluidized bed, pneumatic, rotary, tunnel, trough, bin, belt, microwave, IR, heat pump and freeze dryers; dryers for liquid: Drum or roller dryer, spray dryer and foammat dryers.

UNIT III
Size reduction: Benefits, classification, determination and designation of the fineness of ground material, sieve/screen analysis, principle and mechanisms of comminution of food, Rittinger’s, Kick’s and Bond’s equations, work index, energy utilization; Size reduction equipment: Principal types, crushers (jaw crushers, gyratory, smooth roll), hammer mills and impactors, attrition mills, buhr mill, tumbling mills, tumbling mills, ultra fine grinders, fluid jet pulverizer, colloid mill, cutting machines (slicing, dicing, shredding, pulping).

UNIT IV
Mixing: theory of solids mixing, criteria of mixer effectiveness and mixing indices, rate of mixing, theory of liquid mixing, power requirement for liquids mixing; Mixing equipment: Mixers for low or medium-viscosity liquids (paddle agitators, impeller agitators, powder-liquid contacting devices, other mixers), mixers for high viscosity liquids and pastes, mixers for dry powders and particulate solids.

UNIT V
Mechanical Separations: Theory, centrifugation, liquid-liquid centrifugation, liquid-solid centrifugation, clarifiers, desludging and decanting machine, Filtration: Theory of filtration, rate of filtration, pressure drop during filtration, applications, constant-rate filtration and constant-pressure filtration, derivation of equation; Filtration equipment; plate and frame filter press, rotary filters, centrifugal filters and air filters, filter aids, Membrane separation: General considerations, materials for membrane construction, ultra-filtration, microfiltration, concentration, polarization, processing variables, membrane fouling, applications of ultra-filtration in food processing, reverse osmosis, mode of operation, and applications; Membrane separation methods, demineralization by electrodialysis, gel filtration, ion exchange, per-evaporation and osmotic dehydration.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course the students will be able to
CO1 understand the importance of food polymers.
CO2 understand the effect of various methods of processing on the structure and texture of food materials

CO3 understand the interaction of food constituents with respect to thermal, electrical properties to develop new technologies for processing and preservation.

TEXTBOOKS:

OFD355 FOOD SAFETY AND QUALITY REGULATIONS

COURSE OBJECTIVES:
- To characterize different type of food hazards, physical, chemical and biological in the industry and food service establishments
- To help become skilled in systems for food safety surveillance
- To be aware of the regulatory and statutory bodies in India and the world
- To ensure processed food meets global standards

UNIT I 10
Introduction to food safety and security: Hygienic design of food plants and equipments, Food Contaminants (Microbial, Chemical, Physical), Food Adulteration (Common adulterants), Food Additives (functional role, safety issues), Food Packaging & labeling. Sanitation in warehousing, storage, shipping, receiving, containers and packaging materials. Control of rats, rodents, mice, birds, insects and microbes. Cleaning and Disinfection, ISO 22000 – Importance and Implementation

UNIT II 8
Food quality: Various Quality attributes of food, Instrumental, chemical and microbial Quality control. Sensory evaluation of food and statistical analysis. Water quality and other utilities.

UNIT III 9
Critical Quality control point in different stages of production including raw materials and processing materials. Food Quality and Quality control including the HACCP system. Food inspection and Food Law, Risk assessment – microbial risk assessment, dose response and exposure response modelling, risk management, implementation of food surveillance system to monitor food safety, risk communication
UNIT IV
Indian and global regulations: FAO in India, Technical Cooperation programmes, Bio-security in Food and Agriculture, World Health Organization (WHO), World Animal Health Organization (OIE), International Plant Protection Convention (IPPC)

UNIT V
Codex Alimentarius Commission - Codex India – Role of Codex Contact point, National Codex contact point (NCCP), National Codex Committee of India – ToR, Functions, Shadow Committees etc.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1 Thorough Knowledge of food hazards, physical, chemical and biological in the industry and food service establishments
CO2 Awareness on regulatory and statutory bodies in India and the world

REFERENCES:
1. Handbook of food toxicology by S. S. Deshpande, 2002
2. The food safety information handbook by Cynthia A. Robert, 2009
4. Microbiological safety of Food by Hobbs BC, 1973

OPY353 NUTRACEUTICALS L T P C
3 0 0 3

COURSE OBJECTIVES:
• To understand the basic concepts of Nutraceuticals and functional food, their chemical nature and methods of extraction.
• To understand the role of Nutraceuticals and functional food in health and disease.

UNIT I INTRODUCTION AND SIGNIFICANCE
Introduction to Nutraceuticals and functional foods; importance, history, definition, classification, list of functional foods and their benefits, Phytochemicals, zoochemicals and microbes in food, plants, animals and microbes.

UNIT II PHYTOCHEMICALS AS NUTRACEUTICALS
Phytoestrogens in plants; isoflavones; flavonols, polyphenols, tannins, saponins, lignans, lycopene, chitin, caratenoids. Manufacturing practice of selected nutraceuticals such as lycopene, isoflavonoids, glucosamine, phytosterols. Formulation of functional foods containing nutraceuticals - stability, analytical and labelling issues.

UNIT III ASSESSMENT OF ANTIOXIDANT ACTIVITY
In vitro and in vivo methods for the assessment of antioxidant activity, Comparison of different in vitro methods to evaluate the antioxidant, antioxidant mechanism, Prediction of the antioxidant activity of natural phenolics from electrotopological state indices, Optimising phytochemical release
by process technology; Variation of Antioxidant Activity during technological treatments, new food grade peptidases from plant sources.

UNIT IV ROLE IN HEALTH AND DISEASE
The health benefit of - Soy protein, Spirulina, Tea, Olive oil, plant sterols, Broccoli, omega3 fatty acid and eicosanoids. Nutraceuticals and Functional foods in Gastrointestinal disorder, Cancer, CVD, Diabetic Mellitus, HIV and Dental disease; Importance and function of probiotic, prebiotic and symbiotic and their applications, Functional foods and immune competence; role and use in obesity and nervous system disorders.

UNIT V SAFETY ISSUES
Health Claims, Adverse effects and toxicity of nutraceuticals, regulations and safety issues International and national.

TOTAL: 45 PERIODS

TEXT BOOKS:
3. WEBB, PP, Dietary Supplements and Functional Foods Blackwell Publishing Ltd (United Kingdom), 2006

REFERENCES:
1. Asian Functional Foods (Nutraceutical Science and Technology) by John Shi (Editor), Fereidoon Shahidi (Editor), Chi-Tang Ho (Editor), CRC Publications, Taylor & Francis, 2007

COURSE OUTCOME - NUTRACEUTICALS

CO 1	acquire knowledge about the Nutraceuticals and functional foods, their classification and benefits.
CO 2	acquire knowledge of phytochemicals, zoochemicals and microbes in food, plants, animals and microbes
CO 3	attain the knowledge of the manufacturing practices of selected nutraceutical components and formulation considerations of functional foods.
CO 4	distinguish the various In vitro and In vivo assessment of Antioxidant activity of compounds from plant sources.
CO 5	gain information about the health benefits of various functional foods and nutraceuticals in the prevention and treatment of various lifestyle diseases.
CO 6: Attain the knowledge of the regulatory and safety issues of nutraceuticals at national and international level.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>Course outcome</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 1</td>
<td>3</td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO 2</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO 4</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO 5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO 6</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

OTT354 BASICS OF DYEING AND PRINTING L T P C
13003

COURSE OBJECTIVE:
To enable the students to learn about the basics of Pretreatment, dyeing, printing and machinery in textile processing.

UNIT I INTRODUCTION
Impurities present in different fibres, Inspection of grey goods and lot preparation. Shearing,

UNIT II PRE TREATMENT

UNIT III DYEING

UNIT IV PRINTING
Definition of printing – Difference between printing and dying- Classification thickeners – Requirements to be good thickener, printing paste Preparation - different styles of printing.

UNIT V MACHINERIES

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, the students will be able to Understand the
CO1: Basics of grey fabric
CO2: Basics of pre treatment
CO3: Concept of Dyeing
CO4: Concept of Printing
CO5: Machinery in processing industry

TEXTBOOKS:

REFERENCES:
2. Dr. N N Mahapatra., “Textile dyeing”, Wood head publishing India, 2018
4. Bleaching & Mercerizing – BTRA Silver Jubilee Monograph series

CO's-PO's & PSO's MAPPING:
1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stateme nt</td>
</tr>
<tr>
<td>CO1</td>
<td>Classification of fibres and production of natural fibres</td>
</tr>
<tr>
<td>CO2</td>
<td>Regenerated and synthetic fibres</td>
</tr>
<tr>
<td>CO3</td>
<td>Yarn spinning</td>
</tr>
<tr>
<td>CO4</td>
<td>Weaving</td>
</tr>
<tr>
<td>CO5</td>
<td>Knitting and nonwoven</td>
</tr>
</tbody>
</table>

352
FT3201 FIBRE SCIENCE

COURSE OBJECTIVES
- To enable the students to learn about the types of fibre and its properties

UNIT I INTRODUCTION TO TEXTILE FIBRES
Definition of various forms of textile fibres - staple fibre, filament, bicomponent fibres. Classification of Natural and Man-made fibres, essential and desirable properties of Fibres. Production and cultivation of Natural Fibers: Cotton, Silk, Wool - Physical and chemical structure of the above fibres.

UNIT II REGENERATED FIBRES
Production Sequence of Regenerated Cellulosic fibres: Viscose Rayon, Acetate rayon – High wet modulus fibres: Modal and Lycocel, Tencel

UNIT III SYNTHETIC FIBRES
Production Sequence of Synthetic Fibers: polymer-Polyester, Nylon, Acrylic and polypropylene. Mineral fibres: fibre glass, carbon. Introduction to spin finishes and texturization

UNIT IV SPECIALITY FIBRES
Properties and end uses of high tenacity and high modulus fibres, high temperature and flame retardant fibres, Chemical resistant fibres

UNIT V FUNCTIONAL SPECIALITY FIBRES
Properties and end uses: Fibres for medical application – Biodegradable fibres based on PLA, Super absorbent fibres elastomeric fibres, ultra-fine fibres, electrospun nano fibres, metallic fibres – Gold and Silver coated.

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon completion of this course, the student would be able to

CO1: Understand the process sequence of various fibres
CO2: Understand the properties of various fibres

TEXT BOOKS:

REFERENCES:

COURSE OBJECTIVE:
- To enable the students to understand the basics of pattern making, cutting and sewing.
- To expose the students to various problems & remedies during garment manufacturing

UNIT I
PATTERN MAKING, MARKER PLANNING, CUTTING
Anthropometry, specification sheet, pattern making – principles, basic pattern set drafting, grading, marker planning, spreading & cutting

UNIT II
TYPES OF SEAMS, STITCHES AND FUNCTIONS OF NEEDLES
Different types of seams and stitches; single needle lock stitch machine – mechanism and accessories; needle – functions, special needles, needlepoint

UNIT III
COMPONENTS AND TRIMS USED IN GARMENT
Sewing thread-construction, material, thread size, packages, accessories – labels, linings, interlinings, wadding, lace, braid, elastic, hook and loop fastening, shoulder pads, eyelets and laces, zip fasteners, buttons

UNIT IV
GARMENT INSPECTION AND DIMENSIONAL CHANGES
Raw material, in process and final inspection; needle cutting; sewability of fabrics; strength properties of apparel; dimensional changes in apparel due to laundering, dry-cleaning, steaming and pressing.

UNIT V
GARMENT PRESSING, PACKING AND CARE LABELING
Garment pressing – categories and equipment, packing; care 354abelling of apparels

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, the students will be able to Understand
CO1: Pattern making, marker planning, cutting
CO2: Types of seams, stitches and functions of needles
CO3: Components and trims used in garment
CO4: Garment inspection and dimensional changes
CO5: Garment pressing, packing and careabelling
TEXT BOOKS:
2. Gerry Cooklin, “Introduction to Clothing Manufacture” Blackwell Science Ltd., 1995. 64

REFERENCES:

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>1.6</td>
<td>1.2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-'- no correlation

OPE353 INDUSTRIAL SAFETY L T P C 3 0 0 3

COURSE OBJECTIVES:
- To educate about the health hazards and the safety measures to be followed in the industrial environment.
- Describe industrial legislations (Factories Acts, Workmen's Compensation and other laws) enacted for the protection of employees health at work settings
- Describe methods of prevention and control of Occupational Health diseases, accidents / emergencies and other hazards

UNIT I INTRODUCTION
Need for developing Environment, Health and Safety systems in work places - Accident Case Studies - Status and relationship of Acts - Regulations and Codes of Practice - Role of trade union safety representatives. International initiatives - Ergonomics and work place.

UNIT II OCCUPATIONAL HEALTH AND HYGIENE
Definition of the term occupational health and hygiene - Categories of health hazards - Exposure pathways and human responses to hazardous and toxic substances - Advantages and limitations of environmental monitoring and occupational exposure limits - Hierarchy of control measures for
occupational health risks - Role of personal protective equipment and the selection criteria - Effects on humans - control methods and reduction strategies for noise, radiation and excessive stress.

UNIT III WORKPLACE SAFETY AND SAFETY SYSTEMS 9

UNIT IV HAZARDS AND RISK MANAGEMENT 9

UNIT V ENVIRONMENTAL HEALTH AND SAFETY MANAGEMENT 9

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completion of this course, the student is expected to be able to:

CO1: Describe, with example, the common work-related diseases and accidents in occupational setting
CO2: Name essential members of the Occupational Health team
CO3: What roles can a community health practitioners play in an Occupational setting to ensure the protection, promotion and maintenance of the health of the employee

OPE354 UNIT OPERATIONS IN PETRO CHEMICAL INDUSTRIES L T P C 3 0 0 3

COURSE OBJECTIVES:
- To impart the student basic knowledge on fluid mechanics, mechanical operations, heat transfer operations and mass transfer operations.

UNIT I FLUID MECHANICS CONCEPTS
Fluid definition and classification of fluids, types of fluids, Rheological behaviour of fluids & Newton’s Law of viscosity. Fluid statics-Pascal’s law, Hydrostatic equilibrium, Barometric equation and pressure measurement(problems), Basic equations of fluid flow - Continuity equation, Euler’s equation and Bernoulli equation; Types of flow - laminar and turbulent; Reynolds experiment; Flow through circular and non-circular conduits - Hagen Poiseuille equation (no derivation). Flow through stagnant fluids – theory of Settling and Sedimentation – Equipment (cyclones, thickeners) Conceptual numericals.

UNIT II FLOW MEASUREMENTS & MECHANICAL OPERATIONS
Different types of flow measuring devices (Orifice meter, Venturimeter, Rotameter) with derivations, flow measurements –. Pumps – types of pumps (Centrifugal & Reciprocating pumps), Energy calculations and characteristics of pumps. Size reduction–characteristics of comminute products, sieve analysis, Properties and handling of particulate solids – characterization of solid particles,

UNIT III CONDUCTIVE & CONVECTIVE HEAT TRANSFER
Modes of heat transfer; Conduction – steady state heat conduction through unilayer and multilayer walls, cylinders; Insulation, critical thickness of insulation. Convection- Forced and Natural convection, principles of heat transfer co-efficient, log mean temperature difference, individual and overall heat transfer co-efficient, fouling factor; Condensation – film wise and drop wise (no derivation). Heat transfer equipments – double pipe heat exchanger, shell and tube heat exchanger (with working principle and construction with applications).

UNIT IV BASICS OF MASS TRANSFER

UNIT V MASS TRANSFER OPERATIONS
Basic concepts of Liquid-liquid extraction – equilibrium, stage type extractors (belt extraction and basket extraction). Distillation – Methods of distillation, distillation of binary mixtures using McCabe Thiele method. Drying- drying operations, batch and continuous drying. Conceptual numerical.

COURSE OUTCOMES:
At the end of the course the student will be able to:
CO1: State and describe the nature and properties of the fluids.
CO2: Study the different flow measuring instruments, the principles of various size reductions, conveying equipment’s, sedimentation and mixing tanks.
CO3: Comprehend the laws governing the heat and mass transfer operations to solve the problems.
CO4: Design the heat transfer equipment suitable for specific requirement.

TEXTBOOK(S)
2. Fluid Mechanics K L Kumar S Chand & Company Ltd 2008

REFERENCE BOOKS
2. Unit Operations of Chemical Engineering, Vol I &II Chattopadhyaya Khanna Publishers, Delhi-6 1996

TOTAL: 45 PERIODS
COURSE OBJECTIVES

- Understand the advantages, disadvantages and general classification of plastic materials
- To know the manufacturing, sources, and applications of engineering thermoplastics
- Understand the basics as well as the advanced applications of various plastic materials in the industry
- To understand the preparation methods of thermosetting materials
- Select suitable specialty plastics for different end applications

UNIT I INTRODUCTION TO PLASTIC MATERIALS
Introduction to Plastics – Brief history of plastics, advantages and disadvantages, thermoplastic and thermosetting behavior, amorphous polymers, crystalline polymers and cross-linked structures. General purpose thermoplastics/ Commodity plastics: manufacture, structure, properties and applications of polyethylene (PE), cross-linked PE, chlorinated PE, polypropylene, polyvinyl chloride-compounding, formulation, polypropylene (PP)

UNIT II ENGINEERING THERMOPLASTICS AND APPLICATIONS
Engineering thermoplastics – Aliphatic polyamides: structure, properties, manufacture and applications of Nylon 6, Nylon 66. Polyesters: manufacture, structure, properties and uses of PET, PBT. Manufacture, structure, properties and uses of Polycarbonates, acetal resins, polyimides, PMMA, polyphenylene oxide, thermoplastic polyurethane (PU)

UNIT III THERMOSETTING PLASTICS
Thermosetting Plastics – Manufacture, curing, moulding powder, laminates, properties and uses of phenol formaldehyde resins, urea formaldehyde, melamine formaldehyde, unsaturated polyester resin, epoxy resin, silicone resins, polyurethane resins.

UNIT IV MISCELLANEOUS PLASTICS FOR END APPLICATIONS
Miscellaneous plastics- Manufacture, properties and uses of polystyrene, HIPS, ABS, SAN, poly(tetrafluoroethylene) (PTFE), TFE and copolymers, PVDF, PVA, poly (vinyl acetate), poly (vinyl carbazole), cellulose acetate, PEEK, High energy absorbing polymers, super absorbent polymers-their synthesis, properties and applications

UNIT V PLASTICS MATERIALS FOR BIOMEDICAL APPLICATIONS
Sources, raw materials, methods of manufacturing, properties and applications of bio-based polymers- poly lactic acid (PLA), poly hydroxy alkanoates (PHA), PBAT, bioplastics- bio-PE, bio-PP, bio-PET, polymers for biomedical applications

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1: To study the importance, advantages and classification of plastic materials
CO2: Summarize the raw materials, sources, production, properties and applications of various engineering thermoplastics
CO3: To understand the application of polyamides, polyesters and other engineering thermoplastics, thermosetting resins
CO4: Know the manufacture, properties and uses of thermosetting resins based onpolyester, epoxy, silicone and PU
CO5: To understand the engineering applications of various polymers in miscellaneous areas and applications of different biopolymers

REFERENCES

COURSE OBJECTIVES
- To understand the relevance of standards and specifications as well as the specimen preparation for polymer testing.
- To study the mechanical properties and testing of polymer materials and their structural property relationships.
- To understand the thermal properties of polymers and their testing methods.
- To gain knowledge on the electrical and optical properties of polymers and their testing methods.
- To study about the environmental effects and prevent polymer degradation.

UNIT I INTRODUCTION TO CHARACTERIZATION AND TESTING OF POLYMERS 9

UNIT II MECHANICAL PROPERTIES 9
Mechanical properties: Tensile, compression, flexural, shear, tear strength, hardness, impact strength, resilience, abrasion resistance, creep and stress relaxation, compression set, dynamic fatigue, ageing properties, Basic concepts of stress and strain, short term tests: Viscoelastic behavior (simple models: Kelvin model for creep and stress relaxation, Maxwell-Voigt model, strain recovery and dynamic response), Effect of structure and composition on mechanical properties, Behavior of reinforced polymers

UNIT III THERMAL RHEOLOGICAL PROPERTIES 9
Thermal properties: Transition temperatures, specific heat, thermal conductivity, co-efficient of thermal expansion, heat deflection temperature, Vicat softening point, shrinkage, brittleness temperature, thermal stability and flammability. Product testing: Plastic films, sheeting, pipes, laminates, foams, containers, cables and tubes.
UNIT IV ELECTRICAL AND OPTICAL PROPERTIES 9
Electrical properties: volume and surface resistivity, dielectric strength, dielectric constant and power factor, arc resistance, tracking resistance, dielectric behavior of polymers (dielectric co-efficient, dielectric polarization), dissipation factor and its importance. Optical properties: transparency, refractive index, haze, gloss, clarity, birefringence.

UNIT V ENVIRONMENTAL AND CHEMICAL RESISTANCE 9

COURSE OUTCOMES
CO1: Understand the relevance of standards and specifications.
CO2: Summarize the various test methods for evaluating the mechanical properties of the polymers.
CO3: To know the thermal, electrical & optical properties of polymers.
CO4: Identify various techniques used for characterizing polymers.
CO5: Distinguish the processability tests used for thermoplastics, thermosets and elastomers.

REFERENCES

CBM370 WEARABLE DEVICES L T P C
3 0 0 3

COURSE OBJECTIVES:
The student should be made to:
• To know the hardware requirement of wearable systems
• To understand the communication and security aspects in the wearable devices
• To know the applications of wearable devices in the field of medicine

UNIT I INTRODUCTION TO WEARABLE SYSTEMS AND SENSORS 9

UNIT II SIGNAL PROCESSING AND ENERGY HARVESTING FOR WEARABLE DEVICES 9
Wearability issues - physical shape and placement of sensor, Technical challenges - sensor design, signal acquisition, sampling frequency for reduced energy consumption, Rejection of irrelevant
information. Power Requirements- Solar cell, Vibration based, Thermal based, Human body as a heat source for power generation, Hybrid thermoelectric photovoltaic energy harvests, Thermopiles.

UNIT III WIRELESS HEALTH SYSTEMS

UNIT IV SMART TEXTILE

UNIT V APPLICATIONS OF WEARABLE SYSTEMS
Medical Diagnostics, Medical Monitoring-Patients with chronic disease, Hospital patients, Elderly patients, neural recording, Gait analysis, Sports Medicine.

COURSE OUTCOMES:
On successful completion of this course, the student will be able to
CO1: Describe the concepts of wearable system.
CO2: Explain the energy harvestings in wearable device.
CO3: Use the concepts of BAN in health care.
CO4: Illustrate the concept of smart textile
CO5: Compare the various wearable devices in healthcare system

TOTAL:45 PERIODS

TEXT BOOKS

REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s 1</th>
<th>PO’s 2</th>
<th>PO’s 3</th>
<th>PO’s 4</th>
<th>PO’s 5</th>
<th>PO’s 6</th>
<th>PO’s 7</th>
<th>PO’s 8</th>
<th>PO’s 9</th>
<th>PO’s 10</th>
<th>PO’s 11</th>
<th>PO’s 12</th>
<th>PSO’s 1</th>
<th>PSO’s 2</th>
<th>PSO’s 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

361
Preamble:
1. To study the applications of information technology in health care management.
2. This course provides knowledge on resources, devices, and methods required to optimize the acquisition, storage, retrieval, and use of information in health and biomedicine.

UNIT I INTRODUCTION TO MEDICAL INFORMATICS
Introduction - Structure of Medical Informatics – Internet and Medicine - Security issues, Computer based medical information retrieval, Hospital management and information system, Functional capabilities of a computerized HIS, Health Informatics – Medical Informatics, Bioinformatics

UNIT II COMPUTERS IN CLINICAL LABORATORY AND MEDICAL IMAGING
Automated clinical laboratories-Automated methods in hematology, cytology and histology, Intelligent Laboratory Information System - Computer assisted medical imaging- nuclear medicine, ultrasound imaging, computed X-ray tomography, Radiation therapy and planning, Nuclear Magnetic Resonance.

UNIT III COMPUTERISED PATIENT RECORD
Introduction - conventional patient record, Components and functionality of CPR, Development tools, Intranet, CPR in Radiology- Application server provider, Clinical information system, Computerized prescriptions for patients.

UNIT IV COMPUTER ASSISTED MEDICAL DECISION-MAKING
Neuro computers and Artificial Neural Networks application, Expert system-General model of CMD, Computer–assisted decision support system-production rule system cognitive model, semantic networks, decisions analysis in clinical medicine-computers in the care of critically ill patients, Computer aids for the handicapped.

UNIT V RECENT TRENDS IN MEDICAL INFORMATICS
Virtual reality applications in medicine, Virtual endoscopy, Computer assisted surgery, Surgical simulation, Telemedicine - Tele surgery, Computer assisted patient education and health- Medical education and healthcare information, computer assisted instruction in medicine.

COURSE OUTCOMES:
Upon completion of the course, students will be able to:
CO1: Explain the structure and functional capabilities of Hospital Information System.
CO2: Describe the need of computers in medical imaging and automated clinical laboratory.
CO3: Articulate the functioning of information storage and retrieval in computerized patient record system.
CO4: Apply the suitable decision support system for automated clinical diagnosis.
CO5: Discuss the application of virtual reality and telehealth technology in medical industry.

TEXT BOOKS:
REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

OCE354 BASICS OF INTEGRATED WATER RESOURCES MANAGEMENT L T P C
3 0 0 3

COURSE OBJECTIVES
- To introduce the interdisciplinary approach of water management.
- To develop knowledge base and capacity building on IWRM.

UNIT I OVERVIEW OF IWRM

UNIT II WATER USE SECTORS: IMPACTS AND SOLUTION
Water users: People, Agriculture, ecosystem and others - Impacts of the water use sectors on water resources - Securing water for people, food production, ecosystems and other uses - IWRM relevance in water resources management.

UNIT III WATER ECONOMICS
Economic characteristics of water good and services – Economic instruments – Private sector involvement in water resources management - PPP experiences through case studies.

UNIT IV RECENT TRENDS IN WATER MANAGEMENT
River basin management - Ecosystem Regeneration – 5 Rs - WASH - Sustainable livelihood - Water management in the context of climate change.

UNIT V IMPLEMENTATION OF IWRM
Barriers to implementing IWRM - Policy and legal framework - Bureaucratic reforms and inclusive development - Institutional Transformation - Capacity building - Case studies on conceptual framework of IWRM.

TOTAL: 45 PERIODS

COURSE OUTCOMES
On completion of the course, the student will be able to apply appropriate management techniques towards managing the water resources.
CO1 Describe the context and principles of IWRM; Compare the conventional and integrated ways of water management.

CO2 Discuss on the different water uses; how it is impacted and ways to tackle these impacts.

CO3 Explain the economic aspects of water and choose the best economic option among the alternatives; illustrate the pros and cons of PPP through case studies.

CO4 Illustrate the recent trends in water management.

CO5 Understand the implementation hitches and the institutional frameworks.

TEXT BOOKS

REFERENCES
2. IWRM Guidelines at River Basin Level (UNESCO, 2008).

OBT355 BIOTECHNOLOGY FOR WASTE MANAGEMENT

UNIT I BIOLOGICAL TREATMENT PROCESS 9

UNIT II WASTE BIOMASS AND ITS VALUE ADDITION 9
Types of waste biomass – Solid waste management - Nature of biomass feedstock – Biobased economy/process – Value addition of waste biomass – Biotransformation of biomass – Biotransformation of marine processing wastes – Direct extraction of biochemicals from biomass – Plant biomass for industrial application

UNIT III BIOCONVERSION OF WASTES TO ENERGY 9
Perspective of biofuels from wastes - Bioethanol production – Biohydrogen Production – dark and photofermentative process - Biobutanol production – Biogas and Biomethane production - Single stage anaerobic digestion, Two stage anaerobic digestion - Biodiesel production - Enzymatic hydrolysis technologies

UNIT IV CHEMICALS AND ENZYME PRODUCTION FROM WASTES 9
Production of lactic acid, succinic acid, citric acid – Biopolymer synthesis – Production of Amylases - Lignocellulolytic enzymes - Pectinolytic enzymes - Proteases – Lipases
UNIT V BIOCOMPOSTING OF ORGANIC WASTES
Overview of composting process - Benefits of composting, Role of microorganisms in composting - Factors affecting the composting process - Waste Materials for Composting, Fundamentals of composting process - Composting technologies, Composting systems – Nonreactor Composting, Reactor composting - Compost Quality

TOTAL: 45 PERIODS

COURSE OUTCOMES
After completion of this course, the students should be able
CO1:To learn the various methods biological treatment
CO2:To know the details of waste biomass and its value addition
CO3:To develop the bioconversion processes to convert wastes to energy
CO4:To synthesize the chemicals and enzyme from wastes
CO5:To produce the bio compost from wastes
CO6:To apply the theoretical knowledge for the development of value added products

TEXT BOOKS

REFERENCE BOOKS

OBT356 LIFESTYLE DISEASES L T P C
UNIT I INTRODUCTION
Lifestyle diseases – Definition ; Risk factors – Eating, smoking, drinking, stress, physical activity, illicit drug use ; Obesity, diabetes, cardiovascular diseases, respiratory diseases, cancer; Prevention – Diet and exercise.

UNIT II CANCER
Types - Lung cancer, Mouth cancer, Skin cancer, Cervical cancer, Carcinoma oesophagus; Causes Tobacco usage, Diagnosis – Biomarkers, Treatment

UNIT III CARDIOVASCULAR DISEASES
Coronary atherosclerosis – Coronary artery disease; Causes -Fat and lipids, Alcohol abuse — Diagnosis - Electrocardiograph, echocardiograph, Treatment, Exercise and Cardiac rehabilitation

UNIT IV DIABETES AND OBESITY
Types of Diabetes mellitus; Blood glucose regulation; Complications of diabetes – Paediatric and adolescent obesity – Weight control and BMI

365
UNIT V RESPIRATORY DISEASES 9
Chronic lung disease, Asthma, COPD; Causes - Breathing pattern (Nasal vs mouth), Smoking – Diagnosis - Pulmonary function testing

TEXT BOOKS:

REFERENCES:

OBT357 BIOTECHNOLOGY IN HEALTH CARE L T P C 3 0 0 3

COURSE OBJECTIVES
The aim of this course is to
- Create higher standard of knowledge on healthcare system and services
- Prioritize advanced technologies for the diagnosis and treatment of various diseases

UNIT I PUBLIC HEALTH 9

UNIT II CLINICAL DISEASES 9
Communicable diseases: Chickenpox / Shingles, COVID-19, Tuberculosis, Hepatitis B, Hepatitis C, HIV / AIDS, Influenza, Swine flu. Non Communicable diseases: Diabetes mellitus, atherosclerosis, fatty liver, Obesity, Cancer

UNIT III VACCINOLOGY 9
History of Vaccinology, conventional approaches to vaccine development, live attenuated and killed vaccines, adjuvants, quality control, preservation and monitoring of microorganisms in seed lot systems. Instruments related to monitoring of temperature, sterilization, environment.

UNIT IV OUTPATIENT & IN PATIENT SERVICES 9
Radiotherapy, Nuclear medicine, surgical units, OT Medical units, G & Obs. units Pediatric, neonatal units, Critical care units, Physical medicine & Rehabilitation, Neurology, Gastroenterology, Endoscopy, Pulmonology, Cardiology.

UNIT V BASICS OF IMAGING MODALITIES 9

TOTAL: 45 PERIODS
TEXT BOOKS

REFERENCE BOOKS
LEARNING OBJECTIVES
1. To acquire the knowledge of the decision areas in finance.
2. To learn the various sources of Finance
3. To describe about capital budgeting and cost of capital.
4. To discuss on how to construct a robust capital structure and dividend policy
5. To develop an understanding of tools on Working Capital Management.

UNIT I INTRODUCTION TO FINANCIAL MANAGEMENT
Definition and Scope of Finance Functions - Objectives of Financial Management - Profit Maximization and Wealth Maximization- Time Value of money- Risk and return concepts.

UNIT II SOURCES OF FINANCE
Long term sources of Finance -Equity Shares – Debentures - Preferred Stock – Features – Merits and Demerits. Short term sources - Bank Sources, Trade Credit, Overdrafts, Commercial Papers, Certificate of Deposits, Money market mutual funds etc

UNIT III INVESTMENT DECISIONS:
Cost of Capital - Cost of Specific Sources of Capital - Equity -Preferred Stock- Debt - Reserves - Concept and measurement of cost of capital - Weighted Average Cost of Capital.

UNIT IV FINANCING AND DIVIDEND DECISION
Dividend policy - Aspects of dividend policy - practical consideration - forms of dividend policy - - Determinants of Dividend Policy

UNIT V WORKING CAPITAL DECISION

TOTAL : 45 PERIODS

TEXT BOOKS

REFERENCES.
2. Prasanna Chandra, Financial Management,
COURSE OBJECTIVES:

- Describe the investment environment in which investment decisions are taken.
- Explain how to Value bonds and equities
- Explain the various approaches to value securities
- Discuss the mechanism of investor protection in India.

UNIT I THE INVESTMENT ENVIRONMENT
The investment decision process, Types of Investments – Commodities, Real Estate and Financial Assets, the Indian securities market, the market participants and trading of securities, security market indices, sources of financial information, Concept of return and risk, Impact of Taxes and Inflation on return.

UNIT II FIXED INCOME SECURITIES
Bond features, types of bonds, estimating bond yields, Bond Valuation types of bond risks, default risk and credit rating.

UNIT III APPROACHES TO EQUITY ANALYSIS
Introduction to Fundamental Analysis, Technical Analysis and Efficient Market Hypothesis, dividend capitalisation models, and price-earnings multiple approach to equity valuation.

UNIT IV PORTFOLIO ANALYSIS AND FINANCIAL DERIVATIVES
Portfolio and Diversification, Portfolio Risk and Return; Mutual Funds; Introduction to Financial Derivatives; Financial Derivatives Markets in India

UNIT V INVESTOR PROTECTION
Role of SEBI and stock exchanges in investor protection; Investor grievances and their redressal system, insider trading, investors’ awareness and activism

TOTAL : 45 PERIODS

REFERENCES

COURSE OBJECTIVES
- Understand the Banking system in India
- Grasp how banks raise their sources and how they deploy it
• Understand the development in banking technology
• Understand the financial services in India
• Understand the insurance Industry in India

UNIT I INTRODUCTION TO INDIAN BANKING SYSTEM 9
Overview of Banking system – Structure – Functions – Banking system in India - Key Regulations in Indian Banking sector – RBI. Relationship between Banker and Customer - Retail & Wholesale Banking – types of Accounts - Opening and operation of Accounts.

UNIT II MANAGING BANK FUNDS/ PRODUCTS 9

UNIT III DEVELOPMENT IN BANKING TECHNOLOGY 9

UNIT IV FINANCIAL SERVICES 9

UNIT V INSURANCE 9

TOTAL : 45 PERIODS

REFERENCES:
ecosystem decentralization - Smart contracts - Decentralized Organizations- Platforms for decentralization.

UNIT II INTRODUCTION TO CRYPTOCURRENCY 9
Bitcoin – Digital Keys and Addresses – Transactions – Mining – Bitcoin Networks and Payments –
Wallets – Alternative Coins – Theoretical Limitations – Bitcoin limitations – Name coin – Prime coin
– Zcash – Smart Contracts – Ricardian Contracts- Deploying smart contracts on a blockchain

UNIT III ETHEREUM 9
Introduction - The Ethereum network - Components of the Ethereum ecosystem - Transactions and
messages - Ether cryptocurrency / tokens (ETC and ETH) - The Ethereum Virtual Machine (EVM),
Ethereum Development Environment: Test networks - Setting up a private net - Starting up the
private network

UNIT IV WEB3 AND HYPERLEDGE 9
Hyperledger as a Protocol – The Reference Architecture – Hyperledger Fabric – Distributed Ledger
– Corda.

UNIT V EMERGING TRENDS 9
Blockchain Research – Notable Projects – Miscellaneous Tools.

TOTAL : 45 PERIODS

REFERENCE
1. Imran. Bashir. Mastering block chain: Distributed Ledger Technology, Decentralization, and
2. Peter Borovykh , Blockchain Application in Finance, Blockchain Driven, 2nd Edition, 2018
2017.

CMG335 FINTECH PERSONAL FINANCE AND PAYMENTS L T P C
3 0 0 3

UNIT I CURRENCY EXCHANGE AND PAYMENT 9
Understand the concept of Crypto currency- Bitcoin and Applications -Cryptocurrencies and Digital
Crypto Wallets -Types of Cryptocurrencies - Cryptocurrencies and Applications, block chain, Artificial
Intelligence, machine learning. Fintech users, Individual Payments, RTGS Systems, Immediate
Page 54 of 90 Payment Service (IMPS), Unified Payments Interface (UPI).Legal and Regulatory
Implications of Crypto currencies, Payment systems and their regulations.Digital Payments Smart
Cards, Stored-Value Cards, EC Micropayments, Payment Gateways, Mobile Payments, Digital and
Virtual Currencies, Security, Ethical, Legal, Privacy, and Technology Issues

UNIT II DIGITAL FINANCE AND ALTERNATIVE FINANCE 9
A Brief History of Financial Innovation, Digitization of Financial Services, Crowd funding, Charity and
Equity,. Introduction to the concept of Initial Coin Offering
UNIT III INSURETECH

UNIT IV PEER TO PEER LENDING

UNIT V REGULATORY ISSUES

REFERENCE

CMG336 INTRODUCTION TO FINTECH LT P C

COURSE OBJECTIVES:
- To learn about history, importance and evolution of Fintech
- To acquire the knowledge of Fintech in payment industry
- To acquire the knowledge of Fintech in insurance industry
- To learn the Fintech developments around the world
- To know about the future of Fintech

UNIT I INTRODUCTION
Fintech - Definition, History, concept, meaning, architecture, significance, Goals, key areas in Fintech, Importance of Fintech, role of Fintech in economic development, opportunities and challenges in Fintech, Evolution of Fintech in different sectors of the industry - Infrastructure, Banking Industry, Startups and Emerging Markets, recent developments in FinTech, future prospects and potential issues with Fintech.
UNIT II PAYMENT INDUSTRY 9
FinTech in Payment Industry-Multichannel digital wallets, applications supporting wallets, onboarding and KYC application, FinTech in Lending Industry- Formal lending, Informal lending, P2P lending, POS lending, Online lending, Payday lending, Microfinance, Crowdfunding.

UNIT III INSURANCE INDUSTRY 9

UNIT IV FINTECH AROUND THE GLOBE 9

UNIT V FUTURE OF FINTECH 9
How emerging technologies will change financial services, the future of financial services, banking on innovation through data, why FinTech banks will rule the world, The FinTech Supermarket, Banks partnering with FinTech start-ups, The rise of BankTech, Fintech impact on Retail Banking, A future without money, Ethics in Fintech.

TOTAL : 45 PERIODS

REFERENCES
4. Parag Y Arjunwadkar, FinTech: The Technology Driving Disruption in the financial service industry CRC Press, 2018
6. Pranay Gupta, T. Mandy Tham, Fintech: The New DNA of Financial Services Paperback, 2018

VERTICAL 2: ENTREPRENEURSHIP

CMG337 FOUNDATIONS OF ENTREPRENEURSHIP L T P C
3 0 0 3

COURSE OBJECTIVES
• To develop and strengthen the entrepreneurial quality and motivation of learners.
• To impart the entrepreneurial skills and traits essential to become successful entrepreneurs.
• To apply the principles and theories of entrepreneurship and management in Technology oriented businesses.
• To empower the learners to run a Technology driven business efficiently and effectively

UNIT I INTRODUCTION TO ENTREPRENEURSHIP
Entrepreneurship- Definition, Need, Scope - Entrepreneurial Skill & Traits - Entrepreneur vs. Intrapreneur; Classification of entrepreneurs, Types of entrepreneurs -Factors affecting entrepreneurial development – Achievement Motivation – Contributions of Entrepreneurship to Economic Development.

UNIT II BUSINESS OWNERSHIP & ENVIRONMENT

UNIT III FUNDAMENTALS OF TECHNOPRENEURSHIP
Introduction to Technopreneurship - Definition, Need, Scope- Emerging Concepts- Principles - Characteristics of a technopreneur - Impacts of Technopreneurship on Society – Economy- Job Opportunities in Technopreneurship - Recent trends

UNIT IV APPLICATIONS OF TECHNOPRENEURSHIP
Technology Entrepreneurship - Local, National and Global practices - Intrapreneurship and Technology interactions, Networking of entrepreneurial activities – Launching - Managing Technology based Product / Service entrepreneurship — Success Stories of Technopreneurs - Case Studies

UNIT V EMERGING TRENDS IN ENTREPRENEURSHIP

TOTAL 45 : PERIODS

COURSE OUTCOMES:
Upon completion of this course, the student should be able to:
CO 1 Learn the basics of Entrepreneurship
CO 2 Understand the business ownership patterns and environment
CO 3 Understand the Job opportunities in Industries relating to Technopreneurship
CO 4 Learn about applications of technopreneurship and successful technopreneurs
CO 5 Acquaint with the recent and emerging trends in entrepreneurship

TEXT BOOKS:
2 Donal F Kuratko Entrepreneurship (11th Edition) Theory, Process, Practice by Published 2019 by Cengage Learning,

REFERENCES :
4 David Sheff 2002, China Dawn: The Story of a Technology and Business Revolution,
6 JumpStart: A Technopreneurship Fable, Dennis Posadas, (Singapore: Pearson Prentice Hall, 2009
7 Basics of Technoprenuership: Module 1.1-1.2, Frederico Gonzales, President-PESO Inc; M. Barcelon, UP
8 Journal articles pertaining to Entrepreneurship

CMG338 TEAM BUILDING & LEADERSHIP MANAGEMENT FOR BUSINESS L T P C

3 0 0 3

COURSE OBJECTIVES
• To develop and strengthen the Leadership qualities and motivation of learners.
• To impart the Leadership skills and traits essential to become successful entrepreneurs.
• To apply the principles and theories of Team Building in managing Technology oriented businesses.
• To empower the learners to build robust teams for running and leading a business efficiently and effectively

UNIT I INTRODUCTION TO MANAGING TEAMS 9
Introduction to Team - Team Dynamics - Team Formation – Stages of Team Development - Enhancing teamwork within a group - Team Coaching - Team Decision Making - Virtual Teams - Self Directed Work Teams (SDWTs) - Multicultural Teams.

UNIT II MANAGING AND DEVELOPING EFFECTIVE TEAMS 9
Team-based Organisations- Leadership roles in team-based organisations - Offsite training and team development - Experiential Learning - Coaching and Mentoring in team building - Building High-Performance Teams - Building Credibility and Trust - Skills for Developing Others - Team Building at the Top - Leadership in Teamwork Effectiveness.

UNIT III INTRODUCTION TO LEADERSHIP 9
Introduction to Leadership - Leadership Myths – Characteristics of Leader, Follower and Situation - Leadership Attributes - Personality Traits and Leadership- Intelligence Types and Leadership - Power and Leadership - Delegation and Empowerment.

UNIT IV LEADERSHIP IN ORGANISATIONS 9

375
UNIT V LEADERSHIP EFFECTIVENESS 9

TOTAL 45 : PERIODS

COURSE OUTCOMES
Upon completion of this course, the student should be able to:

CO 1 Learn the basics of managing teams for business.
CO 2 Understand developing effective teams for business management.
CO 3 Understand the fundamentals of leadership for running a business.
CO 4 Learn about the importance of leadership for business development.
CO 5 Acquaint with emerging trends in leadership effectiveness for entrepreneurs.

REFERENCES:

CMG339 CREATIVITY & INNOVATION IN ENTREPRENEURSHIP L T P C
3 0 0 3

COURSE OBJECTIVES
- To develop the creativity skills among the learners
- To impart the knowledge of creative intelligence essential for entrepreneurs
- To know the applications of innovation in entrepreneurship.
- To develop innovative business models for business.

UNIT I CREATIVITY 9
Creativity: Definition- Forms of Creativity-Essence, Elaborative and Expressive Creativities- Quality of Creativity-Existential, Entrepreneurial and Empowerment Creativities – Creative Environment- Creative Technology- - Creative Personality and Motivation.

UNIT II CREATIVE INTELLIGENCE 9
Creative Intelligence: Convergent thinking ability – Traits Congenial to creativity – Creativity Training- -Criteria for evaluating Creativity-Credible Evaluation- Improving the quality of our creativity – Creative Tools and Techniques - Blocks to creativity- fears and Disabilities- Strategies for Unblocking- Designing Creativity Enabling Environment.

UNIT III INNOVATION 9
Innovation: Definition- Levels of Innovation- Incremental Vs Radical Innovation-Product Innovation and Process- Technological, Organizational Innovation – Indicators- Characteristics of Innovation in
Different Sectors. Theories in Innovation and Creativity- Design Thinking and Innovation- Innovation as Collective Change-Innovation as a system

UNIT IV INNOVATION AND ENTREPRENEURSHIP 9

UNIT V INNOVATIVE BUSINESS MODELS 9

TOTAL 45 : PERIODS

COURSE OUTCOMES
Upon completion of this course, the student should be able to:
CO 1 Learn the basics of creativity for developing Entrepreneurship
CO 2 Understand the importance of creative intelligence for business growth
CO 3 Understand the advances through Innovation in Industries
CO 4 Learn about applications of innovation in building successful ventures
CO 5 Acquaint with developing innovative business models to run the business efficiently and effectively

Suggested Readings:
Strategic Innovation: Building and Sustaining Innovative Organizations- Course Era, Raj Echambadi.

CMG340 PRINCIPLES OF MARKETING MANAGEMENT FOR BUSINESS

COURSE OBJECTIVES:
- To provide basic knowledge of concepts, principles, tools and techniques of marketing for entrepreneurs
- To provide an exposure to the students pertaining to the nature and Scope of marketing, which they are expected to possess when they enter the industry as practitioners.
- To give them an understanding of fundamental premise underlying market driven strategies and the basic philosophies and tools of marketing management for business owners.

UNIT I INTRODUCTION TO MARKETING MANAGEMENT 9
UNIT II MARKETING ENVIRONMENT 9

UNIT III PRODUCT AND PRICING MANAGEMENT 9

UNIT IV PROMOTION AND DISTRIBUTUION MANAGEMENT 9

UNIT V CONTEMPORARY ISSUES IN MARKETING MANAGEMENT 9

TOTAL 45 : PERIODS

COURSE OUTCOMES:
After completion of this course, the students will be able to :
CO1 Have the awareness of marketing management process
CO 2 Understand the marketing environment
CO 3 Acquaint about product and pricing strategies
CO 4 Knowledge of promotion and distribution in marketing management.
CO 5 Comprehend the contemporary marketing scencarios and offer solutions to marketing issues.

REFERENCES:
COURSE OBJECTIVES:
- To introduce the basic concepts, structure and functions of human resource management for entrepreneurs.
- To create an awareness of the roles, functions and functioning of human resource department.
- To understand the methods and techniques followed by Human Resource Management practitioners.

UNIT I INTRODUCTION TO HRM

UNIT II HUMAN RESOURCE PLANNING
HR Planning - Definition - Factors - Tools - Methods and Techniques - Job analysis - Job rotation - Job Description - Career Planning - Succession Planning - HRIS - Computer Applications in HR - Recent Trends

UNIT III RECRUITMENT AND SELECTION
Sources of recruitment - Internal Vs. External - Domestic Vs. Global Sources - eRecruitment - Selection Process - Selection techniques - eSelection - Interview Types - Employee Engagement.

UNIT IV TRAINING AND EMPLOYEE DEVELOPMENT

UNIT V CONTROLLING HUMAN RESOURCES

COURSE OUTCOMES
Upon completion of this course the learners will be able:
CO 1 To understand the Evolution of HRM and Challenges faced by HR Managers
CO 2 To learn about the HR Planning Methods and practices.
CO 3 To acquaint about the Recruitment and Selection Techniques followed in Industries.
CO 4 To known about the methods of Training and Employee Development.
CO 5 To comprehend the techniques of controlling human resources in organisations.

REFERENCES
CMG342 FINANCING NEW BUSINESS VENTURES

COURSE OBJECTIVES

- To develop the basics of business venture financing.
- To impart the knowledge essential for entrepreneurs for financing new ventures.
- To acquaint the learners with the sources of debt and equity financing.
- To empower the learners towards fund raising for new ventures effectively.

UNIT I ESSENTIALS OF NEW BUSINESS VENTURE

UNIT II INTRODUCTION TO VENTURE FINANCING

UNIT III SOURCES OF DEBT FINANCING

UNIT IV SOURCES OF EQUITY FINANCING
Own Capital, Unsecured Loan - Government Subsidies , Margin Money- Equity Funding - Private Equity Fund- Schemes of Commercial banks - Angel Funding – Crowdfunding- Venture Capital.

UNIT V METHODS OF FUND RAISING FOR NEW VENTURES

COURSE OUTCOMES:

Upon completion of this course, the students should be able to:

CO 1 Learn the basics of starting a new business venture.
CO 2 Understand the basics of venture financing.
CO 3 Understand the sources of debt financing.
CO 4 Understand the sources of equity financing.
CO 5 Acquaint with the methods of fund raising for new business ventures.
REFERENCES:

VERTICAL 3: PUBLIC ADMINISTRATION

CMG343 PRINCIPLES OF PUBLIC ADMINISTRATION L T P C
3 0 0 3

UNIT I
1. Meaning, Nature and Scope of Public Administration
2. Importance of Public Administration
3. Evolution of Public Administration

UNIT II
1. New Public Administration
2. New Public Management
3. Public and Private Administration

UNIT III
1. Relationships with Political Science, History and Sociology
2. Classical Approach
3. Scientific Management Approach

UNIT IV
1. Bureaucratic Approach: Max Weber
2. Human Relations Approach: Elton Mayo
3. Ecological Approach: Riggs
UNIT V
1. Leadership: Leadership - Styles - Approaches
2. Communication: Communication Types - Process - Barriers

TOTAL: 45 PERIODS

REFERENCES:
5. R. Tyagi, Public Administration, Atma Ram & Sons, New Delhi, 1983.
CMG345 PUBLIC PERSONNEL ADMINISTRATION L T P C

UNIT I (9)
1. Meaning, Scope and Importance of Personnel Administration
2. Types of Personnel Systems: Bureaucratic, Democratic and Representative systems

UNIT II (9)
1. Generalist Vs Specialist
2. Civil Servants’ Relationship with Political Executive
3. Integrity in Administration.

UNIT III (9)
1. Recruitment: Direct Recruitment and Recruitment from Within
2. Training: Kinds of Training
3. Promotion

UNIT IV (9)
1. All India Services
2. Service Conditions
3. State Public Service Commission

UNIT V (9)
1. Employer Employee Relations
2. Wage and Salary Administration
3. Allowances and Benefits

REFERENCES:
1. Stahl Glean O: Public Personnel Administration
4. Dwivedi O.P and Jain R.B: India’s Administrative state.
7. Davar R.S: Personnel Management & Industrial Relations

TOTAL: 45 PERIODS
CMG346 ADMINISTRATIVE THEORIES

UNIT I (9)
Meaning, Scope and significance of Public Administration, Evolution of Public Administration as a discipline and Identity of Public Administration

UNIT II (9)
Theories of Organization: Scientific Management Theory, Classical Model, Human Relations Theory

UNIT III (9)
Organization goals and Behaviour, Groups in organization and group dynamics, Organizational Design.

UNIT IV (9)
Motivation Theories, content, process and contemporary; Theories of Leadership: Traditional and Modern: Process and techniques of decision-making

UNIT V (9)
Administrative thinkers: Kautilya, Woodrow Willson, C.I. Barnard , Peter Drucker

REFERENCES:
1. Crozior M : The Bureaucratic phenomenon (Chand)
3. Presthus. R : The Organizational Society (MAC)
5. Keith Davis : Organization Theory (MAC)

TOTAL: 45 PERIODS

CMG347 INDIAN ADMINISTRATIVE SYSTEM

UNIT I (9)
Evolution and Constitutional Context of Indian Administration, Constitutional Authorities: Finance Commission, Union Public Services Commission, Election Commission, Comptroller and Auditor General of India, Attorney General of India

UNIT II (9)
Role & Functions of the District Collector, Relationship between the District Collector and Superintendent of Police, Role of Block Development Officer in development programmes, Local Government

UNIT III (9)
Main Features of 73rd Constitutional Amendment Act 1992, Salient Features of 74th Constitutional Amendment Act 1992
UNIT IV
Coalition politics in India, Integrity and Vigilance in Indian Administration

UNIT V
Corruption – Ombudsman, Lok Pal & Lok Ayuktha

REFERENCES:
1. S.R. Maheswari: Indian Administration
2. Khera. S.S: Administration in India
3. Ramesh K. Arora: Indian Public Administration
4. T.N. Chaturvedi: State administration in India
5. Basu, D.D: Introduction to the Constitution of India

TOTAL: 45 PERIODS

CMG348 PUBLIC POLICY ADMINISTRATION L T P C
3 0 0 3

UNIT I

UNIT II
Approaches in Policy Analysis - Institutional Approach – Incremental Approach and System’s Approach – Dror’s Optimal Model

UNIT III

UNIT IV
Institutional Framework of Policy making – Role of Bureaucracy – Role of Interest Groups and Role of Political Parties.

UNIT V
Introduction to the following Public Policies – New Economic Policy – Population Policy – Agriculture policy - Information Technology Policy.

REFERENCES:
4. Pradeep Saxena: Public Policy Administration and Development

TOTAL: 45 PERIODS
COURSE OBJECTIVE:
- To learn the applications of statistics in business decision making.

UNIT I INTRODUCTION
Basic definitions and rules for probability, Baye’s theorem and random variables, Probability distributions: Binomial, Poisson, Uniform and Normal distributions.

UNIT II SAMPLING DISTRIBUTION AND ESTIMATION
Introduction to sampling distributions, Central limit theorem and applications, sampling techniques, Point and Interval estimates of population parameters.

UNIT III TESTING OF HYPOTHESIS - PARAMETRIC TESTS
Hypothesis testing: one sample and two sample tests for means of large samples (z-test), one sample and two sample tests for means of small samples (t-test), ANOVA one way.

UNIT IV NON-PARAMETRIC TESTS

UNIT V CORRELATION AND REGRESSION

COURSE OUTCOMES:
CO1: To facilitate objective solutions in business decision making.
CO2: To understand and solve business problems
CO3: To apply statistical techniques to data sets, and correctly interpret the results.
CO4: To develop skill-set that is in demand in both the research and business environments
CO5: To enable the students to apply the statistical techniques in a work setting.

REFERENCES:
COURSE OBJECTIVES:
- To know how to derive meaning form huge volume of data and information.
- To understand how knowledge discovering process is used in business decision making.

UNIT I INTRODUCTION 9
Data mining, Text mining, Web mining, Data ware house.

UNIT II DATA MINING PROCESS 9
Datamining process – KDD, CRISP-DM, SEMMA
Prediction performance measures

UNIT III PREDICTION TECHNIQUES 9
Data visualization, Time series – ARIMA, Winter Holts,

UNIT IV CLASSIFICATION AND CLUSTERING TECHNIQUES 9
Classification, Association, Clustering.

UNIT V MACHINE LEARNING AND AI 9
Genetic algorithms, Neural network, Fuzzy logic, Ant Colony optimization, Particle Swarm optimization

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Learn to apply various data mining techniques into various areas of different domains.
CO2: Be able to interact competently on the topic of data mining for business intelligence.
CO3: Apply various prediction techniques.
CO4: Learn about supervised and unsupervised learning technique.
CO5: Develop and implement machine learning algorithms

REFERENCES:
1. Jaiwei Ham and Micheline Kamber, Data Mining concepts and techniques, Kauffmann Publishers 2006
7. G. K. Gupta, Introduction to Data mining with Case Studies, Prentice hall of India, 2011
9. Elizabeth Vitt, Michael Luckевич Stacia Misner, Business Intelligence, Microsoft, 2011
CMG351 HUMAN RESOURCE ANALYTICS

COURSE OBJECTIVE:
- To develop the ability of the learners to define and implement HR metrics that are aligned with the overall business strategy.
- To know the different types of HR metrics and understand their respective impact and application.
- To understand the impact and use of HR metrics and their connection with HR analytics.
- To understand common workforce issues and resolving them using people analytics.

UNIT I INTRODUCTION TO HR ANALYTICS
People Analytics - stages of maturity - Human Capital in the Value Chain : impact on business – HR metrics and KPIs.

UNIT II HR ANALYTICS I: RECRUITMENT
Recruitment Metrics : Fill-up ratio - Time to hire - Cost per hire - Early turnover - Employee referral hires - Agency hires - Lateral hires - Fulfillment ratio- Quality of hire.

UNIT III HR ANALYTICS - TRAINING AND DEVELOPMENT
Training & Development Metrics : Percentage of employees trained- Internally and externally trained -Training hours and cost per employee - ROI.

UNIT IV HR ANALYTICS EMPLOYEE ENGAGEMENT AND CAREER PROGRESSION
Employee Engagement Metrics : Talent Retention index - Voluntary and involuntary turnover- grades, performance, and service tenure - Internal hired index Career Progression Metrics: Promotion index - Rotation index - Career path index.

UNIT V HR ANALYTICS IV: WORKFORCE DIVERSITY AND DEVELOPMENT
Workforce Diversity and Development Metrics : Employees per manager – Workforce age profiling - Workforce service profiling - Churnover index - Workforce diversity index - Gender mix

TOTAL: 45 PERIODS

COURSE OUTCOME:
CO1: The learners will be conversant about HR metrics and ready to apply at work settings.
CO2: The learners will be able to resolve HR issues using people analytics.

REFERENCES:

CMG352 MARKETING AND SOCIAL MEDIA WEB ANALYTICS

COURSE OBJECTIVE:
- To showcase the opportunities that exist today to leverage the power of the web and social media

UNIT I MARKETING ANALYTICS 9
Marketing Budget and Marketing Performance Measure, Marketing - Geographical Mapping, Data Exploration, Market Basket Analysis

UNIT II COMMUNITY BUILDING AND MANAGEMENT 9
History and Evolution of Social Media - Understanding Science of Social Media - Goals for using Social Media - Social Media Audience and Influencers - Digital PR - Promoting Social Media Pages - Linking Social Media Accounts - The Viral Impact of Social Media.

UNIT III SOCIAL MEDIA POLICIES AND MEASUREMENTS 9
Social Media Policies - Etiquette, Privacy - ethical problems posed by emerging social media technologies - The Basics of Tracking Social Media.

UNIT IV WEB ANALYTICS 9
Data Collection, Overview of Qualitative Analysis, Business Analysis, KPI and Planning, Critical Components of a Successful Web Analytics Strategy, Proposals & Reports, Web Data Analysis.

UNIT V SEARCH ANALYTICS 9
Search engine optimization (SEO), user engagement, user-generated content, web traffic analysis, online security, online ethics, data visualization.

COURSE OUTCOME:
- The Learners will understand social media, web and social media analytics and their potential impact.

REFERENCES:
2. Christian Fuchs, Social Media a critical introduction, SAGE Publications Ltd, 2014
5. Ric T. Peterson, Web Analytics Demystified, Celillo Group Media and CafePress 2004
CMG353 OPERATION AND SUPPLY CHAIN ANALYTICS L T P C
3 0 0 3

COURSE OBJECTIVE:

- To treat the subject in depth by emphasizing on the advanced quantitative models and methods in operations and supply chain management and its practical aspects and the latest developments in the field.

UNIT I INTRODUCTION 9
Descriptive, predictive and prescriptive analytics, Data Driven Supply Chains – Basics, transforming supply chains.

UNIT II WAREHOUSING DECISIONS 9
P-Median Methods - Guided LP Approach, Greedy Drop Heuristics, Dynamic Location Models, Space Determination and Layout Methods.

UNIT III INVENTORY MANAGEMENT 9
Dynamic Lot sizing Methods, Multi-Echelon Inventory models, Aggregate Inventory system and LIMIT, Risk Analysis in Supply Chain, Risk pooling strategies.

UNIT IV TRANSPORTATION NETWORK MODELS 9

UNIT V MCDM MODELS 9
Analytic Hierarchy Process(AHP), Data Envelopment Analysis (DEA), Fuzzy Logic an Techniques, the analytical network process (ANP), TOPSIS.

TOTAL: 45 PERIODS

COURSE OUTCOME:

- To enable quantitative solutions in business decision making under conditions of certainty, risk and uncertainty.

REFERENCES:
COURSE OBJECTIVE:

- This course introduces a core set of modern analytical tools that specifically target finance applications.

UNIT I CORPORATE FINANCE ANALYSIS
Basic corporate financial predictive modelling- Project analysis- cash flow analysis- cost of capital, Financial Break even modelling, Capital Budget model-Payback, NPV, IRR.

UNIT II FINANCIAL MARKET ANALYSIS
Estimation and prediction of risk and return (bond investment and stock investment) –Time series-examining nature of data, Value at risk, ARMA, ARCH and GARCH.

UNIT III PORTFOLIO ANALYSIS
Portfolio Analysis – capital asset pricing model, Sharpe ratio, Option pricing models- binomial model for options, Black Scholes model and Option implied volatility.

UNIT IV TECHNICAL ANALYSIS

UNIT V CREDIT RISK ANALYSIS
Credit Risk analysis- Data processing, Decision trees, logistic regression and evaluating credit risk model.

TOTAL: 45 PERIODS

COURSE OUTCOME

- The learners should be able to perform financial analysis for decision making using excel, Python and R.

REFERENCES:
COURSE OBJECTIVE:
- To impart knowledge about sustainable Infrastructure development goals, practices and to understand the concepts of sustainable planning, design, construction, maintenance and decommissioning of infrastructure projects.

UNIT I SUSTAINABLE DEVELOPMENT GOALS

UNIT II SUSTAINABLE INFRASTRUCTURE PLANNING

UNIT III SUSTAINABLE CONSTRUCTION PRACTICES AND TECHNIQUES

UNIT IV SUSTAINABLE CONSTRUCTION MATERIALS
LCA - Extending LCA - economic dimension, social dimension - Life cycle costing (LCC) - Combining LCA and LCC – Case studies

UNIT V SUSTAINABLE MAINTENANCE OF INFRASTRUCTURE PROJECTS

TOTAL: 45 PERIODS

COURSE OUTCOME:
On completion of the course, the student is expected to be able to
CO1 Understand the environment sustainability goals at global and Indian scenario.
CO2 Understand risks in development of projects and suggest mitigation measures.
CO3 Apply lean techniques, LBMS and new construction techniques to achieve sustainability in infrastructure construction projects.
CO4 Explain Life Cycle Analysis and life cycle cost of construction materials.
CO5 Explain the new technologies for maintenance of infrastructure projects.

REFERENCES:
3. Craig A. Langston & Grace K.C. Ding, Sustainable Practices in the Built Environment,
6. New Building Materials and Construction World magazine
8. Munier N, "Introduction to Sustainability", Springer2005
CO's-PO's & PSO's MAPPING

1 - low, 2 - medium, 3 - high, '-' - no correlation

COURSE OBJECTIVES:
- To educate the students about the issues of sustainability in agroecosystems, introduce the concepts and principles of agroecology as applied to the design and management of sustainable agricultural systems for a changing world.

UNIT I AGROECOLOGY, AGROECOSYSTEM AND SUSTAINABLE AGRICULTURE CONCEPTS
- Ecosystem definition - Biotic Vs. abiotic factors in an ecosystem - Ecosystem processes - Ecological services and agriculture - Problems associated with industrial agriculture/food systems - Defining sustainability - Characteristics of sustainable agriculture - Difference between regenerative and sustainable agriculture systems

UNIT II SOIL HEALTH, NUTRIENT AND PEST MANAGEMENT
- Soil health definition - Factors to consider (physical, chemical and biological) - Composition of healthy soils - Soil erosion and possible control measures - Techniques to build healthy soil - Management practices for improving soil nutrient - Ecologically sustainable strategies for pest and disease control

UNIT III WATER MANAGEMENT
- Soil water storage and availability - Plant yield response to water - Reducing evaporation in agriculture - Earthworks and tanks for rainwater harvesting - Options for improving the productivity of water - Localized irrigation - Irrigation scheduling - Fertigation - Advanced irrigation systems and agricultural practices for sustainable water use

UNIT IV ENERGY AND WASTE MANAGEMENT
- Types and sources of agricultural wastes - Composition of agricultural wastes - Sustainable technologies for the management of agricultural wastes - Useful and high value materials produced using different processes from agricultural wastes - Renewable energy for sustainable agriculture
Course Outcomes

On completion of the course, the student is expected to be able to:

- **CO1** Have an in-depth knowledge about the concepts, principles, and advantages of sustainable agriculture
- **CO2** Discuss the sustainable ways in managing soil health, nutrients, pests, and diseases
- **CO3** Suggest the ways to optimize the use of water in agriculture to promote an ecological use of resources
- **CO4** Develop energy and waste management plans for promoting sustainable agriculture in non-sustainable farming areas
- **CO5** Assess an ecosystem for its level of sustainability and prescribe ways of converting to a sustainable system through the redesign of a conventional agroecosystem

References

Course Objectives

- To impart knowledge of biomaterials and their properties
- To learn about Fundamentals aspects of Biopolymers and their applications
- To introduce the students about metals as biomaterials and their usage as implants

Sustainable Biomaterials

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>SPSO's Mapping - Sustainable Agriculture Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Medium</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>No correlation</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CS:333 SUSTAINABLE BIOMATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT</td>
</tr>
</tbody>
</table>

Course Outline

- Indicators of sustainability in agriculture - On-farm evaluation of agroecosystem sustainability
- Alternative agriculture approaches/ farming techniques for sustainable food production
- Goals and components of a community food system
- Case studies
To make the students understand the significance of bionanomaterials and its applications.

UNIT I INTRODUCTION TO BIOMATERIALS 9

UNIT II BIO POLYMERS 9
Molecular structure of polymers -Molecular weight - Types of polymerization techniques--Types of polymerization reactions- Physical states of polymers- Common polymeric biomaterials - Polyethylene -Polymethylmethacrylate (PMMA)-Polylactic acid (PLA) and polyglycolic acid (PGA) - Polycaprolactone (PCL) - Other biodegradable polymers -Polyurethan reactions polymers for medical purposes - Collagens- Elastin- Cellulose and derivatives-Synthetic polymeric membranes and their biological applications

UNIT III BIO CERAMICS AND BIOCOMPOSITES 9
General properties- Bio ceramics -Silicate glass - Alumina (Al2O3) -Zirconia (ZrO2)-Carbon- Calcium phosphates (CaP)- Resorbable Ceramics- surface reactive ceramics- Biomedical Composites-Polymer Matrix Composite(PMC)-Ceramic Matrix Composite(CMC)-Metal Matrix Composite (MMC)– glass ceramics - Orthopedic implants-Tissue engineering scaffolds

UNIT IV METALS AS BIOMATERIALS 9
Biomedical metals-types and properties-stainless steel-Cobalt chromium alloys-Titanium alloys-Tantalum-Nickel titanium alloy (Nitinol)- magnesium-based biodegradable alloys-surface properties of metal implants for osteointegration-medical application-corrosion of metallic implants – biological tolerance of implant metals

UNIT V NANOBIO MATERIALS 9

TOTAL : 45 PERIODS

COURSE OUTCOMES
CO1:Students will gain familiarity with Biomaterials and they will understand their importance.
CO2:Students will get an overview of different biopolymers and their properties
CO3:Students gain knowledge on some of the important Bioceramics and Biocomposite materials
CO4:Students gain knowledge on metals as biomaterials
CO5:Student gains knowledge on the importance of nanobiomaterials in biomedical applications.

REFERENCES

CES334 MATERIALS FOR ENERGY SUSTAINABILITY

COURSE OBJECTIVES
- To familiarize the students about the challenges and demands of energy sustainability
- To provide fundamental knowledge about electrochemical devices and the materials used.
- To introduce the students to various types of fuel cell
- To enable students to appreciate novel materials and their usage in photovoltaic application
- To introduce students to the basic principles of various types Supercapacitors and the materials used.

UNIT I SUSTAINABLE ENERGY SOURCES

Introduction to energy demand and challenges ahead – sustainable source of energy (wind, solar etc.) – electrochemical energy systems for energy harvesting and storage – materials for sustainable electrochemical systems building – India centric solutions based on locally available materials – Economics of wind and solar power generators vs. conventional coal plants – Nuclear energy

UNIT II ELECTROCHEMICAL DEVICES

Electrochemical Energy – Difference between primary and secondary batteries – Secondary battery (Li-ion battery, Sodium-ion battery, Li-S battery, Li-O₂ battery, Nickel Cadmium, Nickel Metal Hydride) – Primary battery (Alkaline battery, Zinc-Carbon battery) – Materials for battery (Anode materials – Lithiated graphite, Sodiated hard carbon, Silicon doped graphene, Lithium Titanate) (Cathode Materials – S, LiCoO₂, LiFePO₄, LiMn₂O₄) – Electrolytes for Lithium-ion battery (ethylene carbonate and propylene carbonate based)

UNIT III FUEL CELLS

UNIT IV PHOTOVOLTAICS

UNIT V SUPERCAPACITORS

Supercapacitor –types of supercapacitors (electrostatic double-layer capacitors, pseudo capacitors and hybrid capacitors) - design of supercapacitor-three and two electrode cell-parameters of supercapacitor- Faradaic and non - Faradaic capacitance – electrode materials (transition metal oxides (MO), mixed metal oxides, conducting polymers (CP), Mxenes, nanocarbons, non-noble metal, chalcogenides, hydroxides and 1D-3D metal-organic frame work (MOF), activated carbon fibres (ACF)- Hydroxides-Based Materials - Polyaniline (PANI), a ternary hybrid composite-conductive polypyrrole hydrogels – Different types of nanocomposites for the SC electrodes (carbon-carbon composites, carbon-MOs composites, carbon-CPs composites and MOs-CPs composites) - Two-Dimensional (2D) Electrode Materials - 2D transition metal carbides, carbonitrides, and nitrides.

COURSE OUTCOMES

CO1: Students will acquire knowledge about energy sustainability.
CO2: Students understand the principles of different electrochemical devices.
CO3: Students learn about the working of fuel cells and their application.
CO4: Students will learn about various Photovoltaic applications and the materials used.
CO5: The students gain knowledge on different types of supercapacitors and the performance of various materials

REFERENCES

5. Materials for Supercapacitor applications; B.Viswanathan. M.Aulice Scibioh
COURSE OBJECTIVE:
• To acquire knowledge on green systems and the environment, energy technology and efficiency, and sustainability.
• To provide green engineering solutions to energy demand, reduced energy footprint.

UNIT I PRINCIPLES OF GREEN CHEMISTRY 9
Historical Perspectives and Basic Concepts. The twelve Principles of Green Chemistry and green engineering. Green chemistry metrics- atom economy, E factor, reaction mass efficiency, and other green chemistry metrics, application of green metrics analysis to synthetic plans.

UNIT II POLLUTION TYPES 9
Pollution – types, causes, effects, and abatement. Waste – sources of waste, different types of waste, chemical, physical and biochemical methods of waste minimization and recycling.

UNIT III GREEN REAGENTS AND GREEN SYNTHESIS 9
Environmentally benign processes- alternate solvents- supercritical solvents, ionic liquids, water as a reaction medium, energy-efficient design of processes- photo, electro and sono chemical methods, microwave-assisted reactions

UNIT IV DESIGNING GREEN PROCESSES 9

UNIT V GREEN NANOTECHNOLOGY 9
Nanomaterials for water treatment, nanotechnology for renewable energy, nanotechnology for environmental remediation and waste management, nanotechnology products as potential substitutes for harmful chemicals, environmental concerns with nanotechnology.

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1: To understand the principles of green engineering and technology
CO2: To learn about pollution using hazardous chemicals and solvents
CO3: To modify processes and products to make them green and safe.
CO4: To design processes and products using green technology
CO5: To understand advanced technology in green synthesis

TEXT BOOKS

REFERENCE BOOKS
1. Environmental chemistry, Stanley E Manahan, Taylor and Francis, 2017
COURSE OBJECTIVES:

- to understand and study the complexity of the environment in relation to pollutants generated due to industrial activity.
- To analyze the quality of the environmental parameters and monitor the same for the purpose of environmental risk assessment.

UNIT I ENVIRONMENTAL MONITORING AND STANDARDS 9

UNIT II MONITORING OF ENVIRONMENTAL PARAMETERS 9

UNIT III ANALYTICAL METHODS FOR ENVIRONMENTAL MONITORING 9
Classification of Instrumental Method- Analysis of Organic Pollutants by Spectrophotometric methods -Determination of nitrogen, phosphorus and, chemical oxygen demand (COD) in sewage; Biochemical oxygen demand (BOD)- Sampling techniques for air pollution measurements; analysis of particulates and air pollutants like oxides of nitrogen, oxides of sulfur, carbon monoxide, hydrocarbon; Introduction to advanced instruments for environmental analysis

UNIT IV ENVIRONMENTAL MONITORING PROGRAMME (EMP) & RISKASSESSMENT 9

UNIT V AUTOMATED DATA ACQUISITION AND PROCESSING 9
Data Acquisition for Process Monitoring and Control - The Data Acquisition System - Online Data Acquisition, Monitoring, and Control - Implementation of a Data Management System - Review of Observational Networks -Sensors and transducers- classification of transducers- data acquisition system- types of data acquisition systems- data management and quality control; regulatory overview.

COURSE OUTCOMES
After completion of this course, the students will know

CO1	Basic concepts of environmental standards and monitoring.
CO2	the ambient air quality and water quality standards;
CO3	the various instrumental methods and their principles for environmental monitoring
The significance of environmental standards in monitoring quality and sustainability of the environment.

the various ways of raising environmental awareness among the people.

Know the standard research methods that are used worldwide for monitoring the environment.

TEXTBOOKS

2. Handbook of environmental analysis: chemical pollutants in the air, water, soil, and solid wastes / Pradyot Patnaik, © 1997 by CRC Press, Inc

REFERENCES

1. Environmental monitoring / edited by G. Bruce Wiersma, © 2004 by CRC Press LLC.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
</tr>
<tr>
<td>CO6</td>
<td>3</td>
</tr>
<tr>
<td>Over all</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-" - no correlation

CES337 INTEGRATED ENERGY PLANNING FOR SUSTAINABLE DEVELOPMENT

COURSE OBJECTIVES:

- To create awareness on the energy scenario of India with respect to world
- To understand the fundamentals of energy sources, energy efficiency and resulting environmental implications of energy utilisation
- Familiarisation on the concept of sustainable development and its benefits
- Recognize the potential of renewable energy sources and its conversion technologies for attaining sustainable development
- Acquainting with energy policies and energy planning for sustainable development

UNIT I ENERGY SCENARIO

Comparison of energy scenario – India and World (energy sources, generation mix, consumption pattern, T&D losses, energy demand, per capita energy consumption) – energy pricing – Energy security
UNIT II ENERGY AND ENVIRONMENT 9
Conventional Energy Sources - Emissions from fuels – Air, Water and Land pollution – Environmental standards - measurement and controls

UNIT III SUSTAINABLE DEVELOPMENT 9

UNIT IV RENEWABLE ENERGY TECHNOLOGY 9

UNIT V ENERGY PLANNING FOR SUSTAINABLE DEVELOPMENT 9

COURSE OUTCOMES:
Upon completion of this course, the students will be able to
CO1: Understand the world and Indian energy scenario
CO2: Analyse energy projects, its impact on environment and suggest control strategies
CO3: Recognise the need of Sustainable development and its impact on human resource development
CO4: Apply renewable energy technologies for sustainable development
CO5: Fathom Energy policies and planning for sustainable development.

REFERENCES:
7. https://www.niti.gov.in/verticals/energy
COURSE OBJECTIVES:
- To understand the types of energy sources, energy efficiency and environmental implications of energy utilisation
- To create awareness on energy audit and its impacts
- To acquaint the techniques adopted for performance evaluation of thermal utilities
- To familiarise on the procedures adopted for performance evaluation of electrical utilities
- To learn the concept of sustainable development and the implication of energy usage

UNIT I ENERGY AND ENVIRONMENT
Primary energy sources - Coal, Oil, Gas – India Vs World with respect to energy production and consumption, Climate Change, Global Warming, Ozone Depletion, UNFCCC, COP

UNIT II ENERGY AUDITING
Need and types of energy audit. Energy management (audit) approach - understanding energy costs, benchmarking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel & energy substitution, energy audit instruments

UNIT III ENERGY EFFICIENCY IN THERMAL UTILITIES
Energy conservation avenues in steam generation and utilisation, furnaces, Thermic Fluid Heaters. Insulation and Refractories - Commercial waste heat recovery devices: recuperator, regenerator, heat pipe, heat exchangers (Plate, Shell & Tube), heat pumps, and thermocompression

UNIT IV ENERGY CONSERVATION IN ELECTRICAL UTILITIES
Demand side management - Power factor improvement – Energy efficient transformers - Energy conservation avenues in Motors, HVAC, fans, blowers, pumps, air compressors, illumination systems and cooling towers

UNIT V SUSTAINABLE DEVELOPMENT

COURSE OUTCOMES:
Upon completion of this course, the students will be able to
CO1: Understand the prevailing energy scenario
CO2: Familiarise on energy audits and its relevance
CO3: Apply the concept of energy audit on thermal utilities
CO4: Employ relevant techniques for energy improvement in electrical utilities
CO5: Understand Sustainable development and its impact on human resource development

TOTAL: 45 PERIODS
REFERENCES:

