I. PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

I. To ensure graduates will be proficient in utilizing the fundamental knowledge of basic sciences, mathematics, Computer Science and Business systems for the applications relevant to various streams of Engineering and Technology.

II. To enrich graduates with the core competencies necessary for applying knowledge of computer science and Data analytics tools to store, retrieve, implement and analyze data in the context of business enterprise

III. To enable graduates to gain employment in organizations and establish themselves as professionals by applying their technical skills and leadership qualities to solve real world problems and meet the diversified needs of industry, academia and research

IV. To equip the graduates with entrepreneurial skills and qualities which help them to perceive the functioning of business, diagnose business problems, explore the entrepreneurial opportunities and prepare them to manage business efficiently.

II. PROGRAM OUTCOMES (POs)

1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3 Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4 Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8 **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9 **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10 **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11 **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12 **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

III. **PROGRAM SPECIFIC OUTCOMES (PSOs)**

PSO1: To create, select, and apply appropriate techniques, resources, modern engineering and business tools including prediction and data analytics to complex engineering activities and business solutions.

PSO2: To evolve computer science domain specific methodologies for effective decision making in several critical problem domains of the real world.

PSO3: To be able to apply entrepreneurial skills and management tools for identifying, analyzing and creating business opportunities with smart business ideas.

PSO4: To manage complex IT projects with consideration of the human, financial, ethical and environmental factors and an understanding of risk management processes, and operational and policy implications.
<table>
<thead>
<tr>
<th>Year</th>
<th>Sem</th>
<th>Course name</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
<th>PSO 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>Induction Programme</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional English - I</td>
<td>1.6</td>
<td>2.2</td>
<td>1.8</td>
<td>2.2</td>
<td>1.5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1.6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Matrices and Calculus</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Physics</td>
<td>3</td>
<td>3</td>
<td>1.6</td>
<td>1.2</td>
<td>1.8</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Chemistry</td>
<td>2.8</td>
<td>1.3</td>
<td>1.6</td>
<td>1</td>
<td>-</td>
<td>1.5</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problem Solving and Python Programming</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional English - II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Statistics and Numerical Methods</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics for Information Science</td>
<td>3</td>
<td>1.3</td>
<td>2</td>
<td>1.3</td>
<td>2.3</td>
<td>1</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic Electrical and Electronics Engineering</td>
<td>2</td>
<td>1.8</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Graphics</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Structures Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Practices Laboratory</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Structures Design Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication Laboratory / Foreign Language§</td>
<td>2.4</td>
<td>2.8</td>
<td>3</td>
<td>3</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discrete Mathematics</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digital Principles and Computer Organization</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fundamentals of Economics</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Object Oriented Programming</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1.2</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Course</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td>VII</td>
<td>VIII</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Data Science and Analytics</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Business Communication Laboratory I</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Object Oriented Programming Laboratory</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Professional Development</td>
<td></td>
</tr>
<tr>
<td>Probability and Statistics</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Database Management Systems</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Operating Systems</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Introduction to Business Systems</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Machine Learning</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Environmental Sciences and Sustainability</td>
<td>2.8</td>
<td>1.8</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Database Management Systems Laboratory</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Machine Learning Laboratory</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Business Communication Laboratory II</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Embedded Systems and IoT</td>
<td>3</td>
<td>3</td>
<td>2.6</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Management</td>
<td>3</td>
<td>3</td>
<td>2.2</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Data and Information Security</td>
<td>3</td>
<td>2.2</td>
<td>1.6</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Summer internship</td>
<td></td>
</tr>
<tr>
<td>Business Analytics</td>
<td>3</td>
<td>3</td>
<td>2.4</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Object Oriented Software Engineering</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Business Analytics Laboratory</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Human Values and Ethics</td>
<td></td>
</tr>
<tr>
<td>Project Work / Internship</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>IP3151</td>
<td>Induction Programme</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>HS3152</td>
<td>Professional English - I</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>MA3151</td>
<td>Matrices and Calculus</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>PH3151</td>
<td>Engineering Physics</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>CY3151</td>
<td>Engineering Chemistry</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>GE3151</td>
<td>Problem Solving and Python Programming</td>
<td>ESC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>GE3152</td>
<td>தமிழரும் ததொழில்நுட்பமும் /Heritage of Tamils</td>
<td>HSMC</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>GE3171</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>ESC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>BS3171</td>
<td>Physics and Chemistry Laboratory</td>
<td>BSC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>10.</td>
<td>GE3172</td>
<td>English Laboratory §</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

§ Skill Based Course

SEMESTER II

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>HS3252</td>
<td>Professional English - II</td>
<td>HSMC</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>MA3251</td>
<td>Statistics and Numerical Methods</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>PH3256</td>
<td>Physics for Information Science</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>BE3251</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>ESC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>GE3251</td>
<td>Engineering Graphics</td>
<td>ESC</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>AD3251</td>
<td>Data Structures Design</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>GE3252</td>
<td>தமிழும் விளக்கும் வைத்தூரெட்டு /Tamils and Technology</td>
<td>HSMC</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>NCC Credit Course Level 1 §</td>
<td>-</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9.</td>
<td>GE3271</td>
<td>Engineering Practices Laboratory</td>
<td>ESC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>10.</td>
<td>AD3271</td>
<td>Data Structures Design Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>11.</td>
<td>GE3272</td>
<td>Communication Laboratory / Foreign Language §</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>17</td>
<td>1</td>
<td>16</td>
</tr>
</tbody>
</table>

§ Skill Based Course

NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

Skill Based Course
SEMESTER III

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA3354</td>
<td>Discrete Mathematics</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>CS3351</td>
<td>Digital Principles and Computer Organization</td>
<td>ESC</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>CW3301</td>
<td>Fundamentals of Economics</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>CS3391</td>
<td>Object Oriented Programming</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>AD3351</td>
<td>Design and Analysis of Algorithms</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>AD3491</td>
<td>Fundamentals of Data Science and Analytics</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CW3311</td>
<td>Business Communication Laboratory I</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CS3381</td>
<td>Object Oriented Programming Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>GE3361</td>
<td>Professional Development§</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>18</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>

§ Skill Based Course

SEMESTER IV

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA3391</td>
<td>Probability and Statistics</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>CS3492</td>
<td>Database Management Systems</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>AL3452</td>
<td>Operating Systems</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>CW3401</td>
<td>Introduction to Business Systems</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>AL3451</td>
<td>Machine Learning</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>GE3451</td>
<td>Environmental Sciences and Sustainability</td>
<td>BSC</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>NCC Credit Course Level 2§</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>CS3481</td>
<td>Database Management Systems Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>AD3461</td>
<td>Machine Learning Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>10.</td>
<td>CW3411</td>
<td>Business Communication Laboratory II</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>17</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>

§ NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.
SEMESTER V

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THEORY

1. CS3691 Embedded Systems and IoT PCC 3 0 2 5 4
2. CW3501 Fundamentals of Management PCC 3 0 0 3 3
3. CW3551 Data and Information Security PCC 3 0 0 3 3
4. Professional Elective I PEC - - - - 3
5. Professional Elective II PEC - - - - 3
6. Mandatory Course-I* MC 3 0 0 3 Non-credit course

PRACTICALS

7. CW3511 Summer Internship EEC 0 0 0 0 2

TOTAL - - - - 18

* Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under Mandatory Course-I)

SEMESTER VI

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THEORY

1. CW3601 Business Analytics PCC 3 0 0 3 3
2. CCS356 Object Oriented Software Engineering PCC 3 0 2 5 4
3. Open Elective – I* OEC 3 0 0 3 3
4. Professional Elective III PEC - - - - 3
5. Professional Elective IV PEC - - - - 3
6. Professional Elective V PEC - - - - 3
7. Professional Elective VI PEC - - - - 3
8. Mandatory Course-II & MC 3 0 0 3 Non-credit course
9. NCC Credit Course Level 3# 3 0 0 3 3

PRACTICALS

10. CW3611 Business Analytics Laboratory PCC 0 0 4 4 2

TOTAL - - - - 24

*Open Elective – I Shall be chosen from the list of open electives offered by other Programmes

* Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under Mandatory Course-II)

* NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA
SEMESTER VII / VIII*

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GE3791</td>
<td>Human Values and Ethics</td>
<td>HSMC</td>
<td>2 0 0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Elective - Management#</td>
<td>HSMC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Open Elective – II**</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Open Elective – III**</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Open Elective – IV**</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>14 0 0</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

*If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

** Open Elective II - IV (Shall be chosen from the list of open electives offered by other Programmes).

Elective - Management shall be chosen from the Elective Management courses.

SEMESTER VII / VIII*

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CW3811</td>
<td>Project Work / Internship</td>
<td>EEC</td>
<td>0 0 20</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>0 0 20</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

*If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

TOTAL CREDITS : 163

ELECTIVE – MANAGEMENT COURSES

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GE3751</td>
<td>Principles of Management</td>
<td>HSMC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>GE3752</td>
<td>Total Quality Management</td>
<td>HSMC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>GE3753</td>
<td>Engineering Economics and Financial Accounting</td>
<td>HSMC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>GE3754</td>
<td>Human Resource Management</td>
<td>HSMC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE3755</td>
<td>Knowledge Management</td>
<td>HSMC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE3792</td>
<td>Industrial Management</td>
<td>HSMC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>S. NO.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>PERIODS PER WEEK</td>
<td>TOTAL CONTACT PERIODS</td>
<td>CREDITS</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>MX3081</td>
<td>Introduction to Women and Gender Studies</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>MX3082</td>
<td>Elements of Literature</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>MX3083</td>
<td>Film Appreciation</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>MX3084</td>
<td>Disaster Risk Reduction and Management</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Mandatory Courses are offered as Non-Credit Courses

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MX3085</td>
<td>Well Being with Traditional Practices - Yoga, Ayurveda and Siddha</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>MX3086</td>
<td>History of Science and Technology in India</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>MX3087</td>
<td>Political and Economic Thought for a Humane Society</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>MX3088</td>
<td>State, Nation Building and Politics in India</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>MX3089</td>
<td>Industrial Safety</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Mandatory Courses are offered as Non-Credit Courses
<table>
<thead>
<tr>
<th>Vertical I</th>
<th>Vertical II</th>
<th>Vertical III</th>
<th>Vertical IV</th>
<th>Vertical V</th>
<th>Vertical VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Science</td>
<td>Cloud Computing and Data Center Technologies</td>
<td>Emerging Technologies</td>
<td>Artificial Intelligence and Machine Learning</td>
<td>Management</td>
<td>Marketing</td>
</tr>
<tr>
<td>Neural Networks and Deep Learning</td>
<td>Cloud Services Management</td>
<td>Neural Networks and Deep Learning</td>
<td>Neural Networks and Deep Learning</td>
<td>Financial Management</td>
<td>Digital Marketing</td>
</tr>
<tr>
<td>Text and Speech Analysis</td>
<td>Data Warehousing</td>
<td>Cyber security</td>
<td>Text and Speech Analysis</td>
<td>Supply Chain Management</td>
<td>Conversational Systems</td>
</tr>
<tr>
<td></td>
<td>Storage Technologies</td>
<td>Quantum Computing</td>
<td>Optimization Techniques</td>
<td>IT Project Management</td>
<td>Social Text and Media Analytics</td>
</tr>
<tr>
<td>Image and Video Analytics</td>
<td>Software Defined Networks</td>
<td>Cryptocurrency and Blockchain Technologies</td>
<td>Game Theory</td>
<td>Entrepreneurship Development</td>
<td>Marketing Research and Marketing Management</td>
</tr>
<tr>
<td>Computer Vision</td>
<td>Stream Processing</td>
<td>Game Development</td>
<td>Cognitive Science</td>
<td>Introduction to Innovation, IP Management and Entrepreneurship</td>
<td>Risk Analytics</td>
</tr>
<tr>
<td>Big Data Analytics</td>
<td>Security and Privacy in Cloud</td>
<td>3D Printing and Design</td>
<td>Ethics and AI</td>
<td>Behavioral Economics</td>
<td>Enterprise Security</td>
</tr>
</tbody>
</table>

Registration of Professional Elective Courses from Verticals:

Refer to the Regulations 2021, Clause 6.3. (Amended on 27.07.2023)
Professional Elective Courses: Verticals

Vertical 1: Data Science

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CCS346</td>
<td>Exploratory Data Analysis</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CCS360</td>
<td>Recommender Systems</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CCS355</td>
<td>Neural Networks and Deep Learning</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CCS369</td>
<td>Text and Speech Analysis</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CCS349</td>
<td>Image and Video Analytics</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CCS338</td>
<td>Computer Vision</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CCS334</td>
<td>Big Data Analytics</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Vertical 2: Cloud Computing and Data Center Technologies

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CCS335</td>
<td>Cloud Computing</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CCS372</td>
<td>Virtualization</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CCS336</td>
<td>Cloud Services Management</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CCS341</td>
<td>Data Warehousing</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CCS367</td>
<td>Storage Technologies</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CCS365</td>
<td>Software Defined Networks</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CCS368</td>
<td>Stream Processing</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CCS362</td>
<td>Security and Privacy in Cloud</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
VERTICAL 3: EMERGING TECHNOLOGIES

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CCS333</td>
<td>Augmented Reality/Virtual Reality</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CCS361</td>
<td>Robotic Process Automation</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CCS355</td>
<td>Neural Networks and Deep Learning</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CCS340</td>
<td>Cyber Security</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CCS359</td>
<td>Quantum Computing</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CCS339</td>
<td>Cryptocurrency and Blockchain Technologies</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CCS347</td>
<td>Game Development</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CCS331</td>
<td>3D Printing and Design</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 4: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CCS350</td>
<td>Knowledge Engineering</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CCS364</td>
<td>Soft Computing</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CCS355</td>
<td>Neural Networks and Deep Learning</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CCS369</td>
<td>Text and Speech Analysis</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CCS357</td>
<td>Optimization Techniques</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CCS348</td>
<td>Game Theory</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CCS337</td>
<td>Cognitive Science</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CCS345</td>
<td>Ethics and AI</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
VERTICAL 5: MANAGEMENT

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CW3003</td>
<td>Customer Relation Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CMG341</td>
<td>Human Resource Management for Entrepreneurs</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CCD332</td>
<td>Financial Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CCD334</td>
<td>Supply Chain Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CW3007</td>
<td>IT Project Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CW3005</td>
<td>Entrepreneurship Development</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CW3006</td>
<td>Introduction to Innovation, IP Management and Entrepreneurship</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CW3001</td>
<td>Behavioral Economics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 6: MARKETING

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CMG354</td>
<td>Financial Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CCS360</td>
<td>Recommender Systems</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CCW332</td>
<td>Digital Marketing</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CW3002</td>
<td>Conversational Systems</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CW3009</td>
<td>Social Text and Media Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CCB331</td>
<td>Marketing Research and Marketing Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CW3008</td>
<td>Risk Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CW3004</td>
<td>Enterprise Security</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
OPEN ELECTIVES
(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories).

OPEN ELECTIVES – I

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>OAS351</td>
<td>Space Science</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>OIE351</td>
<td>Introduction to Industrial Engineering</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>OBT351</td>
<td>Food, Nutrition and Health</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>OCE351</td>
<td>Environmental and Social Impact Assessment</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>OEE351</td>
<td>Renewable Energy System</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>OEI351</td>
<td>Introduction to Industrial Instrumentation and Control</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>OMA351</td>
<td>Graph Theory</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

OPEN ELECTIVES – II

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>OIE352</td>
<td>Resource Management Techniques</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>OMG351</td>
<td>Fintech Regulation</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>OFD351</td>
<td>Holistic Nutrition</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>AI3021</td>
<td>IT in Agricultural System</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>OEI352</td>
<td>Introduction to Control Engineering</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>OPY351</td>
<td>Pharmaceutical Nanotechnology</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>OAE351</td>
<td>Aviation Management</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

OPEN ELECTIVES – III

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>OHS351</td>
<td>English for Competitive Examinations</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>OMG352</td>
<td>NGOs and Sustainable Development</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>OMG353</td>
<td>Democracy and Good</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Department</td>
<td>Credits</td>
<td>Grade</td>
<td>Fee</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>4. CME365</td>
<td>Renewable Energy Technologies</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5. OME354</td>
<td>Applied Design Thinking</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6. MF3003</td>
<td>Reverse Engineering</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7. OPR351</td>
<td>Sustainable Manufacturing</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8. AU3791</td>
<td>Electric and Hybrid Vehicles</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9. OAS352</td>
<td>Space Engineering</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10. OIM351</td>
<td>Industrial Management</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11. OIE354</td>
<td>Quality Engineering</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12. OSF351</td>
<td>Fire Safety Engineering</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13. OML351</td>
<td>Introduction to Non-destructive Testing</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14. OMR351</td>
<td>Mechatronics</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15. ORA351</td>
<td>Foundation of Robotics</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>16. OAE352</td>
<td>Fundamentals of Aeronautical Engineering</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>17. OGI351</td>
<td>Remote Sensing Concepts</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18. OAI351</td>
<td>Urban Agriculture</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>19. OEN351</td>
<td>Drinking Water Supply and Treatment</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>20. OEE352</td>
<td>Electric Vehicle Technology</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21. OEI353</td>
<td>Introduction to PLC Programming</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>22. OCH351</td>
<td>Nano Technology</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>23. OCH352</td>
<td>Functional Materials</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24. OFD352</td>
<td>Traditional Indian Foods</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25. OFD353</td>
<td>Introduction to food processing</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>26. OPY352</td>
<td>IPR for Pharma Industry</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>27. OTE351</td>
<td>Basics of Textile Finishing</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>28. OTE352</td>
<td>Industrial Engineering for Garment Industry</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>29. OTT353</td>
<td>Basics of Textile Manufacture</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>30. OPE351</td>
<td>Introduction to Petroleum Refining and Petrochemicals</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>31. CPE334</td>
<td>Energy Conservation and Management</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>32. OPT351</td>
<td>Basics of Plastics Processing</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>33. OEC351</td>
<td>Signals and Systems</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>34. OEC352</td>
<td>Fundamentals of Electronic Devices and Circuits</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>35. CBM348</td>
<td>Foundation Skills in Integrated Product Development</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SL. NO.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>PERIODS PER WEEK</td>
<td>TOTAL CONTACT PERIODS</td>
<td>CREDITS</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>OHS352</td>
<td>Project Report Writing</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OMA355</td>
<td>Advanced Numerical Methods</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OMA356</td>
<td>Random Processes</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>OMA357</td>
<td>Queuing and Reliability Modelling</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>OMG354</td>
<td>Production and Operations Management for</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entrepreneurs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>OMG355</td>
<td>Multivariate Data Analysis</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OME352</td>
<td>Additive Manufacturing</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CME343</td>
<td>New Product Development</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>OME355</td>
<td>Industrial Design & Rapid Prototyping Techniques</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>MF3010</td>
<td>Micro and Precision Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>OMF354</td>
<td>Cost Management of Engineering Projects</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>AU3002</td>
<td>Batteries and Management system</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>AU3008</td>
<td>Sensors and Actuators</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>OAS353</td>
<td>Space Vehicles</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>OIM352</td>
<td>Management Science</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>OIM353</td>
<td>Production Planning and Control</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>OIE353</td>
<td>Operations Management</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>OSF352</td>
<td>Industrial Hygiene</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Course Code</td>
<td>Course Title</td>
<td>College</td>
<td>Credits</td>
<td>Year</td>
<td>Semester</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>19.</td>
<td>OSF353</td>
<td>Chemical Process Safety</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20.</td>
<td>OML352</td>
<td>Electrical, Electronic and Magnetic materials</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21.</td>
<td>OML353</td>
<td>Nanomaterials and Applications</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22.</td>
<td>OMR352</td>
<td>Hydraulics and Pneumatics</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23.</td>
<td>OMR353</td>
<td>Sensors</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24.</td>
<td>ORA352</td>
<td>Concepts in Mobile Robots</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25.</td>
<td>MV3501</td>
<td>Marine Propulsion</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26.</td>
<td>OMV351</td>
<td>Marine Merchant Vessels</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27.</td>
<td>OMV352</td>
<td>Elements of Marine Engineering</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28.</td>
<td>CRA332</td>
<td>Drone Technologies</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29.</td>
<td>OGI352</td>
<td>Geographical Information System</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30.</td>
<td>OAI352</td>
<td>Agriculture Entrepreneurship Development</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31.</td>
<td>OEN352</td>
<td>Biodiversity Conservation</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32.</td>
<td>OEE353</td>
<td>Introduction to control systems</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33.</td>
<td>OEI354</td>
<td>Introduction to Industrial Automation Systems</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34.</td>
<td>OCH353</td>
<td>Energy Technology</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35.</td>
<td>OCH354</td>
<td>Surface Science</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36.</td>
<td>OFD354</td>
<td>Fundamentals of Food Engineering</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37.</td>
<td>OFD355</td>
<td>Food safety and Quality Regulations</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>38.</td>
<td>OPY353</td>
<td>Nutraceuticals</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>39.</td>
<td>OTT354</td>
<td>Basics of Dyeing and Printing</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40.</td>
<td>FT3201</td>
<td>Fibre Science</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>41.</td>
<td>OTT355</td>
<td>Garment Manufacturing Technology</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>42.</td>
<td>OPE353</td>
<td>Industrial safety</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>43.</td>
<td>OPE354</td>
<td>Unit Operations in Petro Chemical Industries</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>44.</td>
<td>OPT352</td>
<td>Plastic Materials for Engineers</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>45.</td>
<td>OPT353</td>
<td>Properties and Testing of Plastics</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>46.</td>
<td>OEC353</td>
<td>VLSI Design</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>47.</td>
<td>CBM370</td>
<td>Wearable Devices</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>48.</td>
<td>CBM356</td>
<td>Medical Informatics</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>49.</td>
<td>OCE354</td>
<td>Basics of Integrated Water</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S.No</td>
<td>Subject Area</td>
<td>Credits per Semester</td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
</tr>
<tr>
<td>1</td>
<td>HSMC</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BSC</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ESC</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCC</td>
<td>5</td>
<td>16</td>
<td>18</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>PEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>OEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>EEC</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Non-Credit /(Mandatory)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY

Name of the Programme: B.Tech. Computer Science and Business Systems

<table>
<thead>
<tr>
<th>S.No</th>
<th>Subject Area</th>
<th>Credits per Semester</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1</td>
<td>HSMC</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>BSC</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>ESC</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>PCC</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>PEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>OEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EEC</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Non-Credit /(Mandatory)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>26</td>
</tr>
</tbody>
</table>

ENROLLMENT FOR B.E. / B. TECH. (HONOURS) / MINOR DEGREE (OPTIONAL)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E. / B. Tech. (Honours) or Minor Degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes. Moreover, for minor degree the student can register for courses from any one of the following verticals also.

Complete details are available in clause 4.10 (Amendments) of Regulations 2021.
VERTICALS FOR MINOR DEGREE
(In addition to all the verticals of other programmes)

<table>
<thead>
<tr>
<th>Vertical I</th>
<th>Vertical II</th>
<th>Vertical III</th>
<th>Vertical IV</th>
<th>Vertical V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fintech and Block Chain</td>
<td>Foundations of Entrepreneurship</td>
<td>Principles of Public Administration</td>
<td>Statistics for Management</td>
<td>Sustainable Infrastructure Development</td>
</tr>
<tr>
<td>Fundamentals of Investment</td>
<td>Team Building & Leadership Management for Business</td>
<td>Constitution of India</td>
<td>Datamining for Business Intelligence</td>
<td>Sustainable Agriculture and Environmental Management</td>
</tr>
<tr>
<td>Banking, Financial Services and Insurance</td>
<td>Creativity & Innovation in Entrepreneurship</td>
<td>Public Personnel Administration</td>
<td>Human Resource Analytics</td>
<td>Sustainable Bio Materials</td>
</tr>
<tr>
<td>Introduction to Blockchain and its Applications</td>
<td>Principles of Marketing Management for Business</td>
<td>Administrative Theories</td>
<td>Marketing and Social Media Web Analytics</td>
<td>Materials for Energy Sustainability</td>
</tr>
<tr>
<td>Fintech Personal Finance and Payments</td>
<td>Human Resource Management for Entrepreneurs</td>
<td>Indian Administrative System</td>
<td>Operation and Supply Chain Analytics</td>
<td>Green Technology</td>
</tr>
<tr>
<td>Introduction to Fintech</td>
<td>Financing New Business Ventures</td>
<td>Public Policy Administration</td>
<td>Financial Analytics</td>
<td>Environmental Quality Monitoring and Analysis</td>
</tr>
</tbody>
</table>

- Integrated Energy Planning for Sustainable Development
- Energy Efficiency for Sustainable Development
(choice of courses for Minor degree is to be made from any one vertical of other programmes or from anyone of the following verticals)

VERTICAL 1: FINTECH AND BLOCK CHAIN

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CMG331</td>
<td>Financial Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CMG332</td>
<td>Fundamentals of Investment</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CMG333</td>
<td>Banking, Financial Services and Insurance</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CMG334</td>
<td>Introduction to Blockchain and its Applications</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CMG335</td>
<td>Fintech Personal Finance and Payments</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CMG336</td>
<td>Introduction to Fintech</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 2: ENTREPRENEURSHIP

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CMG337</td>
<td>Foundations of Entrepreneurship</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CMG338</td>
<td>Team Building & Leadership Management for Business</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CMG339</td>
<td>Creativity & Innovation in Entrepreneurship</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CMG340</td>
<td>Principles of Marketing Management for Business</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CMG341</td>
<td>Human Resource Management for Entrepreneurs</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CMG342</td>
<td>Financing New Business Ventures</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 3: PUBLIC ADMINISTRATION

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CMG343</td>
<td>Principles of Public Administration</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CMG344</td>
<td>Constitution of India</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CMG345</td>
<td>Public Personnel Administration</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CMG346</td>
<td>Administrative Theories</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CMG347</td>
<td>Indian Administrative System</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CMG348</td>
<td>Public Policy Administration</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
VERTICAL 4: BUSINESS DATA ANALYTICS

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CMG349</td>
<td>Statistics for Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CMG350</td>
<td>Datamining for Business Intelligence</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CMG351</td>
<td>Human Resource Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CMG352</td>
<td>Marketing and Social Media Web Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CMG353</td>
<td>Operation and Supply Chain Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CMG354</td>
<td>Financial Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 5: ENVIRONMENT AND SUSTAINABILITY

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CES331</td>
<td>Sustainable Infrastructure Development</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CES332</td>
<td>Sustainable Agriculture and Environmental Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CES333</td>
<td>Sustainable Bio Materials</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CES334</td>
<td>Materials for Energy Sustainability</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CES335</td>
<td>Green Technology</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CES336</td>
<td>Environmental Quality Monitoring and Analysis</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CES337</td>
<td>Integrated Energy Planning for Sustainable Development</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CES338</td>
<td>Energy Efficiency for Sustainable Development</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
INDUCTION PROGRAMME

This is a mandatory 2 week programme to be conducted as soon as the students enter the institution. Normal classes start only after the induction program is over.

The induction programme has been introduced by AICTE with the following objective:

“Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have a broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed.”

“One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character."

Hence, the purpose of this programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

(i) Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.

(ii) Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it everyday for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, grow into engineering design later.

(iii) Universal Human Values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, make decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and don'ts, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing. Discussions would be conducted in small groups of about 20 students with a faculty
mentor each. It would be effective that the faculty mentor assigned is also the faculty advisor for the student for the full duration of the UG programme.

(iv) Literary Activity

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

(v) Proficiency Modules

This would address some lacunas that students might have, for example, English, computer familiarity etc.

(vi) Lectures by Eminent People

Motivational lectures by eminent people from all walks of life should be arranged to give the students exposure to people who are socially active or in public life.

(vii) Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the underprivileged.

(viii) Familiarization to Dept./Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

(ix) Department Specific Activities

About a week can be spent in introducing activities (games, quizzes, social interactions, small experiments, design thinking etc.) that are relevant to the particular branch of Engineering / Technology / Architecture that can serve as a motivation and kindle interest in building things (become a maker) in that particular field. This can be conducted in the form of a workshop. For example, CSE and IT students may be introduced to activities that kindle computational thinking, and get them to build simple games. ECE students may be introduced to building simple circuits as an extension of their knowledge in Science, and so on. Students may be asked to build stuff using their knowledge of science.

Induction Programme is totally an activity based programme and therefore there shall be no tests / assessments during this programme.

References:
Guide to Induction program from AICTE
COURSE OBJECTIVES:

- To improve the communicative competence of learners
- To learn to use basic grammatic structures in suitable contexts
- To acquire lexical competence and use them appropriately in a sentence and understand their meaning in a text
- To help learners use language effectively in professional contexts
- To develop learners’ ability to read and write complex texts, summaries, articles, blogs, definitions, essays and user manuals.

UNIT I INTRODUCTION TO EFFECTIVE COMMUNICATION

What is effective communication? (Explain using activities) Why is communication critical for excellence during study, research and work? What are the seven C’s of effective communication? What are key language skills? What is effective listening? What does it involve? What is effective speaking? What does it mean to be an excellent reader? What should you be able to do? What is effective writing? How does one develop language and communication skills? What does the course focus on? How are communication and language skills going to be enhanced during this course? What do you as a learner need to do to enhance your English language and communication skills to get the best out of this course?

INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION

Reading - Reading brochures (technical context), telephone messages / social media messages relevant to technical contexts and emails. Writing - Writing emails / letters introducing oneself. Grammar - Present Tense (simple and progressive); Question types: Wh/ Yes or No/ and Tags. Vocabulary - Synonyms; One word substitution; Abbreviations & Acronyms (as used in technical contexts).

UNIT II NARRATION AND SUMMATION

Reading - Reading biographies, travelogues, newspaper reports, Excerpts from literature, and travel & technical blogs. Writing - Guided writing -- Paragraph writing Short Report on an event (field trip etc.) Grammar –Past tense (simple); Subject-Verb Agreement; and Prepositions. Vocabulary - Word forms (prefixes& suffixes); Synonyms and Antonyms. Phrasal verbs.

UNIT III DESCRIPTION OF A PROCESS / PRODUCT

Reading – Reading advertisements, gadget reviews; user manuals. Writing - Writing definitions; instructions; and Product /Process description. Grammar - Imperatives; Adjectives; Degrees of comparison; Present & Past Perfect Tenses. Vocabulary - Compound Nouns, Homonyms; and Homophones, discourse markers (connectives & sequence words).

UNIT IV CLASSIFICATION AND RECOMMENDATIONS

Reading – Newspaper articles; Journal reports –and Non Verbal Communication (tables, pie charts etc.,). Writing – Note-making / Note-taking (*Study skills to be taught, not tested); Writing recommendations; Transferring information from non verbal (chart, graph etc, to verbal mode) Grammar – Articles; Pronouns - Possessive & Relative pronouns. Vocabulary - Collocations; Fixed / Semi fixed expressions.
UNIT V

EXPRESSION

Reading – Reading editorials; and Opinion Blogs; Writing – Essay Writing (Descriptive or narrative). Grammar – Future Tenses, Punctuation; Negation (Statements & Questions); and Simple, Compound & Complex Sentences. Vocabulary - Cause & Effect Expressions – Content vs Function words.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
At the end of the course, learners will be able
CO1: To use appropriate words in a professional context
CO2: To gain understanding of basic grammatical structures and use them in right context.
CO3: To read and infer the denotative and connotative meanings of technical texts
CO4: To write definitions, descriptions, narrations and essays on various topics

TEXT BOOKS:
1. English for Engineers & Technologists Orient Blackswan Private Ltd. Department of English, Anna University, (2020 edition)
2. English for Science & Technology Cambridge University Press, 2021. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

REFERENCES:

ASSESSMENT PATTERN
Two internal assessments and an end semester examination to test students’ reading and writing skills along with their grammatical and lexical competence.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Av.</td>
<td>1.6</td>
<td>2.2</td>
<td>1.8</td>
<td>2.2</td>
<td>1.5</td>
<td>3</td>
<td>3</td>
<td>1.6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:

- To develop the use of matrix algebra techniques that are needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

UNIT I MATRICES

UNIT II DIFFERENTIAL CALCULUS

UNIT III FUNCTIONS OF SEVERAL VARIABLES

UNIT IV INTEGRAL CALCULUS

Definite and Indefinite integrals - Substitution rule - Techniques of Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals - Applications: Hydrostatic force and pressure, moments and centres of mass.

UNIT V MULTIPLE INTEGRALS

COURSE OUTCOMES:

At the end of the course the students will be able to

CO1: Use the matrix algebra methods for solving practical problems.
CO2: Apply differential calculus tools in solving various application problems.
CO3: Able to use differential calculus ideas on several variable functions.
CO4: Apply different methods of integration in solving practical problems.
CO5: Apply multiple integral ideas in solving areas, volumes and other practical problems.

TOTAL: 60 PERIODS
TEXT BOOKS:
3. James Stewart, " Calculus : Early Transcendentals ", Cengage Learning, 8th Edition, New Delhi, 2015. [For Units II & IV - Sections 1.1, 2.2, 2.3, 2.5, 2.7 (Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1 (Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

PH3151 ENGINEERING PHYSICS L T P C
3 0 0 3

COURSE OBJECTIVES:
- To make the students effectively achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of oscillations, optics and lasers.
- Equipping the students to successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS
Multi-particle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of the system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and moment of inertia - theorems of M .I –moment of inertia of continuous bodies –

UNIT II ELECTROMAGNETIC WAVES
The Maxwell's equations - wave equation; Plane electromagnetic waves in vacuum, Conditions on the wave field - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - polarization - Producing electromagnetic waves - Energy and momentum in EM waves: Intensity, waves from localized sources, momentum and radiation pressure - Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

UNIT III OSCILLATIONS, OPTICS AND LASERS

UNIT IV BASIC QUANTUM MECHANICS
Photons and light waves - Electrons and matter waves –Compton effect - The Schrödinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization –Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

UNIT V APPLIED QUANTUM MECHANICS
The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch’s theorem for particles in a periodic potential –Basics of Kronig-Penney model and origin of energy bands.

TOTAL : 45 PERIODS
COURSE OUTCOMES:
After completion of this course, the students should be able to

CO1: Understand the importance of mechanics.
CO2: Express their knowledge in electromagnetic waves.
CO3: Demonstrate a strong foundational knowledge in oscillations, optics and lasers.
CO4: Understand the importance of quantum physics.
CO5: Comprehend and apply quantum mechanical principles towards the formation of energy bands.

TEXT BOOKS:
2. E.M.Purcell and D.J.Morin, Electricity and Magnetism, Cambridge Univ.Press, 2013.
REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>AV</td>
<td>3</td>
<td>3</td>
<td>1.6</td>
<td>1.2</td>
<td>1.8</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CO3151 ENGINEERING CHEMISTRY

COURSE OBJECTIVES:
- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage devices.

UNIT I WATER AND ITS TREATMENT

UNIT II NANO CHEMISTRY

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials: Definition, properties and uses of – nanoparticle, nanocluster, nanorod, nanowire and nanotube. Preparation of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine,
agriculture, energy, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES 9
Phase rule: Introduction, definition of terms with examples. One component system - water system; Reduced phase rule; Construction of a simple eutectic phase diagram - Thermal analysis; Two component system: lead-silver system - Pattinson process.
Composites: Introduction: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix composites and Polymer matrix composites. Hybrid composites - definition and examples.

UNIT IV FUELS AND COMBUSTION 9

UNIT V ENERGY SOURCES AND STORAGE DEVICES 9
Stability of nucleus: mass defect (problems), binding energy; Nuclear energy: light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery - dry cell, Secondary battery - lead acid battery and lithium-ion-battery; Electric vehicles - working principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell; Supercapacitors: Storage principle, types and examples.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course, the students will be able:
CO1: To infer the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
CO2: To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
CO3: To apply the knowledge of phase rule and composites for material selection requirements.
CO4: To recommend suitable fuels for engineering processes and applications.
CO5: To recognize different forms of energy resources and apply them for suitable applications in energy sectors.

TEXT BOOKS:
REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO</td>
<td>2.8</td>
<td>1.3</td>
<td>1.6</td>
<td>1</td>
<td>-</td>
<td>1.5</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

GE3151 PROBLEM SOLVING AND PYTHON PROGRAMMING

L T P C
3 0 0 3

COURSE OBJECTIVES:
- To understand the basics of algorithmic problem solving.
- To learn to solve problems using Python conditionals and loops.
- To define Python functions and use function calls to solve problems.
- To use Python data structures - lists, tuples, dictionaries to represent complex data.
- To do input/output with files in Python.

UNIT I COMPUTATIONAL THINKING AND PROBLEM SOLVING

UNIT II DATA TYPES, EXPRESSIONS, STATEMENTS
Python interpreter and interactive mode, debugging; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.
UNIT III CONTROL FLOW, FUNCTIONS, STRINGS 9
Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitable functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES 9
Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: simple sorting, histogram, Students marks statement, Retail bill preparation.

UNIT V FILES, MODULES, PACKAGES 9
Files and exceptions: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file, Voter’s age validation, Marks range validation (0-100).

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, students will be able to

CO1: Develop algorithmic solutions to simple computational problems.
CO2: Develop and execute simple Python programs.
CO3: Write simple Python programs using conditionals and loops for solving problems.
CO4: Decompose a Python program into functions.
CO5: Represent compound data using Python lists, tuples, dictionaries etc.
CO6: Read and write data from/to files in Python programs.

TEXT BOOKS:

REFERENCES:
5. https://www.python.org/
GE3152

UNIT I

LANGUAGE AND LITERATURE

UNIT II

HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE

UNIT III

FOLK AND MARTIAL ARTS

Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV

THINAI CONCEPT OF TAMILS

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT V

CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

TOTAL : 15 PERIODS

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '*' - no correlation
TEXT-CUM-REFERENCE BOOKS

1. குமரிமுளனயில் தசய்யும் மற்றும் நடுகல் பொரதியொர் (தமிழில்: குமரிமுளனயில் பார்த்து பயின்று பொரதியொர் குழுவில் குழுவில்).

2. தமிழில் கும்பு - மரபூர் தமிழ் (தமிழில்: புதுவை).

3. சிற்பு - தமிழக சிற்பக்கருணை தற்காலத்துக்கான தருணத்தருணாம (ஒலியுடைய ததொல்லியல்)

4. பொருளநூறு - அரேபியக் காலத்தில். (தமிழில்: தமிழில்)

5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)

6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies).

7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).

8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)

9. Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)

11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)

GE3152 தமிழ் மொழி

L T P C

1 0 0 1

அமைப்பு I

சமண முழுக்க குறிப்பிட்டு: 3

தினத்து பார்த்து கிளைப்பருக்கியான் - திருவண்டை பொருளாதார - தமிழ் துணைக்குடும்பான் - தமிழ் துணைக்குடும்பான் - சிற்பை விளையாட்டக் கல்வி மறைவுக்குடும்பான் - சிற்பை விளையாட்டக் கல்வி மறைவுக்குடும்பான் - குண்டு கற்று விளையாட்டக் கல்வி மறைவுக்குடும்பான் - குண்டு கற்று விளையாட்டக் கல்வி மறைவுக்குடும்பான் - பாதுகாப்பு மறைவுக்குடும்பான் - தகவு த்தொடரியார் தொகுதி - தமிழ் துணைக்குடும்பான் பாதுகாப்பு மறைவுக்குடும்பான் தகவு த்தொடரியார் தொகுதி.

அமைப்பு II

மொழி - பார்த்து சிற்பக்கருணை முழுக்க சிற்பக்கருணை வகை -

சிற்பங்கள்: 3

தமிழ் மொழி, தமிழ் சிற்பங்கள் வகை - புராணங்கள் சிற்பங்கள் - பார்த்து சிற்பங்கள் முழுக்க அரியான தொகுதியான தொகுதியான பார்த்து முழுக்க அரியான தொகுதியான எழுத்து சிற்பங்கள் - குரு சிற்பக் கலந்து - குரு சிற்பக்

25
கோவில்களின் பங்கு.

அலகு III தொப்பற்றுக்காக வரும் விளைவாய்வுகள்: 3
தொகைகுடி, இராசப்படுத்து, கல்லூரிகள் குறிப்பிட்டு, தமிழப்படுத்து, கல்லூரிகள் குறிப்பிட்டு, விளையாடப்பட்ட நூற்றாண்டுகள், விளையாடப்பட்ட நூற்றாண்டுகள், தமிழகத்தின் விளையாடப்பட்ட நூற்றாண்டுகள்.

அலகு IV கல்லூரிகளுக்கு விளையாடப்பட்ட செயற்பாடுகள்: 3
கல்லூரிகள் வாழ்வுகூறு, விளையாடப்பட்ட – தொகைகுடி நூற்றாண்டுகள் குறிப்பிட்டு, கல்லூரிகள் வாழ்வுகூறு, தமிழகத்தின் விளையாடப்பட்ட நூற்றாண்டுகள், தமிழகத்தின் விளையாடப்பட்ட நூற்றாண்டுகள், தமிழகத்தின் விளையாடப்பட்ட நூற்றாண்டுகள், தமிழகத்தின் விளையாடப்பட்ட நூற்றாண்டுகள்.

அலகு V தமிழக எழுத்தறிவு, கல்வியும் சங்க இலக்கியத்தின் அகம் மற்றும் புறக் கொட்பொடுகள் – சங்ககொலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் – சங்ககொலத்தில் எழுத்தறிவும், கல்வியும், சங்ககொலநகரங்களும் துளற்முகங்களும் – சங்ககொலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல்கடந்த நொடுகளில் கசொழர் கபொற்றிய அறக்ககொட்பொடு – சங்ககொலத்தில் எழுத்தறிவும், கல்வியும் – சங்ககொலத்தில் எழுத்தறிவும், கல்வியும், சங்ககொலநகரங்களும் துளற்முகங்களும் – சங்ககொலத்தில் ஏற்றுமதியும், இறக்குமதியும், கடல்கடந்த நொடுகளில் கசொழர் கபொற்றிய அறக்ககொட்பொடு.

TOTAL : 15 PERIODS

TEXT-CUM-REFERENCE BOOKS
1. தமிழ் வரலை – இன்று மற்றும் பண்டையமும் – தமிழ் பிரிவு(பொருளைப் பொருளியலம் மற்றும் இயற்கைப் பொருளியலம் குறிப்பிட்டு).
2. கல்லூரிகள் தொருகை – மக்களும் பண்டையமும். (கல்லூரியியல்).
3. கல்வி – கல்லூரியியலியை விளையாடிய கேள்விகள் (கல்லூரிகள் தொருகை இயற்கைப் பொருளியல்).
4. பொருளியல் – கல்லூரிகளின் பொருளியல் (கல்லூரிகள் தொருகை இயற்கைப் பொருளியல்).
5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
9. Keeladi - ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

GE3171 PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY L T P C 0 0 4 2

COURSE OBJECTIVES:

- To understand the problem solving approaches.
- To learn the basic programming constructs in Python.
- To practice various computing strategies for Python-based solutions to real world problems.
- To use Python data structures - lists, tuples, dictionaries.
- To do input/output with files in Python.

EXPERIMENTS:

Note: The examples suggested in each experiment are only indicative. The lab instructor is expected to design other problems on similar lines. The Examination shall not be restricted to the sample experiments listed here.

1. Identification and solving of simple real life or scientific or technical problems, and developing flow charts for the same. (Electricity Billing, Retail shop billing, Sin series, weight of a motorbike, Weight of a steel bar, compute Electrical Current in Three Phase AC Circuit, etc.)

2. Python programming using simple statements and expressions (exchange the values of two variables, circulate the values of n variables, distance between two points).

3. Scientific problems using Conditionals and Iterative loops. (Number series, Number Patterns, pyramid pattern)

4. Implementing real-time/technical applications using Lists, Tuples. (Items present in a library/Components of a car/ Materials required for construction of a building –operations of list & tuples)

5. Implementing real-time/technical applications using Sets, Dictionaries. (Language, components of an automobile, Elements of a civil structure, etc.- operations of Sets & Dictionaries)

6. Implementing programs using Functions. (Factorial, largest number in a list, area of shape)

7. Implementing programs using Strings. (reverse, palindrome, character count, replacing characters)

9. Implementing real-time/technical applications using File handling. (copy from one file to another, word count, longest word)

10. Implementing real-time/technical applications using Exception handling. (divide by zero error, voter’s age validity, student mark range validation)

12. Developing a game activity using Pygame like bouncing ball, car race etc.

COURSE OUTCOMES:

On completion of the course, students will be able to:

CO1: Develop algorithmic solutions to simple computational problems

TOTAL: 60 PERIODS
CO2: Develop and execute simple Python programs.
CO3: Implement programs in Python using conditionals and loops for solving problems.
CO4: Deploy functions to decompose a Python program.
CO5: Process compound data using Python data structures.
CO6: Utilize Python packages in developing software applications.

TEXT BOOKS:

REFERENCES:
5. https://www.python.org/

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

BS3171 PHYSICS AND CHEMISTRY LABORATORY L T P C 0 0 4 2

PHYSICS LABORATORY : (Any Seven Experiments)

COURSE OBJECTIVES:
- To learn the proper use of various kinds of physics laboratory equipment.
- To learn how data can be collected, presented and interpreted in a clear and concise manner.
- To learn problem solving skills related to physics principles and interpretation of experimental data.
• To determine error in experimental measurements and techniques used to minimize such error.
• To make the student an active participant in each part of all lab exercises.

1. Torsional pendulum - Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects.
2. Simple harmonic oscillations of cantilever.
3. Non-uniform bending - Determination of Young’s modulus
4. Uniform bending – Determination of Young’s modulus
5. Laser- Determination of the wavelength of the laser using grating
6. Air wedge - Determination of thickness of a thin sheet/wire
7. a) Optical fibre - Determination of Numerical Aperture and acceptance angle
 b) Compact disc- Determination of width of the groove using laser.
8. Acoustic grating- Determination of velocity of ultrasonic waves in liquids.
9. Ultrasonic interferometer – determination of the velocity of sound and compressibility of liquids
11. Photoelectric effect
12. Michelson Interferometer.
13. Melde’s string experiment
14. Experiment with lattice dynamics kit.

TOTAL: 30 PERIODS

COURSE OUTCOMES:
Upon completion of the course, the students should be able to

CO1: Understand the functioning of various physics laboratory equipment.

CO2: Use graphical models to analyze laboratory data.

CO3: Use mathematical models as a medium for quantitative reasoning and describing physical reality.

CO4: Access, process and analyze scientific information.

CO5: Solve problems individually and collaboratively.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>AVG</td>
<td>3.25</td>
<td>2.6</td>
<td>2.4</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

COURSE OBJECTIVES:

• To inculcate experimental skills to test basic understanding of water quality parameters, such as, acidity, alkalinity, hardness, DO, chloride and copper.
• To induce the students to familiarize with electroanalytical techniques such as, pH metry, potentiometry and conductometry in the determination of impurities in aqueous solutions.
• To demonstrate the analysis of metals and alloys.
To demonstrate the synthesis of nanoparticles

1. Preparation of Na₂CO₃ as a primary standard and estimation of acidity of a water sample using the primary standard
2. Determination of types and amount of alkalinity in a water sample.
3. Determination of total, temporary & permanent hardness of water by EDTA method.
4. Determination of DO content of water sample by Winkler’s method.
5. Determination of chloride content of water sample by Argentometric method.
6. Estimation of copper content of the given solution by Iodometry.
7. Estimation of TDS of a water sample by gravimetry.
8. Determination of strength of given hydrochloric acid using pH meter.
9. Determination of strength of acids in a mixture of acids using conductivity meter.
10. Conductometric titration of barium chloride against sodium sulphate (precipitation titration)
11. Estimation of iron content of the given solution using potentiometer.
12. Estimation of sodium/potassium present in water using a flame photometer.
13. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method.
14. Estimation of Nickel in steel
15. Proximate analysis of Coal

TOTAL : 30 PERIODS

COURSE OUTCOMES:
CO1: To analyse the quality of water samples with respect to their acidity, alkalinity, hardness and DO.
CO2: To determine the amount of metal ions through volumetric and spectroscopic techniques
CO3: To analyse and determine the composition of alloys.
CO4: To learn simple method of synthesis of nanoparticles
CO5: To quantitatively analyse the impurities in solution by electroanalytical techniques

TEXT BOOKS:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.6</td>
<td>1.3</td>
<td>1.6</td>
<td>1</td>
<td>1.4</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

GE3172 ENGLISH LABORATORY

COURSE OBJECTIVES:
- To improve the communicative competence of learners
- To help learners use language effectively in academic/work contexts
• To develop various listening strategies to comprehend various types of audio materials like lectures, discussions, videos etc.
• To build on students' English language skills by engaging them in listening, speaking and grammar learning activities that are relevant to authentic contexts.
• To use language efficiently in expressing their opinions via various media.

UNIT I INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION 6
Listening for general information-specific details- conversation: Introduction to classmates - Audio/video (formal & informal); Telephone conversation; Listening to voicemail & messages; Listening and filling a form. Speaking - making telephone calls-Self Introduction; Introducing a friend; - politeness strategies- making polite requests, making polite offers, replying to polite requests and offers- understanding basic instructions(filling out a bank application for example).

UNIT II NARRATION AND SUMMATION 6
Listening - Listening to podcasts, anecdotes / stories / event narration; documentaries and interviews with celebrities. Speaking - Narrating personal experiences / events-Talking about current and temporary situations & permanent and regular situations* - describing experiences and feelings- engaging in small talk- describing requirements and abilities.

UNIT III DESCRIPTION OF A PROCESS / PRODUCT 6
Listening - Listen to product and process descriptions; a classroom lecture; and advertisements about products. Speaking – Picture description- describing locations in workplaces- Giving instruction to use the product- explaining uses and purposes- Presenting a product- describing shapes and sizes and weights- talking about quantities(large & small)-talking about precautions.

UNIT IV CLASSIFICATION AND RECOMMENDATIONS 6
Listening – Listening to TED Talks; Listening to lectures - and educational videos. Speaking – Small Talk; discussing and making plans-talking about tasks-talking about progress- talking about positions and directions of movement-talking about travel preparations- talking about transportation-

UNIT V EXPRESSION 6
Listening – Listening to debates/ discussions; different viewpoints on an issue; and panel discussions. Speaking –making predictions- talking about a given topic-giving opinions-understanding a website-describing processes

TOTAL : 30 PERIODS

COURSE OUTCOMES:
At the end of the course, learners will be able
CO1: To listen to and comprehend general as well as complex academic information
CO2: To listen to and understand different points of view in a discussion
CO3: To speak fluently and accurately in formal and informal communicative contexts
CO4: To describe products and processes and explain their uses and purposes clearly and accurately
CO5: To express their opinions effectively in both formal and informal discussions
CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high, "-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

ASSESSMENT PATTERN
- One online / app based assessment to test listening /speaking
- End Semester ONLY listening and speaking will be conducted online.
- Proficiency certification is given on successful completion of listening and speaking internal test and end semester exam.

HS3252 PROFESSIONAL ENGLISH -II
L T P C 2 0 0 2

COURSE OBJECTIVES :
- To engage learners in meaningful language activities to improve their reading and writing skills
- To learn various reading strategies and apply in comprehending documents in professional context.
- To help learners understand the purpose, audience, contexts of different types of writing
- To develop analytical thinking skills for problem solving in communicative contexts
- To demonstrate an understanding of job applications and interviews for internship and placements

UNIT I MAKING COMPARISONS 6
Reading - Reading advertisements, user manuals, brochures; Writing – Professional emails, Email etiquette - Compare and Contrast Essay; Grammar – Mixed Tenses, Prepositional phrases

UNIT II EXPRESSING CAUSAL RELATIONS IN SPEAKING AND WRITING 6
Reading - Reading longer technical texts– Cause and Effect Essays, and Letters / emails of complaint, Writing - Writing responses to complaints. Grammar - Active Passive Voice transformations, Infinitive and Gerunds

UNIT III PROBLEM SOLVING 6
Reading - Case Studies, excerpts from literary texts, news reports etc. Writing – Letter to the Editor, Checklists, Problem solution essay / Argumentative Essay. Grammar – Error correction; If conditional sentences

32
UNIT IV REPORTING OF EVENTS AND RESEARCH 6

UNIT V THE ABILITY TO PUT IDEAS OR INFORMATION COGENTLY 6
Reading – Company profiles, Statement of Purpose, (SOP), an excerpt of interview with professionals; Writing – Job / Internship application – Cover letter & Resume; Grammar – Numerical adjectives, Relative Clauses.

TOTAL : 30 PERIODS

COURSE OUTCOMES:
At the end of the course, learners will be able
CO1: To compare and contrast products and ideas in technical texts.
CO2: To identify and report cause and effects in events, industrial processes through technical texts
CO3: To analyse problems in order to arrive at feasible solutions and communicate them in the written format.
CO4: To present their ideas and opinions in a planned and logical manner
CO5: To draft effective resumes in the context of job search.

TEXT BOOKS :
3. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

REFERENCE BOOKS:

ASSESSMENT PATTERN
Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.75</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

33
1-low, 2-medium, 3-high, ‘-‘- no correlation

Note: The average value of this course to be used for program articulation matrix.

MA3251 STATISTICS AND NUMERICAL METHODS

COURSE OBJECTIVES:
- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT I TESTING OF HYPOTHESIS
Sampling distributions - Tests for single mean, proportion and difference of means (Large and small samples) – Tests for single variance and equality of variances – Chi square test for goodness of fit – Independence of attributes.

UNIT II DESIGN OF EXPERIMENTS
One way and two way classifications - Completely randomized design – Randomized block design – Latin square design - 2² factorial design.

UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION
Lagrange’s and Newton’s divided difference interpolations – Newton’s forward and backward difference interpolation – Approximation of derivates using interpolation polynomials – Numerical single and double integrations using Trapezoidal and Simpson’s 1/3 rules.

UNIT V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

TOTAL: 60 PERIODS
COURSE OUTCOMES:
Upon successful completion of the course, students will be able to:
CO1: Apply the concept of testing of hypothesis for small and large samples in real life problems.
CO2: Apply the basic concepts of classifications of design of experiments in the field of agriculture.
CO3: Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.
CO4: Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
CO5: Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

PH3256 PHYSICS FOR INFORMATION SCIENCE L T P C
3 0 0 3

COURSE OBJECTIVES:
- To make the students understand the importance in studying electrical properties of materials.
- To enable the students to gain knowledge in semiconductor physics
- To instill knowledge on magnetic properties of materials.
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications.
To inculcate an idea of significance of nano structures, quantum confinement, ensuing nano device applications and quantum computing.

UNIT I ELECTRICAL PROPERTIES OF MATERIALS 9

UNIT II SEMICONDUCTOR PHYSICS 9

UNIT III MAGNETIC PROPERTIES OF MATERIALS 9

UNIT IV OPTICAL PROPERTIES OF MATERIALS 9
Classification of optical materials – carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode – solar cell - LED – Organic LED – Laser diodes – Optical data storage techniques.

UNIT V NANODEVICES AND QUANTUM COMPUTING 9

TOTAL :45 PERIODS

COURSE OUTCOMES:
At the end of the course, the students should be able to
CO1: gain knowledge on classical and quantum electron theories, and energy band structures
CO2: acquire knowledge on basics of semiconductor physics and its applications in various devices
CO3: get knowledge on magnetic properties of materials and their applications in data storage,
CO4: have the necessary understanding on the functioning of optical materials for optoelectronics
CO5: understand the basics of quantum structures and their applications and basics of quantum computing

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1-Low, 2-Medium, 3-High, "-"-no correlation

Note: the average value of this course to be used for program articulation matrix.

BE3251 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE OBJECTIVES:

- To introduce the basics of electric circuits and analysis
- To impart knowledge in the basics of working principles and application of electrical machines
- To introduce analog devices and their characteristics
- To educate on the fundamental concepts of digital electronics
- To introduce the functional elements and working of measuring instruments

UNIT I ELECTRICAL CIRCUITS

DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor – Ohm’s Law - Kirchhoff’s Laws –Independent and Dependent Sources – Simple problems- Nodal Analysis, Mesh analysis with Independent sources only (Steady state)
Introduction to AC Circuits and Parameters: Waveforms, Average value, RMS Value, Instantaneous power, real power, reactive power and apparent power, power factor – Steady state analysis of RLC circuits (Simple problems only)

UNIT II ELECTRICAL MACHINES

UNIT III ANALOG ELECTRONICS

UNIT IV DIGITAL ELECTRONICS
Review of number systems, binary codes, error detection and correction codes, Combinational logic - representation of logic functions-SOP and POS forms, K-map representations - minimization using K maps (Simple Problems only).

UNIT V MEASUREMENTS AND INSTRUMENTATION
Functional elements of an instrument, Standards and calibration, Operating Principle, types - Moving Coil and Moving Iron meters, Measurement of three phase power, Energy Meter, Instrument Transformers-CT and PT, DSO- Block diagram- Data acquisition. TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completing this course, the students will be able to
CO1: Compute the electric circuit parameters for simple problems
CO2: Explain the working principle and applications of electrical machines
CO3: Analyze the characteristics of analog electronic devices
CO4: Explain the basic concepts of digital electronics
CO5: Explain the operating principles of measuring instruments

TEXT BOOKS:

REFERENCES:
CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO</td>
<td>2</td>
<td>1.8</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

GE3251 ENGINEERING GRAPHICS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
- Drawing engineering curves.
- Drawing a freehand sketch of simple objects.
- Drawing orthographic projection of solids and section of solids.
- Drawing development of solids.
- Drawing isometric and perspective projections of simple solids.

CONCEPTS AND CONVENTIONS (Not for Examination)
Importance of graphics in engineering applications — Use of drafting instruments — BIS conventions and specifications — Size, layout and folding of drawing sheets — Lettering and dimensioning.

UNIT I PLANE CURVES
Basic Geometrical constructions, Curves used in engineering practices: Conics — Construction of ellipse, parabola and hyperbola by eccentricity method — Construction of cycloid — construction of involutes of square and circle — Drawing of tangents and normal to the above curves.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE
Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS AND FREEHAND SKETCHING
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles — Representation of
Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects.
Practicing three dimensional modeling of simple objects by CAD Software (Not for examination)

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 6+12
Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the principal planes and perpendicular to the other — obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids — Prisms, pyramids cylinders and cones.
Practicing three dimensional modeling of simple objects by CAD Software (Not for examination)

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6+12
Principles of isometric projection — isometric scale — isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids - Prisms, pyramids and cylinders by visual ray method.
Practicing three dimensional modeling of isometric projection of simple objects by CAD Software (Not for examination)

TOTAL: (L=30+P=60) 90 PERIODS

COURSE OUTCOMES:
On successful completion of this course, the student will be able to
CO1: Use BIS conventions and specifications for engineering drawing.
CO2: Construct the conic curves, involutes and cycloid.
CO3: Solve practical problems involving projection of lines.
CO4: Draw the orthographic, isometric and perspective projections of simple solids.
CO5: Draw the development of simple solids.

TEXT BOOK:

REFERENCES:
Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit a solution within A3 size.
4. The examination will be conducted in appropriate sessions on the same day.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

AD3251 DATA STRUCTURES DESIGN L T P C 3 0 0 3

COURSE OBJECTIVES:
- To understand the concepts of ADTs
- To design linear data structures – lists, stacks, and queues
- To understand sorting, searching and hashing algorithms
- To apply Tree and Graph structures

UNIT I ABSTRACT DATA TYPES 9
Abstract Data Types (ADTs) – ADTs and classes – introduction to OOP – classes in Python – inheritance – namespaces – shallow and deep copying
Introduction to analysis of algorithms – asymptotic notations – recursion – analyzing recursive algorithms

UNIT II LINEAR STRUCTURES 9

UNIT III SORTING AND SEARCHING 9
UNIT IV TREE STRUCTURES 9

UNIT V GRAPH STRUCTURES 9
Graph ADT – representations of graph – graph traversals – DAG – topological ordering – shortest paths – minimum spanning trees

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course, the student should be able to:

CO1: explain abstract data types
CO2: design, implement, and analyse linear data structures, such as lists, queues, and stacks, according to the needs of different applications
CO3: design, implement, and analyse efficient tree structures to meet requirements such as searching, indexing, and sorting
CO4: model problems as graph problems and implement efficient graph algorithms to solve them

TEXT BOOKS:

REFERENCES:

GE3252 TAMILS AND TECHNOLOGY L T P C
UNIT I WEAVING AND CERAMIC TECHNOLOGY 1001
Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY 3
Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and
other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)-Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III MANUFACTURING TECHNOLOGY 3

UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY 3
Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society.

UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING 3

TOTAL : 15 PERIODS

TEXT-CUM-REFERENCE BOOKS
2. கால்வர்சிச் தமிழ் – வில்லையில் தேம் கால்வர்சிச் (தமிழில்: கால்வர்சிச் தமிழ் – வில்லையில் தேம் கால்வர்சிச்).
5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies).
7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
9. Keeladi - ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
பொருள் வளர்ச்சி - கணித்தமிழ் வளர்ச்சி - தமிழ் நூல்கள் மின்பதிப்பு - தமிழ் மையாவு உருவொக்கம் - தமிழ் இளணயக் கல்விக்கழகம் - தமிழ் மின் நூலகம் - இளணயத்தில் தமிழ் அகரொதிகள் - தசொற்குளவத் டிட்டம்.

TOTAL : 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

2. கணினித் தமிழ் - புதுக்கோட்டை, தொழிக். (சிங்கோ பிரசுரம்).
3. சங்ககொலத்தில் தழக்கும் நூலின் சங்ககொல எழுதப்படும் (நூலின்போல்: சிங்கோ பிரசுரம்).
4. பொறுப்பு – ஆற்றங்கள் நொகரிகம். (தொல்லியல் துளற தவளியீடு)
5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies)
7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies)
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies)
9. Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
NX3251 NCC Credit Course Level 1*
(ARMY WING)
NCC Credit Course Level - I
L T P C
2 0 0 2

NCC GENERAL
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC 1</td>
<td>Aims, Objectives & Organization of NCC</td>
<td>1</td>
</tr>
<tr>
<td>NCC 2</td>
<td>Incentives</td>
<td>2</td>
</tr>
<tr>
<td>NCC 3</td>
<td>Duties of NCC Cadet</td>
<td>1</td>
</tr>
<tr>
<td>NCC 4</td>
<td>NCC Camps: Types & Conduct</td>
<td>2</td>
</tr>
</tbody>
</table>

NATIONAL INTEGRATION AND AWARENESS
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI 1</td>
<td>National Integration: Importance & Necessity</td>
<td>1</td>
</tr>
<tr>
<td>NI 2</td>
<td>Factors Affecting National Integration</td>
<td>1</td>
</tr>
<tr>
<td>NI 3</td>
<td>Unity in Diversity & Role of NCC in Nation Building</td>
<td>1</td>
</tr>
<tr>
<td>NI 4</td>
<td>Threats to National Security</td>
<td>1</td>
</tr>
</tbody>
</table>

PERSONALITY DEVELOPMENT
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD 1</td>
<td>Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving</td>
<td>2</td>
</tr>
<tr>
<td>PD 2</td>
<td>Communication Skills</td>
<td>3</td>
</tr>
<tr>
<td>PD 3</td>
<td>Group Discussion: Stress & Emotions</td>
<td>2</td>
</tr>
</tbody>
</table>

LEADERSHIP
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1</td>
<td>Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code</td>
<td>3</td>
</tr>
<tr>
<td>L 2</td>
<td>Case Studies: Shivaji, Jhasi Ki Rani</td>
<td>2</td>
</tr>
</tbody>
</table>

SOCIAL SERVICE AND COMMUNITY DEVELOPMENT
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 1</td>
<td>Basics, Rural Development Programmes, NGOs, Contribution of Youth</td>
<td>3</td>
</tr>
<tr>
<td>SS 4</td>
<td>Protection of Children and Women Safety</td>
<td>1</td>
</tr>
<tr>
<td>SS 5</td>
<td>Road / Rail Travel Safety</td>
<td>1</td>
</tr>
<tr>
<td>SS 6</td>
<td>New Initiatives</td>
<td>2</td>
</tr>
<tr>
<td>SS 7</td>
<td>Cyber and Mobile Security Awareness</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL: 30 PERIODS
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX3252</td>
<td>NCC Credit Course Level 1* (NAVAL WING)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>L1</td>
<td>Aims, Objectives & Organization of NCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>Incentives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>Duties of NCC Cadet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>NCC Camps: Types & Conduct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>National Integration: Importance & Necessity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td>Factors Affecting National Integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L7</td>
<td>Unity in Diversity & Role of NCC in Nation Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L8</td>
<td>Threats to National Security</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L9</td>
<td>Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L10</td>
<td>Communication Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L11</td>
<td>Group Discussion: Stress & Emotions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L12</td>
<td>Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L13</td>
<td>Case Studies: Shivaji, Jhasi Ki Rani</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L14</td>
<td>Basics, Rural Development Programmes, NGOs, Contribution of Youth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L15</td>
<td>Protection of Children and Women Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L16</td>
<td>Road / Rail Travel Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L17</td>
<td>New Initiatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L18</td>
<td>Cyber and Mobile Security Awareness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL : 30 PERIODS
<table>
<thead>
<tr>
<th>NCC GENERAL</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC 1 Aims, Objectives & Organization of NCC</td>
<td>1</td>
</tr>
<tr>
<td>NCC 2 Incentives</td>
<td>2</td>
</tr>
<tr>
<td>NCC 3 Duties of NCC Cadet</td>
<td>1</td>
</tr>
<tr>
<td>NCC 4 NCC Camps: Types & Conduct</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NATIONAL INTEGRATION AND AWARENESS</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI 1 National Integration: Importance & Necessity</td>
<td>1</td>
</tr>
<tr>
<td>NI 2 Factors Affecting National Integration</td>
<td>1</td>
</tr>
<tr>
<td>NI 3 Unity in Diversity & Role of NCC in Nation Building</td>
<td>1</td>
</tr>
<tr>
<td>NI 4 Threats to National Security</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERSONALITY DEVELOPMENT</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD 1 Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving</td>
<td>2</td>
</tr>
<tr>
<td>PD 2 Communication Skills</td>
<td>3</td>
</tr>
<tr>
<td>PD 3 Group Discussion: Stress & Emotions</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEADERSHIP</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1 Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code</td>
<td>3</td>
</tr>
<tr>
<td>L 2 Case Studies: Shivaji, Jhasi Ki Rani</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOCIAL SERVICE AND COMMUNITY DEVELOPMENT</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 1 Basics, Rural Development Programmes, NGOs, Contribution of Youth</td>
<td>3</td>
</tr>
<tr>
<td>SS 4 Protection of Children and Women Safety</td>
<td>1</td>
</tr>
<tr>
<td>SS 5 Road / Rail Travel Safety</td>
<td>1</td>
</tr>
<tr>
<td>SS 6 New Initiatives</td>
<td>2</td>
</tr>
<tr>
<td>SS 7 Cyber and Mobile Security Awareness</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL : 30 PERIODS
COURSE OBJECTIVES:
The main learning objective of this course is to provide hands on training to the students in:

1. Drawing pipe line plan; laying and connecting various pipe fittings used in common household plumbing work; Sawing; planing; making joints in wood materials used in common household wood work.

2. Wiring various electrical joints in common household electrical wire work.

3. Welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipments; Making a tray out of metal sheet using sheet metal work.

4. Soldering and testing simple electronic circuits; Assembling and testing simple electronic components on PCB.

GROUP – A (CIVIL & ELECTRICAL)

PART I

CIVIL ENGINEERING PRACTICES

PLUMBING WORK:
 a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in household.
 b) Preparing plumbing line sketches.
 c) Laying pipe connection to the suction side of a pump
 d) Laying pipe connection to the delivery side of a pump.
 e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK:
 a) Sawing,
 b) Planing and
 c) Making joints like T-Joint, Mortise joint and Tenon joint and Dovetail joint.

Wood Work Study:
 a) Studying joints in door panels and wooden furniture
 b) Studying common industrial trusses using models.

PART II

ELECTRICAL ENGINEERING PRACTICES

a) Introduction to switches, fuses, indicators and lamps - Basic switch board wiring with lamp, fan and three pin socket
b) Staircase wiring
c) Fluorescent Lamp wiring with introduction to CFL and LED types.
d) Energy meter wiring and related calculations/ calibration
e) Study of Iron Box wiring and assembly
f) Study of Fan Regulator (Resistor type and Electronic type using Diac/Triac/quadrac)
g) Study of emergency lamp wiring/Water heater

GROUP – B (MECHANICAL AND ELECTRONICS)

PART III MECHANICAL ENGINEERING PRACTICES 15

WELDING WORK:

a) Welding of Butt Joints, Lap Joints, and Tee Joints using arc welding.
b) Practicing gas welding.

BASIC MACHINING WORK:

a) (simple)Turning.
b) (simple)Drilling.
c) (simple)Tapping.

ASSEMBLY WORK:

a) Assembling a centrifugal pump.
b) Assembling a household mixer.
c) Assembling an airconditioner.

SHEET METAL WORK:

a) Making of a square tray

FOUNDRY WORK:

a) Demonstrating basic foundry operations.

PART IV ELECTRONIC ENGINEERING PRACTICES 15

SOLDERING WORK:

a) Soldering simple electronic circuits and checking continuity.

ELECTRONIC ASSEMBLY AND TESTING WORK:

a) Assembling and testing electronic components on a small PCB.

ELECTRONIC EQUIPMENT STUDY:

a) Study an elements of smart phone..
b) Assembly and dismantle of LED TV.
c) Assembly and dismantle of computer/ laptop

TOTAL : 60 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

CO1: Draw pipe line plan; lay and connect various pipe fittings used in common household plumbing work; Saw; plan; make joints in wood materials used in common household wood work.
CO2: Wire various electrical joints in common household electrical wire work.

CO3: Weld various joints in steel plates using arc welding work; Machine various simple processes like turning, drilling, tapping in parts; Assemble simple mechanical assembly of common household equipments; Make a tray out of metal sheet using sheet metal work.

CO4: Solder and test simple electronic circuits; Assemble and test simple electronic components on PCB.

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

AD3271 DATA STRUCTURES DESIGN LABORATORY

COURSE OBJECTIVES:

- To implement ADTs in Python
- To design and implement linear data structures – lists, stacks, and queues
- To implement sorting, searching and hashing algorithms
- To solve problems using tree and graph structures

LIST OF EXPERIMENTS:

Note: The lab instructor is expected to design problems based on the topics listed. The Examination shall not be restricted to the sample experiments designed.

1. Implement simple ADTs as Python classes
2. Implement recursive algorithms in Python
3. Implement List ADT using Python arrays
4. Linked list implementations of List
5. Implementation of Stack and Queue ADTs
6. Applications of List, Stack and Queue ADTs
7. Implementation of sorting and searching algorithms
8. Implementation of Hash tables
9. Tree representation and traversal algorithms
10. Implementation of Binary Search Trees
11. Implementation of Heaps
12. Graph representation and Traversal algorithms
13. Implementation of single source shortest path algorithm
14. Implementation of minimum spanning tree algorithms

COURSE OUTCOMES:

At the end of the course, the student should be able to:

CO1: implement ADTs as Python classes
CO2: design, implement, and analyse linear data structures, such as lists, queues, and stacks, according to the needs of different applications
CO3: design, implement, and analyse efficient tree structures to meet requirements such as searching, indexing, and sorting

CO4: model problems as graph problems and implement efficient graph algorithms to solve them

TEXT BOOKS:

REFERENCES:

GE3272

COMMUNICATION LABORATORY

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To identify varied group discussion skills and apply them to take part in effective discussions in a professional context.
- To analyse concepts and problems and make effective presentations explaining them clearly and precisely.
- To be able to communicate effectively through formal and informal writing.
- To be able to use appropriate language structures to write emails, reports and essays
- To give instructions and recommendations that are clear and relevant to the context

UNIT I

12

Speaking: Role Play Exercises Based on Workplace Contexts, - talking about competition-discussing progress toward goals-talking about experiences- talking about events in life-discussing past events-Writing: writing emails (formal & semi-formal).

UNIT II

12

Speaking: discussing news stories-talking about frequency-talking about travel problems-discussing travel procedures- talking about travel problems- making arrangements-describing arrangements-discussing plans and decisions- discussing purposes and reasons- understanding common technology terms-Writing: - writing different types of emails.

UNIT III

12

Speaking: discussing predictions-describing the climate-discussing forecasts and scenarios-talking about purchasing-discussing advantages and disadvantages- making comparisons-
discussing likes and dislikes - discussing feelings about experiences - discussing imaginary scenarios Writing: short essays and reports - formal/semi-formal letters.

UNIT IV 12
Speaking: discussing the natural environment - describing systems - describing position and movement - explaining rules - (example - discussing rental arrangements) - understanding technical instructions Writing: writing instructions - writing a short article.

UNIT V 12
Speaking: describing things relatively - describing clothing - discussing safety issues (making recommendations) - talking about electrical devices - describing controlling actions - Writing: job application (Cover letter + Curriculum vitae) - writing recommendations.

TOTAL: 60 PERIODS

LEARNING OUTCOMES
CO1: Speak effectively in group discussions held in a formal/semi-formal contexts.
CO2: Discuss, analyse and present concepts and problems from various perspectives to arrive at suitable solutions
CO3: Write emails, letters and effective job applications.
CO4: Write critical reports to convey data and information with clarity and precision
CO5: Give appropriate instructions and recommendations for safe execution of tasks

Assessment Pattern
- One online / app based assessment to test speaking and writing skills
- Proficiency certification is given on successful completion of speaking and writing.

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.4</td>
<td>2.8</td>
<td>3</td>
<td>1.8</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high, '-' - no correlation

Note: The average value of this course to be used for program articulation matrix.

MA3354 DISCRETE MATHEMATICS

COURSE OBJECTIVES:
- To extend student’s logical and mathematical maturity and ability to deal with abstraction.
- To introduce most of the basic terminologies used in computer science courses and application of ideas to solve practical problems.
- To understand the basic concepts of combinatorics and graph theory.
- To familiarize the applications of algebraic structures.
- To understand the concepts and significance of lattices and boolean algebra which are widely used in computer science and engineering.
UNIT I LOGIC AND PROOFS

UNIT II COMBINATORICS

UNIT III GRAPHS
Graphs and graph models – Graph terminology and special types of graphs – Matrix representation of graphs and graph isomorphism – Connectivity – Euler and Hamilton paths.

UNIT IV ALGEBRAIC STRUCTURES

UNIT V LATTICES AND BOOLEAN ALGEBRA

TOTAL: 60 PERIODS

COURSE OUTCOMES:
At the end of the course, students would:

CO1: Have knowledge of the concepts needed to test the logic of a program.
CO2: Have an understanding in identifying structures on many levels.
CO3: Be aware of a class of functions which transform a finite set into another finite set which relates to input and output functions in computer science.
CO4: Be aware of the counting principles.
CO5: Be exposed to concepts and properties of algebraic structures such as groups, rings and fields.

TEXT BOOKS:

REFERENCES:
CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

AVg. 1.3 2.1 1.2 1.1 1.2 1.3

1 - low, 2 - medium, 3 - high, '-' - no correlation

CS3351 DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION L T P C

3 0 2 4

COURSE OBJECTIVES:
- To analyze and design combinational circuits.
- To analyze and design sequential circuits
- To understand the basic structure and operation of a digital computer.
- To study the design of data path unit, control unit for processor and to familiarize with the hazards.
- To understand the concept of various memories and I/O interfacing.

UNIT I COMBINATIONAL LOGIC 9

UNIT II SYNCHRONOUS SEQUENTIAL LOGIC 9
Introduction to Sequential Circuits – Flip-Flops – operation and excitation tables, Triggering of FF, Analysis and design of clocked sequential circuits – Design – Moore/Mealy models, state minimization, state assignment, circuit implementation - Registers – Counters.

UNIT III COMPUTER FUNDAMENTALS 9

UNIT IV PROCESSOR 9
Instruction Execution – Building a Data Path – Designing a Control Unit – Hardwired Control, Microprogrammed Control – Pipelining – Data Hazard – Control Hazards.

UNIT V MEMORY AND I/O 9

45 PERIODS
PRACTICAL EXERCISES: 30 PERIODS
1. Verification of Boolean theorems using logic gates.
2. Design and implementation of combinational circuits using gates for arbitrary functions.
3. Implementation of 4-bit binary adder/subtractor circuits.
4. Implementation of code converters.
5. Implementation of BCD adder, encoder and decoder circuits.
7. Implementation of the synchronous counters.
8. Implementation of a Universal Shift register.

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO1: Design various combinational digital circuits using logic gates.
CO2: Design sequential circuits and analyze the design procedures.
CO3: State the fundamentals of computer systems and analyze the execution of an instruction.
CO4: Analyze different types of control design and identify hazards.
CO5: Identify the characteristics of various memory systems and I/O communication.

TOTAL: 75 PERIODS

TEXT BOOKS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 3 3 3 3 3 2 1 1 1 1 1 2 3 2 3 3 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3 3 3 3 3 2 1 1 1 1 1 2 3 1 2 2 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3 3 3 3 3 2 1 1 1 1 1 2 3 2 3 1 1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3 3 3 3 3 1 1 1 1 1 1 2 1 3 1 1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3 3 3 3 3 1 2 1 1 1 1 1 2 1 2 1 1</td>
<td></td>
</tr>
<tr>
<td>AVG.</td>
<td>3 3 3 3 3 1 2 1 1 1 1 1 2 1 2 1 3</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation.
COURSE OBJECTIVES:

- To exemplify the demand curves of households and supply curves of firms with the principles.
- To differentiate Price ceilings, Price floors and compare income effects, substitute effects
- To Analyze the Keynesian's process of multiplier theory in macro economics

UNIT I INTRODUCTION TO MICRO ECONOMICS

Introduction to Economics – Themes of Economics – Micro Vs Macro Economics- Demand curves and supply curves- Elasticity of Demand - Elasticity of Supply- Demand Curves of Households and firms

UNIT II WELFARE ANALYSIS

Consumers and Producers Surplus- Price Ceilings and Price Floors; Consumer Behavior - Axioms of Choice-Budget Constraints and Indifference Curves; Consumers Equilibrium Effects of a Price Change, Income and Substitution Effects Derivation of a Demand Curve

UNIT III PRODUCTION AND COST FUNCTION

Theory of Production - Production Function and Isoquants - Cost Minimization; Cost Curves - Total, Average and Marginal Costs - Long Run and Short Run Costs; Equilibrium of a Firm under Perfect Competition; Monopoly and Monopolistic Competition

UNIT IV MACRO ECONOMICS

National Income and its Components - GNP, NNP, GDP, NDP Consumption Function; Investment; Simple Keynesian Model of Income Determination and the Keynesian Multiplier; Government Sector -Taxes and Subsidies; External Sector - Exports and Imports; Money -Definitions; Demand for Money Transaction and Speculative Demand; Supply of Money - Banks Credit Creation Multiplier; Integrating Money and Commodity Markets - IS, LM Model

UNIT V BUSINESS CYCLES AND STABILIZATION

Monetary and Fiscal Policy - Central Bank and the Government; the Classical Paradigm - Price and Wage Rigidities - Voluntary and Involuntary Unemployment.

COURSE OUTCOMES:

CO1: To analyze the supporting of price, income and substitution effects in the consumers and producers surplus.
CO2: To compare the equilibrium of a firm under perfect competition, monopoly and monopolistic competition.
CO3 : To study the concepts of demand for money and supply of money with appropriate model in macro economic analysis.
CO4: To examine and evaluate the problems of voluntary and involuntary unemployment

TOTAL:45 PERIODS

TEXT BOOKS:

REFERENCES

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CS3391 OBJECT ORIENTED PROGRAMMING

COURSE OBJECTIVES:
- To understand Object Oriented Programming concepts and basics of Java programming language
- To know the principles of packages, inheritance and interfaces
- To develop a java application with threads and generics classes
- To define exceptions and use I/O streams
- To design and build Graphical User Interface Application using JAVAFX

UNIT I INTRODUCTION TO OOP AND JAVA

UNIT II INHERITANCE, PACKAGES AND INTERFACES

UNIT III EXCEPTION HANDLING AND MULTITHREADING
UNIT IV I/O, GENERICS, STRING HANDLING 9

UNIT V JAVAFX EVENT HANDLING, CONTROLS AND COMPONENTS 9

COURSE OUTCOMES:
On completion of this course, the students will be able to
CO1: Apply the concepts of classes and objects to solve simple problems
CO2: Develop programs using inheritance, packages and interfaces
CO3: Make use of exception handling mechanisms and multithreaded model to solve real world problems
CO4: Build Java applications with I/O packages, string classes, Collections and generics concepts
CO5: Integrate the concepts of event handling and JavaFX components and controls for developing GUI based applications

TOTAL: 45 PERIODS

TEXT BOOKS

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVG.</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
AD3351 DESIGN AND ANALYSIS OF ALGORITHMS L T P C 3 0 2 4

COURSE OBJECTIVES:

- To critically analyze the efficiency of alternative algorithmic solutions for the same problem
- To illustrate brute force and divide and conquer design techniques.
- To explain dynamic programming and greedy techniques for solving various problems.
- To apply iterative improvement technique to solve optimization problems
- To examine the limitations of algorithmic power and handling it in different problems.

UNIT I INTRODUCTION 8

UNIT II BRUTE FORCE AND DIVIDE AND CONQUER 10

UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE 10

UNIT IV ITERATIVE IMPROVEMENT 8

UNIT V LIMITATIONS OF ALGORITHM POWER 9

45 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

1. Implement recursive and non-recursive algorithms and study the order of growth from $\log_2 n$ to $n!$.
2. Divide and Conquer - Strassen’s Matrix Multiplication
3. Decrease and Conquer - Topological Sorting
4. Transform and Conquer - Heap Sort
5. Dynamic programming - Coin change Problem, Warshall’s and Floyd’s algorithms, Knapsack Problem
6. Greedy Technique – Dijkstra’s algorithm, Huffman Trees and codes
7. Iterative improvement - Simplex Method
8. Backtracking – N-Queen problem, Subset Sum Problem
9. Branch and Bound - Assignment problem, Traveling Salesman Problem

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO1: Analyze the efficiency of recursive and non-recursive algorithms mathematically
CO2: Analyze the efficiency of brute force, divide and conquer, decrease and conquer, Transform and conquer algorithmic techniques
CO3: Implement and analyze the problems using dynamic programming and greedy algorithmic techniques.
CO4: Solve the problems using iterative improvement techniques for optimization.
CO5: Compute the limitations of algorithmic power and solve the problems using backtracking and branch and bound techniques.

TOTAL: 75 PERIODS

TEXT BOOKS:

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

AD3491 FUNDAMENTALS OF DATA SCIENCE AND ANALYTICS L T P C
3 0 0 3

COURSE OBJECTIVES:
- To understand the techniques and processes of data science
- To apply descriptive data analytics
- To visualize data for various applications
- To understand inferential data analytics
- To analyze and build predictive models from data

UNIT I INTRODUCTION TO DATA SCIENCE 08
Need for data science – benefits and uses – facets of data – data science process – setting the research goal – retrieving data – cleansing, integrating, and transforming data – exploratory data analysis – build the models – presenting and building applications.

UNIT II DESCRIPTIVE ANALYTICS 10

UNIT III INFERENTIAL STATISTICS 09

UNIT IV ANALYSIS OF VARIANCE 09

UNIT V PREDICTIVE ANALYTICS 09

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon successful completion of this course, the students will be able to:
CO1: Explain the data analytics pipeline
CO2: Describe and visualize data
CO3: Perform statistical inferences from data
CO4: Analyze the variance in the data
CO5: Build models for predictive analytics

TEXT BOOKS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

| CO’s | PO’s 1 | PO’s 2 | PO’s 3 | PO’s 4 | PO’s 5 | PO’s 6 | PO’s 7 | PO’s 8 | PO’s 9 | PO’s 10 | PO’s 11 | PO’s 12 | PSO’s 1 | PSO’s 2 | PSO’s 3 | PSO’s 4 |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1 | 3 | 3 | 3 | 2 | 2 | 1 | - | - | - | - | - | - | 3 | 3 | 1 | 1 |
| 2 | 3 | 3 | 3 | 2 | 2 | 1 | - | - | - | - | - | - | 3 | 3 | 1 | 1 |
| 3 | 3 | 3 | 3 | 2 | 2 | 1 | - | - | - | - | - | - | 3 | 3 | 1 | 1 |
| 4 | 3 | 3 | 3 | 2 | 2 | 1 | - | - | - | - | - | - | 3 | 3 | 1 | 1 |
| 5 | 3 | 3 | 3 | 2 | 2 | 1 | - | - | - | - | - | - | 3 | 3 | 1 | 1 |
| Avg. | 3 | 3 | 3 | 2 | 2 | 1 | - | - | - | - | - | - | 3 | 3 | 1 | 1 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

CW3311 BUSINESS COMMUNICATION LABORATORY I

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

- To enhance students’ overall communication and their interpersonal skills by engaging them in group activities so that they could excel in their career pursuits.
- To improve the students’ fluency level in the English language by enriching their diction and articulation so that they could effectively present themselves in their workplaces.

LIST OF EXPERIMENTS:

1. Business terminology
2. Interpersonal Skills: Dialogue & Conversation
3. Job Application
4. Letters & Reports
5. SWOT analysis
6. Team vs Group
7. Conflict management
8. Acquiring Leadership traits
9. Women in all spheres
10. Human values and Corporate culture

COURSE OUTCOMES:

CO1: Speak fluently in English without errors and present themselves as effective communicators.

CO2: Use business vocabulary and take part comfortably in business conversations in English.

CO3: Draft letters and reports with appropriate formats and choice of words.

CO4: Perform well in team and group, resolve conflicts in workplaces and acquire leadership skills.
CO5: Understand women in all spheres and cultural behaviours of the people and approach them with positive human values.

List of Equipments: (30 Students per Batch)
1: Systems with Rosetta stone and Globarena

REFERENCES:
1. Business Communication, Dr. Saroj Hire math
2. English vocabulary in use, Alan McCarthy and O'Dell
3. Strategic Writing by Charles Marsh
4. he Seven Basic Plots by Christopher Booker

CO's - PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

CS3381 OBJECT ORIENTED PROGRAMMING LABORATORY

COURSE OBJECTIVES
- To build software development skills using java programming for real-world applications.
- To understand and apply the concepts of classes, packages, interfaces, inheritance, exception handling and file processing.
- To develop applications using generic programming and event handling

LIST OF EXPERIMENTS
1. Solve problems by using sequential search, binary search, and quadratic sorting algorithms (selection, insertion).
2. Develop stack and queue data structures using classes and objects.
3. Develop a java application with an Employee class with Emp_name, Emp_id, Address, Mail_id, Mobile_no as members. Inherit the classes, Programmer, Assistant Professor, Associate Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10% of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club funds. Generate pay slips for the employees with their gross and net salary.
4. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named printArea(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method printArea() that prints the area of the given shape.
5. Solve the above problem using an interface.
6. Implement exception handling and creation of user defined exceptions.
7. Write a java program that implements a multi-threaded application that has three threads. First thread generates a random integer every 1 second and if the value is even, the second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of the cube of the number.

8. Write a program to perform file operations.

9. Develop applications to demonstrate the features of generics classes.

10. Develop applications using JavaFX controls, layouts and menus.

11. Develop a mini project for any application using Java concepts.

Lab Requirements: for a batch of 30 students
Operating Systems: Linux / Windows
Front End Tools: Eclipse IDE / Netbeans IDE

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On completion of this course, the students will be able to

CO1: Design and develop java programs using object oriented programming concepts

CO2: Develop simple applications using object oriented concepts such as package, exceptions

CO4: Create GUIs and event driven programming applications for real world problems

CO3: Implement multithreading, and generics concepts

CO5: Implement and deploy web applications using Java

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>1</td>
<td>2 1 2 1 - - - - 1 2 2 2</td>
<td>1 2 3 2</td>
</tr>
<tr>
<td>2</td>
<td>2 1 3 1 - - - - 2 3 3 2</td>
<td>1 3 1 2</td>
</tr>
<tr>
<td>3</td>
<td>2 2 1 2 1 - - - 1 2 1 3</td>
<td>2 3 2 2</td>
</tr>
<tr>
<td>4</td>
<td>2 2 1 3 - - - 3 1 1 1</td>
<td>2 1 2 2</td>
</tr>
<tr>
<td>5</td>
<td>1 3 3 1 3 - - - 1 1 1 1</td>
<td>2 1 2 2</td>
</tr>
<tr>
<td>AVg.</td>
<td>2 2 2 2 2 2 - - - 2 2 2 2</td>
<td>2 2 2 2</td>
</tr>
</tbody>
</table>

GE3361 PROFESSIONAL DEVELOPMENT

COURSE OBJECTIVES:
To be proficient in important Microsoft Office tools: MS WORD, EXCEL, POWERPOINT.

- To be proficient in using MS WORD to create quality technical documents, by using standard templates, widely acceptable styles and formats, variety of features to enhance the presentability and overall utility value of content.

- To be proficient in using MS EXCEL for all data manipulation tasks including the common statistical, logical, mathematical etc., operations, conversion, analytics, search and explore, visualize,interlink, and utilizing many more critical features offered

- To be able to create and share quality presentations by using the features of MS PowerPoint, including: organization of content, presentability, aesthetics, using media elements and enhance the overall quality of presentations.
MS WORD: 10 Hours

Create and format a document
Working with tables
Working with Bullets and Lists
Working with styles, shapes, smart art, charts
Inserting objects, charts and importing objects from other office tools
Creating and Using document templates
Inserting equations, symbols and special characters
Working with Table of contents and References, citations
Insert and review comments
Create bookmarks, hyperlinks, endnotes footnote
Viewing document in different modes
Working with document protection and security
Inspect document for accessibility

MS EXCEL: 10 Hours

Create worksheets, insert and format data
Work with different types of data: text, currency, date, numeric etc.
Split, validate, consolidate, Convert data
Sort and filter data
Perform calculations and use functions: (Statistical, Logical, Mathematical, date, Time etc..)
Work with Lookup and reference formulae
Create and Work with different types of charts
Use pivot tables to summarize and analyse data
Perform data analysis using own formulae and functions
Combine data from multiple worksheets using own formulae and built-in functions to generate results
Export data and sheets to other file formats
Working with macros
Protecting data and Securing the workbook

MS POWERPOINT: 10 Hours

Select slide templates, layout and themes
Formatting slide content and using bullets and numbering
Insert and format images, smart art, tables, charts
Using Slide master, notes and handout master
Working with animation and transitions
Organize and Group slides
Import or create and use media objects: audio, video, animation
Perform slideshow recording and Record narration and create presentable videos

COURSE OUTCOMES:
On successful completion the students will be able to
CO1: Use MS Word to create quality documents, by structuring and organizing content for their day to day technical and academic requirements
CO2: Use MS EXCEL to perform data operations and analytics, record, retrieve data as per requirements and visualize data for ease of understanding
CO3: Use MS PowerPoint to create high quality academic presentations by including common tables, charts, graphs, interlinking other elements, and using media objects.

MA3391 PROBABILITY AND STATISTICS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- This course aims at providing the required skill to apply the statistical tools in engineering problems.
- To introduce the basic concepts of probability and random variables.
- To introduce the basic concepts of two dimensional random variables.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of classifications of design of experiments which plays very important roles in the field of agriculture and statistical quality control.

UNIT I PROBABILITY AND RANDOM VARIABLES 9 + 3
Axioms of probability – Conditional probability – Baye’s theorem - Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions – Functions of a random variable.

UNIT II TWO-DIMENSIONAL RANDOM VARIABLES 9 + 3
Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Transformation of random variables – Central limit theorem (for independent and identically distributed random variables).

UNIT III ESTIMATION THEORY 9 + 3
Unbiased estimators - Efficiency - Consistency - Sufficiency - Robustness - Method of moments - Method of maximum Likelihood - Interval estimation of Means - Differences between means,
variations and ratio of two variances

UNIT IV NON- PARAMETRIC TESTS
Introduction - The Sign test - The Signed - Rank test - Rank - sum tests - The U test - The H test - Tests based on Runs - Test of randomness - The Kolmogorov Tests.

UNIT V STATISTICAL QUALITY CONTROL
Control charts for measurements (\(\bar{X} \) and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits - Acceptance sampling.

TOTAL: 60 PERIODS

COURSE OUTCOMES:
Upon successful completion of the course, students will be able to:
CO1: Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon.
CO2: Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.
CO3: Apply the concept of testing of hypothesis for small and large samples in real life problems.
CO4: Apply the basic concepts of classifications of design of experiments in the field of agriculture and statistical quality control.
CO5: Have the notion of sampling distributions and statistical techniques used in engineering and management problems.

TEXT BOOKS

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS 01</th>
<th>PS 02</th>
<th>PS 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVG</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COUSE OBJECTIVES:

- To learn the fundamentals of data models, relational algebra and SQL
- To represent a database system using ER diagrams and to learn normalization techniques
- To understand the fundamental concepts of transaction, concurrency and recovery processing
- To understand the internal storage structures using different file and indexing techniques which will help in physical DB design
- To have an introductory knowledge about the Distributed databases, NOSQL and database security

UNIT I RELATIONAL DATABASES

UNIT II DATABASE DESIGN

UNIT III TRANSACTIONS

UNIT IV IMPLEMENTATION TECHNIQUES

UNIT V ADVANCED TOPICS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to
CO1: Construct SQL Queries using relational algebra
CO2: Design database using ER model and normalize the database
CO3: Construct queries to handle transaction processing and maintain consistency of the database
CO4: Compare and contrast various indexing strategies and apply the knowledge to tune the performance of the database
CO5: Appraise how advanced databases differ from Relational Databases and find a suitable database for the given requirement.

TOTAL: 45 PERIODS

TEXT BOOKS

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s 1</th>
<th>PO’s 2</th>
<th>PO’s 3</th>
<th>PO’s 4</th>
<th>PO’s 5</th>
<th>PO’s 6</th>
<th>PO’s 7</th>
<th>PO’s 8</th>
<th>PO’s 9</th>
<th>PO’s 10</th>
<th>PO’s 11</th>
<th>PO’s 12</th>
<th>PSO’s 1</th>
<th>PSO’s 2</th>
<th>PSO’s 3</th>
<th>PSO’s 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>AVG.</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

AL3452 OPERATING SYSTEMS L T P C
3 0 2 4

COURSE OBJECTIVES:
- To understand the basics and functions of operating systems.
- To understand Processes and Threads
- To analyze Scheduling algorithms and process synchronization.
- To understand the concept of Deadlocks.
- To analyze various memory management schemes.
- To be familiar with I/O management and File systems.
- To be familiar with the basics of virtual machines and Mobile OS like iOS and Android.

UNIT I INTRODUCTION
UNIT II PROCESS MANAGEMENT

UNIT III MEMORY MANAGEMENT
Main Memory - Swapping - Contiguous Memory Allocation – Paging - Structure of the Page Table - Segmentation, Segmentation with paging; Virtual Memory - Demand Paging – Copy on Write - Page Replacement - Allocation of Frames –Thrashing.

UNIT IV STORAGE MANAGEMENT

UNIT V VIRTUAL MACHINES AND MOBILE OS
Virtual Machines – History, Benefits and Features, Building Blocks, Types of Virtual Machines and their Implementations, Virtualization and Operating-System Components; Mobile OS - iOS and Android.

PRACTICAL EXERCISES:
1. Installation of Operating system : Windows/ Linux
2. Illustrate UNIX commands and Shell Programming
4. Write C programs to implement the various CPU Scheduling Algorithms
5. Illustrate the inter process communication strategy
6. Implement mutual exclusion by Semaphores
7. Write a C program to avoid Deadlock using Banker’s Algorithm
8. Write a C program to Implement Deadlock Detection Algorithm
9. Write C program to implement Threading
10. Implement the paging Technique using C program
11. Write C programs to implement the following Memory Allocation Methods
 a. First Fit b. Worst Fit c. Best Fit
12. Write C programs to implement the various Page Replacement Algorithms
13. Write C programs to Implement the various File Organization Techniques
14. Implement the following File Allocation Strategies using C programs
 a. Sequential b. Indexed c. Linked
15. Write C programs for the implementation of various disk scheduling algorithms

COURSE OUTCOMES:
At the end of this course, the students will be able to:
 CO1: Analyze various scheduling algorithms and process synchronization.
 CO2 : Explain deadlock, prevention and avoidance algorithms.
CO3: Compare and contrast various memory management schemes.
CO4: Explain the functionality of file systems I/O systems, and Virtualization.
CO5: Compare iOS and Android Operating Systems.

TOTAL: 75 PERIODS

TEXTBOOKS

REFERENCES

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

CW3401 INTRODUCTION TO BUSINESS SYSTEMS L T P C

COURSE OBJECTIVES:
- To develop and strengthen business quality and motivation in students
- To impart basic business skills
- To understanding to run a business efficiently and effectively.

UNIT I OVERVIEW OF BUSINESS SYSTEM

UNIT II OUTLINE OF BUSINESS ORGANIZATION
Types of Business organization - Sole proprietorship, partnership, company-public and private sector enterprises, Multinational and Global companies. Managing Global environment. Management levels and types.

UNIT III FUNCTIONS OF BUSINESS
Functions and Objectives – Production, Marketing, Finance, Human Resource, quality control and Research & development.
UNIT IV MEASURING BUSINESS PERFORMANCE AND CONTROL PROCESS

UNIT V COMPUTER APPLICATIONS IN BUSINESS

Introduction to business Software- Enterprise application and Business application. Overview on types of Business software. ERP. Business Intelligence, e-business and e-governance.

COURSE OUTCOMES:
CO1: To demonstrate and strengthen business quality and motivation in students
CO2: Examine basic business skills and measuring business performance
CO3: To demonstrate business Applications using business software
CO4: Apply Enterprise application and Business application
CO5: Use Business Intelligence in e-business for marketing and sales.

TOTAL: 45 PERIODS

TEXT BOOK

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, -' - no correlation
COURSE OBJECTIVES:
- To understand the basic concepts of machine learning.
- To understand and build supervised learning models.
- To understand and build unsupervised learning models.
- To evaluate the algorithms based on corresponding metrics identified

UNIT I INTRODUCTION TO MACHINE LEARNING 8
Review of Linear Algebra for machine learning; Introduction and motivation for machine learning; Examples of machine learning applications, Vapnik-Chervonenkis (VC) dimension, Probably Approximately Correct (PAC) learning, Hypothesis spaces, Inductive bias, Generalization, Bias variance trade-off.

UNIT II SUPERVISED LEARNING 11

UNIT III ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING 9

UNIT IV NEURAL NETWORKS 9
Multilayer perceptron, activation functions, network training – gradient descent optimization – stochastic gradient descent, error backpropagation, from shallow networks to deep networks –Unit saturation (aka the vanishing gradient problem) – ReLU, hyperparameter tuning, batch normalization, regularization, dropout.

UNIT V DESIGN AND ANALYSIS OF MACHINE LEARNING EXPERIMENTS 8
Guidelines for machine learning experiments, Cross Validation (CV) and resampling – K-fold CV, bootstrapping, measuring classifier performance, assessing a single classification algorithm and comparing two classification algorithms – t test, McNemar’s test, K-fold CV paired t test

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO1: Explain the basic concepts of machine learning.
CO2 : Construct supervised learning models.
CO3 : Construct unsupervised learning algorithms.
CO4: Evaluate and compare different models

TOTAL: 45 PERIODS

TEXTBOOKS:
REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3 2 4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2 1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1 2 1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2 1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2 1</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>2 1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

GE3451 ENVIRONMENTAL SCIENCES AND SUSTAINABILITY L T P C
2002

COURSE OBJECTIVES:
- To introduce the basic concepts of environment, ecosystems and biodiversity and emphasize on the biodiversity of India and its conservation.
- To impart knowledge on the causes, effects and control or prevention measures of environmental pollution and natural disasters.
- To facilitate the understanding of global and Indian scenario of renewable and nonrenewable resources, causes of their degradation and measures to preserve them.
- To familiarize the concept of sustainable development goals and appreciate the interdependence of economic and social aspects of sustainability, recognize and analyze climate changes, concept of carbon credit and the challenges of environmental management.
- To inculcate and embrace sustainability practices and develop a broader understanding on green materials, energy cycles and analyze the role of sustainable urbanization.

UNIT I ENVIRONMENT AND BIODIVERSITY
UNIT II ENVIRONMENTAL POLLUTION 9

UNIT III RENEWABLE SOURCES OF ENERGY 6
Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of- Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

UNIT IV SUSTAINABILITY AND MANAGEMENT 6
Development , GDP ,Sustainability- concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global, Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

UNIT V SUSTAINABILITY PRACTICES 6

TOTAL: 30 PERIODS

COURSE OUTCOMES:
CO1:To recognize and understand the functions of environment, ecosystems and biodiversity and their conservation.
CO2:To identify the causes, effects of environmental pollution and natural disasters and contribute to the preventive measures in the society.
CO3:To identify and apply the understanding of renewable and non-renewable resources and contribute to the sustainable measures to preserve them for future generations.
CO4:To recognize the different goals of sustainable development and apply them for suitable technological advancement and societal development.
CO5:To demonstrate the knowledge of sustainability practices and identify green materials, energy cycles and the role of sustainable urbanization.

TEXT BOOKS:
5. Bradley, A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Avg. 2.8 1.8 1.1 1.1 2.2 2.4 - - - - - - - - 1.8 - - -

1 - low, 2 - medium, 3 - high, '-' - no correlation

NCC Credit Course Level 2*

NX3451 (ARMY WING) NCC Credit Course Level - II

PERSONALITY DEVELOPMENT
PD 3 Group Discussion: Change your mindset, Time Management, Social Skills 6
PD 5 Public Speaking 3

LEADERSHIP
L 2 Case Studies: APJ Abdul Kalam, Deepa Malik, Maharana Pratap, N Narayan Murty, Ratan Tata, Rabindra Nath Tagore, Role of NCC cadets in 1965 7

DISASTER MANAGEMENT
DM 1 Disaster Management Capsule: Organisation, Types of Disasters, Essential Services, Assistance, Civil Defence Organisation 3
DM 2 Initiative Training, Organising Skills, Do's & Don't's, Natural Disasters, Man Made Disasters 9
DM 3 Fire Service & Fire Fighting 1

77
<table>
<thead>
<tr>
<th>COURSE AREA</th>
<th>CODE</th>
<th>COURSE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Awareness & Conservation</td>
<td>EA 1</td>
<td>Environmental Awareness and Conservation</td>
</tr>
<tr>
<td>General Awareness</td>
<td>GA 1</td>
<td>General Knowledge</td>
</tr>
<tr>
<td>Armed Forces</td>
<td>AF 1</td>
<td>Armed Forces, Army, CAPF, Police</td>
</tr>
<tr>
<td>Adventure</td>
<td>AD 1</td>
<td>Introduction to Adventure Activities</td>
</tr>
<tr>
<td>Border & Coastal Areas</td>
<td>BCA 1</td>
<td>History, Geography & Topography of Border/Coastal areas</td>
</tr>
<tr>
<td>NCC Credit Course Level - II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERSONALITY DEVELOPMENT</td>
<td>PD 3</td>
<td>Group Discussion: Change your mindset, Time Management, Social Skills</td>
</tr>
<tr>
<td></td>
<td>PD 5</td>
<td>Public Speaking</td>
</tr>
<tr>
<td>Leadership</td>
<td>L 2</td>
<td>Case Studies: APJ Abdul Kalam, Deepa Malik, Maharana Pratap, N Narayan Murty,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ratan Tata, Rabindra Nath Tagore, Role of NCC cadets in 1965</td>
</tr>
<tr>
<td>Disaster Management</td>
<td>DM 1</td>
<td>Disaster Management Capsule: Organisation, Types of Disasters, Essential</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Services, Assistance, Civil Defence Organisation</td>
</tr>
<tr>
<td></td>
<td>DM 2</td>
<td>Initiative Training, Organising Skills, Do's & Don't's, Natural Disasters,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Man Made Disasters</td>
</tr>
<tr>
<td></td>
<td>DM 3</td>
<td>Fire Service & Fire Fighting</td>
</tr>
<tr>
<td>Environmental Awareness & Conservation</td>
<td>EA 1</td>
<td>Environmental Awareness and Conservation</td>
</tr>
<tr>
<td>General Awareness</td>
<td>GA 1</td>
<td>General Knowledge</td>
</tr>
<tr>
<td>Naval Orientation</td>
<td>AF 1</td>
<td>Armed Forces and Navy Capsule</td>
</tr>
<tr>
<td></td>
<td>EEZ 1</td>
<td>EEZ Maritime Security and ICG</td>
</tr>
<tr>
<td>Adventure</td>
<td>AD 1</td>
<td>Introduction to Adventure Activities</td>
</tr>
</tbody>
</table>

TOTAL: 45 PERIODS
BORDER & COASTAL AREAS
BCA 1 History, Geography & Topography of Border/Coastal areas 2

TOTAL: 45 PERIODS

NCC Credit Course Level 2*
NX3453 (AIR FORCE WING) NCC Credit Course Level - II

PERSONALITY DEVELOPMENT
PD 3 Group Discussion: Change your mindset, Time Management, Social Skills 6
PD 5 Public Speaking 3

LEADERSHIP
L 2 Case Studies: APJ Abdul Kalam, Deepa Malik, Maharana Pratap, N Narayan Murty, Ratan Tata, Rabindra Nath Tagore, Role of NCC cadets in 1965 7

DISASTER MANAGEMENT
DM 1 Disaster Management Capsule: Organisation, Types of Disasters, Essential Services, Assistance, Civil Defence Organisation 3
DM 2 Initiative Training, Organising Skills, Do's & Don't's, Natural Disasters, Man Made Disasters 9
DM 3 Fire Service & Fire Fighting 1

ENVIRONMENTAL AWARENESS & CONSERVATION
EA 1 Environmental Awareness and Conservation 3

GENERAL AWARENESS
GA 1 General Knowledge 4

GENERAL SERVICE KNOWLEDGE
GSK 1 Armed Forces & IAF Capsule 2
GSK 2 Modes of Entry in IAF, Civil Aviation 2
GSK 3 Aircrafts - Types, Capabilities & Role 2

ADVENTURE
AD 1 Introduction to Adventure Activities 1

BORDER & COASTAL AREAS
BCA 1 History, Geography & Topography of Border/Coastal areas 2

TOTAL: 45 PERIODS
COURSE OBJECTIVES:

- To learn and implement important commands in SQL.
- To learn the usage of nested and joint queries.
- To understand functions, procedures and procedural extensions of databases.
- To understand design and implementation of typical database applications.
- To be familiar with the use of a front end tool for GUI based application development.

LIST OF EXPERIMENTS:

1. Create a database table, add constraints (primary key, unique, check, Not null), insert rows, update and delete rows using SQL DDL and DML commands.
2. Create a set of tables, add foreign key constraints and incorporate referential integrity.
3. Query the database tables using different ‘where’ clause conditions and also implement aggregate functions.
4. Query the database tables and explore sub queries and simple join operations.
5. Query the database tables and explore natural, equi and outer joins.
6. Write user defined functions and stored procedures in SQL.
7. Execute complex transactions and realize DCL and TCL commands.
8. Write SQL Triggers for insert, delete, and update operations in a database table.
9. Create View and index for database tables with a large number of records.
12. Develop a simple GUI based database application and incorporate all the above-mentioned features
13. Case Study using any of the real life database applications from the following list
 a) Inventory Management for a EMart Grocery Shop
 b) Society Financial Management
 c) Cop Friendly App – Eseva
 d) Property Management – eMall
 e) Star Small and Medium Banking and Finance
 - Build Entity Model diagram. The diagram should align with the business and functional goals stated in the application.
 - Apply Normalization rules in designing the tables in scope.
 - Prepared applicable views, triggers (for auditing purposes), functions for enabling enterprise grade features.
 - Build PL SQL / Stored Procedures for Complex Functionalities, ex EOD Batch Processing for calculating the EMI for Gold Loan for each eligible Customer.
 - Ability to showcase ACID Properties with sample queries with appropriate settings

List of Equipments:(30 Students per Batch)
MYSQL / SQL : 30 Users

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO1: Create databases with different types of key constraints.
CO2: Construct simple and complex SQL queries using DML and DCL commands.
CO3: Use advanced features such as stored procedures and triggers and incorporate in GUI based application development.

CO4: Create an XML database and validate with meta-data (XML schema).

CO5: Create and manipulate data using NOSQL database.

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s PO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, - - no correlation

AD3461 MACHINE LEARNING LABORATORY L T P C

COURSE OBJECTIVES:
- To understand the data sets and apply suitable algorithms for selecting the appropriate features for analysis.
- To learn to implement supervised machine learning algorithms on standard datasets and evaluate the performance.
- To experiment the unsupervised machine learning algorithms on standard datasets and evaluate the performance.
- To build the graph based learning models for standard data sets.
- To compare the performance of different ML algorithms and select the suitable one based on the application.

LIST OF EXPERIMENTS:
1. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.
2. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
3. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
4. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file and compute the accuracy with a few test data sets.
5. Implement naïve Bayesian Classifier model to classify a set of documents and measure the accuracy, precision, and recall.
6. Write a program to construct a Bayesian network to diagnose CORONA infection using standard WHO Data Set.
7. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using the k-Means algorithm. Compare the results of these two algorithms.
8. Write a program to implement \textit{k-Nearest Neighbour algorithm} to classify the iris data set. Print both correct and wrong predictions.
9. Implement the non-parametric \textit{Locally Weighted Regression algorithm} in order to fit data points. Select an appropriate data set for your experiment and draw graphs.

List of Equipments:(30 Students per Batch)
The programs can be implemented in either Python or R.

TOTAL:60 PERIODS

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO1: Apply suitable algorithms for selecting the appropriate features for analysis.
CO2: Implement supervised machine learning algorithms on standard datasets and evaluate the performance.
CO3: Apply unsupervised machine learning algorithms on standard datasets and evaluate the performance.
CO4: Build the graph based learning models for standard data sets.
CO5: Assess and compare the performance of different ML algorithms and select the suitable one based on the application.

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>1</td>
<td>3 3 3 3 3 3 2 - - 2 2 1 2</td>
<td>3 3 2 2</td>
</tr>
<tr>
<td>2</td>
<td>3 3 3 3 3 3 2 - - 2 2 1 2</td>
<td>3 3 2 2</td>
</tr>
<tr>
<td>3</td>
<td>3 3 3 3 3 3 2 - - 2 2 1 2</td>
<td>3 3 2 2</td>
</tr>
<tr>
<td>4</td>
<td>3 3 3 3 3 3 2 - - 2 2 1 2</td>
<td>3 3 2 2</td>
</tr>
<tr>
<td>5</td>
<td>3 3 3 3 3 3 2 - - 2 2 1 2</td>
<td>3 3 2 2</td>
</tr>
<tr>
<td>Avg.</td>
<td>3 3 3 3 3 3 2 - - 2 2 1 2</td>
<td>3 3 2 2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CW3411 BUSINESS COMMUNICATION LABORATORY II

COURSE OBJECTIVES:
- To augment students overall communication and thus aid in helping them
- To improve their interpersonal skills by engaging them in group activities
- To emerge as professionals.

LIST OF EXPERIMENTS:

1: Writing letters and creating mails
2: Construction of paragraphs and essays
3: Speaking skills and methods of speech
4: Leadership, Communication and Interpersonal skills
5: Being a motivator and role model
6: Corporate Etiquettes
7: Professionalism in the workplace
8: Engineering ethics, rights and responsibilities
9. Managing cultural diversities and global diversities
10. Right use of social media
11. Maintaining the image and pride of the organization
12. Winning formula for a successful manager/leader

List of Equipments: (30 Students per Batch)

1: Systems with Rosetta stone and Globarena

COURSE OUTCOMES:

CO1: Speak fluently in English without errors in the sentence construction and hence present themselves as effective English communicators.

CO2: Differentiate between vocabularies used as adjectives, verbs.

CO3: Deliver a public speech according to the need of the audience and also be aware of positive body language to be manifested during a speech.

CO4: Deal with the deeper parameters of working in teams like team motivation, multicultural team activity and team conflict resolution.

CO5: Set realistic goals in terms of personal and professional growth.

TOTAL: 45 PERIODS

TEXT BOOKS:
2. APAART: Speak Well 1 (English Language and Communication)
3. APAART: Speak Well 2 (Soft Skills)

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CS3691 EMBEDDED SYSTEMS AND IOT

COURSE OBJECTIVES:

- To learn the internal architecture and programming of an embedded processor.
- To introduce interfacing I/O devices to the processor.
• To introduce the evolution of the Internet of Things (IoT).
• To build a small low-cost embedded and IoT system using Arduino/Raspberry Pi/ open platform.
• To apply the concept of Internet of Things in real world scenario.

UNIT I 8-BIT EMBEDDED PROCESSOR

UNIT II EMBEDDED C PROGRAMMING

UNIT III IOT AND ARDUINO PROGRAMMING

UNIT IV IOT COMMUNICATION AND OPEN PLATFORMS

UNIT V APPLICATIONS DEVELOPMENT

PRACTICAL EXERCISES:
1. Write 8051 Assembly Language experiments using simulator.
2. Test data transfer between registers and memory.
3. Perform ALU operations.
4. Write Basic and arithmetic Programs Using Embedded C.
5. Introduction to Arduino platform and programming
6. Explore different communication methods with IoT devices (Zigbee, GSM, Bluetooth)
7. Introduction to Raspberry PI platform and python programming
8. Interfacing sensors with Raspberry PI
9. Communicate between Arduino and Raspberry PI using any wireless medium
10. Setup a cloud platform to log the data
11. Log Data using Raspberry PI and upload to the cloud platform
12. Design an IOT based system

TOTAL:75 PERIODS

COURSE OUTCOMES:
CO1: Explain the architecture of embedded processors.
CO2: Write embedded C programs.
CO3: Design simple embedded applications.
CO4: Compare the communication models in IOT
CO5: Design IoT applications using Arduino/Raspberry Pi/open platform.

TEXTBOOKS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AvG.</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CW3501 FUNDAMENTALS OF MANAGEMENT

COURSE OBJECTIVES:
- To familiarize the students the basic concepts of Management
- To understand the history, evolution and growth of management concepts
- To learn the applications of different functions of Management
- To study the different issues handled by modern managers
- To understand the different challenges faced by modern managers

UNIT I INTRODUCTION TO MANAGEMENT
Definition, Nature and Scope, Functions, Managerial Roles, Levels of Management, Managerial Skills, Challenges of Management; Evolution of Management-Classical Approach-Scientific and Administrative Management; The Behavioral approach; The Quantitative approach; The Systems Approach; Contingency Approach, IT Approach.

UNIT II PLANNING AND DECISION MAKING
General Framework for Planning -Planning Process, Types of Plans, Management by Objectives; Development of Business Strategy. Decision making and Problem Solving -Programmed and Non-
Programmed Decisions, Steps in Problem Solving and Decision Making; Bounded Rationality and Influences on Decision Making; Group Problem Solving and Decision Making, Creativity and Innovation in Managerial Work.

UNIT III
ORGANIZATION AND HRM
9

UNIT IV
LEADERSHIP AND MOTIVATION
9
Leadership, Power and Authority, Leadership Styles; Behavioral Leadership, Situational Leadership, Leadership Skills, Leader as Mentor and Coach, Leadership during adversity and Crisis; Handling Employee and Customer Complaints, Team Motivation -Types of Motivation; Relationship between Motivation, Performance and Engagement, Content Motivational Theories - Needs Hierarchy Theory, Two Factor Theory, Theory X and Theory Y.

UNIT V
CONTROLLING
9
Control, Types and Strategies for Control, Steps in Control Process, Budgetary and Non-Budgetary Controls. Characteristics of Effective Controls, Establishing control systems, Control frequency, and Methods.

COURSE OUTCOMES:
CO1: Understand the different elements of effective management
CO2: Apply the concepts of planning and decision making in organizations
CO3: Describe the concepts of organization and need for staffing process
CO4: Adopt the concept of directing through motivation and leadership
CO5: Demonstrate the use of control methods in changing business environment

TEXT BOOK:

REFERENCES :

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s 1</th>
<th>PSO’s 2</th>
<th>PSO’s 3</th>
<th>PSO’s 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
CW3551 DATA AND INFORMATION SECURITY L T P C
3 0 0 3

COURSE OBJECTIVES:
- To understand the basics of Information Security
- To know the legal, ethical and professional issues in Information Security
- To equip the students' knowledge on digital signature, email security and web security

UNIT I INTRODUCTION 9

UNIT II SECURITY INVESTIGATION 9

UNIT III DIGITAL SIGNATURE AND AUTHENTICATION 9

UNIT IV E-MAIL AND IP SECURITY 9

UNIT V WEB SECURITY 9

COURSE OUTCOMES:
Upon successful completion of this course, students will be able to:
CO1: Understand the basics of data and information security
CO2: Understand the legal, ethical and professional issues in information security
CO3: Understand the various authentication schemes to simulate different applications.
CO4: Understand various security practices and system security standards
CO5: Understand the Web security protocols for E-Commerce applications

TOTAL :45 PERIODS

TEXT BOOKS:
REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>2.2</td>
<td>1.6</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "" - no correlation

CW3601 BUSINESS ANALYTICS

COURSE OBJECTIVES:
- To understand the Analytics Life Cycle.
- To comprehend the process of acquiring Business Intelligence.
- To understand various types of analytics for Business Forecasting.
- To model the supply chain management for Analytics.
- To apply analytics for different functions of a business.

UNIT I INTRODUCTION TO BUSINESS ANALYTICS

UNIT II BUSINESS INTELLIGENCE
Data Warehouses and Data Mart - Knowledge Management –Types of Decisions - Decision Making Process - Decision Support Systems – Business Intelligence –OLAP – Analytic functions

UNIT III BUSINESS FORECASTING
Introduction to Business Forecasting and Predictive analytics - Logic and Data Driven Models – Data Mining and Predictive Analysis Modeling –Machine Learning for Predictive analytics.

UNIT IV HR & SUPPLY CHAIN ANALYTICS
Human Resources – Planning and Recruitment – Training and Development - Supply chain network - Planning Demand, Inventory and Supply – Logistics – Analytics applications in HR & Supply Chain. Apply HR Analytics to make a prediction of the demand for hourly employees for a year.
UNIT V MARKETING & SALES ANALYTICS

COURSE OUTCOMES:
CO1: Explain the real world business problems and model with analytical solutions.
CO2: Identify the business processes for extracting Business Intelligence
CO3: Apply predictive analytics for business forecasting
CO4: Apply analytics for supply chain and logistics management
CO5: Use analytics for marketing and sales.

TOTAL: 45 PERIODS

REFERENCES
1. R. Evans James, Business Analytics, 2017

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVG.</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ' ' - no correlation

CCS356 OBJECT ORIENTED SOFTWARE ENGINEERING L T P C

3 0 2 4

COURSE OBJECTIVES:
- To understand Software Engineering Lifecycle Models
- To Perform software requirements analysis
- To gain knowledge of the System Analysis and Design concepts using UML.
- To understand software testing and maintenance approaches
- To work on project management scheduling using DevOps

UNIT I SOFTWARE PROCESS AND AGILE DEVELOPMENT

UNIT II REQUIREMENTS ANALYSIS AND SPECIFICATION

UNIT III SOFTWARE DESIGN

UNIT IV SOFTWARE TESTING AND MAINTENANCE
Testing – Unit testing – Black box testing– White box testing – Integration and System testing– Regression testing – Debugging - Program analysis – Symbolic execution – Model Checking-Case Study

UNIT V PROJECT MANAGEMENT

COURSE OUTCOMES:
CO1: Compare various Software Development Lifecycle Models
CO2: Evaluate project management approaches as well as cost and schedule estimation strategies.
CO3: Perform formal analysis on specifications.
CO4: Use UML diagrams for analysis and design.
CO5: Architect and design using architectural styles and design patterns, and test the system

PRACTICAL EXERCISES:
LIST OF EXPERIMENTS:
1. Identify a software system that needs to be developed.
2. Document the Software Requirements Specification (SRS) for the identified system.
3. Identify use cases and develop the Use Case model.
4. Identify the conceptual classes and develop a Domain Model and also derive a Class Diagram from that.
5. Using the identified scenarios, find the interaction between objects and represent them using UML Sequence and Collaboration Diagrams.
6. Draw relevant State Chart and Activity Diagrams for the same system.
7. Implement the system as per the detailed design.
8. Test the software system for all the scenarios identified as per the usecase diagram.
9. Improve the reusability and maintainability of the software system by applying appropriate design patterns.
10. Implement the modified system and test it for various scenarios.

SUGGESTED DOMAINS FOR MINI-PROJECT:
1. Passport automation system.
2. Book bank
3. Exam registration

45 PERIODS
30 PERIODS
4. Stock maintenance system.
5. Online course reservation system
6. Airline/Railway reservation system
7. Software personnel management system
8. Credit card processing
9. e-book management system
10. Recruitment system
11. Foreign trading system
12. Conference management system
13. BPO management system
14. Library management system
15. Student information system

TOTAL: 75 PERIODS

TEXT BOOKS

REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

NCC Credit Course Level 3*
NX3651 (ARMY WING) NCC Credit Course - III

PERSONALITY DEVELOPMENT
PD 3 Group Discussion: Team Work 2
PD 4 Career Counselling, SSB Procedure & Interview Skills 3
PD 5 Public Speaking 4
BORDER & COASTAL AREAS
BCA 2 Security Setup and Border/Coastal management in the area 2
BCA 3 Security Challenges & Role of cadets in Border management 2

ARMED FORCES
AF 2 Modes of Entry to Army, CAPF, Police 3

COMMUNICATION
C 1 Introduction to Communication & Latest Trends 3

INFANTRY
INF 1 Organisation of Infantry Battalion & its weapons 3

MILITARY HISTORY
MH 1 Biographies of Renowned Generals 4
MH 2 War Heroes - PVC Awardees 4
MH 3 Study of Battles - Indo Pak War 1965, 1971 & Kargil 9
MH 4 War Movies 6

TOTAL: 45 PERIODS

NCC Credit Course Level 3*
NX3652 (NAVAL WING) NCC Credit Course - III
L T P C
3 0 0 3

PERSONALITY DEVELOPMENT
PD 3 Group Discussion: Team Work 2
PD 4 Career Counselling, SSB Procedure & Interview Skills 3
PD 5 Public Speaking 4

BORDER & COASTAL AREAS
BCA 2 Security Setup and Border/Coastal management in the area 2
BCA 3 Security Challenges & Role of cadets in Border management 2

NAVAL ORIENTATION
NO 3 Modes of Entry - IN, ICG, Merchant Navy 3
AF 2 Naval Expeditions & Campaigns 3

NAVAL COMMUNICATION
NC 1 Introduction to Naval Communications 1
NC 2 Semaphore 1

NAVIGATION
N 1 Navigation of Ship - Basic Requirements 1
N 2 Chart Work 1

SEAMANSHIP
MH 1 Introduction to Anchor Work 2
MH 2 Rigging Capsule 6
MH 3 Boatwork - Parts of Boat 2
MH 4 Boat Pulling Instructions 2
MH 5 Whaler Sailing Instructions 3
FIRE FIGHTING FLOODING & DAMAGE CONTROL

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFDC 1</td>
<td>Fire Fighting</td>
<td>2</td>
</tr>
<tr>
<td>FFDC 2</td>
<td>Damage Control</td>
<td>2</td>
</tr>
</tbody>
</table>

SHIP MODELLING

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>Ship Modelling Capstone</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL : 45 PERIODS

NCC Credit Course Level 3*

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX3653</td>
<td>(AIR FORCE WING) NCC Credit Course Level - III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PERSONALITY DEVELOPMENT

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD 3</td>
<td>Group Discussion: Team Work</td>
<td>2</td>
</tr>
<tr>
<td>PD 4</td>
<td>Career Counselling, SSB Procedure & Interview Skills</td>
<td>3</td>
</tr>
<tr>
<td>PD 5</td>
<td>Public Speaking</td>
<td>4</td>
</tr>
</tbody>
</table>

BORDER & COASTAL AREAS

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCA 2</td>
<td>Security Setup and Border/Coastal management in the area</td>
<td>2</td>
</tr>
<tr>
<td>BCA 3</td>
<td>Security Challenges & Role of cadets in Border management</td>
<td>2</td>
</tr>
</tbody>
</table>

AIRMANSHP

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>Airmanship</td>
<td>1</td>
</tr>
</tbody>
</table>

BASIC FLIGHT INSTRUMENTS

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI 1</td>
<td>Basic Flight Instruments</td>
<td>3</td>
</tr>
</tbody>
</table>

AERO MODELLING

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM 1</td>
<td>Aero Modelling Capsule</td>
<td>3</td>
</tr>
</tbody>
</table>

GENERAL SERVICE KNOWLEDGE

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSK 4</td>
<td>Latest Trends & Acquisitions</td>
<td>2</td>
</tr>
</tbody>
</table>

AIR CAMPAIGNS

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 1</td>
<td>Air Campaigns</td>
<td>6</td>
</tr>
</tbody>
</table>

PRINCIPLES OF FLIGHT

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF 1</td>
<td>Principles of Flight</td>
<td>3</td>
</tr>
<tr>
<td>PF 2</td>
<td>Forces acting on Aircraft</td>
<td>3</td>
</tr>
</tbody>
</table>

NAVIGATION

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM 1</td>
<td>Navigation</td>
<td>2</td>
</tr>
<tr>
<td>NM 2</td>
<td>Introduction to Met and Atmosphere</td>
<td>3</td>
</tr>
</tbody>
</table>

AERO ENGINES

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 1</td>
<td>Introduction and types of Aero Engine</td>
<td>3</td>
</tr>
<tr>
<td>E 2</td>
<td>Aircraft Controls</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL : 45 PERIODS
COURSE OBJECTIVES:
- Implement various machine learning techniques for predictive analysis
- Learn the various software development methodologies
- Learn predictive analysis in HR, supply chain
- Learn predictive analysis in marketing and sales

LIST OF EXPERIMENTS:
1. Implement Machine learning techniques for Predictive analytics.
2. Predict the Customer Credit Risk for Credit card data-set using Linear Regression.
3. Apply HR Analytics to make a prediction of the demand for hourly-employees for the following month or for the next few years.
4. Apply analytics for forecasting and inventory planning for a large retailer.
5. Perform predictive analytics for customers' behaviour in marketing and sales.

List of Equipments:(30 Students per Batch)
1: Systems with R, R Studio (Additional libraries required)

COURSE OUTCOMES:
CO1: Implement Machine learning techniques for Predictive analytics.
CO2: Analyse prediction using Linear Regression.
CO3: Perform analytics for forecasting and inventory planning for a large retailer.
CO4: Apply predictive analysis in HR, supply chain.
CO5: Apply predictive analysis in marketing and sales.

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL: 60 PERIODS

GE3791 HUMAN VALUES AND ETHICS

COURSE DESCRIPTION
This course aims to provide a broad understanding about the modern values and ethical principles that have evolved and are enshrined in the Constitution of India with regard to the democratic, secular and scientific aspects. The course is designed for undergraduate students so that they could study, understand and apply these values in their day to day life.
COURSE OBJECTIVES:

- To create awareness about values and ethics enshrined in the Constitution of India.
- To sensitize students about the democratic values to be upheld in the modern society.
- To inculcate respect for all people irrespective of their religion or other affiliations.
- To instill the scientific temper in the students’ minds and develop their critical thinking.
- To promote sense of responsibility and understanding of the duties of citizen.

UNIT I DEMOCRATIC VALUES

Reading Text: Excerpts from John Stuart Mills’ On Liberty

UNIT II SECULAR VALUES

Understanding Secular values – Interpretation of secularism in Indian context - Disassociation of state from religion – Acceptance of all faiths – Encouraging non-discriminatory practices.

Reading Text: Excerpt from Secularism in India: Concept and Practice by Ram Puniyani

UNIT III SCIENTIFIC VALUES

Reading Text: Excerpt from The Scientific Temper by Antony Michaelis R

UNIT IV SOCIAL ETHICS

Application of ethical reasoning to social problems – Gender bias and issues – Gender violence – Social discrimination – Constitutional protection and policies – Inclusive practices.

Reading Text: Excerpt from 21 Lessons for the 21st Century by Yuval Noah Harari

UNIT V SCIENTIFIC ETHICS

Transparency and Fairness in scientific pursuits – Scientific inventions for the betterment of society - Unfair application of scientific inventions – Role and Responsibility of Scientist in the modern society.

TOTAL: 30 PERIODS

REFERENCES:
4. The Civic Culture: Political Attitudes and Democracy in Five Nations by Gabriel A. Almond and Sidney Verba, Princeton University Press,
5. Research Methodology for Natural Sciences by Soumitro Banerjee, IISc Press, January 2022

COURSE OUTCOMES

Students will be able to

CO1: Identify the importance of democratic, secular and scientific values in harmonious functioning of social life

CO2: Practice democratic and scientific values in both their personal and professional life.

CO3: Find rational solutions to social problems.

CO4: Behave in an ethical manner in society

CO5: Practice critical thinking and the pursuit of truth.

CW3511

SUMMER INTERNSHIP

COURSE OBJECTIVES:
To enable the students to

- Get connected with reputed industry / laboratory / academia / research institute
- Get practical knowledge on Product Development / Services and operations / Software Design and Development / Testing / Analytics / research / startups / professionalism / business processes and insights / domain knowledge / Industry Practices / and other related aspects and develop skills to solve related problems
- Develop technical, soft, team skills to cater to the needs of the industry / academia / businesses / research / organizations in the core aspects of Automation, Digitalization

The students individually undergo training in reputed firms / research institutes / laboratories for the specified duration. After the completion of training, a detailed report should be submitted within ten days from the commencement of next semester. The students will be evaluated as per the Regulations.

No. of Weeks: 04

COURSE OUTCOMES:
On completion of the course, the student will know about

CO1: Industry Practices, Processes, Techniques, technology, automation and other core aspects of software industry

CO2: Analyze, Design solutions to complex business problems

CO3: Build and deploy solutions for target platform

CO4: Preparation of Technical reports and presentation

CW3811

PROJECT WORK/ INTERNSHIP

COURSE OBJECTIVES:

- To train the students
- For gaining domain knowledge, and technical skills to solve potential business / research problems
- Gather requirements and Design suitable software solutions and evaluate alternatives
- To work in small teams and understand the processes and practices in the industry.
- Implement, Test and deploy solutions for target platforms
Preparing project reports and presentation

The students shall individually / or as group work on business/research domains and related problems approved by the Department / organization that offered the internship / project.

The student can select any topic which is relevant to his/her specialization of the programme. The student should continue the work on the selected topic as per the formulated methodology. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work, results and discussion, conclusion and references should be prepared as per the format prescribed by the University and submitted to the Head of the department. The students will be evaluated based on the report and viva-voce examination by a panel of examiners as per the Regulations.

TOTAL: 300 PERIODS

COURSE OUTCOMES:
At the end of the project, the student will be able to

- **CO1:** Gain Domain knowledge and technical skill set required for solving industry / research problems
- **CO2:** Provide solution architecture, module level designs, algorithms
- **CO3:** Implement, test and deploy the solution for the target platform
- **CO4:** Prepare detailed technical report, demonstrate and present the work
COURSE OBJECTIVES:

- To outline an overview of exploratory data analysis.
- To implement data visualization using Matplotlib.
- To perform univariate data exploration and analysis.
- To apply bivariate data exploration and analysis.
- To use Data exploration and visualization techniques for multivariate and time series data.

UNIT I
EXPLORATORY DATA ANALYSIS
6
EDA fundamentals – Understanding data science – Significance of EDA – Making sense of data – Comparing EDA with classical and Bayesian analysis – Software tools for EDA - Visual Aids for EDA- Data transformation techniques-merging database, reshaping and pivoting, Transformation techniques.

UNIT II
EDA USING PYTHON
6

UNIT III
UNIVARIATE ANALYSIS
6
Introduction to Single variable: Distribution Variables - Numerical Summaries of Level and Spread - Scaling and Standardizing – Inequality.

UNIT IV
BIVARIATE ANALYSIS
6
Relationships between Two Variables - Percentage Tables - Analysing Contingency Tables - Handling Several Batches - Scatterplots and Resistant Lines.

UNIT V
MULTIVARIATE AND TIME SERIES ANALYSIS
6

PRACTICAL EXERCISES:
30 PERIODS
1. Install the data Analysis and Visualization tool: R/ Python /Tableau Public/ Power BI.
2. Perform exploratory data analysis (EDA) with datasets like email data set. Export all your emails as a dataset, import them inside a pandas data frame, visualize them and get different insights from the data.
3. Working with Numpy arrays, Pandas data frames , Basic plots using Matplotlib.
4. Explore various variable and row filters in R for cleaning data. Apply various plot features in R on sample data sets and visualize.
5. Perform Time Series Analysis and apply the various visualization techniques.
6. Perform Data Analysis and representation on a Map using various Map data sets with Mouse Rollover effect, user interaction, etc..
7. Build cartographic visualization for multiple datasets involving various countries of the world; states and districts in India etc.
8. Perform EDA on Wine Quality Data Set.
9. Use a case study on a data set and apply the various EDA and visualization techniques and present an analysis report.

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO1: Understand the fundamentals of exploratory data analysis.
CO2: Implement the data visualization using Matplotlib.
CO3: Perform univariate data exploration and analysis.
CO4: Apply bivariate data exploration and analysis.
CO5: Use Data exploration and visualization techniques for multivariate and time series data.

TOTAL: 60 PERIODS

TEXT BOOKS:

REFERENCES:

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>1</td>
<td>3 2 3 3 - - - 2 2 3 2 3 3</td>
<td>3 3 2 3</td>
</tr>
<tr>
<td>2</td>
<td>2 2 2 3 - - - 3 2 2 2 1 2</td>
<td>2 3 3 2</td>
</tr>
<tr>
<td>3</td>
<td>2 3 3 2 2 3 - - - 2 2 2 2 1</td>
<td>2 3 1 2</td>
</tr>
<tr>
<td>4</td>
<td>2 2 2 2 3 - - - 3 2 2 1 2 2 2 2</td>
<td>2 2 2 2</td>
</tr>
<tr>
<td>5</td>
<td>2 2 3 2 1 - - - 1 2 2 1 2 3 2 2</td>
<td>2 2 2 2</td>
</tr>
<tr>
<td>AVG.</td>
<td>2.2 2.2 2.4 2.4 2.6 - - - 2.2 2.2 1.4 2 2.4 2.2 2.2</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

COURSE OBJECTIVES:
- To understand the foundations of the recommender system.
- To learn the significance of machine learning and data mining algorithms for Recommender systems
- To learn about collaborative filtering
- To make students design and implement a recommender system.
- To learn collaborative filtering.
UNIT I INTRODUCTION
Introduction and basic taxonomy of recommender systems - Traditional and non-personalized Recommender Systems - Overview of data mining methods for recommender systems- similarity measures- Dimensionality reduction – Singular Value Decomposition (SVD)

Suggested Activities:
- Practical learning – Implement Data similarity measures.
- External Learning – Singular Value Decomposition (SVD) applications

Suggested Evaluation Methods:
- Quiz on Recommender systems.
- Quiz of python tools available for implementing Recommender systems

UNIT II CONTENT-BASED RECOMMENDATION SYSTEMS
High-level architecture of content-based systems - Item profiles, Representing item profiles, Methods for learning user profiles, Similarity-based retrieval, and Classification algorithms.

Suggested Activities:
- Assignment on content-based recommendation systems
- Assignment of learning user profiles

Suggested Evaluation Methods:
- Quiz on similarity-based retrieval.
- Quiz of content-based filtering

UNIT III COLLABORATIVE FILTERING
A systematic approach, Nearest-neighbor collaborative filtering (CF), user-based and item-based CF, components of neighborhood methods (rating normalization, similarity weight computation, and neighborhood selection

Suggested Activities:
- Practical learning – Implement collaborative filtering concepts
- Assignment of security aspects of recommender systems

Suggested Evaluation Methods:
- Quiz on collaborative filtering
- Seminar on security measures of recommender systems

UNIT IV ATTACK-RESISTANT RECOMMENDER SYSTEMS

Suggested Activities:
- Group Discussion on attacks and their mitigation
- Study of the impact of group attacks
- External Learning – Use of CAPTCHAs
Suggested Evaluation Methods:

- Quiz on attacks on recommender systems
- Seminar on preventing attacks using the CAPTCHAs

UNIT V EVALUATING RECOMMENDER SYSTEMS 6
Evaluating Paradigms – User Studies – Online and Offline evaluation – Goals of evaluation design
– Design Issues – Accuracy metrics – Limitations of Evaluation measures

Suggested Activities:

- Group Discussion on goals of evaluation design
- Study of accuracy metrics

Suggested Evaluation Methods:

- Quiz on evaluation design
- Problems on accuracy measures

PRACTICAL EXERCISES 30 PERIODS
1. Implement Data similarity measures using Python
2. Implement dimension reduction techniques for recommender systems
3. Implement user profile learning
4. Implement content-based recommendation systems
5. Implement collaborative filter techniques
6. Create an attack for tampering with recommender systems
7. Implement accuracy metrics like Receiver Operated Characteristic curves

COURSE OUTCOMES:
On completion of the course, the students will be able to:

CO1: Understand the basic concepts of recommender systems.
CO2: Implement machine-learning and data-mining algorithms in recommender systems data sets.
CO3: Implementation of Collaborative Filtering in carrying out performance evaluation of recommender systems based on various metrics.
CO4: Design and implement a simple recommender system.
CO5: Learn about advanced topics of recommender systems.
CO6: Learn about advanced topics of recommender systems applications

TEXTBOOKS:
CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>1.83</td>
<td>2 0.83</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS355 NEURAL NETWORKS AND DEEP LEARNING

COURSE OBJECTIVES:
- To understand the basics in deep neural networks
- To understand the basics of associative memory and unsupervised learning networks
- To apply CNN architectures of deep neural networks
- To analyze the key computations underlying deep learning, then use them to build and train deep neural networks for various tasks.
- To apply autoencoders and generative models for suitable applications.

UNIT I INTRODUCTION
Neural Networks-Application Scope of Neural Networks-Artificial Neural Network: An Introduction-Evolution of Neural Networks-Basic Models of Artificial Neural Network- Important Terminologies of ANNs-Supervised Learning Network.

UNIT II ASSOCIATIVE MEMORY AND UNSUPERVISED LEARNING NETWORKS

UNIT III THIRD-GENERATION NEURAL NETWORKS

UNIT IV DEEP FEEDFORWARD NETWORKS
UNIT V RECURRENT NEURAL NETWORKS

LAB EXPERIMENTS:

1. Implement simple vector addition in TensorFlow.
2. Implement a regression model in Keras.
4. Implement a Feed-Forward Network in TensorFlow/Keras.
5. Implement an Image Classifier using CNN in TensorFlow/Keras.
6. Improve the Deep learning model by fine tuning hyper parameters.
7. Implement a Transfer Learning concept in Image Classification.
8. Using a pre trained model on Keras for Transfer Learning
9. Perform Sentiment Analysis using RNN
10. Implement an LSTM based Autoencoder in TensorFlow/Keras.
11. Image generation using GAN

Additional Experiments:

12. Train a Deep learning model to classify a given image using pre trained model
13. Recommendation system from sales data using Deep Learning
14. Implement Object Detection using CNN
15. Implement any simple Reinforcement Algorithm for an NLP problem

TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Apply Convolution Neural Network for image processing.
CO2: Understand the basics of associative memory and unsupervised learning networks.
CO3: Apply CNN and its variants for suitable applications.
CO4: Analyze the key computations underlying deep learning and use them to build and train deep neural networks for various tasks.
CO5: Apply autoencoders and generative models for suitable applications.

TEXT BOOKS:

REFERENCES:

4. Learn Keras for Deep Neural Networks, Jojo Moolayil, Apress, 2018

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AVg.</td>
<td>2.6</td>
<td>2.8</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS369 TEXT AND SPEECH ANALYSIS

COURSE OBJECTIVES:
- Understand natural language processing basics
- Apply classification algorithms to text documents
- Build question-answering and dialogue systems
- Develop a speech recognition system
- Develop a speech synthesizer

UNIT I NATURAL LANGUAGE BASICS

Suggested Activities
- Flipped classroom on NLP
- Implementation of Text Preprocessing using NLTK
- Implementation of TF-IDF models

Suggested Evaluation Methods
- Quiz on NLP Basics
- Demonstration of Programs
UNIT II TEXT CLASSIFICATION 6

Suggested Activities
- Flipped classroom on Feature extraction of documents
- Implementation of SVM models for text classification
- External learning: Text summarization and Topic models

Suggested Evaluation Methods
- Assignment on above topics
- Quiz on RNN, Transformers
- Implementing NLP with RNN and Transformers

UNIT III QUESTION ANSWERING AND DIALOGUE SYSTEMS 9

Suggested Activities:
- Flipped classroom on language models for QA
- Developing a knowledge-based question-answering system
- Classic QA model development

Suggested Evaluation Methods
- Assignment on the above topics
- Quiz on knowledge-based question answering system
- Development of simple chatbots

UNIT IV TEXT-TO-SPEECH SYNTHESIS 6

Suggested Activities:
- Flipped classroom on Speech signal processing
- Exploring Text normalization
- Data collection
- Implementation of TTS systems

Suggested Evaluation Methods
- Assignment on the above topics
- Quiz on wavenet, deep learning-based TTS systems
- Finding accuracy with different TTS systems
UNIT V AUTOMATIC SPEECH RECOGNITION

Speech recognition: Acoustic modelling – Feature Extraction - HMM, HMM-DNN systems

Suggested Activities:
- Flipped classroom on Speech recognition.
- Exploring Feature extraction

Suggested Evaluation Methods
- Assignment on the above topics
- Quiz on acoustic modelling

PRACTICAL EXERCISES

1. Create Regular expressions in Python for detecting word patterns and tokenizing text
2. Getting started with Python and NLTK - Searching Text, Counting Vocabulary, Frequency Distribution, Collocations, Bigrams
3. Accessing Text Corpora using NLTK in Python
4. Write a function that finds the 50 most frequently occurring words of a text that are not stop words.
5. Implement the Word2Vec model
6. Use a transformer for implementing classification
7. Design a chatbot with a simple dialog system
8. Convert text to speech and find accuracy
9. Design a speech recognition system and find the error rate

TOTAL: 60 PERIODS

COURSE OUTCOMES:
On completion of the course, the students will be able to

CO1: Explain existing and emerging deep learning architectures for text and speech processing
CO2: Apply deep learning techniques for NLP tasks, language modelling and machine translation
CO3: Explain coreference and coherence for text processing
CO4: Build question-answering systems, chatbots and dialogue systems
CO5: Apply deep learning models for building speech recognition and text-to-speech systems

TEXTBOOK

REFERENCES:
4. Steven Bird, Ewan Klein, and Edward Loper, “Natural language processing with Python”, O’REILLY.
CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>2.2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS349 IMAGE AND VIDEO ANALYTICS

L T P C 2 0 2 3

COURSE OBJECTIVES:
- To understand the basics of image processing techniques for computer vision.
- To learn the techniques used for image pre-processing.
- To discuss the various object detection techniques.
- To understand the various Object recognition mechanisms.
- To elaborate on the video analytics techniques.

UNIT I INTRODUCTION

UNIT II IMAGE PRE-PROCESSING
Local pre-processing - Image smoothing - Edge detectors - Zero-crossings of the second derivative - Scale in image processing - Canny edge detection - Parametric edge models - Edges in multi-spectral images - Local pre-processing in the frequency domain - Line detection by local pre-processing operators - Image restoration.

UNIT III OBJECT DETECTION USING MACHINE LEARNING

UNIT IV FACE RECOGNITION AND GESTURE RECOGNITION

UNIT V VIDEO ANALYTICS
Video Processing – use cases of video analytics-Vanishing Gradient and exploding gradient problem-RestNet architecture-RestNet and skip connections-Inception Network-GoogleNet architecture-Improvement in Inception v2-Video analytics-RestNet and Inception v3.
LIST OF EXERCISES

1. Write a program that computes the T-pyramid of an image.
2. Write a program that derives the quad tree representation of an image using the homogeneity criterion of equal intensity.
3. Develop programs for the following geometric transforms: (a) Rotation (b) Change of scale (c) Skewing (d) Affine transform calculated from three pairs of corresponding points (e) Bilinear transform calculated from four pairs of corresponding points.
4. Develop a program to implement Object Detection and Recognition.
5. Develop a program for motion analysis using moving edges, and apply it to your image sequences.
6. Develop a program for Facial Detection and Recognition.
7. Write a program for event detection in video surveillance system.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Understand the basics of image processing techniques for computer vision and video analysis.
CO2: Explain the techniques used for image pre-processing.
CO3: Develop various object detection techniques.
CO4: Understand the various face recognition mechanisms.
CO5: Elaborate on deep learning-based video analytics.

TEXT BOOK:

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>1</td>
<td>3 1 2 2 2 - - - 3 3 2 1 2 1</td>
<td>2 1 3</td>
</tr>
<tr>
<td>2</td>
<td>2 2 3 3 3 - - - 3 2 1 1 2 2 1</td>
<td>1 1 1</td>
</tr>
<tr>
<td>3</td>
<td>1 2 2 2 3 - - - 1 2 1 2 1 1 3</td>
<td>2 1 3</td>
</tr>
<tr>
<td>4</td>
<td>1 2 3 2 3 - - - 2 2 2 3 2 2 2</td>
<td>2 2 2</td>
</tr>
<tr>
<td>5</td>
<td>3 2 1 3 2 - - - 2 1 1 3 3 2 1</td>
<td>1 1 1</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
- To understand the fundamental concepts related to Image formation and processing.
- To learn feature detection, matching and detection
- To become familiar with feature based alignment and motion estimation
- To develop skills on 3D reconstruction
- To understand image based rendering and recognition

UNIT I INTRODUCTION TO IMAGE FORMATION AND PROCESSING 6

UNIT II FEATURE DETECTION, MATCHING AND SEGMENTATION 6
Points and patches - Edges - Lines - Segmentation - Active contours - Split and merge - Mean shift and mode finding - Normalized cuts - Graph cuts and energy-based methods.

UNIT III FEATURE-BASED ALIGNMENT & MOTION ESTIMATION 6

UNIT IV 3D RECONSTRUCTION 6
Shape from X - Active rangefinding - Surface representations - Point-based representations - Volumetric representations - Model-based reconstruction - Recovering texture maps and albedosos.

UNIT V IMAGE-BASED RENDERING AND RECOGNITION 6

PRACTICAL EXERCISES: 30 PERIODS
LABORATORY EXPERIMENTS: 30 PERIODS

Software needed:
OpenCV computer vision Library for OpenCV in Python / PyCharm or C++ / Visual Studio or or equivalent
- OpenCV Installation and working with Python
- Basic Image Processing - loading images, Cropping, Resizing, Thresholding, Contour analysis, Blob detection
- Image Annotation – Drawing lines, text circle, rectangle, ellipse on images
- Image Enhancement - Understanding Color spaces, color space conversion, Histogram equalization, Convolution, Image smoothing, Gradients, Edge Detection
- Image Features and Image Alignment – Image transforms – Fourier, Hough, Extract ORB Image features, Feature matching, cloning, Feature matching based image alignment
- Image segmentation using Graphcut / Grabcut
- Camera Calibration with circular grid
- Pose Estimation
- 3D Reconstruction – Creating Depth map from stereo images
- Object Detection and Tracking using Kalman Filter, Camshift

1. docs.opencv.org
2. https://opencv.org/opencv-free-course/

TOTAL : 60 PERIODS

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO1: To understand basic knowledge, theories and methods in image processing and computer vision.
CO2: To implement basic and some advanced image processing techniques in OpenCV.
CO3: To apply 2D a feature-based based image alignment, segmentation and motion estimations.
CO4: To apply 3D image reconstruction techniques
CO5: To design and develop innovative image processing and computer vision applications.

TEXT BOOKS:

REFERENCES:
2. Christopher M. Bishop; Pattern Recognition and Machine Learning, Springer, 2006

<table>
<thead>
<tr>
<th>CO’s- PO’s & PSO’s MAPPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO’s</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

AVg. 2.6 2.6 2.4 1.8 2.4 0.4 0.25 0 2 1 2.2 2.4 2.6 1.8 2.2 1.4
1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:

- To understand big data.
- To learn and use NoSQL big data management.
- To learn mapreduce analytics using Hadoop and related tools.
- To work with map reduce applications
- To understand the usage of Hadoop related tools for Big Data Analytics

UNIT I UNDERSTANDING BIG DATA

UNIT II NOSQL DATA MANAGEMENT

UNIT III MAP REDUCE APPLICATIONS

UNIT IV BASICS OF HADOOP

UNIT V HADOOP RELATED TOOLS
Pig – Grunt – pig data model – Pig Latin – developing and testing Pig Latin scripts.
Hive – data types and file formats – HiveQL data definition – HiveQL data manipulation – HiveQL queries.

COURSE OUTCOMES:

After the completion of this course, students will be able to:

CO1: Describe big data and use cases from selected business domains.
CO2: Explain NoSQL big data management.
CO3: Install, configure, and run Hadoop and HDFS.
CO4: Perform map-reduce analytics using Hadoop.
CO5: Use Hadoop-related tools such as HBase, Cassandra, Pig, and Hive for big data analytics.
LIST OF EXPERIMENTS: 30 PERIODS
1. Downloading and installing Hadoop; Understanding different Hadoop modes. Startup scripts, Configuration files.
2. Hadoop Implementation of file management tasks, such as Adding files and directories, retrieving files and Deleting files
3. Implement of Matrix Multiplication with Hadoop Map Reduce
4. Run a basic Word Count Map Reduce program to understand Map Reduce Paradigm.
5. Installation of Hive along with practice examples.
6. Installation of HBase, Installing thrift along with Practice examples
7. Practice importing and exporting data from various databases.

Software Requirements:
 Cassandra, Hadoop, Java, Pig, Hive and HBase.

TOTAL:60 PERIODS

TEXT BOOKS:
3. Sadalage, Pramod J. "NoSQL distilled", 2013

REFERENCES:

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>1.8</td>
<td>2.6</td>
<td>2</td>
<td>2.2</td>
<td>2.8</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS335 CLOUD COMPUTING L T P C
2 0 2 3

COURSE OBJECTIVES:
- To understand the principles of cloud architecture, models and infrastructure.
- To understand the concepts of virtualization and virtual machines.
- To gain knowledge about virtualization Infrastructure.
- To explore and experiment with various Cloud deployment environments.
- To learn about the security issues in the cloud environment.
UNIT I CLOUD ARCHITECTURE MODELS AND INFRASTRUCTURE

UNIT II VIRTUALIZATION BASICS

UNIT III VIRTUALIZATION INFRASTRUCTURE AND DOCKER

UNIT IV CLOUD DEPLOYMENT ENVIRONMENT
Google App Engine – Amazon AWS – Microsoft Azure; Cloud Software Environments – Eucalyptus – OpenStack.

UNIT V CLOUD SECURITY

PRACTICAL EXERCISES:
1. Install Virtualbox/VMware/ Equivalent open source cloud Workstation with different flavours of Linux or Windows OS on top of windows 8 and above.
2. Install a C compiler in the virtual machine created using a virtual box and execute Simple Programs
3. Install Google App Engine. Create a hello world app and other simple web applications using python/java.
4. Use the GAE launcher to launch the web applications.
5. Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.
6. Find a procedure to transfer the files from one virtual machine to another virtual machine.
7. Install Hadoop single node cluster and run simple applications like wordcount.
9. Run a Container from Docker Hub

COURSE OUTCOMES:
CO1: Understand the design challenges in the cloud.
CO2: Apply the concept of virtualization and its types.
CO3: Experiment with virtualization of hardware resources and Docker.
CO4: Develop and deploy services on the cloud and set up a cloud environment.
CO5: Explain security challenges in the cloud environment.
TEXT BOOKS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CCS372 VIRTUALIZATION L T P C 2 0 2 3

COURSE OBJECTIVES:
- To Learn the basics and types of Virtualization
- To understand the Hypervisors and its types
- To Explore the Virtualization Solutions
- To Experiment the virtualization platforms

UNIT I INTRODUCTION TO VIRTUALIZATION 7
Virtualization and cloud computing - Need of virtualization – cost, administration, fast deployment, reduce infrastructure cost – limitations- Types of hardware virtualization: Full virtualization - partial virtualization - Paravirtualization-Types of Hypervisors

UNIT II SERVER AND DESKTOP VIRTUALIZATION 6

UNIT III NETWORK VIRTUALIZATION 6
Introduction to Network Virtualization-Advantages- Functions-Tools for Network Virtualization-VLAN-WAN Architecture-WAN Virtualization

UNIT IV STORAGE VIRTUALIZATION 5
Memory Virtualization-Types of Storage Virtualization-Block, File-Address space Remapping-Risks of Storage Virtualization-SAN-NAS-RAID
UNIT V VIRTUALIZATION TOOLS

VMWare-Amazon AWS-Microsoft HyperV- Oracle VM Virtual Box - IBM PowerVM- Google Virtualization- Case study.

30 PERIODS

PRACTICAL EXERCISES:

1. Create type 2 virtualization in VMWARE or any equivalent Open Source Tool. Allocate memory and storage space as per requirement. Install Guest OS on that VMWARE.
2. a. Shrink and extend virtual disk
 b. Create, Manage, Configure and schedule snapshots
 c. Create Spanned, Mirrored and Striped volume
 d. Create RAID 5 volume
3. a. Desktop Virtualization using VNC
 b. Desktop Virtualization using Chrome Remote Desktop
4. Create type 2 virtualization on ESXI 6.5 server
5. Create a VLAN in CISCO packet tracer
6. Install KVM in Linux
7. Create Nested Virtual Machine (VM under another VM)

COURSE OUTCOMES:

CO1: Analyse the virtualization concepts and Hypervisor
CO2: Apply the Virtualization for real-world applications
CO3: Install & Configure the different VM platforms
CO4: Experiment with the VM with various software

TOTAL : 60 PERIODS

TEXT BOOKS

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>AVG.</td>
<td>1.8</td>
<td>2.2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

115
COURSE OBJECTIVES:

- Introduce Cloud Service Management terminology, definition & concepts
- Compare and contrast cloud service management with traditional IT service management
- Identify strategies to reduce risk and eliminate issues associated with adoption of cloud services
- Select appropriate structures for designing, deploying and running cloud-based services in a business environment
- Illustrate the benefits and drive the adoption of cloud-based services to solve real world problems

UNIT I CLOUD SERVICE MANAGEMENT FUNDAMENTALS 6

UNIT II CLOUD SERVICES STRATEGY 6
Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, IT Capacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture

UNIT III CLOUD SERVICE MANAGEMENT 6

UNIT IV CLOUD SERVICE ECONOMICS 6
Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models

UNIT V CLOUD SERVICE GOVERNANCE & VALUE 6
IT Governance Definition, Cloud Governance Definition, Cloud Governance Framework, Cloud Governance Structure, Cloud Governance Considerations, Cloud Service Model Risk Matrix, Understanding Value of Cloud Services, Measuring the value of Cloud Services, Balanced Scorecard, Total Cost of Ownership

COURSE OUTCOMES:

CO1: Exhibit cloud-design skills to build and automate business solutions using cloud technologies.
CO2: Possess strong theoretical foundation leading to excellence and excitement towards adoption of cloud-based services
CO3: Solve the real world problems using Cloud services and technologies

30 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

1. Create a Cloud Organization in AWS/Google Cloud/or any equivalent Open Source cloud softwares like Openstack, Eucalyptus, OpenNebula with Role-based access control
2. Create a Cost-model for a web application using various services and do Cost-benefit analysis
3. Create alerts for usage of Cloud resources
4. Create Billing alerts for your Cloud Organization
5. Compare Cloud cost for a simple web application across AWS, Azure and GCP and suggest the best one

TOTAL: 60 PERIODS

TEXT BOOKS
1. Cloud Service Management and Governance: Smart Service Management in Cloud Era by Enamul Haque, Enel Publications
3. Cloud Computing Design Patterns by Thomas Erl, Robert Cope, Amin Naserpour

REFERENCES
1. Economics of Cloud Computing by Praveen Ayyappa, LAP Lambert Academic Publishing

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1 1 1 1 1 1 1 2 1 3 2 2 1 3</td>
</tr>
<tr>
<td>2</td>
<td>3 1 2 3 2 - - - 1 2 3 1 2 2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 1 3 1 3 - - - 3 3 1 1 3 2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 1 1 2 3 - - - 2 3 3 1 1 1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 3 3 2 2 - - - 1 3 1 2 1 3 2</td>
<td></td>
</tr>
<tr>
<td>AVG.</td>
<td>1.8 1.8 2 1.8 2.2 - - 1.8 2.4 2.2 1.4 1.8 1.8 1.8</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS341 DATA WAREHOUSING

COURSE OBJECTIVES:
- To know the details of data warehouse Architecture
- To understand the OLAP Technology
- To understand the partitioning strategy
- To differentiate various schema
- To understand the roles of process manager & system manager

UNIT I INTRODUCTION TO DATA WAREHOUSE

Data warehouse Introduction - Data warehouse components- operational database Vs data warehouse – Data warehouse Architecture – Three-tier Data Warehouse Architecture - Autonomous Data Warehouse- Autonomous Data Warehouse Vs Snowflake - Modern Data Warehouse
UNIT II ETL AND OLAP TECHNOLOGY 6
What is ETL – ETL Vs ELT – Types of Data warehouses - Data warehouse Design and Modeling - Delivery Process - Online Analytical Processing (OLAP) - Characteristics of OLAP - Online Transaction Processing (OLTP) Vs OLAP - OLAP operations- Types of OLAP- ROLAP Vs MOLAP Vs HOLAP.

UNIT III META DATA, DATA MART AND PARTITION STRATEGY 7

UNIT IV DIMENSIONAL MODELING AND SCHEMA 6

UNIT V SYSTEM & PROCESS MANAGERS 6
Data Warehousing System Managers: System Configuration Manager- System Scheduling Manager - System Event Manager - System Database Manager - System Backup Recovery Manager - Data Warehousing Process Managers: Load Manager – Warehouse Manager- Query Manager – Tuning – Testing

PRACTICAL EXERCISES:
1. Data exploration and integration with WEKA
2. Apply weka tool for data validation
3. Plan the architecture for real time application
4. Write the query for schema definition
5. Design data warehouse for real time applications
6. Analyse the dimensional Modeling
7. Case study using OLAP
8. Case study using OTLP
9. Implementation of warehouse testing.

COURSE OUTCOMES:
At the end of the course the students should be able to
CO1: Design data warehouse architecture for various Problems
CO2: Apply the OLAP Technology
CO3: Analyse the partitioning strategy
CO4: Critically analyze the differentiation of various schema for given problem
CO5: Frame roles of process manager & system manager

TOTAL: 60 PERIODS

TEXT BOOKS
REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>2.6</td>
<td>2.6</td>
<td>1.2</td>
<td>2.5</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS367 STORAGE TECHNOLOGIES

L T P C

3 0 0 3

COURSE OBJECTIVES:

- Characterize the functionalities of logical and physical components of storage
- Describe various storage networking technologies
- Identify different storage virtualization technologies
- Discuss the different backup and recovery strategies
- Understand common storage management activities and solutions

UNIT I STORAGE SYSTEMS

Introduction to Information Storage: Digital data and its types, Information storage, Key characteristics of data center and Evolution of computing platforms. Information Lifecycle Management. Third Platform Technologies: Cloud computing and its essential characteristics, Cloud services and cloud deployment models, Big data analytics, Social networking and mobile computing, Characteristics of third platform infrastructure and Imperatives for third platform transformation. Data Center Environment: Building blocks of a data center, Compute systems and compute virtualization and Software-defined data center.

UNIT II INTELLIGENT STORAGE SYSTEMS AND RAID

Components of an intelligent storage system, Components, addressing, and performance of hard disk drives and solid-state drives, RAID, Types of intelligent storage systems, Scale-up and scale-out storage Architecture.

UNIT III STORAGE NETWORKING TECHNOLOGIES AND VIRTUALIZATION

Block-Based Storage System, File-Based Storage System, Object-Based and Unified Storage. Fibre Channel SAN: Software-defined networking, FC SAN components and architecture, FC SAN topologies, link aggregation, and zoning, Virtualization in FC SAN environment. Internet Protocol SAN: iSCSI protocol, network components, and connectivity, Link aggregation, switch aggregation, and VLAN, FCIP protocol,
connectivity, and configuration. Fibre Channel over Ethernet SAN: Components of FCoE SAN, FCoE SAN connectivity, Converged Enhanced Ethernet, FCoE architecture.

UNIT IV BACKUP, ARCHIVE AND REPLICATION 12
Introduction to Business Continuity, Backup architecture, Backup targets and methods, Data deduplication, Cloud-based and mobile device backup, Data archive, Uses of replication and its characteristics, Compute based, storage-based, and network-based replication, Data migration, Disaster Recovery as a Service (DRaaS).

UNIT V SECURING STORAGE INFRASTRUCTURE 6
Information security goals, Storage security domains, Threats to a storage infrastructure, Security controls to protect a storage infrastructure, Governance, risk, and compliance, Storage infrastructure management functions, Storage infrastructure management processes.

COURSE OUTCOMES:
CO1: Demonstrate the fundamentals of information storage management and various models of Cloud infrastructure services and deployment
CO2: Illustrate the usage of advanced intelligent storage systems and RAID
CO3: Interpret various storage networking architectures - SAN, including storage subsystems and virtualization
CO4: Examine the different role in providing disaster recovery and remote replication technologies
CO5: Infer the security needs and security measures to be employed in information storage management

TOTAL:45 PERIODS

TEXTBOOKS
1. EMC Corporation, Information Storage and Management, Wiley, India

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>AVg.</td>
<td>1.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>
| | 1 - low, 2 - medium, 3 - high, '-' - no correlation

120
CCS365 SOFTWARE DEFINED NETWORKS

COURSE OBJECTIVES:
- To understand the need for SDN and its data plane operations
- To understand the functions of control plane
- To comprehend the migration of networking functions to SDN environment
- To explore various techniques of network function virtualization
- To comprehend the concepts behind network virtualization

UNIT I SDN: INTRODUCTION
Evolving Network Requirements – The SDN Approach – SDN architecture - SDN Data Plane, Control plane and Application Plane

UNIT II SDN DATA PLANE AND CONTROL PLANE
Data Plane functions and protocols - OpenFlow Protocol - Flow Table - Control Plane Functions - Southbound Interface, Northbound Interface – SDN Controllers - Ryu, OpenDaylight, ONOS - Distributed Controllers

UNIT III SDN APPLICATIONS

UNIT IV NETWORK FUNCTION VIRTUALIZATION

UNIT V NFV FUNCTIONALITY
NFV Infrastructure – Virtualized Network Functions – NFV Management and Orchestration – NFV Use cases – SDN and NFV

PRACTICAL EXERCISES:
1) Setup your own virtual SDN lab
 i) Virtualbox/Mininet Environment for SDN - http://mininet.org
 ii) https://www.kathara.org
 iii) GNS3
2) Create a simple mininet topology with SDN controller and use Wireshark to capture and visualize the OpenFlow messages such as OpenFlow FLOW MOD, PACKET IN, PACKET OUT etc.
3) Create a SDN application that uses the Northbound API to program flow table rules on the switch for various use cases like L2 learning switch, Traffic Engineering, Firewall etc.
4) Create a simple end-to-end network service with two VNFs using vim-emu https://github.com/containernet/vim-emu
5) Install OSM and onboard and orchestrate network service.

COURSE OUTCOMES:
After the successful completion of this course, the student will be able to
CO1: Describe the motivation behind SDN
CO2: Identify the functions of the data plane and control plane
CO3: Design and develop network applications using SDN
CO4: Orchestrate network services using NFV
CO5: Explain various use cases of SDN and NFV

TOTAL: 60 PERIODS

TEXTBOOKS:

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1- low, 2- medium, 3- high, ‘-’ - no correlation

CCS368 STREAM PROCESSING L T P C
2 0 2 3

COURSE OBJECTIVES:
- Introduce Data Processing terminology, definition & concepts
- Define different types of Data Processing
- Explain the concepts of Real-time Data processing
- Select appropriate structures for designing and running real-time data services in a business environment
- Illustrate the benefits and drive the adoption of real-time data services to solve real world problems

UNIT I FOUNDATIONS OF DATA SYSTEMS
Introduction to Data Processing, Stages of Data processing, Data Analytics, Batch Processing, Stream processing, Data Migration, Transactional Data processing, Data Mining, Data Management Strategy, Storage, Processing, Integration, Analytics, Benefits of Data as a Service, Challenges
UNIT II REAL-TIME DATA PROCESSING 6
Introduction to Big data, Big data infrastructure, Real-time Analytics, Near real-time solution, Lambda architecture, Kappa Architecture, Stream Processing, Understanding Data Streams, Message Broker, Stream Processor, Batch & Real-time ETL tools, Streaming Data Storage

UNIT III DATA MODELS AND QUERY LANGUAGES 6
Relational Model, Document Model, Key-Value Pairs, NoSQL, Object-Relational Mismatch, Many-to-One and Many-to-Many Relationships, Network data models, Schema Flexibility, Structured Query Language, Data Locality for Queries, Declarative Queries, Graph Data models, Cypher Query Language, Graph Queries in SQL, The Semantic Web, CODASYL, SPARQL

UNIT IV EVENT PROCESSING WITH APACHE KAFKA 6
Apache Kafka, Kafka as Event Streaming platform, Events, Producers, Consumers, Topics, Partitions, Brokers, Kafka APIs, Admin API, Producer API, Consumer API, Kafka Streams API, Kafka Connect API

UNIT V REAL-TIME PROCESSING USING SPARK STREAMING 6

PRACTICAL EXERCISES: 30 PERIODS
1. Install MongoDB
2. Design and Implement Simple application using MongoDB
3. Query the designed system using MongoDB
4. Create a Event Stream with Apache Kafka
5. Create a Real-time Stream processing application using Spark Streaming
6. Build a Micro-batch application
7. Real-time Fraud and Anomaly Detection,
8. Real-time personalization, Marketing, Advertising

COURSE OUTCOMES:
CO1: Understand the applicability and utility of different streaming algorithms.
CO2: Describe and apply current research trends in data-stream processing.
CO3: Analyze the suitability of stream mining algorithms for data stream systems.
CO4: Program and build stream processing systems, services and applications.
CO5: Solve problems in real-world applications that process data streams.

TEXT BOOKS
1. Streaming Systems: The What, Where, When and How of Large-Scale Data Processing by Tyler Akidau, Slava Chemyak, Reuven Lax, O'Reilly publication
2. Designing Data-Intensive Applications by Martin Kleppmann, O'Reilly Media

REFERENCES
2. Kafka.apache.org
CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

AVg. 2.6 1.8 1.8 2.6 2.2 1.8 1.8 2.6 2.6 1.4 2.1 1.6 2.4 1.6

1 - low, 2 - medium, 3 - high, ‘-‘ - no correlation

CCS362 SECURITY AND PRIVACY IN CLOUD L T P C 2 0 2 3

COURSE OBJECTIVES:
- To Introduce Cloud Computing terminology, definition & concepts
- To understand the security design and architectural considerations for Cloud
- To understand the Identity, Access control in Cloud
- To follow best practices for Cloud security using various design patterns
- To be able to monitor and audit cloud applications for security

UNIT I FUNDAMENTALS OF CLOUD SECURITY CONCEPTS 7
Overview of cloud security - Security Services - Confidentiality, Integrity, Authentication, Non-repudiation, Access Control - Basic of cryptography - Conventional and public-key cryptography, hash functions, authentication, and digital signatures.

UNIT II SECURITY DESIGN AND ARCHITECTURE FOR CLOUD 6
Security design principles for Cloud Computing - Comprehensive data protection - End-to-end access control - Common attack vectors and threats - Network and Storage - Secure Isolation Strategies - Virtualization strategies - Inter-tenant network segmentation strategies - Data Protection strategies: Data retention, deletion and archiving procedures for tenant data, Encryption, Data Redaction, Tokenization, Obfuscation, PKI and Key

UNIT III ACCESS CONTROL AND IDENTITY MANAGEMENT 6

UNIT IV CLOUD SECURITY DESIGN PATTERNS 6
Introduction to Design Patterns, Cloud bursting, Geo-tagging, Secure Cloud Interfaces, Cloud Resource Access Control, Secure On-Premise Internet Access, Secure External Cloud

UNIT V MONITORING, AUDITING AND MANAGEMENT 5
Proactive activity monitoring - Incident Response, Monitoring for unauthorized access, malicious traffic, abuse of system privileges - Events and alerts - Auditing – Record generation, Reporting and Management, Tamper-proofing audit logs, Quality of Services, Secure Management, User management, Identity management, Security Information and Event Management
PRACTICAL EXERCISES:
1. Simulate a cloud scenario using Cloud Sim and run a scheduling algorithm not present in Cloud Sim
2. Simulate resource management using cloud sim
3. Simulate log forensics using cloud sim
4. Simulate a secure file sharing using a cloud sim
5. Implement data anonymization techniques over the simple dataset (masking, k-anonymization, etc)
6. Implement any encryption algorithm to protect the images
7. Implement any image obfuscation mechanism
8. Implement a role-based access control mechanism in a specific scenario
9. Implement an attribute-based access control mechanism based on a particular scenario
10. Develop a log monitoring system with incident management in the cloud

COURSE OUTCOMES:
CO1: Understand the cloud concepts and fundamentals.
CO2: Explain the security challenges in the cloud.
CO3: Define cloud policy and Identity and Access Management.
CO4: Understand various risks and audit and monitoring mechanisms in the cloud.
CO5: Define the various architectural and design considerations for security in the cloud.

TOTAL: 60 PERIODS

TEXTBOOKS
1. Raj Kumar Buyya, James Broberg, andrzej Goscinski, —Cloud Computing:‖, Wiley 2013

REFERENCES
2. Mastering Cloud Computing Foundations and Applications Programming RajkumarBuyya,
 Christian Vechhiola, S. ThamaraiSelvi

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AVg.</td>
<td></td>
<td>2</td>
<td>2.4</td>
<td>2.4</td>
<td>2.2</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>1.8</td>
<td>2.2</td>
<td>2.4</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘ - no correlation
COURSE OBJECTIVES:

- To impart the fundamental aspects and principles of AR/VR technologies.
- To know the internals of the hardware and software components involved in the development of AR/VR enabled applications.
- To learn about the graphical processing units and their architectures.
- To gain knowledge about AR/VR application development.
- To know the technologies involved in the development of AR/VR based applications.

UNIT I INTRODUCTION 7

UNIT II VR MODELING 6

UNIT III VR PROGRAMMING 6
VR Programming – Toolkits and Scene Graphs – World ToolKit – Java 3D – Comparison of World ToolKit and Java 3D

UNIT IV APPLICATIONS 6

UNIT V AUGMENTED REALITY 5
Introduction to Augmented Reality-Computer vision for AR-Interaction-Modelling and Annotation-Navigation-Wearable devices

30 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

1. Study of tools like Unity, Maya, 3DS MAX, AR toolkit, Vuforia and Blender.
2. Use the primitive objects and apply various projection types by handling camera.
3. Download objects from asset store and apply various lighting and shading effects.
4. Model three dimensional objects using various modelling techniques and apply textures over them.
5. Create three dimensional realistic scenes and develop simple virtual reality enabled mobile applications which have limited interactivity.
6. Add audio and text special effects to the developed application.
7. Develop VR enabled applications using motion trackers and sensors incorporating full haptic interactivity.
8. Develop AR enabled applications with interactivity like E learning environment, Virtual walkthroughs and visualization of historic places.
10. Develop simple MR enabled gaming applications.

COURSE OUTCOMES:
On completion of the course, the students will be able to:
CO1: Understand the basic concepts of AR and VR
CO2: Understand the tools and technologies related to AR/VR
CO3: Know the working principle of AR/VR related Sensor devices
CO4: Design of various models using modeling techniques
CO5: Develop AR/VR applications in different domains

TEXTBOOKS:
1. Charles Palmer, John Williamson, “Virtual Reality Blueprints: Create compelling VR experiences for mobile”, Packt Publisher, 2018

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AVG.</td>
<td>3.00</td>
<td>2.60</td>
<td>2.40</td>
<td>2.00</td>
<td>3.00</td>
<td>-</td>
<td>-</td>
<td>2.80</td>
<td>2.20</td>
<td>1.80</td>
<td>2.60</td>
<td>2.80</td>
<td>1.80</td>
<td>2.20</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ' - ' - no correlation

CCS361 ROBOTIC PROCESS AUTOMATION L T P C
2 0 2 3

COURSE OBJECTIVES:
- To understand the basic concepts of Robotic Process Automation.
- To expose to the key RPA design and development strategies and methodologies.
- To learn the fundamental RPA logic and structure.
- To explore the Exception Handling, Debugging and Logging operations in RPA.
- To learn to deploy and Maintain the software bot.
UNIT I INTRODUCTION TO ROBOTIC PROCESS AUTOMATION

UNIT II AUTOMATION PROCESS ACTIVITIES
Sequence, Flowchart & Control Flow: Sequencing the Workflow, Activities, Flowchart, Control Flow for Decision making. Data Manipulation: Variables, Collection, Arguments, Data Table, Clipboard management, File operations Controls: Finding the control, waiting for a control, Act on a control, UiExplorer, Handling Events

UNIT III APP INTEGRATION, RECORDING AND SCRAPING
App Integration, Recording, Scraping, Selector, Workflow Activities. Recording mouse and keyboard actions to perform operation, Scraping data from website and writing to CSV. Process Mining.

UNIT IV EXCEPTION HANDLING AND CODE MANAGEMENT

UNIT V DEPLOYMENT AND MAINTENANCE
Publishing using publish utility, Orchestration Server, Control bots, Orchestration Server to deploy bots, License management, Publishing and managing updates. RPA Vendors – Open Source RPA, Future of RPA

PRACTICAL EXERCISES:
Setup and Configure a RPA tool and understand the user interface of the tool:
1. Create a Sequence to obtain user inputs display them using a message box;
2. Create a Flowchart to navigate to a desired page based on a condition;
3. Create a State Machine workflow to compare user input with a random number.
4. Build a process in the RPA platform using UI Automation Activities.
5. Create an automation process using key System Activities, Variables and Arguments
6. Also implement Automation using System Trigger
7. Automate login to (web)Email account
8. Recording mouse and keyboard actions.
9. Scraping data from website and writing to CSV
10. Implement Error Handling in RPA platform
11. Web Scraping
12. Email Query Processing

COURSE OUTCOMES:
By the end of this course, the students will be able to:
- Enunciate the key distinctions between RPA and existing automation techniques and platforms.
- Use UiPath to design control flows and work flows for the target process
• Implement recording, web scraping and process mining by automation
• Use UiPath Studio to detect, and handle exceptions in automation processes
• Implement and use Orchestrator for creation, monitoring, scheduling, and controlling of automated bots and processes.

TEXT BOOKS:

REFERENCES:
1. Frank Casale (Author), Rebecca Dilla (Author), Heidi Jaynes (Author), Lauren Livingston (Author), Introduction to Robotic Process Automation: a Primer, Institute of Robotic Process Automation, Amazon Asia-Pacific Holdings Private Limited, 2018

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th></th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVG.</td>
<td>2</td>
<td>2.2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS340 CYBER SECURITY L T P C 2 0 2 3

COURSE OBJECTIVES:
- To learn cybercrime and cyberlaw.
- To understand the cyber attacks and tools for mitigating them.
- To understand information gathering.
- To learn how to detect a cyber attack.
- To learn how to prevent a cyber attack.

UNIT I INTRODUCTION
– A Global Perspective on Cyber Crimes; Cyber Laws – The Indian IT Act – Cybercrime and Punishment.

UNIT II ATTACKS AND COUNTERMEASURES

UNIT III RECONNAISSANCE

UNIT IV INTRUSION DETECTION

UNIT V INTRUSION PREVENTION

PRACTICAL EXERCISES:
1. Install Kali Linux on Virtual box
2. Explore Kali Linux and bash scripting
3. Perform open source intelligence gathering using Netcraft, Whois Lookups, DNS Reconnaissance, Harvester and Maltego
4. Understand the nmap command d and scan a target using nmap
5. Install metasploitable2 on the virtual box and search for unpatched vulnerabilities
6. Use Metasploit to exploit an unpatched vulnerability
7. Install Linus server on the virtual box and install ssh
8. Use Fail2banto scan log files and ban Ips that show the malicious signs
10. Perform real-time network traffic analysis and data pocket logging using Snort

COURSE OUTCOMES:
On successful completion of this course, the student will be able to
CO1: Explain the basics of cyber security, cyber crime and cyber law (K2)
CO2: Classify various types of attacks and learn the tools to launch the attacks (K2)
CO3 Apply various tools to perform information gathering (K3)
CO4: Apply intrusion techniques to detect intrusion (K3)
CO5: Apply intrusion prevention techniques to prevent intrusion (K3)

TOTAL:60 PERIODS
TEXTBOOKS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS359 QUANTUM COMPUTING

COURSE OBJECTIVES:
- To know the background of classical computing and quantum computing.
- To learn the fundamental concepts behind quantum computation.
- To study the details of quantum mechanics and its relation to Computer Science.
- To gain knowledge about the basic hardware and mathematical models of quantum computation.
- To learn the basics of quantum information and the theory behind it.

UNIT I QUANTUM COMPUTING BASIC CONCEPTS
Complex Numbers - Linear Algebra - Matrices and Operators - Global Perspectives Postulates of Quantum Mechanics – Quantum Bits - Representations of Qubits - Superpositions

UNIT II QUANTUM GATES AND CIRCUITS
Universal logic gates - Basic single qubit gates - Multiple qubit gates - Circuit development - Quantum error correction
UNIT III QUANTUM ALGORITHMS
Quantum parallelism - Deutsch’s algorithm - The Deutsch–Jozsa algorithm - Quantum Fourier transform and its applications - Quantum Search Algorithms: Grover’s Algorithm

UNIT IV QUANTUM INFORMATION THEORY
Data compression - Shannon’s noiseless channel coding theorem - Schumacher’s quantum noiseless channel coding theorem - Classical information over noisy quantum channels

UNIT V QUANTUM CRYPTOGRAPHY
Classical cryptography basic concepts - Private key cryptography - Shor’s Factoring Algorithm - Quantum Key Distribution - BB84 - Ekert 91

PRACTICAL EXERCISES
1. Single qubit gate simulation - Quantum Composer
2. Multiple qubit gate simulation - Quantum Composer
3. Composing simple quantum circuits with q-gates and measuring the output into classical bits.
4. IBM Qiskit Platform Introduction
5. Implementation of Shor’s Algorithms
6. Implementation of Grover’s Algorithm
7. Implementation of Deutsch’s Algorithm
8. Implementation of Deutsch-Jozsa’s Algorithm
9. Integer factorization using Shor’s Algorithm
10. QKD Simulation
11. Mini Project such as implementing an API for efficient search using Grover’s Algorithms or

COURSE OUTCOMES:
On completion of the course, the students will be able to:
CO1: Understand the basics of quantum computing.
CO2: Understand the background of Quantum Mechanics.
CO3: Analyze the computation models.
CO4: Model the circuits using quantum computation.
CO5: Understand the quantum operations such as noise and error–correction.

TOTAL:60 PERIODS

TEXTBOOKS:

REFERENCES
CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS339 CRYPTO CURRENCY AND BLOCKCHAIN TECHNOLOGIES L T P C 2023

COURSE OBJECTIVES:
- To understand the basics of Blockchain
- To learn Different protocols and consensus algorithms in Blockchain
- To learn the Blockchain implementation frameworks
- To understand the Blockchain Applications
- To experiment the Hyperledger Fabric, Ethereum networks

UNIT I INTRODUCTION TO BLOCKCHAIN
Blockchain- Public Ledgers, Blockchain as Public Ledgers - Block in a Blockchain, Transactions- The Chain and the Longest Chain - Permissioned Model of Blockchain, Cryptographic -Hash Function, Properties of a hash function-Hash pointer and Merkle tree

UNIT II BITCOIN AND CRYPTOCURRENCY
A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts , Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay

UNIT III BITCOIN CONSENSUS
Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW , Bitcoin PoW, Attacks on PoW ,monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases.

UNIT IV HYPERLEDGER FABRIC & ETHEREUM

UNIT V BLOCKCHAIN APPLICATIONS
Smart contracts, Truffle Design and issue- DApps- NFT. Blockchain Applications in Supply Chain Management, Logistics, Smart Cities, Finance and Banking, Insurance,etc- Case Study.

COURSE OUTCOMES:
CO1: Understand emerging abstract models for Blockchain Technology
CO2: Identify major research challenges and technical gaps existing between theory and practice in the crypto currency domain.

CO3: It provides conceptual understanding of the function of Blockchain as a method of securing distributed ledgers, how consensus on their contents is achieved, and the new applications that they enable.

CO4: Apply hyperledger Fabric and Ethereum platform to implement the Block chain Application.

PRACTICAL

1. Install and understand Docker container, Node.js, Java and Hyperledger Fabric, Ethereum and perform necessary software installation on local machine/create instance on cloud to run.
2. Create and deploy a blockchain network using Hyperledger Fabric SDK for Java Set up and initialize the channel, install and instantiate chain code, and perform invoke and query on your blockchain network.
3. Interact with a blockchain network. Execute transactions and requests against a blockchain network by creating an app to test the network and its rules.
4. Deploy an asset-transfer app using blockchain. Learn app development within a Hyperledger Fabric network.
5. Use blockchain to track fitness club rewards. Build a web app that uses Hyperledger Fabric to track and trace member rewards.
6. Car auction network: A Hello World example with Hyperledger Fabric Node SDK and IBM Blockchain Starter Plan. Use Hyperledger Fabric to invoke chain code while storing results and data in the starter plan

TEXT BOOKS

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

AVg. 3 2.75 2.75 2.5 1.75 2.25 2.25 2.25 2.25 2.25 2.25 2.25

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS347

GAME DEVELOPMENT

COURSE OBJECTIVES:
- To know the basics of 2D and 3D graphics for game development.
- To know the stages of game development.
- To understand the basics of a game engine.
- To survey the gaming development environment and tool kits.
- To learn and develop simple games using Pygame environment

UNIT I 3D GRAPHICS FOR GAME DESIGN
Genres of Games, Basics of 2D and 3D Graphics for Game Avatar, Game Components – 2D and 3D Transformations – Projections – Color Models – Illumination and Shader Models – Animation – Controller Based Animation.

UNIT II GAME DESIGN PRINCIPLES

UNIT III GAME ENGINE DESIGN

UNIT IV OVERVIEW OF GAMING PLATFORMS AND FRAMEWORKS
Pygame Game development – Unity – Unity Scripts – Mobile Gaming, Game Studio, Unity Single player and Multi-Player games.

UNIT V GAME DEVELOPMENT USING PYGAME

30 PERIODS

COURSE OUTCOMES:
CO1: Explain the concepts of 2D and 3D Graphics
CO2: Design game design documents.
CO3: Implementation of gaming engines.
CO4: Survey gaming environments and frameworks.
CO5: Implement a simple game in Pygame.

EXPERIMENTS: 30 PERIODS
1. Installation of a game engine, e.g., Unity, Unreal Engine, familiarization of the GUI. Conceptualize the theme for a 2D game.
2. Character design, sprites, movement and character control
3. Level design: design of the world in the form of tiles along with interactive and collectible objects.
4. Design of interaction between the player and the world, optionally using the physics engine.
5. Developing a 2D interactive using Pygame
6. Developing a Puzzle game
7. Design of menus and user interaction in mobile platforms.
8. Developing a 3D Game using Unreal
9. Developing a Multiplayer game using unity

TOTAL: 60 PERIODS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>1</td>
<td>3 2 2 1 1 2 - - - - - -</td>
<td>2 2 2</td>
</tr>
<tr>
<td>2</td>
<td>1 2 2 1 2 - - - - - -</td>
<td>2 2 1</td>
</tr>
<tr>
<td>3</td>
<td>1 1 1 2 1 - - - - - -</td>
<td>2 2 2</td>
</tr>
<tr>
<td>4</td>
<td>3 3 1 3 3 - - - - - -</td>
<td>2 2 3</td>
</tr>
<tr>
<td>5</td>
<td>3 3 2 1 3 - - - - - -</td>
<td>2 2 3</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.2 2.2 1.6 1.6 2.2 - - - - - -</td>
<td>2 2 2.2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS331 3D PRINTING AND DESIGN
COURSE OBJECTIVES:
- To discuss on basics of 3D printing
- To explain the principles of 3D printing technique
- To explain and illustrate inkjet technology
To explain and illustrate laser technology
To discuss the applications of 3D printing

UNIT I INTRODUCTION
Introduction; Design considerations – Material, Size, Resolution, Process; Modelling and viewing - 3D; Scanning; Model preparation – Digital; Slicing; Software; File formats

UNIT II PRINCIPLE

UNIT III INKJET TECHNOLOGY
Printer - Working Principle, Positioning System, Print head, Print bed, Frames, Motion control; Print head Considerations – Continuous Inkjet, Thermal Inkjet, Piezoelectric Drop-On-Demand; Material Formulation for jetting; Liquid based fabrication – Continuous jet, Multijet; Powder based fabrication – Colourjet.

UNIT IV LASER TECHNOLOGY
Light Sources – Types, Characteristics; Optics – Deflection, Modulation; Material feeding and flow – Liquid, powder; Printing machines – Types, Working Principle, Build Platform, Print bed Movement, Support structures;

UNIT V INDUSTRIAL APPLICATIONS
Product Models, manufacturing – Printed electronics, Biopolymers, Packaging, Healthcare, Food, Medical, Biotechnology, Displays; Future trends;

PRACTICAL EXERCISES:
1. Study the interface and basic tools in the CAD software.
2. Study 3D printer(s) including print heads, build envelope, materials used and related support removal system(s).
3. Review of geometry terms of a 3D mesh.
4. Commands for moving from 2D to 3D.
5. Advanced CAD commands to navigate models in 3D space
6. Design any four everyday objects
 Refer to web sites like Thingiverse, Shapeways and GitFab to design four everyday objects that utilize the advantages of 3D printing
 a. Choose four models from a sharing site like Thingiverse, Shapeways or Gitfab.
 b. Improve upon a file and make it your own. Some ideas include:
 • Redesign it with a specific user in mind
 • Redesign it for a slightly different purpose
 • Improve the look of the product
6. Use the CAM software to prepare files for 3D printing.
8. Manipulate machine movement and material layering.
9. Repair a 3D mesh using
 a) Freeware utilities: Autodesk MeshMixer (http://goo.gl/x5nhYc), MeshLab (http://goo.gl/fgzTLi) or Netfabb Basic or Cloud Service (http://goo.gl/Q1P47a)
b) Freeware tool tutorials: Netfabb Basic or Cloud Service (http://goo.gl/Q1P47a), Netfabb and MeshLab (http://goo.gl/WPOVec)
c) Professional tools: Magics or Netfabb

Equipment: one 3D printer for every 10-15 students

COURSE OUTCOMES:
At the end of this course, the students will be able to:

CO1: Outline and examine the basic concepts of 3D printing technology
CO2: Outline 3D printing workflow
CO3: Explain and categorise the concepts and working principles of 3D printing using inkjet technique
CO4: Explain and categorise the working principles of 3D printing using laser technique
CO5: Explain various method for designing and modeling for industrial applications

TOTAL: 60 PERIODS

TEXT BOOKS

REFERENCES:

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.8</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS350 KNOWLEDGE ENGINEERING L T P C
2 0 2 3

COURSE OBJECTIVES:
- To understand the basics of Knowledge Engineering.
- To discuss methodologies and modeling for Agent Design and Development.
- To design and develop ontologies.
- To apply reasoning with ontologies and rules.
- To understand learning and rule learning.
UNIT I REASONING UNDER UNCERTAINTY 6

UNIT II METHODOLOGY AND MODELING 6

UNIT III ONTOLOGIES – DESIGN AND DEVELOPMENT 6

UNIT IV REASONING WITH ONTOLOGIES AND RULES 6

UNIT V LEARNING AND RULE LEARNING 6

PRACTICAL EXERCISES: 30 PERIODS
1. Perform operations with Evidence Based Reasoning.
2. Perform Evidence based Analysis.
3. Perform operations on Probability Based Reasoning.
4. Perform Believability Analysis.
5. Implement Rule Learning and refinement.
6. Perform analysis based on learned patterns.
7. Construction of Ontology for a given domain.

COURSE OUTCOMES:
At the end of this course, the students will be able to:
CO1: Understand the basics of Knowledge Engineering.
CO2: Apply methodologies and modelling for Agent Design and Development.
CO3: Design and develop ontologies.
CO4: Apply reasoning with ontologies and rules.
CO5: Understand learning and rule learning.

TOTAL: 60 PERIODS

TEXT BOOKS:
REFERENCES:
2. Ela Kumar, Knowledge Engineering, I K International Publisher House, 2018.

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>1</td>
<td>3 1 1 1 1 1 - - - 1 2 1 2</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>2</td>
<td>3 2 3 2 2 - - - 2 1 2 1</td>
<td>3 3 1 2</td>
</tr>
<tr>
<td>3</td>
<td>2 2 3 2 2 - - - 3 2 2 2</td>
<td>3 2 3 3</td>
</tr>
<tr>
<td>4</td>
<td>2 2 3 1 1 - - - 2 2 2 2</td>
<td>2 1 1 2</td>
</tr>
<tr>
<td>5</td>
<td>2 2 2 1 1 - - - 2 1 1 1</td>
<td>2 1 1 1</td>
</tr>
</tbody>
</table>

AVG. 2.4 1.8 2.4 1.4 1.4 0.2 0 0 2 1.6 1.6 1.6 2.2 1.6 1.4 1.8

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS364 SOFT COMPUTING LT PC

2 0 2 3

COURSE OBJECTIVES:
- To introduce the ideas of fuzzy sets, fuzzy logic and use of heuristics based on human experience.
- To provide the mathematical background for carrying out the optimization associated with neural network learning.
- To learn various evolutionary Algorithms.
- To become familiar with neural networks that can learn from available examples and generalize to form appropriate rules for inference systems.
- To introduce case studies utilizing the above and illustrate the Intelligent behavior of programs based on soft computing.

UNIT I INTRODUCTION TO SOFT COMPUTING AND FUZZY LOGIC

UNIT II NEURAL NETWORKS
Supervised Learning Neural Networks – Perceptrons - Backpropagation - Multilayer Perceptrons – Unsupervised Learning Neural Networks – Kohonen Self-Organizing Networks
UNIT III GENETIC ALGORITHMS
Chromosome Encoding Schemes - Population initialization and selection methods - Evaluation function - Genetic operators - Cross over – Mutation - Fitness Function – Maximizing function

UNIT IV NEURO FUZZY MODELING

UNIT V APPLICATIONS

30 PERIODS

COURSE OUTCOMES:
CO1: Understand the fundamentals of fuzzy logic operators and inference mechanisms
CO2: Understand neural network architecture for AI applications such as classification and clustering
CO3: Learn the functionality of Genetic Algorithms in Optimization problems
CO4: Use hybrid techniques involving Neural networks and Fuzzy logic
CO5: Apply soft computing techniques in real world applications

PRACTICAL EXERCISES
1. Implementation of fuzzy control/ inference system
2. Programming exercise on classification with a discrete perceptron
3. Implementation of XOR with backpropagation algorithm
4. Implementation of self organizing maps for a specific application
5. Programming exercises on maximizing a function using Genetic algorithm
6. Implementation of two input sine function
7. Implementation of three input non linear function

TOTAL: 60 PERIODS

TEXT BOOKS:

REFERENCES
CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1.8</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Avrg</td>
<td>2.2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS357 OPTIMIZATION TECHNIQUES L T P C
2 0 2 3

COURSE OBJECTIVES:
The objective of this course is to enable the student to
- Formulate and solve linear programming problems (LPP)
- Evaluate Integer Programming Problems, Transportation and Assignment Problems.
- Obtain a solution to network problems using CPM and PERT techniques.
- Able to optimize the function subject to the constraints.
- Identify and solve problems under Markovian queuing models.

UNIT I LINEAR MODELS
6
Introduction of Operations Research - mathematical formulation of LPP - Graphical Methods to solve LPP - Simplex Method - Two-Phase method

UNIT II INTEGER PROGRAMMING AND TRANSPORTATION PROBLEMS
6
Integer programming: Branch and bound method - Transportation and Assignment problems - Traveling salesman problem.

UNIT III PROJECT SCHEDULING
6
Project network - Diagram representation – Floats - Critical path method (CPM) – PERT - Cost considerations in PERT and CPM

UNIT IV CLASSICAL OPTIMIZATION THEORY
6

UNIT V QUEUING MODELS
6
Introduction, Queuing Theory, Operating characteristics of a Queuing system, Constituents of a Queuing system, Service facility, Queue discipline, Single channel models, multiple service channels.

PRACTICALS
1. Solving simplex maximization problems using R programming.
2. Solving simplex minimization problems using R programming.
3. Solving mixed constraints problems – Big M & Two phase method using TORA.
4. Solving transportation problems using R.
5. Solving assignment problems using R.
6. Solving optimization problems using LINGO.
7. Studying Primal-Dual relationships in LP using TORA.
8. Solving LP problems using dual simplex method using TORA.
9. Sensitivity & post optimality analysis using LINGO.
10. Solving shortest route problems using optimization software
11. Solving Project Management problems using optimization software
12. Testing random numbers and random variates for their uniformity.
13. Testing random numbers and random variates for their independence
15. Solve multi server queuing model using simulation software package.

TOTAL: 60 PERIODS

COURSE OUTCOMES:
On successful completion of this course, the student will able to
CO1: Formulate and solve linear programming problems (LPP)
CO2: Evaluate Integer Programming Problems, Transportation and Assignment Problems.
CO3: Obtain a solution to network problems using CPM and PERT techniques.
CO4: Able to optimize the function subject to the constraints.
CO5: Identify and solve problems under Markovian queuing models

TEXT BOOK:

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>2.4</td>
<td>2.1</td>
<td>1.8</td>
<td>1.8</td>
<td>2.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.6</td>
<td>2.1</td>
<td>1.8</td>
<td>2.2</td>
<td>2</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:

- To introduce the student to the notion of a game, its solutions concepts, and other basic notions and tools of game theory, and the main applications for which they are appropriate, including electronic trading markets.
- To formalize the notion of strategic thinking and rational choice by using the tools of game theory, and to provide insights into using game theory in modeling applications.
- To draw the connections between game theory, computer science, and economics, especially emphasizing the computational issues.
- To introduce contemporary topics in the intersection of game theory, computer science, and economics.
- To apply game theory in searching, auctioning and trading.

UNIT I INTRODUCTION

Introduction — Making rational choices: basics of Games — strategy — preferences — payoffs — Mathematical basics — Game theory — Rational Choice — Basic solution concepts-non-cooperative versus cooperative games — Basic computational issues — finding equilibria and learning in games- Typical application areas for game theory (e.g. Google's sponsored search, eBay auctions, electricity trading markets).

UNIT II GAMES WITH PERFECT INFORMATION

Games with Perfect Information — Strategic games — prisoner’s dilemma, matching pennies - Nash equilibria —mixed strategy equilibrium — zero-sum games

UNIT III GAMES WITH IMPERFECT INFORMATION

Games with Imperfect Information — Bayesian Games — Motivational Examples — General Definitions — Information aspects — Illustrations — Extensive Games with Imperfect — Information — Strategies — Nash Equilibrium —Repeated Games — The Prisoner’s Dilemma — Bargaining

UNIT IV NON-COOPERATIVE GAME THEORY

UNIT V MECHANISM DESIGN

30 PERIODS

COURSE OUTCOMES:

Upon Completion of the course, the students will be able to

CO1: Discuss the notion of a strategic game and equilibria and identify the characteristics of main applications of these concepts.

CO2: Discuss the use of Nash Equilibrium for other problems.
CO3: Identify key strategic aspects and based on these be able to connect them to appropriate game theoretic concepts given a real world situation.

CO4: Identify some applications that need aspects of Bayesian Games.

CO5: Implement a typical Virtual Business scenario using Game theory.

LABORATORY EXERCISES: 30 PERIODS

- Prisoner’s dilemma
- Pure Strategy Nash Equilibrium
- Extensive Form – Graphs and Trees, Game Trees
- Strategic Form – Elimination of dominant strategy
- Minimax theorem, minimax strategies
- Perfect information games: trees, players assigned to nodes, payoffs, backward Induction, subgame perfect equilibrium,
- Repeated Games
- Bayesian Nash equilibrium

TEXT BOOKS:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.2</td>
<td>2.4</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:

- To know the theoretical background of cognition.
- To understand the link between cognition and computational intelligence.
- To explore probabilistic programming language.
- To study the computational inference models of cognition.
- To study the computational learning models of cognition.

UNIT I PHILosophy, PSYCHOLOGY AND NEUROSCIENCE

UNIT II Computational intelligence

UNIT III PROBABILISTIC PROGRAMMING LANGUAGE

UNIT IV Inference models of Cognition

UNIT V Learning models of Cognition

PRACTICAL EXERCISES

1. Demonstration of Mathematical functions using WebPPL.
2. Implementation of reasoning algorithms.
3. Developing an Application system using generative model.
4. Developing an Application using conditional inference learning model.
5. Application development using hierarchical model.
6. Application development using Mixture model.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Understand the underlying theory behind cognition.

CO2: Connect to the cognition elements computationally.
CO3: Implement mathematical functions through WebPPL.
CO4: Develop applications using cognitive inference model.
CO5: Develop applications using cognitive learning model.

TEXT BOOK:

REFERENCES:

CCS345 ETHICS AND AI

COURSE OBJECTIVES:
- Study the morality and ethics in AI
- Learn about the Ethical initiatives in the field of artificial intelligence
- Study about AI standards and Regulations
- Study about social and ethical issues of Robot Ethics
- Study about AI and Ethics- challenges and opportunities

UNIT I INTRODUCTION
Definition of morality and ethics in AI-Impact on society-Impact on human psychology-Impact on the legal system-Impact on the environment and the planet-Impact on trust

UNIT II ETHICAL INITIATIVES IN AI
International ethical initiatives-Ethical harms and concerns-Case study: healthcare robots, Autonomous Vehicles, Warfare and weaponization.

UNIT III AI STANDARDS AND REGULATION

UNIT IV ROBOETHICS: SOCIAL AND ETHICAL IMPLICATION OF ROBOTICS
UNIT V AI AND ETHICS- CHALLENGES AND OPPORTUNITIES

Challenges - Opportunities- ethical issues in artificial intelligence- Societal Issues Concerning the Application of Artificial Intelligence in Medicine- decision-making role in industries-National and International Strategies on AI.

30 PERIODS

COURSE OUTCOMES:
On completion of the course, the students will be able to
CO1: Learn about morality and ethics in AI
CO2: Acquire the knowledge of real time application ethics, issues and its challenges.
CO3: Understand the ethical harms and ethical initiatives in AI
CO4: Learn about AI standards and Regulations like AI Agent, Safe Design of Autonomous and Semi-Autonomous Systems
CO5: Understand the concepts of Roboethics and Morality with professional responsibilities.
CO6: Learn about the societal issues in AI with National and International Strategies on AI

PRACTICAL EXERCISES 30 PERIODS

1. Recent case study of ethical initiatives in healthcare, autonomous vehicles and defense
2. Exploratory data analysis on a 2 variable linear regression model
3. Experiment the regression model without a bias and with bias
4. Classification of a dataset from UCI repository using a perceptron with and without bias
5. Case study on ontology where ethics is at stake
6. Identification on optimization in AI affecting ethics

TOTAL: 60 PERIODS

TEXT BOOKS:

REFERENCE BOOKS:
3. Web link:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>1</td>
<td>3 2 3 3 1 - - 1 2 1 1</td>
<td>3 1 1</td>
</tr>
</tbody>
</table>
CW3003 CUSTOMER RELATION MANAGEMENT L T P C
3 0 0 3

COURSE OBJECTIVES:
- To learn the fundamentals of strategic and operational CRM
- To understand operational methods of CRM
- To understand different analytical methods of CRM to enhance customer experience.
- To learn the fundamentals of analytical CRM
- To understand and apply the elements and tools of CRM to manage customer portfolios.

UNIT I UNDERSTANDING CUSTOMER RELATIONSHIPS 9
CRM definition and constituencies, understanding and misunderstanding CRM, the social CRM fit, commercial contexts, the third sector not-for-profit, CRM models. Relationship quality, customer lifetime value, relationships with customers and suppliers. Managing the customer lifecycle – customer acquisition, retention and development.

UNIT II STRATEGIC CRM 9
Customer portfolio management (CPM) - Customer portfolio, basic disciplines of CPM, CPM in B2B context, CPM models, tools for CPM, strategically significant customers, seven core customer management strategies.

UNIT III OPERATIONAL CRM 9

UNIT IV ANALYTICAL CRM 9
Customer database management – corporate customer data, structured and unstructured data, developing a customer database, data – integration, warehousing and marts in the CRM context, knowledge management, Analytics for – CRM strategy and tactics, customer lifecycle, structured and unstructured data, Big data analytics in CRM, analytical insights.

UNIT V MANAGING CUSTOMER EXPERIENCE AND VALUE 9
Understanding Value and when do customers experience value, Modelling customer-perceived value, Sources of customer value, Value through the marketing mix, Customisation for customer value. Understanding customer experience and concepts, how to manage customer experience, CRM vs CEM, Use of CRM software in CEM

TOTAL: 45 PERIODS
COURSE OUTCOMES:
CO1: Understand the elements of CRM
CO2: Apply the elements of CRM to manage customer portfolios.
CO3: Understand the tools of CRM
CO4: Apply the tools of CRM to manage customer portfolios.
CO5: Understand different analytical methods of CRM to enhance customer experience

TEXT BOOKS:

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>AVG.</td>
<td>3</td>
<td>2</td>
<td>2.4</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CMG341 HUMAN RESOURCE MANAGEMENT FOR ENTREPRENEURS L T P C 3 0 0 3

COURSE OBJECTIVES:
- To introduce the basic concepts, structure and functions of human resource management for entrepreneurs.
- To create an awareness of the roles, functions and functioning of human resource department.
- To understand the methods and techniques followed by Human Resource Management practitioners.
UNIT I INTRODUCTION TO HRM 9

UNIT II HUMAN RESOURCE PLANNING 9
HR Planning - Definition - Factors- Tools - Methods and Techniques - Job analysis- Job rotation- Job Description - Career Planning - Succession Planning - HRIS - Computer Applications in HR - Recent Trends

UNIT III RECRUITMENT AND SELECTION 9
Sources of recruitment- Internal Vs. External - Domestic Vs. Global Sources - eRecruitment - Selection Process- Selection techniques - eSelection- Interview Types- Employee Engagement.

UNIT IV TRAINING AND EMPLOYEE DEVELOPMENT 9

UNIT V CONTROLLING HUMAN RESOURCES 9

TOTAL 45 : PERIODS

COURSE OUTCOMES:
Upon completion of this course the learners will be able:
CO 1 To understand the Evolution of HRM and Challenges faced by HR Managers
CO 2 To learn about the HR Planning Methods and practices.
CO 3 To acquaint about the Recruitment and Selection Techniques followed in Industries.
CO 4 To known about the methods of Training and Employee Development.
CO 5 To comprehend the techniques of controlling human resources in organisations.

TEXT BOOKS

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT I
INTRODUCTION

UNIT II
VALUATION OF SECURITIES

UNIT III
OPERATING & FINANCIAL LEVERAGE

UNIT IV
CAPITAL BUDGETING

UNIT V
CASH MANAGEMENT
COURSE OUTCOMES:
CO1: Understand the fundamental concepts of financial management
CO2: Apply valuation of securities and calculate the risk & return in portfolio management.
CO3: Analyse the cost structure of a company using operating and financial leverages.
CO4: Develop capital budgets and to estimate working capital. CO5: Apply cash management in business.

TOTAL:45 PERIODS

TEXTBOOKS

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3 4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1 2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1 1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1 2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1 2</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3 2.8</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCD334 SUPPLY CHAIN MANAGEMENT L T P C 3 0 0 3

COURSE OBJECTIVES:
- To understand the importance of supply chain management
- To learn decisions in supply chain management for gaining competitive advantage
- To design supply chain networks to enhance supply chain performance
- To plan demand based on inventory and supply
- To understanding the role of logistics in supply chain performance

UNIT I INTRODUCTION 9
Supply Chain – Fundamentals, Evolution, Role in Economy, Importance, Decision Phases, Enablers & Drivers of Supply Chain Performance; Supply chain strategy; Supply Chain Performance Measures.
UNIT II SUPPLY CHAIN NETWORK

Distribution Network Design – Role in supply chain, Influencing factors, design options, online sales and distribution network, Distribution Strategies; Network Design in supply chain – Role, influencing factors, framework for network design, Impact of uncertainty on Network Design.

UNIT III PLANNING DEMAND, INVENTORY AND SUPPLY

Managing supply chain cycle inventory and safety inventory - Uncertainty in the supply chain, Analyzing impact of supply chain redesign on the inventory, Risk Pooling, Managing inventory for short life-cycle products, multiple item -multiple location inventory management; Pricing and Revenue Management.

UNIT IV LOGISTICS

Transportation – Role, Modes and their characteristics, infrastructure and policies, transport documentation, design options, trade-offs in transportation design, intermodal transportation. Logistics outsourcing – catalysts, benefits, value proposition. 3PL, 4PL, 5PL, 6PL; International Logistics -objectives, importance in global economy, Characteristics of global supply chains, Incoterms.

UNIT V SUPPLY CHAIN INNOVATIONS

Supply Chain Integration, SC process restructuring, IT in Supply Chain; Agile Supply Chains, Legible supply chain, Green Supply Chain, Reverse Supply chain; Supply chain technology trends – AI, Advanced analytics, Internet of Things, Intelligent things, conversational systems, robotic process automation, immersive technologies, Block chain.

COURSE OUTCOMES:

CO1: Understanding of supply chain fundamentals
CO2: Ability to design supply chain networks to enhance supply chain performance
CO3: Ability to plan demand based on inventory and supply
CO4: Understanding the role of logistics in supply chain performance
CO5: Awareness of innovations for sustainable supply chains

TEXT BOOKS:

REFERENCES

CO’s - PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVG.</td>
<td>3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CW3007 IT PROJECT MANAGEMENT

L T P C
3 0 0 3

COURSE OBJECTIVES:
- To learn the concepts of managing IT projects.
- To learn more about planning
- To understand resource allocation, control, and completion
- To learn software quality management
- To understand budgeting and scheduling

UNIT I INTRODUCTION TO PROJECT MANAGEMENT

UNIT II PLANNING AND BUDGETING

UNIT III SCHEDULING & RESOURCE ALLOCATION

UNIT IV CONTROL AND COMPLETION

UNIT V SOFTWARE QUALITY MANAGEMENT
Product quality and software quality, quality management systems, principles and features, System quality specification and measurement, Process and product quality approaches, Quality assurance and quality control, project audit and quality audit, Methods of enhancing quality: the different types of testing, inspections, reviews, standards, Management and control of testing.

TOTAL: 45 PERIODS
COURSE OUTCOMES:
CO1: Apply project management principles in business situations
CO2: Learn more about planning, budgeting and scheduling
CO3: Optimize resource utilization and time optimization
CO4: Understand resource allocation, control, and completion
CO5: Learn software quality management

TEXT BOOK:

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>1 3 2 2 2 1 - - 2 2 1 -</td>
<td>3 1 2 2</td>
<td></td>
</tr>
<tr>
<td>2 3 2 1 3 3 2 - - 2 2 2 -</td>
<td>3 3 1 2</td>
<td></td>
</tr>
<tr>
<td>3 3 2 2 3 3 1 - - 1 2 1 -</td>
<td>3 3 2 2</td>
<td></td>
</tr>
<tr>
<td>4 3 3 1 3 3 2 - - 2 2 2 -</td>
<td>2 2 2 2</td>
<td></td>
</tr>
<tr>
<td>5 3 2 2 2 2 1 - - 1 2 2 -</td>
<td>2 2 2 2</td>
<td></td>
</tr>
<tr>
<td>AVG. 3 2.2 1.6 2.6 2.6 1.4</td>
<td>1.6 2 1.6 2.6 2.2 1.8 2</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CW3005 ENTREPRENEURSHIP DEVELOPMENT L T P C
2 0 2 3

COURSE OBJECTIVES:
• To equip and develop the learners entrepreneurial skills and qualities essential to undertake business.
• To impart the learners entrepreneurial competencies needed for managing business efficiently and effectively.

UNIT I ENTREPRENEURIAL COMPETENCE
Entrepreneurship concept – Entrepreneurship as a Career – Entrepreneurial Personality - Characteristics of Successful Entrepreneurs – Knowledge and Skills of an Entrepreneur.

UNIT II ENTREPRENEURIAL ENVIRONMENT
UNIT III BUSINESS PLAN PREPARATION 9
Sources of Product for Business - Prefeasibility Study - Criteria for Selection of Product - Ownership - Capital Budgeting- Project Profile Preparation - Matching Entrepreneur with the Project - Feasibility Report Preparation and Evaluation Criteria

UNIT IV LAUNCHING OF SMALL BUSINESS 9

UNIT V MANAGEMENT OF SMALL BUSINESS 9

PRACTICAL EXERCISES: 30 PERIODS
1. Discuss a Business Plan on /Small scale industry/Food Processing Industry/Agriculture units/Hospital .
2. Undertake SWOT analysis to arrive at your business idea of a product/service

COURSE OUTCOMES:
CO1: The learners will gain entrepreneurial competence to run the business efficiently.
CO2: The learners are able to undertake businesses in the entrepreneurial environment
CO3: The learners are capable of preparing business plans and undertake feasible projects.
CO4 :The learners are efficient in launching and develop their business ventures successfully
CO5: The learners shall monitor the business effectively towards growth and development.

TOTAL :60 PERIODS

TEXTBOOKS

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2.6</td>
<td>2.4</td>
<td>1.6</td>
<td>1.8</td>
<td>1.6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2.8</td>
<td>2.6</td>
<td>2.4</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, *' - no correlation

157
INTRODUCTION TO INNOVATION, IP MANAGEMENT AND ENTREPRENEURSHIP

COURSE OBJECTIVES:
- To develop and strengthen innovation.
- To understand IP management.
- To understand entrepreneurial quality.
- To motivate in and to impart basic skills.
- To understanding to run a business efficiently and effectively.

UNIT I INTRODUCTION TO INNOVATION
Adoption of Innovations, Exploring Innovations, Idea generation, Developing innovative culture, Executing innovations, Innovation attributes and their adoption rate, Measuring and evaluation of innovation, Exploiting and renewing innovations, Managing innovations in organizations, Innovation and intellectual property rights, Innovation portfolio

UNIT II INTRODUCTION TO IPR
Basic concepts and need for Intellectual Property - Patents, Copyrights, Geographical Indications, IPR in India and Abroad – Genesis and Development – the way from WTO to WIPO – TRIPS, Nature of Intellectual Property, Industrial Property, technological Research, Inventions and Innovations – Important examples of IPR.

UNIT III REGISTRATION OF IPRs
Meaning and practical aspects of registration of Copy Rights, Trademarks, Patents, Geographical Indications, Trade Secrets and Industrial Design registration in India and Abroad, Agreements and Legislations

UNIT IV ENTREPRENEURSHIP
Entrepreneur – Types of Entrepreneurs – Difference between Entrepreneur and Intrapreneur, Major Motives Influencing an Entrepreneur – Achievement Motivation Training, Self Rating, Business Games, Thematic Apperception Test – Stress Management

UNIT V BUSINESS AND FINANCING

COURSE OUTCOMES:
CO1: Understand the concept of innovation
CO2: Ability to manage Intellectual Property portfolio to enhance the value of the firm.
CO3: Gain knowledge and skills needed to run a business successfully
CO4: Understand entrepreneurial quality
CO5: Understand IP management.

TEXT BOOK:

REFERENCES:
4. EDII “Faulty and External Experts – A Hand Book for New Entrepreneurs Publishers:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.8</td>
<td>2.8</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CW3001

BEHAVIORAL ECONOMICS

COURSE OBJECTIVES:

• To familiarize the students to the basic concepts of management in order to aid in understanding how an organization function
• To understanding the complexity and wide variety of issues managers face in today’s business firms.
• To To acquaint the students with the fundamentals of managing business
• To understand individual and group behaviour at work place so as to improve the effectiveness of an organization.

UNIT I

NATURE AND THEORIES OF MANAGEMENT

UNIT II PLANNING AND ORGANISING 9

Organisation Structure and Design - Authority and Responsibility Relationships - Delegation of Authority and Decentralisation - Interdepartmental Coordination - Impact of Technology on Organisational design - Mechanistic vs Adoptive Structures - Formal and Informal Organisation.

UNIT III INDIVIDUAL BEHAVIOUR 9

UNIT IV GROUP BEHAVIOUR 9

UNIT V EMERGING ASPECTS OF ORGANIZATIONAL BEHAVIOUR 9
Comparative Management Styles and approaches - Japanese Management Practices Organisational Creativity and Innovation - Organizational behavior across cultures - Conditions affecting cross cultural organizational operations, Managing International Workforce, Productivity and cultural contingencies, Cross cultural communication, Management of Diversity.

TOTAL:45 PERIODS

COURSE OUTCOMES:
CO1: Understanding of various management concepts and skills required in the business world
CO2: In-depth knowledge of various functions of management in a real time management context
CO3: Understanding of the complexities associated with management of individual behaviour in the organizations
CO4: Develop the skill set to have manage group behaviour in Organizations
CO5: Insights about the current trends in managing organizational behaviour

TEXT BOOK:
REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

AVg. 3 3 2 2.6 1.6

1 - low, 2 - medium, 3 - high, *1* - no correlation

CMG354 FINANCIAL ANALYTICS

COURSE OBJECTIVES:

- To understand modern analytical tools that specifically target finance applications.
- To understand different management aspects
- To learn financial analysis for decision making
- To understand human resource management
- To learn different business strategy

UNIT I CORPORATE FINANCE ANALYSIS

Basic corporate financial predictive modelling- Project analysis- cash flow analysis- cost of capital, Financial Break even modelling, Capital Budget model-Payback, NPV, IRR.
UNIT II FINANCIAL MARKET ANALYSIS
Estimation and prediction of risk and return (bond investment and stock investment) –Time series-examining nature of data, Value at risk, ARMA, ARCH and GARCH.

UNIT III PORTFOLIO ANALYSIS
Portfolio Analysis – capital asset pricing model, Sharpe ratio, Option pricing models- binomial model for options, Black Scholes model and Option implied volatility.

UNIT IV TECHNICAL ANALYSIS

UNIT V CONTROLLING
Credit Risk analysis- Data processing, Decision trees, logistic regression and evaluating credit risk model.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Understand different management techniques
CO2: Apply analytical tools that specifically target finance applications.
CO3: Describe financial analysis for decision making
CO4: Understand human resource management
CO5: Adopt different business strategy

TEXT BOOK:

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Avgs.</td>
<td>3</td>
<td>2.6</td>
<td>2.4</td>
<td>2.6</td>
<td>1.8</td>
<td>1</td>
<td>2.6</td>
<td>2</td>
<td>3</td>
<td>2.4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:

- To understand the basic issues and types of social, text, and media mining
- Familiarize the learners with the concept of social, text, and media analytics and understand its significance.
- Familiarize the learners with the tools of social, text, and media analytics.
- Enable the learners to develop skills required for analyzing the effectiveness of social, text, and media for business purposes.
- To know the applications in real-time systems.

UNIT I INTRODUCTION TO SOCIAL MEDIA ANALYSIS 9
Social media landscape, Need for SMA; SMA in Small organizations; SMA in large organizations; Application of SMA in different areas. Network fundamentals and models:

UNIT II OVERVIEW OF TEXT MINING AND DATA MINING 9
Overview of text mining - Definition - General Architecture - Algorithms - Core Operations - Preprocessing - Types of Problems - basics of document classification - information retrieval - clustering and organizing documents - information extraction - prediction and evaluation - Introduction to Data Mining Systems - Knowledge Discovery Process - Data Mining Techniques - Issues - applications - Data Objects and attribute types, Statistical description of data, Data Preprocessing - Cleaning, Integration, Reduction, Transformation and discretization, Data Visualization, Data similarity and dissimilarity measures.

UNIT III TEXT MINING FOR INFORMATION RETRIEVAL AND INFORMATION EXTRACTION 9

UNIT IV WEB ANALYTICS TOOLS 9
Click stream analysis, A/B testing, online surveys, Web crawling and Indexing. Natural Language Processing Techniques for Micro-text Analysis. Do a case study on Google analytics.

UNIT V MARKETING RESEARCH & TRENDS IN MARKET 9

COURSE OUTCOMES:

CO1: Understand about social, text, and media mining
CO2: Understand the significance of social text and media analytics
CO3: Learn tools of social, text and media analytics.
CO4: Develop skills required for analyzing the effectiveness of social text and media for business purposes
CO5: Know the applications in real time systems.

TEXT BOOK:
2. Charu C. Aggarwal, ChengXiang Zhai, Mining Text Data, Springer; 2012

REFERENCES:
3. Oliver Blanchard, Social Media ROI: Managing and Measuring Social Media Efforts in Your Organization (Que Biz-Tech), 2019

Tracy L. Tuten, Michael R. Solomon, Social Media Marketing, Sage, 2016.

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCW332 DIGITAL MARKETING L T P C 2023

COURSE OBJECTIVES:
- The primary objective of this module is to examine and explore the role and importance of digital marketing in today’s rapidly changing business environment.
- It also focusses on how digital marketing can be utilised by organisations and how its effectiveness can measured.

UNIT I INTRODUCTION TO ONLINE MARKET
Online Market space- Digital Marketing Strategy- Components -Opportunities for building BrandWebsite - Planning and Creation- Content Marketing.
UNIT II SEARCH ENGINE OPTIMISATION 6

UNIT III E- MAIL MARKETING 6
E- Mail Marketing - Types of E- Mail Marketing - Email Automation - Lead Generation - Integrating Email with Social Media and Mobile- Measuring and maximising email campaign effectiveness. Mobile Marketing- Mobile Inventory/channels- Location based; Context based; Coupons and offers, Mobile Apps, Mobile Commerce, SMS Campaigns-Proﬁling and targeting

UNIT IV SOCIAL MEDIA MARKETING 6

UNIT V DIGITAL TRANSFORMATION 6
Digital Transformation & Channel Attribution- Analytics- Ad-words, Email, Mobile, Social Media, Web Analytics - Changing your strategy based on analysis- Recent trends in Digital marketing.

PRACTICAL EXERCISES: 30 PERIODS
1. Subscribe to a weekly/quarterly newsletter and analyze how it’s content and structure aid with the branding of the company and how it aids its potential customer segments.
2. Perform keyword search for a skincare hospital website based on search volume and competition using Google keyword planner tool.
3. Demonstrate how to use the Google WebMasters Indexing API
4. Discuss an interesting case study regarding how an insurance company manages leads.
5. Discuss negative and positive impacts and ethical implications of using social media for political advertising.
6. Discuss how Predictive analytics is impacting marketing automation

COURSE OUTCOMES:
CO1: To examine and explore the role and importance of digital marketing in today’s rapidly changing business environment..
CO2: To focusses on how digital marketing can be utilised by organisations and how its effectiveness can measured.
CO3: To know the key elements of a digital marketing strategy.
CO4: To study how the effectiveness of a digital marketing campaign can be measured
CO5: To demonstrate advanced practical skills in common digital marketing tools such as SEO, SEM, Social media and Blogs.

TEXT BOOKS:

165

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVG.</td>
<td>2.8</td>
<td>2.4</td>
<td>1.2</td>
<td>1.8</td>
<td>1.1</td>
<td>1.2</td>
<td>3</td>
<td>2.2</td>
<td>1.4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ' - no correlation

CW3002 CONVERSATIONAL SYSTEMS L T P C 3 0 0 3

COURSE OBJECTIVES:
- Enable attendees to acquire knowledge on chatbots and its terminologies
- Work with ML Concepts and different algorithms to build custom ML Model
- Better understand on Conversational experiences and provide better customer experiences

UNIT I FUNDAMENTALS OF CONVERSATIONAL SYSTEMS 9
Introduction: Overview, Case studies, Explanation about different modes of engagement for a human being, History and impact of AI. Underlying technologies: Natural Language Processing, Artificial Intelligence and Machine Learning, NLG, Speech-To-Text, Text-To-Speech, Computer Vision etc. Introduction to Top players in Market – Google, MS, Amazon & Market trends. Messaging Platforms (Facebook, WhatsApp) and Smart speakers – Alexa, Google Home and other new channels. Ethical and Legal Considerations in AI Overview.

UNIT II FOUNDATIONAL BLOCKS FOR PROGRAMMING AND NATURAL LANGUAGE PROCESSING 9

UNIT III BUILDING A CHATBOT / CONVERSATIONAL AI SYSTEMS 9
Fundamentals of Conversational Systems (NLU, DM and NLG) - Chatbot framework & Architecture, Conversational Flow & Design, Intent Classification (ML and DL based techniques), Dialogue Management Strategies, Natural Language Generation. UX design, APIs and SDKs,

UNIT IV ROLE OF ML/AI IN CONVERSATIONAL TECHNOLOGIES AND CONTACT CENTERS
Brief Understanding on how Conversational Systems uses ML technologies in ASR, NLP, Advanced Dialog management, Language Translation, Emotion/Sentiment Analysis, Information extraction ,etc. to effectively converse, Introduction to Contact centers – Impact & Terminologies. Case studies & Trends, How does a Virtual Agent/Assistant fit in here?

UNIT V CONVERSATIONAL ANALYTICS AND FUTURE

COURSE OUTCOMES:
CO1: Familiarize in the NLTK tool kit and the pre-processing techniques of natural language processing.
CO2: Familiarize with the basic technologies required for building a conversational system.
CO3: Build a Chabot for any application and deploy it
CO4: Involve AI in building conversational system and build advanced systems that can be cognitively inclined towards human behaviour.
CO5: Build a real time working conversational system for social domain that can intelligently process inputs and generate relevant replies.

TOTAL :45 PERIODS

TEXTBOOKS:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:
- To understand the changing business environment and the fundamental premise underlying market driven strategies.
- To identify the indicators of management thoughts and practices.
- To analyze the nature of consumer buying behaviour
- To understanding the marketing research
- To new trends in the arena of marketing

UNIT I INTRODUCTION

UNIT II MARKETING STRATEGY

UNIT III MARKETING MIX DECISIONS

UNIT IV BUYER BEHAVIOUR

UNIT V MARKETING RESEARCH & TRENDS IN MARKET

TOTAL:45 PERIODS

COURSE OUTCOMES:
CO1: Applied knowledge of contemporary marketing theories to the demands of business and management practice
CO2: Enhanced knowledge of marketing strategies for consumer and industrial marketing
CO3 : Deep understanding of choice of marketing mix elements and managing integrated marketing channels
CO4: Ability to analyze the nature of consumer buying behaviour
CO5: Understanding of the marketing research and new trends in the arena of marketing

TEXT BOOKS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s PO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.8</td>
<td>2.6</td>
<td>1.6</td>
<td>1.6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

CW3008 RISK ANALYTICS L T P C 3 0 0 3

COURSE OBJECTIVES:
• To develop a basic understanding of risk assessment and its role within the risk management process.
• To understand risk assessment and its role within the risk management process.
• To differentiate between risk assessment and risk management.
• To develop a basic understanding of how to conduct and evaluate an uncertainty analysis for a risk assessment

UNIT I INTRODUCTION
UNIT II RISK IDENTIFICATION
Preliminary Hazard Analysis (PHA), Hazards and Operability Analysis (HAZOP) - Job Safety Analysis (JSA) - Failure Modes and Effects Analysis (FMEA)- Fault Tree Analysis (FTA), Event Tree Analysis (ETA), Decision Trees- Cause-Consequence Analysis (CCA)

UNIT III RISK PRIORITIZATION & TREATMENT
Preliminary Hazard Analysis (PHA), Hazards and Operability Analysis (HAZOP) - Job Safety Analysis (JSA) - Failure Modes and Effects Analysis (FMEA)- Fault Tree Analysis (FTA), Event Tree Analysis (ETA), Decision Trees- Cause-Consequence Analysis (CCA).

UNIT IV RISK PRIORITIZATION & TREATMENT

UNIT V SPECIAL TOPICS AND APPLICATION
ISO3100, Quality and Reliability- Supply Chain Risk Management- Project Risk Management- Positive Risk/ Opportunities Management- Risk and TOC.

TOTAL:45 PERIODS

COURSE OUTCOMES:
CO1: Identify the core types of project risks.
CO2: Use qualitative and quantitative risk assessment methods.
CO3: Competently use risk simulation techniques
CO4: Use risk analysis tools/methods and work in a group to create a risk management plan based on the ISO 31000:2009.
CO5: Identify a range of risk management issues/challenges and the risks as complex systems cascade and be competent to initiate potential actions in response

TEXT BOOK:

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2.4</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:
- To understand enterprise security in today's world.
- To learn how to evaluate business processes related to risk management
- To learn business continuity
- To understand auditing and security issues in software development.

UNIT I INTRODUCTION

UNIT II PLANNING, MANAGEMENT AND MONITORING

UNIT III SECURITY ARCHITECTURE

UNIT IV SECURITY POLICY, OPERATIONAL RISK AND ASSURANCE MANAGEMENT

UNIT V SECURITY ADMINISTRATION, OPERATIONS AND VALIDATION

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Design appropriate security architecture with an understanding of the technology
CO2: Create and deploy enterprise solutions in support of organizational goals
CO3: Plan and implement projects related to infrastructure, security, software development.
CO4: Interpret governance policies.
CO5: Manage IT governance policies.

TEXT BOOK:

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

AVG. 3 2.6 2.6 2.4 1.6 1.8 2 2 2.6 2.6 2 2

1 - low, 2 - medium, 3 - high, - - no correlation

SOFT CORE – MANAGEMENT

GE3751

PRINCIPLES OF MANAGEMENT

COURSE OBJECTIVES:
- Sketch the Evolution of Management.
- Extract the functions and principles of management.
- Learn the application of the principles in an organization.
- Study the various HR related activities.
- Analyze the position of self and company goals towards business.

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

UNIT II PLANNING

UNIT III ORGANISING

UNIT IV DIRECTING
9

UNIT V CONTROLLING
9
System and process of controlling – Budgetary and non-Budgetary control techniques – Use of computers and IT in Management control – Productivity problems and management – Control and performance – Direct and preventive control – Reporting.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling.
CO2: Have same basic knowledge on international aspect of management.
CO3: Ability to understand management concept of organizing.
CO4: Ability to understand management concept of directing.
CO5: Ability to understand management concept of controlling.

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>AVg</td>
<td>1.66</td>
<td>1.1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, - - no correlation
COURSE OBJECTIVES:

- Teach the need for quality, its evolution, basic concepts, contribution of quality gurus, TQM framework, Barriers and Benefits of TQM.
- Explain the TQM Principles for application.
- Define the basics of Six Sigma and apply Traditional tools, New tools, Benchmarking and FMEA.
- Describe Taguchi’s Quality Loss Function, Performance Measures and apply Techniques like QFD, TPM, COQ and BPR.
- Illustrate and apply QMS and EMS in any organization.

UNIT I INTRODUCTION 9
Introduction - Need for quality - Evolution of quality - Definition of quality - Dimensions of product and service quality –Definition of TQM-- Basic concepts of TQM - Gurus of TQM (Brief introduction) -- TQM Framework- Barriers to TQM –Benefits of TQM.

UNIT II TQM PRINCIPLES 9

UNIT III TQM TOOLS & TECHNIQUES I 9

UNIT IV TQM TOOLS & TECHNIQUES II 9
Quality circles – Quality Function Deployment (QFD) - Taguchi quality loss function – TPM – Concepts, improvement needs – Performance measures- Cost of Quality - BPR.

UNIT V QUALITY MANAGEMENT SYSTEM 9

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Ability to apply TQM concepts in a selected enterprise.
CO2: Ability to apply TQM principles in a selected enterprise.
CO3: Ability to understand Six Sigma and apply Traditional tools, New tools, Benchmarking and FMEA.
CO4: Ability to understand Taguchi’s Quality Loss Function, Performance Measures
and apply QFD, TPM, COQ and BPR.

CO5: Ability to apply QMS and EMS in any organization.

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>2.5</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-" no correlation

TEXT BOOK:

REFERENCES:

GE3753 ENGINEERING ECONOMICS AND FINANCIAL ACCOUNTING

COURSE OBJECTIVES:
- Understanding the concept of Engineering Economics.
- Implement various micro economics concept in real life.
- Gaining knowledge in the field of macro economics to enable the students to have better understanding of various components of macro economics.
- Understanding the different procedures of pricing.
- Learn the various cost related concepts in micro economics.

UNIT I DEMAND & SUPPLY ANALYSIS
经理ial Economics - Relationship with other disciplines - Firms: Types, objectives and goals - Managerial decisions - Decision analysis. Demand - Types of demand - Determinants of demand - Demand function – Demand elasticity - Demand forecasting - Supply - Determinants of supply - Supply function - Supply elasticity.

UNIT II PRODUCTION AND COST ANALYSIS
Production function - Returns to scale - Production optimization - Least cost input -

UNIT III PRICING 9
Determinants of Price - Pricing under different objectives and different market structures - Price discrimination - Pricing methods in practice.

UNIT IV FINANCIAL ACCOUNTING (ELEMENTARY TREATMENT) 9
Balance sheet and related concepts - Profit & Loss Statement and related concepts - Financial Ratio Analysis - Cash flow analysis - Funds flow analysis - Comparative financial statements - Analysis & Interpretation of financial statements.

UNIT V CAPITAL BUDGETING (ELEMENTARY TREATMENT) 9
Investments - Risks and return evaluation of investment decision - Average rate of return - Payback Period - Net Present Value - Internal rate of return.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Students able to
CO1: Upon successful completion of this course, students will acquire the skills to apply the basics of economics and cost analysis to engineering and take economically sound decisions
CO2: Evaluate the economic theories, cost concepts and pricing policies
CO3: Understand the market structures and integration concepts
CO4: Understand the measures of national income, the functions of banks and concepts of globalization
CO5: Apply the concepts of financial management for project appraisal

TEXT BOOKS:

REFERENCES:
5. Dr. S. N. Maheswari and Dr. S.K. Maheshwari: Financial Accounting, Vikas, 2009

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
GE3754 HUMAN RESOURCE MANAGEMENT L T P C
3 0 0 3

COURSE OBJECTIVE:
- To provide knowledge about management issues related to staffing,
- To provide knowledge about management issues related to training,
- To provide knowledge about management issues related to performance
- To provide knowledge about management issues related to compensation
- To provide knowledge about management issues related to human factors consideration and compliance with human resource requirements.

UNIT I INTRODUCTION TO HUMAN RESOURCE MANAGEMENT 9

UNIT II HUMAN RESOURCE PLANNING 9

UNIT III TRAINING AND EXECUTIVE DEVELOPMENT 9
Types of training and Executive development methods – purpose – benefits.

UNIT IV EMPLOYEE COMPENSATION 9

UNIT V PERFORMANCE EVALUATION AND CONTROL 9

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Students would have gained knowledge on the various aspects of HRM
CO2: Students will gain knowledge needed for success as a human resources professional.
CO3: Students will develop the skills needed for a successful HR manager.
CO4: Students would be prepared to implement the concepts learned in the workplace.
CO5: Students would be aware of the emerging concepts in the field of HRM

TEXT BOOKS:
REFERENCES:

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.8</td>
<td>2.8</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-" - no correlation

GE3755 KNOWLEDGE MANAGEMENT L T P C 3 0 0 3

COURSE OBJECTIVES:
The student should be made to:
- Learn the Evolution of Knowledge management.
- Be familiar with tools.
- Be exposed to Applications.
- Be familiar with some case studies.

UNIT I INTRODUCTION
Introduction: An Introduction to Knowledge Management -

The foundations of knowledge management- including cultural issues- technology applications organizational concepts and processes- management aspects- and decision support systems. The Evolution of Knowledge management: From Information Management to Knowledge Management - Key Challenges Facing the Evolution of Knowledge Management - Ethics for Knowledge Management.

UNIT II CREATING THE CULTURE OF LEARNING AND KNOWLEDGE SHARING

UNIT III KNOWLEDGE MANAGEMENT - THE TOOLS
Telecommunications and Networks in Knowledge Management - Internet Search Engines and Knowledge Management - Information Technology in Support of Knowledge Management - Knowledge Management and Vocabulary Control - Information Mapping in Information Retrieval - Information Coding in the Internet Environment - Repackaging Information.

UNIT IV KNOWLEDGE MANAGEMENT APPLICATION
Components of a Knowledge Strategy - Case Studies (From Library to Knowledge Center, Knowledge Management in the Health Sciences, Knowledge Management in Developing Countries).
UNIT V FUTURE TRENDS AND CASE STUDIES

Advanced topics and case studies in knowledge management - Development of a knowledge management map/plan that is integrated with an organization's strategic and business plan - A case study on Corporate Memories for supporting various aspects in the process life-cycles of an organization.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, the student should be able to:

CO1: Understand the process of acquiring knowledge from experts
CO2: Understand the learning organization.
CO3: Use the knowledge management tools.
CO4: Develop knowledge management Applications.
CO5: Design and develop enterprise applications.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Av.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.4</td>
<td>1</td>
<td>1.33</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, *-* no correlation

TEXT BOOK:

REFERENCE:

GE3792 INDUSTRIAL MANAGEMENT

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To study the basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.
- To study the planning; organizing and staffing functions of management in professional organization.
- To study the leading; controlling and decision making functions of management in professional organization.
- To learn the organizational theory in professional organization.
- To learn the principles of productivity and modern concepts in management in professional organization.
UNIT – I INTRODUCTION TO MANAGEMENT 9
Management: Introduction; Definition and Functions – Approaches to the study of Management – Mintzberg’s Ten Managerial Roles – Principles of Taylor; Fayol; Weber; Parker – Forms of Organization: Sole Proprietorship; Partnership; Company (Private and Public); Cooperative – Public Sector Vs Private Sector Organization – Business Environment: Economic; Social; Political; Legal – Trade Union: Definition; Functions; Merits & Demerits.

UNIT – II FUNCTIONS OF MANAGEMENT - I 9
Planning: Characteristics; Nature; Importance; Steps; Limitation; Planning Premises; Strategic Planning; Vision & Mission statement in Planning– Organizing: Organizing Theory; Principles; Types; Departmentalization; Centralization and Decentralization; Authority & Responsibility – Staffing: Systems Approach; Recruiting and Selection Process; Human Resource Development (HRD) Concept and Design.

UNIT – III FUNCTIONS OF MANAGEMENT - II 9
Directing (Leading): Leadership Traits; Style; Morale; Managerial Grids (Blake-Mounton, Reddin) – Communication: Purpose; Model; Barriers – Controlling: Process; Types; Levels; Guidelines; Audit (External, Internal, Merits); Preventive Control – Decision Making: Elements; Characteristics; Nature; Process; Classifications.

UNIT – IV ORGANIZATION THEORY 9
Organizational Conflict: Positive Aspects; Individual; Role; Interpersonal; Intra Group; Inter Group; Conflict Management – Maslow’s hierarchy of needs theory; Herzberg’s motivation-hygiene theory; McClelland’s three needs motivation theory; Vroom’s valence-expectancy theory – Change Management: Concept of Change; Lewin’s Process of Change Model; Sources of Resistance; Overcoming Resistance; Guidelines to managing Conflict.

UNIT – V PRODUCTIVITY AND MODERN TOPICS 9
Productivity: Concept; Measurements; Affecting Factors; Methods to Improve – Modern Topics (concept, feature/characteristics, procedure, merits and demerits): Business Process Reengineering (BPR); Benchmarking; SWOT/SWOC Analysis; Total Productive Maintenance; Enterprise Resource Planning (ERP); Management of Information Systems (MIS).

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course the students would be able to
CO1 Explain basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.

CO2 Discuss the planning; organizing and staffing functions of management in professional organization.

CO3 Apply the leading; controlling and decision making functions of management in professional organization.

CO4 Discuss the organizational theory in professional organization.

CO5 Apply principles of productivity and modern concepts in management in professional organization.
TEXTBOOKS:

REFERENCES:

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-' - no correlation

MANDATORY COURSES I

MX3081 INTRODUCTION TO WOMEN AND GENDER STUDIES L T P C 3 0 0 0

COURSE OBJECTIVE

UNIT I CONCEPTS
Sex vs. Gender, masculinity, femininity, socialization, patriarchy, public/ private, essentialism, binaryism, power, hegemony, hierarchy, stereotype, gender roles, gender relation, deconstruction, resistance, sexual division of labour.

UNIT II FEMINIST THEORY
Liberal, Marxist, Socialist, Radical, Psychoanalytic, postmodernist, ecofeminist.

UNIT III WOMEN'S MOVEMENTS: GLOBAL, NATIONAL AND LOCAL
Rise of Feminism in Europe and America.
Women's Movement in India.
UNIT IV GENDER AND LANGUAGE
Linguistic Forms and Gender.
Gender and narratives.

UNIT V GENDER AND REPRESENTATION
Advertising and popular visual media.
Gender and Representation in Alternative Media.
Gender and social media.

TOTAL : 45 PERIODS

MX3082 ELEMENTS OF LITERATURE L T P C
3 0 0 0

COURSE OBJECTIVE:
- To make the students aware about the finer sensibilities of human existence through an art form. The students will learn to appreciate different forms of literature as suitable modes of expressing human experience.

1. COURSE CONTENTS

Introduction to Elements of Literature

1. Relevance of literature
 a) Enhances Reading, thinking, discussing and writing skills.
 b) Develops finer sensibility for better human relationship.
 c) Increases understanding of the problem of humanity without bias.
 d) Providing space to reconcile and get a cathartic effect.

2. Elements of fiction
 a) Fiction, fact and literary truth.
 b) Fictional modes and patterns.
 c) Plot character and perspective.

3. Elements of poetry
 a) Emotions and imaginations.
 b) Figurative language.
 c) (Simile, metaphor, conceit, symbol, pun and irony).
 d) Personification and animation.
 e) Rhetoric and trend.
4. Elements of drama

a) Drama as representational art.
b) Content mode and elements.
c) Theatrical performance.
d) Drama as narration, mediation and persuasion.
e) Features of tragedy, comedy and satire.

3. READINGS:

3.1 Textbook:

3.2 *Reference Books:: To be decided by the teacher and student, on the basis of individual student so as to enable him or her to write the term paper.

4. OTHER SESSION:

4.1*Tutorials:

4.2*Laboratory:

4.3*Project: The students will write a term paper to show their understanding of a particular piece of literature

5.*ASSESSMENT:

5.1HA:

5.2Quizzes-HA:

5.3Periodical Examination: one

5.4Project/Lab: one (under the guidance of the teachers the students will take a volume of poetry, fiction or drama and write a term paper to show their understanding of it in a given context; sociological, psychological, historical, autobiographical etc.)
5.5 Final Exam:

TOTAL : 45 PERIODS

OUTCOME OF THE COURSE:

- Students will be able to understand the relevance of literature in human life and appreciate its aspects in developing finer sensibilities.

MX3083 FILM APPRECIATION

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

In this course on film appreciation, the students will be introduced broadly to the development of film as an art and entertainment form. It will also discuss the language of cinema as it evolved over a century. The students will be taught as to how to read a film and appreciate the various nuances of a film as a text. The students will be guided to study film joyfully.

Theme - A: The Component of Films

A-1: The material and equipment
A-2: The story, screenplay and script
A-3: The actors, crew members, and the director
A-4: The process of film making… structure of a film

Theme - B: Evolution of Film Language

B-1: Film language, form, movement etc.
B-2: Early cinema… silent film (Particularly French)
B-3: The emergence of feature films: Birth of a Nation
B-4: Talkies

Theme - C: Film Theories and Criticism/Appreciation

C-1: Realist theory; Auteurists
C-2: Psychoanalytic, Ideological, Feminists
C-3: How to read films?
C-4: Film Criticism / Appreciation

Theme – D: Development of Films

D-1: Representative Soviet films
D-2: Representative Japanese films
D-3: Representative Italian films
D-4: Representative Hollywood film and the studio system

Theme - E: Indian Films

E-1: The early era
E-2: The important films made by the directors
E-3: The regional films
E-4: The documentaries in India
READING:

A Reader containing important articles on films will be prepared and given to the students. The students must read them and present in the class and have discussion on these.

MX3084 DISASTER RISK REDUCTION AND MANAGEMENT L T P C 3 0 0 0

COURSE OBJECTIVE
- To impart knowledge on concepts related to disaster, disaster risk reduction, disaster management
- To acquaint with the skills for planning and organizing disaster response

UNIT I HAZRADS, VULNERABILITY AND DISASTER RISKS 9
Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Types of Disasters: Natural, Human induced, Climate change induced –Earthquake, Landslide, Flood, Drought, Fire etc – Technological disasters- Structural collapse, Industrial accidents, oil spills -Causes, Impacts including social, Economic, political, environmental, health, psychosocial, etc.- Disaster vulnerability profile of India and Tamil Nadu - Global trends in disasters: urban disasters, pandemics, Complex emergencies, - - , Inter relations between Disasters and Sustainable development Goals

UNIT II DISASTER RISK REDUCTION (DRR) 9
Sendai Framework for Disaster Risk Reduction, Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community Based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions / Urban Local Bodies (PRIs/ULBs), States, Centre, and other stakeholders- Early Warning System – Advisories from Appropriate Agencies.- Relevance of indigenous Knowledge, appropriate technology and Local resources.

UNIT III DISASTER MANAGEMENT 9
Components of Disaster Management – Preparedness of rescue and relief, mitigation, rehabilitation and reconstruction- Disaster Risk Management and post disaster management – Compensation and Insurance- Disaster Management Act (2005) and Policy - Other related policies, plans, programmers and legislation - Institutional Processes and Framework at State and Central Level- (NDMA –SDMA-DDMA-NRDF- Civic Volunteers)

UNIT IV TOOLS AND TECHNOLOGY FOR DISASTER MANAGEMENT 9

UNIT V DISASTER MANAGEMENT: CASE STUDIES 9
Discussion on selected case studies to analyse the potential impacts and actions in the contest of disasters-Landslide Hazard Zonation: Earthquake Vulnerability Assessment of Buildings and
Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.- Field work-Mock drill -

TOTAL : 45 PERIODS

TEXT BOOKS:

REFERENCES

COURSE OUTCOME:
CO1: To impart knowledge on the concepts of Disaster, Vulnerability and Disaster Risk reduction (DRR)
CO2: To enhance understanding on Hazards, Vulnerability and Disaster Risk Assessment prevention and risk reduction
CO3: To develop disaster response skills by adopting relevant tools and technology
CO4: Enhance awareness of institutional processes for Disaster response in the country and
CO5: Develop rudimentary ability to respond to their surroundings with potential Disaster response in areas where they live, with due sensitivity

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO's</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVG</td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
MANDATORY COURSES II

MX3085 WELL-BEING WITH TRADITIONAL PRACTICES-YOGA, AYURVEDA AND SIDDHA

COURSE OBJECTIVES:

- To enjoy life happily with fun filled new style activities that help to maintain health also
- To adapt a few lifestyle changes that will prevent many health disorders
- To be cool and handbill every emotion very smoothly in every walk of life
- To learn to eat cost effective but healthy foods that are rich in essential nutrients
- To develop immunity naturally that will improve resistance against many health disorders

UNIT I HEALTH AND ITS IMPORTANCE 2+4

Health: Definition - Importance of maintaining health - More importance on prevention than treatment
Ten types of health one has to maintain - Physical health - Mental health - Social health - Financial health - Emotional health - Spiritual health - Intellectual health - Relationship health - Environmental health - Occupational/Professional health.

Causes of the above diseases / disorders - Importance of prevention of illness - Takes care of health - Improves quality of life - Reduces absenteeism - Increase satisfaction - Saves time

Simple lifestyle modifications to maintain health - Healthy Eating habits (Balanced diet according to age) Physical Activities (Stretching exercise, aerobics, resisting exercise) - Maintaining BMI - Importance and actions to be taken

UNIT II DIET 4+6

Role of diet in maintaining health - energy one needs to keep active throughout the day - nutrients one needs for growth and repair - helps one to stay strong and healthy - helps to prevent diet-related illness, such as some cancers - keeps active and - helps one to maintain a healthy weight - helps to reduce risk of developing lifestyle disorders like diabetes – arthritis – hypertension – PCOD – infertility – ADHD – sleeplessness -helps to reduce the risk of heart diseases - keeps the teeth and bones strong.

Food additives and their merits & demerits - Effects of food additives - Types of food additives - Food additives and processed foods - Food additives and their reactions
Definition of BMI and maintaining it with diet
Importance - Consequences of not maintaining BMI - different steps to maintain optimal BM

Common cooking mistakes
Different cooking methods, merits and demerits of each method

UNIT III ROLE OF AYURVEDA & SIDDHA SYSTEMS IN MAINTAINING HEALTH 4+4
AYUSH systems and their role in maintaining health - preventive aspect of AYUSH - AYUSH as a soft therapy.
Secrets of traditional healthy living - Traditional Diet and Nutrition - Regimen of Personal and Social Hygiene - Daily routine (Dinacharya) - Seasonal regimens (Ritucharya) - basic sanitation and healthy living environment - Sadvritta (good conduct) - for conducive social life.
Principles of Siddha & Ayurveda systems - Macrocosp and Microcosm theory - Pancheekarana Theory / (Five Element Theory) 96 fundamental Principles - Uyir Thathukkal (Tri-Dosha Theory) - Udai Thathukkal
Prevention of illness with our traditional system of medicine
Primary Prevention - To decrease the number of new cases of a disorder or illness - Health promotion/education, and - Specific protective measures - Secondary Prevention - To lower the rate of established cases of a disorder or illness in the population (prevalence) - Tertiary Prevention - To decrease the amount of disability associated with an existing disorder.

UNIT IV MENTAL WELLNESS 3+4
Emotional health - Definition and types - Three key elements: the subjective experience - the physiological response - the behavioral response - Importance of maintaining emotional health - Role of emotions in daily life - Short term and long term effects of emotional disturbances - Leading a healthy life with emotions - Practices for emotional health - Recognize how thoughts influence emotions - Cultivate positive thoughts - Practice self-compassion - Expressing a full range of emotions.

Sleep - Sleep and its importance for mental wellness - Sleep and digestion.
Immunity - Types and importance - Ways to develop immunity

UNIT V YOGA 2+12
Definition and importance of yoga - Types of yoga - How to Choose the Right Kind for individuals according to their age - The Eight Limbs of Yoga - Simple yogasanas for cure and prevention of health disorders - What yoga can bring to our life.

TOTAL : 45 PERIODS

TEXT BOOKS:
1. Nutrition and Dietetics - Ashley Martin, Published by White Word Publications, New York, NY 10001, USA
2. Yoga for Beginners_ 35 Simple Yoga Poses to Calm Your Mind and Strengthen Your Body, by Cory Martin, Copyright © 2015 by Althea Press, Berkeley, California
REFERENCES:
1. WHAT WE KNOW ABOUT EMOTIONAL INTELLIGENCE How It Affects Learning, Work, Relationships, and Our Mental Health, by Moshe Zeidner, Gerald Matthews, and Richard D. Roberts

1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799645/
2. Simple lifestyle modifications to maintain health
 https://www.niddk.nih.gov/health-information/diet-nutrition/changing-habits-better-health#:~:text=Make%20your%20new%20healthy%20habit,t%20have%20time%20to%20cook.
3. Read more: https://www.legit.ng/1163909-classes-food-examples-functions.html
7. BMI https://www.hsph.harvard.edu/nutritionsource/healthy-weight/
 https://www.who.int/europe/room/fact-sheets/item/a-healthy-lifestyle---who-recommendations
8. Yoga https://www.healthifyme.com/blog/types-of-yoga/
 https://yogamedicine.com/guide-types-yoga-styles/
 Ayurveda: https://vikaspedia.in/health/ayush/ayurveda/concept-of-healthy-living-in-ayurveda
10. CAM : https://www.hindawi.com/journals/ecam/2013/376327/
11. Preventive herbs : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847409/

COURSE OUTCOMES:
After completing the course, the students will be able to:
CO1:Learn the importance of different components of health
CO2:Gain confidence to lead a healthy life
CO3:Learn new techniques to prevent lifestyle health disorders
CO4:Understand the importance of diet and workouts in maintaining health

MX3086 HISTORY OF SCIENCE AND TECHNOLOGY IN INDIA

UNIT I CONCEPTS AND PERSPECTIVES
Meaning of History
Objectivity, Determinism, Relativism, Causation, Generalization in History; Moral judgment in history
Extent of subjectivity, contrast with physical sciences, interpretation and speculation, causation verses evidence, concept of historical inevitability, Historical Positivism.
Science and Technology-Meaning, Scope and Importance, Interaction of science, technology & society, Sources of history on science and technology in India.
UNIT II
HISTORIOGRAPHY OF SCIENCE AND TECHNOLOGY IN INDIA
Introduction to the works of D.D. Kosambi, Dharmpal, Debiprasad Chattopadhyay, Rehman, S. Irfan Habib, Deepak Kumar, Dhruv Raina, and others.

UNIT III
SCIENCE AND TECHNOLOGY IN ANCIENT INDIA
Technology in pre-historic period
Beginning of agriculture and its impact on technology
Science and Technology during Vedic and Later Vedic times
Science and technology from 1st century AD to C-1200.

UNIT IV
SCIENCE AND TECHNOLOGY IN MEDIEVAL INDIA
Legacy of technology in Medieval India, Interactions with Arabs
Development in medical knowledge, interaction between Unani and Ayurveda and alchemy
Astronomy and Mathematics: interaction with Arabic Sciences
Science and Technology on the eve of British conquest

UNIT V
SCIENCE AND TECHNOLOGY IN COLONIAL INDIA
Science and the Empire
Indian response to Western Science
Growth of techno-scientific institutions

UNIT VI
SCIENCE AND TECHNOLOGY IN A POST-INDEPENDENT INDIA
Science, Technology and Development discourse
Shaping of the Science and Technology Policy
Developments in the field of Science and Technology
Science and technology in globalizing India
Social implications of new technologies like the Information Technology and Biotechnology

TOTAL : 45 PERIODS

MX3087
POLITICAL AND ECONOMIC THOUGHT FOR A HUMANE SOCIETY
L T P C
3 0 0 0

Pre-Requisite: None. (Desirable: Universal Human Values 1, Universal Human Values 2)

COURSE OBJECTIVES:
• This course will begin with a short overview of human needs and desires and how different political-economic systems try to fulfill them. In the process, we will end with a critique of different systems and their implementations in the past, with possible future directions.

COURSE TOPICS:
Considerations for humane society, holistic thought, human being’s desires, harmony in self, harmony in relationships, society, and nature, societal systems. (9 lectures, 1 hour each)

(Refs: A Nagaraj, M K Gandhi, JC Kumarappa)

Capitalism – Free markets, demand-supply, perfect competition, laissez-faire, monopolies, imperialism. Liberal democracy. (5 lectures)
(Refs: Adam smith, J S Mill)

Fascism and totalitarianism. World war I and II. Cold war. (2 lectures)

Communism – Mode of production, theory of labour, surplus value, class struggle, dialectical materialism, historical materialism, Russian and Chinese models.

(Refs: Marx, Lenin, Mao, M N Roy) (5 lectures)

Welfare state. Relation with human desires. Empowered human beings, satisfaction. (3 lectures)

Gandhian thought. Swaraj, Decentralized economy & polity, Community. Control over one’s lives. Relationship with nature. (6 lectures)

(Refs: M K Gandhi, Schumacher, Kumarappa)

Essential elements of Indian civilization. (3 lectures)

(Refs: Pt Sundarlal, R C Mazumdar, Dharampal)

Technology as driver of society, Role of education in shaping of society. Future directions. (4 lectures) (Refs: Nandkishore Acharya, David Dixon, Levis Mumford)

Conclusion (2 lectures)

Total lectures: 39

Preferred Textbooks: See Reference Books

Reference Books: Authors mentioned along with topics above. Detailed reading list will be provided.

GRADING:

<table>
<thead>
<tr>
<th>Section</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid sems</td>
<td>30</td>
</tr>
<tr>
<td>End sem</td>
<td>20</td>
</tr>
<tr>
<td>Home Assign</td>
<td>10</td>
</tr>
<tr>
<td>Term paper</td>
<td>40</td>
</tr>
</tbody>
</table>

TOTAL: 45 PERIODS

COURSE OUTCOME:
- The students will get an understanding of how societies are shaped by philosophy, political and economic system, how they relate to fulfilling human goals & desires with some case studies of how different attempts have been made in the past and how they have fared.
COURSE OBJECTIVE:
The objective of the course is to provide an understanding of the state, how it works through its main organs, primacy of politics and political process, the concept of sovereignty and its changing contours in a globalized world. In the light of this, an attempt will be made to acquaint the students with the main development and legacies of national movement and constitutional development in India, reasons for adopting a Parliamentary-federal system, the broad philosophy of the Constitution of India and the changing nature of Indian Political System. Challenges/ problems and issues concerning national integration and nation-building will also be discussed in the contemporary context with the aim of developing a future vision for a better India.

TOPICS:
Understanding the need and role of State and politics.
Development of Nation-State, sovereignty, sovereignty in a globalized world.
Organs of State – Executive, Legislature, Judiciary. Separation of powers, forms of government-unitary-federal, Presidential-Parliamentary,
The idea of India.
1857 and the national awakening.
1885 Indian National Congress and development of national movement – its legacies. Constitution making and the Constitution of India.
Goals, objective and philosophy.
Why a federal system?
National integration and nation-building.
Challenges of nation-building – State against democracy (Kothari)
New social movements.
The changing nature of Indian Political System, the future scenario. What can we do?

OUTCOME OF THE COURSE:
It is expected that this course will make students aware of the theoretical aspect of the state, its organs, its operationalization aspect, the background and philosophy behind the founding of the present political system, broad streams and challenges of national integration and nation-building in India. It will equip the students with the real understanding of our political system/ process in correct perspective and make them sit up and think for devising ways for better participation in the system with a view to making the governance and delivery system better for the common man who is often left unheard and unattended in our democratic setup besides generating a lot of dissatisfaction and difficulties for the system.

SUGGESTED READING:

TOTAL : 45 PERIODS

MX3089 INDUSTRIAL SAFETY L T P C

3 0 0 0

COURSE OBJECTIVES
- To understand the Introduction and basic Terminologies safety.
- To enable the students to learn about the Important Statutory Regulations and standards.
- To enable students to Conduct and participate the various Safety activities in the Industry.
- To have knowledge about Workplace Exposures and Hazards.
- To assess the various Hazards and consequences through various Risk Assessment Techniques.

UNIT I SAFETY TERMINOLOGIES
Hazard-Types of Hazard- Risk-Hierarchy of Hazards Control Measures-Lead indicators- lag Indicators- Flammability- Toxicity Time-weighted Average (TWA) - Threshold Limit Value (TLV) - Short Term Exposure Limit (STEL)- Immediately dangerous to life or health (IDLH)- acute and chronic Effects- Routes of Chemical Entry-Personnel Protective Equipment- Health and Safety Policy-Material Safety Data Sheet MSDS

UNIT II STANDARDS AND REGULATIONS

UNIT III SAFETY ACTIVITIES

UNIT IV WORKPLACE HEALTH AND SAFETY
Noise hazard- Particulate matter- musculoskeletal disorder improper sitting poster and lifting Ergonomics RULE & REBA- Unsafe act & Unsafe Condition- Electrical Hazards- Crane Safety- Toxic gas Release

UNIT V HAZARD IDENTIFICATION TECHNIQUES
Job Safety Analysis-Preliminary Hazard Analysis-Failure mode and Effects Analysis- Hazard and Operability- Fault Tree Analysis- Event Tree Analysis Qualitative and Quantitative Risk Assessment- Checklist Analysis- Root cause analysis- What-If Analysis- and Hazard Identification and Risk Assessment

TOTAL : 45 PERIODS
COURSE OUTCOMES:
Course outcomes on completion of this course the student will be able:
CO1: Understand the basic concept of safety.
CO2: Obtain knowledge of Statutory Regulations and standards.
CO3: Know about the safety Activities of the Working Place.
CO4: Analyze on the impact of Occupational Exposures and their Remedies.
CO5: Obtain knowledge of Risk Assessment Techniques.

TEXTBOOKS
2. L. M. Deshmukh Industrial Safety Management: Hazard Identification and Risk Control McGraw-Hill Education

REFERENCES
5. Society of Safety Engineers, USA

ONLINE RESOURCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>Course Outcome</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Obtain knowledge of Risk Assessment Techniques.</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Industrial safety</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:

- To outline the space environment and their effects.
- To extend the origin of universe and development.
- To classify the galaxies and their evolution.
- To interpret the variable stars in the galaxies.
- To explain theory of formation of our solar system.

UNIT I INTRODUCTION 9

UNIT II ORIGIN OF UNIVERSE 9
Early history of the universe – Big-Bang and Hubble expansion model of the universe – cosmic microwave background radiation – dark matter and dark energy.

UNIT III GALAXIES 7
Galaxies, their evolution and origin – active galaxies and quasars – Galactic rotation – Stellar populations – galactic magnetic field and cosmic rays.

UNIT IV STARS 10

UNIT V SOLAR SYSTEM 10

COURSE OUTCOMES:
On successful completion of this course, the student will be able to
CO1: Obtain a broad, basic knowledge of the space sciences.
CO2: Explain the scientific concepts such as evolution by means of natural selection, age of the Earth and solar system and the Big-Bang.
CO3: Describe the main features and formation theories of the various types of observed galaxies, in particular the Milky Way.
CO4: Explain stellar evolution, including red giants, supernovas, neutron stars, pulsars, white dwarfs and black holes, using evidence and presently accepted theories;
CO5: Describe the presently accepted formation theories of the solar system based upon observational and physical constraints;

TEXT BOOKS:

REFERENCES:

OIE351 INTRODUCTION TO INDUSTRIAL ENGINEERING L T P C
3 0 0 3

COURSE OBJECTIVES:
The objective of this course is to provide foundation in Industrial Engineering in order to enable the students to make significant contributions for improvements in diverse organizations.

- Explain the concepts productivity and productivity measurement approaches.
- Explain the basic principles in facilities planning and plant location.
- Apply work study and ergonomic principles to design workplaces for the improvement of human performance.
- Impart knowledge to design and implement Statistical Process control in any industry.
- Recognize the concept of Production and Operations Management in creating and enhancing a firm’s competitive advantages.

UNIT I INTRODUCTION

UNIT II PLANT LOCATION AND LAYOUT

UNIT III WORK SYSTEM DESIGN& ERGONOMICS

UNIT IV STATISTICAL QUALITY CONTROL

UNIT V PRODUCTION PLANNING AND CONTROL

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course, Students will be able to
CO1: Ability To define the concepts of productivity and productivity measurement approaches.
CO2: Ability to evaluate appropriate location models for various facility types and design various facility layouts
CO3: Ability To conduct a method study and time study to improve the efficiency of the system.
CO4: Ability to Control the quality of processes using control charts in manufacturing/service industries.
CO5: Ability to define the Planning strategies and Material Requirement Plan.

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Avg. 2.2 2.5 1.3 1

1 - low, 2 - medium, 3 - high, * - no correlation

TEXT BOOK:

REFERENCES:
2. Martand Telsang,2006, Industrial Engineering and Production Management, S. Chand and Company

OBT351 FOOD, NUTRITION AND HEALTH L T P C 3 0 0 3

COURSE OBJECTIVES:
- Build knowledge and an overview on general aspects of nutrition and health.
- Distinguish the nutritive value of various food items, BMI calculation differentiating super junk, and functional foods in the market.
- To Solve the real-world problems based on nutrition and health
UNIT I FOOD AND MICROBIOLOGY OF HEALTH: 9
Food resources (plant, animal, microbes); Overview of current production systems; constraints and necessity of novel strategies. Functional and “Super” Foods - role in optimal nutrition. Sugar, protein and fat substitutes. Food and behaviour- physiological disturbances in alcoholism, drug abuse and smoking. Food Related Laws: Inspection – Microbial Indicators of product quality – Indicators of food safety – 229 Microbiological safety of foods - control strategies – Hazard Analysis Critical Point System (HACCP concept) - Microbiological criteria.

UNIT II NUTRIENTS AND FOOD ADDITIVES: 9

UNIT III NANO FOOD TECHNOLOGY: 9
Nano materials as food components, food packaging and nano materials, policies on usage of nanomaterials in foods. Food product development: steps involved in food product development, shelf-life assessment.

UNIT IV FOOD RELATED NUTRITIONAL DISORDERS AND ENERGY CALCULATION: 9

UNIT V CONSUMERS ON GM FOODS AND CONTEMPORARY ISSUES: 9
Global perspective of consumers on GM foods; Major concerns of transgenic, foods GM ingredients in food products. (labeling, bioavailability, safety aspects); regulatory agencies involved in GM foods, Case studies- GM foods.

TOTAL:45 PERIODS

TEXT BOOK(S):

REFERENCE BOOKS:
EXPECTED COURSE OUTCOME:
1. To be able to understand the nutritional values of the various types of foods
2. To be able to analyze the role of food in the metabolic activity of the healthy diet
3. To be able to infer the BMI calculation and stress-related diseases.
4. To be able to elaborate the independent decision on the choice of food to prevent lifestyle disorders and diseases
5. To be able to assess about the food laws governance
6. To be able to compare junk, modified and super foods

OCE351 ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT

COURSE OBJECTIVE:
- To impart the knowledge and skills to identify, assess and mitigate the environmental and social impacts of developmental projects

UNIT I INTRODUCTION

UNIT II ENVIRONMENTAL ASSESSMENT
Screening and Scoping in EIA – Drafting of Terms of Reference, Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise and energy, flora and fauna – Matrices – Networks – Checklist Methods – Mathematical models for Impact prediction – Analysis of alternatives

UNIT III ENVIRONMENTAL MANAGEMENT PLAN

UNIT IV SOCIO ECONOMIC ASSESSMENT
Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan – Economic valuation of Environmental impacts – Cost benefit Analysis-

UNIT V CASE STUDIES

TOTAL: 45 PERIODS
COURSE OUTCOMES:
The students completing the course will have ability to
CO1: carry out scoping and screening of developmental projects for environmental and social assessments
CO2: explain different methodologies for environmental impact prediction and assessment
CO3: plan environmental impact assessments and environmental management plans
CO4: evaluate environmental impact assessment reports

TEXTBOOKS:

REFERENCES:

OEE351 RENEWABLE ENERGY SYSTEM L T P C 3 0 0 3

COURSE OBJECTIVES:
- To Provide knowledge about various renewable energy technologies
- To enable students to understand and design a PV system.
- To provide knowledge about wind energy system.
- To Provide knowledge about various possible hybrid energy systems
- To gain knowledge about application of various renewable energy technologies

UNIT I INTRODUCTION
Primary energy sources, renewable vs. non-renewable primary energy sources, renewable energy resources in India, Current usage of renewable energy sources in India, future potential of renewable energy in power production and development of renewable energy technologies.

UNIT II SOLAR ENERGY
UNIT III WIND ENERGY
Wind energy principles, wind site and its resource assessment, wind assessment, Factors influencing wind, wind turbine components, wind energy conversion systems (WECS), Classification of WECS devices, wind electric generating and control systems, characteristics and applications.

UNIT IV BIO-ENERGY

UNIT V OTHER TYPES OF ENERGY
Energy conversion from Hydrogen and Fuel cells, Geo thermal energy Resources, types of wells, methods of harnessing the energy, potential in India. OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants and their economics.

COURSE OUTCOMES:
At the end of the course students will be able to:
CO1: Attained knowledge about various renewable energy technologies
CO2: Ability to understand and design a PV system.
CO3: Understand the concept of various wind energy system.
CO4: Gained knowledge about various possible hybrid energy systems
CO5: Attained knowledge about various application of renewable energy technologies

REFERENCES
2. Tiwari and Ghosal/ Narosa,’Renewable energy resources’.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-'- no correlation
COURSE OBJECTIVES:

- To introduce common unit operations carried out in process industries.
- To impact knowledge about the important unit operations taking place in process industries.
- To prepare them to take up a case study on selected process industries like petrochemical industry, power plant industry and paper & pulp industry to make the students understand the different measurement and control techniques for important processes.
- Facilitate the students to apply knowledge to select appropriate measurement technique and control strategy for a given process.

UNIT I COMMON UNIT OPERATIONS IN PROCESS INDUSTRIES -I

Unit Operation, Measurement and Control:- Transport of solid, liquid and gases - Evaporators – Crystallizers-Dryers.

UNIT II COMMON UNIT OPERATIONS IN PROCESS INDUSTRIES -II

Unit Operation, Measurement and Control: - Distillation – Refrigeration processes – Chemical reactors.

UNIT III PROCESS MEASUREMENT AND CONTROL IN PETROCHEMICAL INDUSTRY

Process flow diagram of Petro Chemical Industry - Gas oil separation in production platform – wet gas processing – Fractionation Column – Catalytic Cracking unit – Catalytic reforming unit

UNIT IV PROCESS MEASUREMENT AND CONTROL IN THERMAL POWER PLANT INDUSTRY

Process flow diagram of Coal fired thermal Power Plant– Coal pulverizer - Deaerator – Boiler drum - Superheater – Turbines.

UNIT V PROCESS MEASUREMENT AND CONTROL IN PAPER & PULP INDUSTRY

Process flow diagram of paper and pulp industry – Batch digestor – Continuous sulphated digestor – Control problems on the paper machine.

TOTAL: 45 PERIODS

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc)

Study the characteristics of various processing units involved in chemical plant.
Develop the process model by using predefined unit operations (e.g. mixing, distillation, heating) from the library of any process simulator.
Analyse the functioning of each processing units with help of virtual unit operations packages.
Perform a physical property analysis using simulation packages
Implement distillation column analysis using simulation software.
Create process flow models and diagrams
COURSE OUTCOMES:
Students able to
CO1 understand common unit operations in process industries. L2
CO2 Identify the dynamics of important unit operations in petro chemical industry. L2
CO3 develop understanding of important processes taking place selected case studies namely petrochemical industry, power plant industry and paper & pulp industry. L5
CO4 Select appropriate measurement techniques for selective processes. L5
CO5 Develop controller structure based on the process knowledge. L5
CO6 Analyze the operation and challenges in integrated industrial processes. L4

TEXT BOOKS:

REFERENCES:

List of Open Source Software/ Learning website:
5. https://www.cocosimulator.org/
6. https://dwsim.fossee.in/

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO</th>
<th>PO01</th>
<th>PO02</th>
<th>PO03</th>
<th>PO04</th>
<th>PO05</th>
<th>PO06</th>
<th>PO07</th>
<th>PO08</th>
<th>PO09</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT I INTRODUCTION TO GRAPHS

UNIT II TREES AND CONNECTIVITY
Bridges – Trees – Characterization and properties of trees – Cut vertices – Connectivity.

UNIT III TRAVERSABILITY

UNIT IV PLANARITY AND COLOURING

UNIT V OPTIMIZATION GRAPH ALGORITHMS

TOTAL: 45 PERIODS

COURSE OUTCOMES
At the end of this course, the student will be able to
CO1: Apply graph models for solving real world problem.
CO2: Understand the importance the natural applications of trees and graph connectivity.
CO3: Understand the characterization study of Eulerian graphs and Hamiltonian graphs.
CO4: Apply the graph colouring concepts in partitioning problems.
CO5: Apply the standard optimization graph algorithms in solving application problems.
TEXT BOOKS

REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO0 03</th>
<th>PO0 04</th>
<th>PO0 05</th>
<th>PO0 06</th>
<th>PO0 07</th>
<th>PO0 08</th>
<th>PO0 09</th>
<th>PO1 01</th>
<th>PO1 02</th>
<th>PS 01</th>
<th>PS 02</th>
<th>PS 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO6</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-'- no correlation

OPEN ELECTIVE II

OIE352 RESOURCE MANAGEMENT TECHNIQUES

COURSE OBJECTIVES:
- Learn to formulate linear programming problems and solve LPP using simple algorithm
- Learn to solve networking problems
- Learn to formulate and solve integer programming problems
- Learn to solve Non Linear programming problems
- Learn to understand and solve project management problems

UNIT I LINEAR PROGRAMMING

UNIT II DUALITY AND NETWORKS

UNIT III INTEGER PROGRAMMING
Cutting plan algorithm – Branch and bound methods, Multistage (Dynamic) programming.
UNIT IV CLASSICAL OPTIMISATION THEORY:

UNIT V OBJECT SCHEDULING:
Network diagram representation – Critical path method – Time charts and resource leveling – PERT.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon Completion of the course, the students should be able to:
CO1 : Understand to formulate linear programming problems and solve LPP using simple algorithm
CO2 : Understand to solve networking problems
CO3 : Understand to formulate and solve integer programming problems
CO4 : Understand to solve Non Linear programming problems
CO5 : Understand to understand and solve project management problems

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, -“- no correlation

TEXT BOOK:

REFERENCES:

OMG351 FINTECH REGULATION
L T P C 3 0 0 3

COURSE OBJECTIVES:
- To learn about Laws and Regulation
- To acquire the knowledge of Regulations of Fintech firm and their role in Market
UNIT I INTRODUCTION
The Role of the Regulators, Equal Treatment and Competition, Need for a regulatory assessment of Fintech, India Regulations, The Risks to Consider, Regtech and SupTech, The rise of TechFins, Regulatory sandboxes, compliance and whistleblowing.

UNIT II INNOVATION AND REGULATION

UNIT III CROWDFUNDING AND DIGITAL ASSETS

UNIT IV MARKETPLACE LENDING AND MOBILE PAYMENTS

UNIT V ANTI-MONEY LAUNDERING AND CYBERSECURITY
Reporting requirements under the Bank Secrecy Act, Patriot Act, Penalties for violating the BSA, Virtual currencies and the Bank Secrecy Act, Cybersecurity Frameworks, Cybersecurity Act of 2015, Contractual and Self Regulatory obligations.

TOTAL: 45 PERIODS

REFERENCES
6. Lee Reiners, FinTech Law and Policy, 2018
UNIT I NUTRITION AND HEALTH 9
Introduction to the principles of nutrition; Basics of nutrition including; micronutrients (vitamins and minerals), the energy-yielding nutrients (Carbohydrates, Lipids and Proteins), metabolism, digestion, absorption and energy balance. Lipids: their functions, classification, dietary requirements, digestion & absorption, metabolism and links to the major fatal diseases, heart disease and cancer.

UNIT II AYURVEDA – MIND/BODY HEALING 9
Philosophy of Holistic Nutrition with spiritual and psychological approaches towards attaining optimal health; Principles and practical applications of Ayurveda, the oldest healing system in the world. Three forces – Vata, Pitta and Kapha, that combine in each being into a distinct constitution. Practical dietary and lifestyle recommendations for different constitutions will also be explored in real case studies.

UNIT III NUTRITION AND ENVIRONMENT 9
Based on an underlying philosophy that environments maintain and promote health and that individuals have a right to self-determination and self-knowledge, Nutrition principles which promote health and prevent disease. Safety of our food supply, naturally occurring and environmental toxins in foods, microbes and food poisoning.

UNIT IV COMPARATIVE DIETS 9
Evaluating principles of food dynamics, nutrient proportions, holistic individuality, the law of opposites, food combining, and more. Therapeutic benefits and limitations of several alternative diet approaches, including: modern diets (intermittent fasting, macrobiotics), food combining (colour-therapy/rainbow diet), high protein diets (Ketogenic, Paleo), Vegetarian approaches (plant-based/vegetarian/vegan variations, fruitarian, raw food), as well as cleansing and detoxification diets (caffeine, alcohol, and nicotine detoxes, juice fasts).

UNIT V PREVENTIVE HEALTH CARE 9
Proper nutrition protection against, reverse and/or retard many ailments including: osteoporosis, diabetes, atherosclerosis and high blood pressure, arthritis, cancer, anemia, kidney disease and colon cancer. Current research developments on phytochemicals, antioxidants and nutraceuticals will be explored.

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1 Discuss the role of essential nutrients in physical, mental and emotional wellness
CO2 Discuss the role of deficiencies in essential nutrients in the disease process
CO3 Explain how the standard American diet relates to the disease process
CO4 Identify five contemporary eating “styles” and lists the pros and cons of each
CO5 Discuss the concept of whole foods nutrition and its relationship to wellness

TEXTBOOKS
REFERENCES
1. Modern Nutrition in Health & Disease by Young & Shils.

AI3021 IT IN AGRICULTURAL SYSTEM L T P C 3 0 0 3
COURSE OBJECTIVES:
• To introduce the students to areas of agricultural systems in which IT and computers play a major role.
• To also expose the students to IT applications in precision farming, environmental control systems, agricultural systems management and weather prediction models.

UNIT I PRECISION FARMING 9
Precision agriculture and agricultural management – Ground based sensors, Remote sensing, GPS, GIS and mapping software, Yield mapping systems, Crop production modeling.

UNIT II ENVIRONMENT CONTROL SYSTEMS 9
Artificial light systems, management of crop growth in greenhouses, simulation of CO₂ consumption in greenhouses, on-line measurement of plant growth in the greenhouse, models of plant production and expert systems in horticulture.

UNIT III AGRICULTURAL SYSTEMS MANAGEMENT 9
Agricultural systems - managerial overview, Reliability of agricultural systems, Simulation of crop growth and field operations, Optimizing the use of resources, Linear programming, Project scheduling, Artificial intelligence and decision support systems.

UNIT IV WEATHER PREDICTION MODELS 9
Importance of climate variability and seasonal forecasting, Understanding and predicting world’s climate system, Global climatic models and their potential for seasonal climate forecasting, General systems approach to applying seasonal climate forecasts.

UNIT V E-GOVERNANCE IN AGRICULTURAL SYSTEMS 9
Expert systems, decision support systems, Agricultural and biological databases, e-commerce, e-business systems & applications, Technology enhanced learning systems and solutions, e-learning, Rural development and information society.

TOTAL: 45 PERIODS

TEXTBOOKS:

REFERENCES:

COURSE OUTCOME:

CO1: The students shall be able to understand the applications of IT in remote sensing applications such as Drones etc.

CO2: The students will be able to get a clear understanding of how a greenhouse can be automated and its advantages.

CO3: The students will be able to apply IT principles and concepts for management of field operations.

CO4: The students will get an understanding about weather models, their inputs and applications.

CO5: The students will get an understanding of how IT can be used for e-governance in agriculture.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>Course Outcome</th>
<th>Overall correlation of COs to POs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO1</td>
<td>CO2</td>
</tr>
<tr>
<td>PO1 Knowledge of Engineering Sciences</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>PO2 Problem Analysis</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO3 Design/ Development of Solutions</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO4 Investigations</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>PO5 Modern Tool Usage</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO6 Individual and Team work</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO7 Communication</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO8 The Engineer and Society</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO9 Ethics</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO10 Environment and Sustainability</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO11 Project Management and Finance</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO12 Life Long Learning</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PSO1 To make expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PSO2 To enhance students ability to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technology</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
OEI352 INTRODUCTION TO CONTROL ENGINEERING L T P C

COURSE OBJECTIVES:

- To introduce the control system components and transfer function model with their graphical representation.
- To understand the analysis of system in time domain along with steady state error.
- To introduce frequency response analysis of systems.
- To accord basic knowledge in design of compensators.
- To introduce the state space models.

UNIT I MATHEMATICAL MODELLING 9
Introduction – transfer function – simple electrical, mechanical, pneumatic, hydraulic and thermal systems–analogies

UNIT II FEEDBACK CONTROL SYSTEMS 9
Control system components - Block diagram representation of control systems, Reduction of block diagrams, Signal flow graphs, Output to input ratios

UNIT III TIME DOMAIN ANALYSIS 9
Response of systems to different inputs viz., Step impulse, pulse, parabolic and sinusoidal inputs, Time response of first and second order systems, steady state errors and error constants of unity feedback circuit.

UNIT IV STABILITY ANALYSIS 9
Necessary and sufficient conditions, Routh-Hurwitz criteria of stability, Rootlocus and Bodetechniques, Concept and construction, frequency response.

UNIT V STATE SPACE TECHNIQUE 9
State vectors–state space models-Digital Controllers–design aspects.

TOTAL: 45 PERIODS

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc) 5

1. Explore various controllers presently used in industries.
2. Develop control structures for industrial processes.
3. Implement the controllers for various transfer functions of industrial systems.
4. Using software tools for practical exposures to the controllers used in industries by undergoing training.
5. Realisation of various stability criterion techniques for economical operation of process.
COURSE OUTCOMES:
CO1 To represent and develop systems in different forms using the knowledge gained (L5).
CO2 To analyses the system in time and frequency domain (L4).
CO3 Ability to Derive Transfer function Model of Electrical and Mechanical Systems. (L2)
CO4 Ability to Obtain the transfer Function by the Reduction of Block diagram & Signal flow graph (L3)
CO5 To analyses the stability of physical systems(L4).
CO6 To acquire and analyse knowledge in State variable model for MIMO systems(L1)

TEXT BOOKS:

REFERENCES:

List of Open Source Software/ Learning website:
1. https://nptel.ac.in/courses/112107240
2. https://onlinecourses.nptel.ac.in/noc20_me25/preview
3. https://onlinecourses.nptel.ac.in/noc20_ee90/preview

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3</td>
</tr>
<tr>
<td>1 L5</td>
<td>3 3 3 3 3 - - - 1 - - - 1</td>
<td></td>
</tr>
<tr>
<td>2 L4</td>
<td>3 3 3 2 - - - 1 - - - 1</td>
<td></td>
</tr>
<tr>
<td>3 L2</td>
<td>2 1 2 1 - - - 1 - - - 1</td>
<td></td>
</tr>
<tr>
<td>4 L5</td>
<td>3 3 3 3 - - - 1 - - - 1</td>
<td></td>
</tr>
<tr>
<td>5 L4</td>
<td>3 3 3 2 - - - 1 - - - 1</td>
<td></td>
</tr>
<tr>
<td>6 L4</td>
<td>3 3 3 2 - - - 1 - - - 1</td>
<td></td>
</tr>
<tr>
<td>AVg.</td>
<td>2.8 2.6 3 2.1 - - - 1 - - - 1</td>
<td></td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high, ‘-’- no correlation

Note: The average value of this course to be used for program articulation matrix.
OPY351 PHARMACEUTICAL NANOTECHNOLOGY

COURSE OBJECTIVES:
- The goal of this course is to provide an insight into the fundamentals of nanotechnology in biomedical and Pharmaceutical research. It will also guide the students to understand how nanomaterials can be used for a diversity of analytical and medicinal rationales.

UNIT I NANOSTRUCTURES 9
Preparation, properties and characterization - Self-assembling nanostructure - vesicular and micellar polymerization-nanofilms - Metal Nanoparticles- lipid nanoparticles- nanoemulsion - Molecular nanomaterials: dendrimers, etc.,

UNIT II NANOTECHNOLOGY IN BIOMEDICAL INDUSTRY 9

UNIT III NANOTECHNOLOGY IN CANCER THERAPY 9

UNIT IV NANOTECHNOLOGY IN COSMETICS 9

UNIT V NANOTOXICITY 9
NanoToxicology- introduction, dose relationship- Hazard Classification-Risk assessment and management - factors affecting nano toxicity- Dermal Effects of Nanomaterials, Pulmonary, Neuro and Cardiovascular effects of Nanoparticles - Gene–Cellular and molecular Interactions of Nanomaterials.

TOTAL:45 PERIODS

COURSE OUTCOMES:
The student will be able to
- CO1:Identify the process for the preparation and characterization of the different nanostructured materials.
- CO2:Apply the nanotechnology in biomedical discipline with related to drug delivery and disease diagnosis
- CO3:Develop the process, experiments and apply in identifying in a societal and global context.
- CO4:Design and develop the process with suitable equipment for the preparation of nanomaterials in developing cosmetic products.
- CO5:Understand the ethical principles to confirm the safety of the nano products with respect to risk assessment and its management.
- CO6:Have the knowledge about nanotechnology products and its different applications in a societal and global context.
TEXT BOOKS:

REFERENCES:

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>Course Outcome Statements</th>
<th>Programme Outcomes (PO)</th>
<th>Programme Specific Outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’- no correlation
(1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.)

OAE351 AVIATION MANAGEMENT L T P C
3 0 0 3

COURSE OBJECTIVES:
- To acquire solid background of managerial skills in aviation management
- To develop personality to face business difficulties.
- To control multicultural conditions.
- To identify the relevant analytical and logical skills to deal with problems in the airline industry.
- To learn the concepts of performing well in teams, professionalism, and the knowledge acquired in the field of airport planning, airport security, passengers forecasting, aerodromes work etc

215
UNIT I INTRODUCTION
History of aviation – organisation, global, social & ethical environment – history of Aviation in India – major players in the airline industry - swot analysis of the different Airline companies in India – market potential of airline industry in India – new airport Development plans – current challenges in the airline industry - competition in the Airline industry – domestic and international from an Indian perspective

UNIT II AIRPORT INFRASTRUCTURE AND MANAGEMENT
Airport planning – terminal planning design and operation – airport operations – Airport functions – organisation structure in an airline - airport authority of India - Comparison of global and Indian airport management – role of AAI -airline privatisation - full Privatisation - gradual privatisation – partial privatization

UNIT III AIR TRANSPORT SERVICES
Various airport services - international air transport services – Indian scenario – an Overview of airports in Delhi, Mumbai, Hyderabad and Bangalore – the role of private Operators – airport development fees, rates, tariffs

UNIT IV INSTITUTIONAL FRAMEWORK
Role of DGCA - slot allocation – methodology followed by AFC and DGCA -management of Bilaterals – economic regulations

UNIT V CONTROLLING
Role of air traffic control - airspace and navigational aids – control process – case Studies in airline industry – Mumbai Delhi airport privatisation – Navi Mumbai airport Tendering process – 6 cases in the airline industry

TOTAL : 45 PERIODS

TEXT BOOKS

REFERENCES

COURSE OUTCOMES:
CO1: To interpret business difficulties.
CO2: To Dissect multicultural conditions.
CO3: To identify and apply the relevant analytical and logical skills to deal with problems in the airline industry.
CO4: To Develop well in teams, professionalism etc.
CO5: To apply the knowledge acquired in the field of airport planning, airport security, passengers forecasting, aerodromes work etc.
Course Description:
Students aspiring to take up competitive exams of which the English language is a vital component will find this course useful. Designed for students in the higher semesters, the course will help students to familiarise themselves with those aspects of English that are tested in these examinations.

COURSE OBJECTIVES:
- To train the students in the language components essential to face competitive examinations both at the national (UPSC, Banking, Railway, Defence) and the international level (GRE, TOEFL, IELTS).
- To enhance an awareness of the specific patterns in language testing and the respective skills to tackle verbal reasoning and verbal ability tests.
- To inculcate effective practices in language-learning in order to improve accuracy in usage of grammar and coherence in writing.
- To improve students’ confidence to express their ideas and opinions in formal contexts
- To create awareness of accuracy and precision in communication

UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V
Listening and Speaking – Contextual listening – Listening to instructions – Listening for specific information – Identifying detail, main ideas – Following signpost words – Stress, rhythm and intonation - Speaking to respond and elicit ideas – Guided speaking – Opening phrases –

TOTAL: 45 PERIODS

LEARNING OUTCOMES:

At the end of the course, learners will be able

• expand their vocabulary and gain practical techniques to read and comprehend a wide range of texts with the emphasis required
• identify errors with precision and write with clarity and coherence
• understand the importance of task fulfilment and the usage of task-appropriate vocabulary
• communicate effectively in group discussions, presentations and interviews
• write topic based essays with precision and accuracy

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AVG.</td>
<td>2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

Note: The average value of this course to be used for program articulation matrix.

Teaching Methods:

Instructional methods will involve discussions, taking mock tests on various question papers – Objective, multiple-choice and descriptive. Peer evaluation, self-check on improvement and peer feedback - Practice sessions on speaking assessments, interview and discussion – Using multimedia.

Evaluative Pattern:

Internal Tests – 50%
End Semester Exam - 50%

TEXTBOOKS:

REFERENCE BOOKS:

COURSE OBJECTIVES

- to understand the importance of sustainable development
- to acquire a reasonable knowledge on the legal frameworks pertaining to pollution control and environmental management
- to comprehend the role of NGOs in attaining sustainable development

Unit I ENVIRONMENTAL CONCERNS

Introduction to sustainable development goals, Global responsibility of environmental concern, Importance of environmental preservation, Environmental threats, Pollution and its types, Effects of Pollution, Pollution control, Treatment of wastes

UNIT II ROLE OF NGOS

Role of NGO's in national development, NGO's and participatory management, Challenges and limitations of NGO's, Community Development programmes, Role of NGO's in Community Development programmes, Participation of NGO's in environment management, Corporate Social responsibility, NGO's and corporate social responsibility

UNIT III SUSTAINABLE DEVELOPMENT

Issues and Challenges of Sustainable Development, Bioenergy, Sustainable Livelihoods and Rural Poor in Sustainable Development, Protecting ecosystem services for sustainable development, Non-renewable sources of energy and its effect, Renewable sources of energy for sustainability, Nuclear resources and Legal Regulation of Hazardous Substances, Sustainable Development: Programme and Policies, Sustainability assessment and Indicators

UNIT IV NGO'S FOR SUSTAINABILITY

Civil Society Initiatives in Environment Management, Civil Society Initiatives for Sustainable Development, Global Initiatives in Protecting Global Environment, World Summit on Sustainable Development (Johannesburg Summit 2002), Ecological economics, Environmental sustainability, Social inclusion, Health for all, education for all, Food security and Water security, NGOs and Sustainable Development strategies

UNIT V LEGAL FRAMEWORKS

Need for a Legal framework and its enforcement, Legal measures to control pollution, Environmental Legislations in India, Mechanism to implement Environmental Laws in India, Legal Protection of Forests Act 1927, Legal Protection of Wild Life, Role of NGO's in implementing environmental laws, Challenges in the implementation of environmental legislation

TOTAL 45 : PERIODS

COURSE OUTCOMES

Upon completion of this course, the student will:
CO1 Have a thorough grounding on the issues and challenges being faced in attaining sustainable development
CO2 have a knowledge on the role of NGOs towards sustainable development
CO3 present strategies for NGOs in attaining sustainable development
CO4 recognize the importance of providing energy, food security and health equity to all members of the society without damaging the environment
CO5 understand the environmental legislations

REFERENCE BOOKS

OMG353 DEMOCRACY AND GOOD GOVERNANCE L T P C
3 0 0 3

UNIT I
Structure and Process of Governance: Indian Model of Democracy, Parliament, Party Politics and Electoral Behaviour, Federalism, the Supreme Court and Judicial Activism, Units of Local Governance

UNIT II
Regulatory Institutions – SEBI, TRAI, Competition Commission of India,

UNIT III
Lobbying Institutions: Chambers of Commerce and Industries, Trade Unions, Farmers Associations, etc.

UNIT IV
Contemporary Political Economy of Development in India: Policy Debates over Models of Development in India, Recent trends of Liberalisation of Indian Economy in different sectors, E-governance

UNIT V
Dynamics of Civil Society: New Social Movements, Role of NGO’s, Understanding the political significance of Media and Popular Culture.

TOTAL 45 : PERIODS

REFERENCES:
4. Saima Saeed: Screening the Public Sphere: Media and Democracy in India,2013

CME365 RENEWABLE ENERGY TECHNOLOGIES

COURSE OBJECTIVES
- To know the Indian and global energy scenario
- To learn the various solar energy technologies and its applications.
- To educate the various wind energy technologies.
- To explore the various bio-energy technologies.
- To study the ocean and geothermal technologies.

UNIT I ENERGY SCENARIO
Indian energy scenario in various sectors – domestic, industrial, commercial, agriculture, transportation and others – Present conventional energy status – Present renewable energy status-Potential of various renewable energy sources-Global energy status-Per capita energy consumption - Future energy plans

UNIT II SOLAR ENERGY

UNIT III WIND ENERGY

UNIT IV BIO-ENERGY

UNIT V OCEAN AND GEOTHERMAL ENERGY

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course the students would be able to
- Discuss the Indian and global energy scenario.
- Describe the various solar energy technologies and its applications.
- Explain the various wind energy technologies.
- Explore the various bio-energy technologies.
- Discuss the ocean and geothermal technologies.

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

1 - low, 2 - medium, 3 - high, *- no correlation

OME354

APPLIED DESIGN THINKING

<table>
<thead>
<tr>
<th>L T P C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 0 0 3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
The course aims to
- Introduce tools & techniques of design thinking for innovative product development
- Illustrate customer-centric product innovation using on simple use cases
- Demonstrate development of Minimum usable Prototypes
- Outline principles of solution concepts & their evaluation
- Describe system thinking principles as applied to complex systems

UNIT I
DESIGN THINKING PRINCIPLES
Exploring Human-centered Design - Understanding the Innovation process, discovering areas of opportunity, Interviewing & empathy-building techniques, Mitigate validation risk with FIR [Forge Innovation rubric] - Case studies
UNIT II ENDUSER-CENTRIC INNOVATION
Importance of customer-centric innovation - Problem Validation and Customer Discovery - Understanding problem significance and problem incidence - Customer Validation. Target user, User persona & user stories. Activity: Customer development process - Customer interviews and field visit

UNIT III APPLIED DESIGN THINKING TOOLS
Concept of Minimum Usable Prototype [MUP] - MUP challenge brief - Designing & Crafting the value proposition - Designing and Testing Value Proposition; Design a compelling value proposition; Process, tools and techniques of Value Proposition Design

UNIT IV CONCEPT GENERATION
Solution Exploration, Concepts Generation and MUP design- Conceptualize the solution concept; explore, iterate and learn; build the right prototype; Assess capability, usability and feasibility. Systematic concept generation; evaluation of technology alternatives and the solution concepts

UNIT V SYSTEM THINKING
System Thinking, Understanding Systems, Examples and Understandings, Complex Systems

TOTAL: 45 PERIODS

COURSE OUTCOMES
At the end of the course, learners will be able to:
CO1: Define & test various hypotheses to mitigate the inherent risks in product innovations.
CO2: Design the solution concept based on the proposed value by exploring alternate solutions to achieve value-price fit.
CO3: Develop skills in empathizing, critical thinking, analyzing, storytelling & pitching
CO4: Apply system thinking in a real-world scenario

TEXT BOOKS
1. Steve Blank, (2013), The four steps to epiphany: Successful strategies for products that win, Wiley.

REFERENCES
1. https://www.ideou.com/pages/design-thinking#process
4. https://blog.forgeforward.in/evaluating-product-innovations-e8178e58b86e
6. https://blog.forgeforward.in/star-tup-failure-is-like-true-lie-7812cde9b85
COURSE OBJECTIVES:
- The main learning objective of this course is to prepare students for:
- Applying the fundamental concepts and principles of reverse engineering in product design and development.
- Applying the concept and principles material characteristics, part durability and life limitation in reverse engineering of product design and development.
- Applying the concept and principles of material identification and process verification in reverse engineering of product design and development.
- Analysing the various legal aspect and applications of reverse engineering in product design and development.
- Understand about 3D scanning hardware & software operations and procedure to generate 3D model

UNIT I INTRODUCTION & GEOMETRIC FORM 9 Hours

UNIT II MATERIAL CHARACTERISTICS AND PROCESS IDENTIFICATION 9 Hours

UNIT III DATA PROCESSING 9 Hours

UNIT IV 3D SCANNING AND MODELLING 9 Hours

UNIT V INDUSTRIAL APPLICATIONS 9 Hours

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
CO1: Apply the fundamental concepts and principles of reverse engineering in product design and development.
CO2: Apply the concept and principles material characteristics, part durability and life limitation in reverse engineering of product design and development.
CO3: Apply the concept and principles of material identification and process verification in reverse engineering of product design and development.

CO4: Apply the concept and principles of data processing, part performance and system compatibility in reverse engineering of product design and development.

CO5: Analyze the various legal aspect

CO6: Applications of reverse engineering in product design and development.

TEXT BOOKS:

REFERENCES:

OPR351 SUSTAINABLE MANUFACTURING

COURSE OBJECTIVES:
- To be acquainted with sustainability in manufacturing and its evaluation.
- To provide knowledge in environment and social sustainability.
- To provide the student with the knowledge of strategy to achieve sustainability.
- To familiarize with trends in sustainable operations.
- To create awareness in current sustainable practices in manufacturing industry.

UNIT I ECONOMIC SUSTAINABILITY

UNIT II SOCIAL AND ENVIRONMENTAL SUSTAINABILITY
Social sustainability – Introduction-Work management -Human rights - Societal commitment - Customers -Business practices -Modelling and assessing social sustainability. Environmental issues pertaining to the manufacturing sector: Pollution - Use of resources -Pressure to reduce costs - Environmental management: Processes that minimize negative environmental impacts - environmental legislation and energy costs - need to reduce the carbon footprint of manufacturing Operations-Modelling and assessing environmental sustainability

UNIT III SUSTAINABILITY PRACTICES
Sustainability awareness - Measuring Industry Awareness-Drivers and barriers -Availability of sustainability indicators -Analysis of sustainability practicing -Modeling and assessment of sustainable practicing -Sustainability awareness -Sustainability drivers and barriers - Availability of
sustainability indicators- Designing questionnaires- Optimizing Sustainability Indexes- Elements – Cost and time model.

UNIT IV MANUFACTURING STRATEGY FOR SUSTAINABILITY Concepts of competitive strategy and manufacturing strategies and development of a strategic improvement programme - Manufacturing strategy in business success strategy formation and formulation - Structured strategy formulation - Sustainable manufacturing system design options - Approaches to strategy formulation - Realization of new strategies/system designs.

UNIT V TRENDS IN SUSTAINABLE OPERATIONS Principles of sustainable operations - Life cycle assessment manufacturing and service activities - influence of product design on operations - Process analysis – Capacity management - Quality management - Inventory management - Just-In-Time systems - Resource efficient design - Consumerism and sustainable well-being.

COURSE OUTCOMES Upon successful completion of the course, students should be able to:
CO1: Discuss the importance of economic sustainability.
CO2: Describe the importance of sustainable practices.
CO3: Identify drivers and barriers for the given conditions.
CO4: Formulate strategy in sustainable manufacturing.
CO5: Plan for sustainable operation of industry with environmental, cost consciousness.

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>COs/Pos & PSOs</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL: 45 PERIODS
COURSE OBJECTIVES:

- The objective of this course is to prepare the students to know about the general aspects of Electric and Hybrid Vehicles (EHV), including architectures, modelling, sizing, and sub system design and hybrid vehicle control.

UNIT I DESIGN CONSIDERATIONS FOR ELECTRIC VEHICLES

- Need for Electric vehicle- Comparative study of diesel, petrol, hybrid and electric Vehicles.
- Advantages and Limitations of hybrid and electric Vehicles.

UNIT II ENERGY SOURCES

UNIT III MOTORS AND DRIVES

- Types of Motors- DC motors- AC motors, PMSM motors, BLDC motors, Switched reluctance motors working principle, construction and characteristics.

UNIT IV POWER CONVERTERS AND CONTROLLERS

- Solid state Switching elements and characteristics – BJT, MOSFET, IGBT, SCR and TRIAC - Power Converters – rectifiers, inverters and converters - Motor Drives - DC, AC motor, PMSM motors, BLDC motors, Switched reluctance motors – four quadrant operations –operating modes

UNIT V HYBRID AND ELECTRIC VEHICLES

- Main components and working principles of a hybrid and electric vehicles, Different configurations of hybrid and electric vehicles. Power Split devices for Hybrid Vehicles - Operation modes - Control Strategies for Hybrid Vehicle - Economy of hybrid Vehicles - Case study on specification of electric and hybrid vehicles.

COURSE OUTCOMES:

- At the end of this course, the student will be able to
 CO1: Understand the operation and architecture of electric and hybrid vehicles
 CO2: Identify various energy source options like battery and fuel cell
 CO3: Select suitable electric motor for applications in hybrid and electric vehicles.
 CO4: Explain the role of power electronics in hybrid and electric vehicles
 CO5: Analyze the energy and design requirement for hybrid and electric vehicles.

TOTAL: 45 PERIODS
TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

OAS352 SPACE ENGINEERING

COURSE OBJECTIVES:
- Use the standard atmosphere tables and equations.
- Find lift and drag coefficient data from NACA plots.
- Apply the concept of static stability to flight vehicles.
- Describe the concepts of stress, strain, Young’s modulus, Poisson’s ratio, yield strength.
- Demonstrate a basic knowledge of dynamics relevant to orbital mechanics.

UNIT I STANDARD ATMOSPHERE
6
History of aviation – standard atmosphere - pressure, temperature and density altitude.

UNIT II AERODYNAMICS
10
Aerodynamic forces – Lift generation Viscosity and its implications - Shear stress in a velocity profile - Lagrangian and Eulerian flow field - Concept of a streamline – Aircraft terminology and geometry - Aircraft types - Lift and drag coefficients using NACA data.

UNIT III PERFORMANCE AND PROPULSION
9
Viscous and pressure drag - flow separation - aerodynamic drag - thrust calculations -thrust/power available and thrust/power required.

UNIT IV AIRCRAFT STABILITY AND STRUCTURAL THEORY
10
UNIT V SPACE APPLICATIONS

History of space research - spacecraft trajectories and basic orbital manoeuvres - six orbital elements - Kepler’s laws of orbits - Newton’s law of gravitation.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Illustrate the history of aviation & developments over the years
CO2: Ability to identify the types & classifications of components and control systems
CO3: Explain the basic concepts of flight & Physical properties of Atmosphere
CO4: Identify the types of fuselage and constructions.
CO5: Distinguish the types of Engines and explain the principles of Rocket

TEXT BOOKS:

REFERENCE:

OIM351 INDUSTRIAL MANAGEMENT

COURSE OBJECTIVES:
- To introduce fundamental concepts of industrial management
- To understand the approaches to the study of Management
- To learn about Decision Making, Organizing and leadership
- To analyze the Managerial Role and functions
- To know about the Supply Chain Management

UNIT I INTRODUCTION

UNIT II FUNCTIONS OF MANAGEMENT

UNIT III ORGANIZATIONAL BEHAVIOUR

229

UNIT IV GROUPDYNAMICS

UNIT V MODERN CONCEPTS
Management by Objectives (MBO) - Management by Exception (MBE), Strategic Management - Planning for Future direction - SWOT Analysis - Evolving development strategies, information technology in management Decisions support system - Management Games Business Process Re-engineering(BPR) – Enterprises Resource Planning (ERP) - Supply Chain Management (SCM) - Activity Based Management (AM) - Global Perspective - Principles and Steps Advantages and disadvantage

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Understand the basic concepts of industrial management
CO2: Identify the group conflicts and its causes.
CO3: Perform swot analysis
CO4: Analyze the learning curves
CO5: Understand the placement and performance appraisal

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AVG</td>
<td>2.2</td>
<td>2.3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, -“- no correlation

OIE354 QUALITY ENGINEERING

COURSE OBJECTIVES
- Developing a clear knowledge in the basics of various quality concepts.
• Facilitating the students in understanding the application of control charts and its techniques.
• Developing the special control procedures for service and process oriented industries.
• Analyzing and understanding the process capability study.
• Developing the acceptance sampling procedures for incoming raw material.

UNIT I INTRODUCTION 9

UNIT II CONTROL CHARTS 9
Chance and assignable causes of process variation, statistical basis of the control chart, control charts for variables- X, R and S charts, attribute control charts - p, np, c and u- Construction and application.

UNIT III SPECIAL CONTROL PROCEDURES 9
Warning and modified control limits, control chart for individual measurements, multi-vari chart, X chart with a linear trend, chart for moving averages and ranges, cumulative-sum and exponentially weighted moving average control charts.

UNIT IV STATISTICAL PROCESS CONTROL 9
Process stability, process capability analysis using a Histogram or probability plots and control chart. Gauge capability studies, setting specification limits.

UNIT V ACCEPTANCE SAMPLING 9
The acceptance sampling fundamental, OC curve, sampling plans for attributes, simple, double, multiple and sequential, sampling plans for variables, MIL-STD-105D and MIL-STD-414E & IS2500 standards.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Students will be able to:
CO1: Control the quality of processes using control charts for variables in manufacturing industries.
CO2: Control the occurrence of defective product and the defects in manufacturing companies.
CO3: Control the occurrence of defects in services.
CO4: Analyzing and understanding the process capability study.
CO5: Developing the acceptance sampling procedures for incoming raw material.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Av.</td>
<td>2.6</td>
<td>2.7</td>
<td>2.7</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2.7</td>
<td>1</td>
<td>2.7</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

231
COURSE OBJECTIVES

- To enable the students to acquire knowledge of Fire and Safety Studies
- To learn about the effect of fire on materials used for construction, the method of test for non-combustibility & fire resistance
- To learn about fire area, fire stopped areas and different types of fire-resistant doors
- To learn about the method of fire protection of structural members and their repair due to fire damage.
- To develop safety professionals for both technical and management through systematic and quality-based study programmes

UNIT I INHERENT SAFETY CONCEPTS 9
Compartment fire-factors controlling fire severity, ventilation controlled and fuel controlled fires; Spread of fire in rooms, within building and between buildings. Effect of temperature on the properties of structural materials- concrete, steel, masonry and wood; Behavior of non-structural materials on fire- plastics, glass, textile fibres and other house hold materials.

UNIT II PLANT LOCATIONS 9
Compartment temperature-time response at pre-flashover and post flashover periods; Equivalence of fire severity of compartment fire and furnace fire; Fire resistance test on structural elements- standard heating condition, Indian standard test method, performance criteria.

UNIT III WORKING CONDITIONS 9
Fire separation between building- principle of calculation of safe distance. Design principles of fire resistant walls and ceilings; Fire resistant screens- solid screens and water curtains; Local barriers; Fire stopped areas-in roof, in fire areas and in connecting structures; Fire doors- Low combustible, Non-combustible and Spark-proof doors; method of suspension of fire doors; Air-tight sealing of doors;

UNIT IV FIRE SEVERITY AND REPAIR TECHNIQUES 9
Fabricated fire proof boards-calcium silicate, Gypsum, Vermiculite, and Perlite boards; Fire protection of structural elements - Wooden, Steel and RCC.. Reparability of fire damaged structures- Assessment of damage to concrete, steel, masonry and timber structures, Repair techniques- repair methods to reinforced concrete Columns, beams and slabs, Repair to steel structural members, Repair to masonry structures.

UNIT V WORKING AT HEIGHTS 9

TOTAL : 45 PERIODS

COURSE OUTCOMES

On completion of the course the student will be able to

CO1: Understand the effect of fire on materials used for construction

CO2: Understand the method of test for non-combustibility and fire resistance; and will be able to select different structural elements and their dimensions for a particular fire resistance rating of a building.
To understand the design concept of fire walls, fire screens, local barriers and fire doors and able to select them appropriately to prevent fire spread.

To decide the method of fire protection to RCC, steel, and wooden structural elements and their repair methods if damaged due to fire.

Describe the safety techniques and improve the analytical and intelligence to take the right decision at right time.

TEXT BOOKS

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s 1</th>
<th>PO’s 2</th>
<th>PO’s 3</th>
<th>PO’s 4</th>
<th>PO’s 5</th>
<th>PO’s 6</th>
<th>PO’s 7</th>
<th>PO’s 8</th>
<th>PO’s 9</th>
<th>PO’s 10</th>
<th>PO’s 11</th>
<th>PO’s 12</th>
<th>PSO’s 1</th>
<th>PSO’s 2</th>
<th>PSO’s 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.3</td>
<td>-</td>
<td>1.75</td>
<td>-</td>
<td>1</td>
<td>1.3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

OML351 INTRODUCTION TO NON-DESTRUCTIVE TESTING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- Understanding the basic importance of NDT in quality assurance.
- Imbuing the basic principles of various NDT techniques, its applications, limitations, codes and standards.
- Equipping themselves to locate a flaw in various materials, products.
- Applying apply the testing methods for inspecting materials in accordance with industry specifications and standards.
- Acquiring the knowledge on the selection of the suitable NDT technique for a given application
UNIT I INTRODUCTION TO NDT & VISUAL TESTING
9
Concepts of Non-destructive testing-relative merits and limitations-NDT Versus mechanical testing, Fundamentals of Visual Testing – vision, lighting, material attributes, environmental factors, visual perception, direct and indirect methods – mirrors, magnifiers, boroscopes and fibrosopes – light sources and special lighting.

UNIT II LIQUID PENETRANT & MAGNETIC PARTICLE TESTING
9
Liquid Penetrant Inspection: principle, applications, advantages and limitations, dyes, developers and cleaners, Methods & Interpretation.
Magnetic Particle Inspection: Principles, applications, magnetization methods, magnetic particles, Testing Procedure, demagnetization, advantages and limitations, – Interpretation and evaluation of test indications.

UNIT III EDDY CURRENT TESTING & THERMOGRAPHY
9
Thermography- Principle, Contact & Non-Contact inspection methods, Active & Passive methods, Liquid Crystal – Concept, example, advantages & limitations. Electromagnetic spectrum, infrared thermography- approaches, IR detectors, Instrumentation and methods, applications.

UNIT IV ULTRASONIC TESTING & AET
9
Ultrasonic Testing: Types of ultrasonic waves, characteristics, attenuation, couplants, probes, EMAT. Inspection methods-pulse echo, transmission and phased array techniques, types of scanning and displays, angle beam inspection of welds, time of flight diffraction (TOFD) technique, Thickness determination by ultrasonic method, Study of A, B and C scan presentations, calibration.

UNIT V RADIOGRAPHY TESTING
9
Sources-X-rays and Gamma rays and their characteristics-absorption, scattering. Filters and screens, Imaging modalities-film radiography and digital radiography (Computed, Direct, Real Time, CT scan). Problems in shadow formation, exposure factors, inverse square law, exposure charts, Penetrameters, safety in radiography.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completion of this course, the students will be able to
CO1:Realize the importance of NDT in various engineering fields.
CO2:Have a basic knowledge of surface NDE techniques which enables to carry out various inspection in accordance with the established procedures.
CO3:Calibrate the instrument and inspect for in-service damage in the components by means of Eddy current testing as well as Thermography testing.
CO4:Differentiate various techniques of UT and AET and select appropriate NDT methods for better evaluation.
CO5: Interpret the results of Radiography testing and also have the ability to analyse the influence of various parameters on the testing.

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C02</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C03</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C04</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C05</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2.8</td>
<td>1.6</td>
<td>1.8</td>
<td>2.2</td>
<td>2</td>
<td>2</td>
<td>1.8</td>
<td>2</td>
<td>1.6</td>
<td>2</td>
<td>1.3</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-'- no correlation

OMR351 MECHATRONICS

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
- Selecting sensors to develop mechatronics systems.
- Explaining the architecture and timing diagram of microprocessor, and also interpret and develop programs.
- Designing appropriate interfacing circuits to connect I/O devices with microprocessor.
- Applying PLC as a controller in mechatronics system.
- Designing and develop the apt mechatronics system for an application.

UNIT I INTRODUCTION AND SENSORS
UNIT II 8085 MICROPROCESSOR 9

UNIT III PROGRAMMABLE PERIPHERAL INTERFACE 9

UNIT IV PROGRAMMABLE LOGIC CONTROLLER 9
Introduction – Architecture – Input / Output Processing – Programming with Timers, Counters and Internal relays – Data Handling – Selection of PLC.

UNIT V ACTUATORS AND MECHATRONICS SYSTEM DESIGN 9

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:

CO1: Select sensors to develop mechatronics systems.
CO2: Explain the architecture and timing diagram of microprocessor, and also interpret and develop programs.
CO3: Design appropriate interfacing circuits to connect I/O devices with microprocessor.
CO 4: Apply PLC as a controller in mechatronics system.
CO 5: Design and develop the apt mechatronics system for an application.

<table>
<thead>
<tr>
<th>COs/POs & PSOs</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO/PO & PSO Average</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-"- no correlation

TEXT BOOKS

REFERENCES

ORA351 FOUNDATION OF ROBOTICS L T P C 3 0 0 3

COURSE OBJECTIVES:
• To study the kinematics, drive systems and programming of robots.
• To study the basics of robot laws and transmission systems.
• To familiarize students with the concepts and techniques of robot manipulator, its kinematics.
• To familiarize students with the various Programming and Machine Vision application in robots.
• To build confidence among students to evaluate, choose and incorporate robots in engineering systems.

UNIT I FUNDAMENTALS OF ROBOT

UNIT II ROBOT KINEMATICS
Forward kinematics, inverse kinematics and the difference: forward kinematics and inverse Kinematics of Manipulators with two, three degrees of freedom (in 2 dimensional), four degrees of freedom (in 3 dimensional) – derivations and problems. Homogeneous transformation matrices, translation and rotation matrices.

UNIT III ROBOT DRIVE SYSTEMS AND END EFFECTORS
Pneumatic Drives – Hydraulic Drives – Mechanical Drives – Electrical Drives – D.C. Servo Motors, Stepper Motor, A.C. Servo Motors – Salient Features, Applications and Comparison of All These Drives. End Effectors – Grippers – Mechanical Grippers, Pneumatic and Hydraulic Grippers, Magnetic grippers, vacuum grippers, internal grippers and external grippers, selection and design considerations of a gripper

UNIT IV SENSORS IN ROBOTICS
Force sensors, touch and tactile sensors, proximity sensors, non-contact sensors, safety considerations in robotic cell, proximity sensors, fail safe hazard sensor systems, and compliance mechanism. Machine vision system - camera, frame grabber, sensing and digitizing image data – signal conversion, image storage, lighting techniques, image processing and analysis – data reduction, segmentation, feature extraction, object recognition, other algorithms, applications – Inspection, identification, visual serving and navigation.
UNIT V PROGRAMMING AND APPLICATIONS OF ROBOT

Teach pendant programming, lead through programming, robot programming languages – VAL programming – Motion Commands, Sensors commands, End-Effector Commands, and simple programs - Role of robots in inspection, assembly, material handling, underwater, space and medical fields.

TOTAL : 45 PERIODS

COURSE OUTCOMES

At the end of the course, students will be able to:

CO1: Interpret the features of robots and technology involved in the control.

CO2: Apply the basic engineering knowledge and laws for the design of robotics.

CO3: Explain the basic concepts like various configurations, classification and parts of end effectors compare various end effectors and grippers and tools and sensors used in robots.

CO4: Explain the concept of kinematics, degeneracy, dexterity and trajectory planning.

CO5: Demonstrate the image processing and image analysis techniques by machine vision system.

<table>
<thead>
<tr>
<th>COs/POs& PSOs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO/PO & PSO</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

TEXT BOOKS:

REFERENCES:

OAE352 FUNDAMENTALS OF AERONAUTICAL ENGINEERING L T P C

3 0 0 3

COURSE OBJECTIVES:

- To acquire the knowledge on the Historical evaluation of Airplanes
To learn the different component systems and functions
To know the concepts of basic properties and principles behind the flight
To learn the basics of different structures & construction
To learn the various types of power plants used in aircrafts

UNIT I HISTORY OF FLIGHT 8
Balloon flight-ornithopter-Early Airplanes by Wright Brothers, biplanes and monoplanes, Developments in aerodynamics, materials, structures and propulsion over the years.

UNIT II AIRCRAFT CONFIGURATIONS AND ITS CONTROLS 10
Different types of flight vehicles, classifications-Components of an airplane and their functions-Conventional control, powered control- Basic instruments for flying-Typical systems for control actuation.

UNIT III BASICS OF AERODYNAMICS 9

UNIT IV BASICS OF AIRCRAFT STRUCTURES 9

UNIT V BASICS OF PROPULSION 9
Basic ideas about piston, turboprop and jet engines – use of propeller and jets for thrust production- Comparative merits, Principle of operation of rocket, types of rocket and typical applications, Exploration into space.

COURSE OUTCOMES:
CO1: Illustrate the history of aircraft & developments over the years
CO2: Ability to identify the types & classifications of components and control systems
CO3: Explain the basic concepts of flight & Physical properties of Atmosphere
CO4: Identify the types of fuselage and constructions.
CO5: Distinguish the types of Engines and explain the principles of Rocket

TEXT BOOKS

REFERENCE
COURSE OBJECTIVES:
- To introduce the concepts of remote sensing processes and its components.
- To expose the various remote sensing platforms and sensors and to introduce the elements of data interpretation

UNIT I REMOTE SENSING AND ELECTROMAGNETIC RADIATION

UNIT II EMR INTERACTION WITH ATMOSPHERE AND EARTH MATERIAL

UNIT III ORBITS AND PLATFORMS
Motions of planets and satellites – Newton’s law of gravitation - Gravitational field and potential - Escape velocity - Kepler’s law of planetary motion - Orbit elements and types – Orbital perturbations and maneuvers – Types of remote sensing platforms - Ground based, Airborne platforms and Space borne platforms – Classification of satellites – Sun synchronous and Geosynchronous satellites – Lagrange Orbit.

UNIT IV SENSING TECHNIQUES

UNIT V DATA PRODUCTS AND INTERPRETATION
Photographic and digital products – Types, levels and open source satellite data products — selection and procurement of data– Visual interpretation: basic elements and interpretation keys - Digital interpretation – Concepts of Image rectification, Image enhancement and Image classification

TOTAL:45 PERIODS

COURSE OUTCOMES:
On completion of the course, the student is expected to
CO 1 Understand the concepts and laws related to remote sensing
CO 2 Understand the interaction of electromagnetic radiation with atmosphere and earth material
CO 3 Acquire knowledge about satellite orbits and different types of satellites
CO 4 Understand the different types of remote sensors
CO 5 Gain knowledge about the concepts of interpretation of satellite imagery
TEXTBOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO</th>
<th>Graduate Attribute</th>
<th>Course Outcome</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Engineering Knowledge</td>
<td>3 3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO2</td>
<td>Problem Analysis</td>
<td>3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO3</td>
<td>Design/Development of Solutions</td>
<td>3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO4</td>
<td>Conduct Investigations of Complex Problems</td>
<td>3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td>3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO6</td>
<td>The Engineer and Society</td>
<td>3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and Sustainability</td>
<td>3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
<td>3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and Team Work</td>
<td>3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
<td>3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO11</td>
<td>Project Management and Finance</td>
<td>3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long Learning</td>
<td>3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PSO1</td>
<td>Knowledge of Geoinformatics discipline</td>
<td>3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PSO2</td>
<td>Critical analysis of Geoinformatics</td>
<td>3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PSO3</td>
<td>Conceptualization and evaluation of Design</td>
<td>3 3 3 3 3</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’- no correlation

OAI351 URBAN AGRICULTURE LT P C
3 0 0 3

COURSE OBJECTIVES:
- To introduce the students the principles of agricultural crop production and the production practices of crops in modern ways.
- To delineate the role of agricultural engineers in relation to various crop production practices.
UNIT I INTRODUCTION
Benefits of urban agriculture- economic benefits, environmental benefits, social and cultural
benefits, educational, skill-building and job training benefits, health, nutrition and food accessibility
benefits.

UNIT II VERTICAL FARMING
Vertical farming- types, green facade, living/green wall-modular green wall , vegetated mat wall-
Structures and components for green wall system: plant selection, growing media, irrigation and
garden, hanging baskets: The house plants/ indoor plants

UNIT III SOIL LESS CULTIVATION
Hydroponics, aeroponics, aquaponics: merits and limitations, costs and Challenges, backyard
gardens- tactical gardens- street landscaping- forest gardening, greenhouses, urban beekeeping

UNIT IV MODERN CONCEPTS
Growth of plants in vertical pipes in terraces and inside buildings, micro irrigation concepts suitable
for roof top gardening, rain hose system, Green house, polyhouse and shade net system of crop
production on roof tops

UNIT V WASTE MANAGEMENT
Concept, scope and maintenance of waste management- recycle of organic waste, garden
wastes- solid waste management-scope, microbiology of waste, other ingredients like insecticide,
pesticides and fungicides residues, waste utilization. TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1:Demonstrate the principles behind crop production and various parameters that influences
the crop growth on roof tops
CO2:Explain different methods of crop production on roof tops
CO3:Explain nutrient and pest management for crop production on roof tops
CO4:Illustrate crop water requirement and irrigation water management on roof tops
CO5:Explain the concept of waste management on roof tops

TEXT BOOKS:
 and Francis Group.

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>Overall correlation of COs with POs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Engineering Knowledge</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO2</td>
<td>Problem Analysis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO3</td>
<td>Design/ Development of Solutions</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>PO4</td>
<td>Conduct Investigations of Complex Problems</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO6</td>
<td>The Engineer and Society</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and sustainability</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and team work:</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO11</td>
<td>Project management and finance</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long learning:</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>PSO1</td>
<td>To make expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PSO2</td>
<td>To enhance students ability to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies.</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PSO3</td>
<td>To inculcate entrepreneurial skills through strong Industry-Institution linkage.</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’- no correlation

OEN351 DRINKING WATER SUPPLY AND TREATMENT

COURSE OBJECTIVE:
- To equip the students with the principles and design of water treatment units and distribution system.

UNIT I SOURCES OF WATER
UNIT II CONVEYANCE FROM THE SOURCE

UNIT III WATER TREATMENT

Objectives – Unit operations and processes – Principles, functions, and design of water treatment plant units, aerators of flash mixers, Coagulation and flocculation — sand filters - Disinfection - Construction, Operation and Maintenance aspects.

UNIT IV ADVANCED WATER TREATMENT

UNIT V WATER DISTRIBUTION AND SUPPLY

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1: an understanding of water quality criteria and standards, and their relation to public health
CO2: the ability to design the water conveyance system
CO3: the knowledge in various unit operations and processes in water treatment
CO4: an ability to understand the various systems for advanced water treatment
CO5: an insight into the structure of drinking water distribution system

TEXTBOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.low, 2-medium, 3-high, ‘-‘- no correlation
Note: The average value of this course to be used for program articulation matrix.

OEE352 ELECTRIC VEHICLE TECHNOLOGY L T P C
3 0 0 3

COURSE OBJECTIVES
- To provide knowledge about electric machines and special machine
- To understand the basics of power converters
- To know the concepts of controlling DC and AC drive systems
- To understand the architecture and power train components.
- To impart knowledge on vehicle control for standard drive cycles of hybrid electrical vehicles (HEVs)

UNIT I ROTATING POWER CONVERTERS

UNIT II STATIC POWER CONVERTERS
Working and Characteristics of Power Diodes, MOSFET and IGBT. Working of uncontrolled rectifiers, controlled rectifiers (Single phase and Three phase), DC choppers, single and three phase inverters, Multilevel inverters and Matrix Converters.

UNIT III CONTROL OF DC AND AC MOTOR DRIVES
Speed control for constant torque, constant HP operation of all electric motors - DC/DC chopper based four quadrant operation of DC motor drives, inverter based V/f Operation (motoring and braking) of induction motor drives, Transformation theory, vector control operation of Induction motor and PMSM, Brushless DC motor drives, Switched reluctance motor (SRM) drives

UNIT IV HYBRID ELECTRIC VEHICLE ARCHITECTURE AND POWER TRAIN COMPONENTS
History of evolution of Electric Vehicles - Comparison of Electric Vehicles with Internal Combustion Engines - Architecture of Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV) –
Plug-in Hybrid Electric Vehicles (PHEV): Power train components and sizing, Gears, Clutches, Transmission and Brakes.

UNIT V MECHANICS OF HYBRID ELECTRIC VEHICLES AND CONTROL OF VEHICLES

Fundamentals of vehicle mechanics - tractive force, power and energy requirements for standard drive cycles of HEV's - motor torque and power rating and battery capacity. HEV supervisory control - Selection of modes - power split mode - parallel mode - engine brake mode - regeneration mode - series parallel mode

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Able to understand the principles of conventional and special electrical machines.
CO2: Acquired the concepts of power devices and power converters
CO3: Able to understand the control for DC and AC drive systems.
CO4: Learned the electric vehicle architecture and power train components.
CO5: Acquired the knowledge of mechanics of electric vehicles and control of electric vehicles.

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

REFERENCES:
INTRODUCTION TO PLC PROGRAMMING

COURSE OBJECTIVES:
- Understand basic PLC terminologies digital principles, PLC architecture and operation.
- Familiarize different programming language of PLC.
- Develop PLC logic for simple applications using ladder logic.
- Understand the hardware and software behind PLC and SCADA.
- Exposures about communication architecture of PLC/SCADA.

UNIT I INTRODUCTION TO PLC
Introduction to PLC: Microprocessor, I/O Ports, Isolation, Filters, Drivers, Microcontrollers/DSP, PLC/DDC- PLC Construction: What is a PLC, PLC Memories, PLC I/O, , PLC Special I/O, PLC Types.

UNIT II PLC INSTRUCTIONS
PLC Basic Instructions: PLC Ladder Language- Function block Programming- Ladder/Function Block functions- PLC Basic Instructions, Basic Examples (Start Stop Rung, Entry/Reset Rung)- Configuration of Sensors, Switches, Solid State Relays-Interlock examples- Timers, Counters, Examples.

UNIT III PLC PROGRAMMING
Different types of PLC program, Basic Ladder logic, logic functions, PLC module addressing, registers basics, basic relay instructions, Latching Relays, arithmetic functions, comparison functions, data handling, data move functions, timer-counter instructions, input-output instructions, sequencer instructions

UNIT IV COMMUNICATION OF PLC AND SCADA
Communication Protocol – Modbus, HART, Proffibus- Communication facilities SCADA: - Hardware and software, Remote terminal units, Master Station and Communication architectures

UNIT V CASE STUDIES
Stepper Motor Control- Elevator Control-CNC Machine Control- conveyor control-Interlocking Problems

TOTAL:45 PERIODS

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation /Quiz/ Surprise Test / Solving GATE questions/ etc) 5
1. Market survey of the recent PLCs and comparison of their features.
2. Summarize the PLC standards
3. Familiarization of any one programming language (Ladder diagram/ Sequential Function Chart/ Function Block Diagram/ Equivalent open source software)
4. Market survey of Communication Network Used for PLC/SCADA.

COURSE OUTCOMES:
CO1 Know the basic requirement of a PLC input/output devices and architecture. (L1)
CO2 Ability to apply Basics Instruction Sets used for ladder Logic and Function Block Programming.(L2)
CO3 Ability to design PLC Programmes by Applying Timer/Counter and Arithmetic and Logic Instructions Studied for Ladder Logic and Function Block. (L3)
CO4 Able to develop a PLC logic for a specific application on real world problem. (L5)
CO5 Ability to Understand the Concepts of Communication used for PLC/SCADA. (L1)

TEXT BOOKS:
1. Frank Petruzzula, Programmable Logic Controllers, Tata Mc-Graw Hill Edition
2. John W. Webb, Ronald A. Reis, Programmable Logic Controllers Principles and Applications, PHI publication

REFERENCES:
2. J. R. Hackworth and F. D. Hackworth, Programmable Logic Controllers Principles and Applications, Pearson publication

List of Open Source Software/ Learning website:
1. https://nptel.ac.in/courses/108105063

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO, PSO</th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2.9</td>
<td>2.25</td>
<td>2.6</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>2.9</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
UNIT I INTRODUCTION
General definition and size effects–important nano structured materials and nano particles--importance of nano materials- Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials- surface area - band gap energy and applications. Photochemistry and Electrochemistry of nanomaterials –Ionic properties of nanomaterials- Nano catalysis.

UNIT II SYNTHESIS OF NANOMATERIALS
Bottom up and Top-down approach for obtaining nano materials - Precipitation methods – sol gel technique – high energy ball milling, CVD and PVD methods, gas phase condensation, magnetron sputtering and laser deposition methods – laser ablation, sputtering.

UNIT III NANO COMPOSITES
Definition- importance of nanocomposites- nano composite materials-classification of composites-metal/metal oxides, metal-polymer- thermoplastic based, thermostet based and elastomer based-influence of size, shape and role of interface in composites applications.

UNIT IV NANO STRUCTURES AND CHARACTERIZATION TECHNIQUES
Classifications of nanomaterials - Zero dimensional, one-dimensional and two-dimensional nanostructures- Kinetics in nanostructured materials- multilayer thin films and superlattice-clusters of metals, semiconductors and nanocomposites. Spectroscopic techniques, Diffraction methods, thermal analysis method, BET analysis method.

UNIT V APPLICATIONS OF NANO MATERIALS
Overview of nanomaterials properties and their applications, nano painting, nano coating, nanomaterials for renewable energy, Molecular Electronics and Nanoelectronics – Nanobots-Biological Applications. Emerging technologies for environmental applications- Practice of nanoparticles for environmental remediation and water treatment.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
CO1 understand the basic properties such as structural, physical, chemical properties of nanomaterials and their applications.
CO2 able to acquire knowledge about the different types of nano material synthesis
CO3 describes about the shape, size,structure of composite nano materials and their interference
CO4 understand the different characterization techniques for nanomaterials
CO5 develop a deeper knowledge in the application of nanomaterials in different fields.

TEXT BOOKS
REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>understand the basic properties such as structural, physical, chemical properties of nanomaterials and their applications</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>acquire knowledge about the different types of nano material synthesis</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>describes about the shape, size, structure of composite nanoMaterials and their interference</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>understand the different characterization techniques for nanomaterials</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>develop a deeper knowledge in the application of nanomaterials in different fields</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’- no correlation
COURSE OBJECTIVE:
- The course emphasis on the molecular safe assembly and materials for polymer electronics

UNIT I INTRODUCTION

UNIT II MOLECULAR SELF ASSEMBLY

UNIT III BIO-INSPIRED MATERIALS

UNIT IV SMART OR INTELLIGENT MATERIALS
Criteria for Smartness, Significance of Smart Materials, Representative Examples like Smart Gels and Polymers, Electro/Magneto Rheological Fluids, Smart Electroceramics, Technical Limitations and Challenges, Functional Nanocomposites, Polymer-carbon nanotube composites.

UNIT V MATERIALS FOR POLYMER ELECTRONICS
Polymers for Electronics, Organic Light Emitting Diodes, Working Principle of OLEDs, Illustrated Examples, Organic Field-Effect Transistors Operating Principle, Design Considerations, Polymer FETs vs Inorganic FETs, Liquid Crystal Displays, Engineering Aspects of Flat Panel Displays, Intelligent Polymers for Data Storage, Polymer-based Data Storage-Principle, Magnetic Vs. Polymer-based Data Storage.

COURSE OUTCOME:
- Students will be able to differentiate among various functional properties and select appropriate material for certain functional applications, analyze the nature and potential of functional material.

TEXT BOOK:

REFERENCE:
COURSE OBJECTIVE:

- To help students acquire a sound knowledge on diversities of foods, food habits and patterns in India with focus on traditional foods.

UNIT I HISTORICAL AND CULTURAL PERSPECTIVES

Food production and accessibility - subsistence foraging, horticulture, agriculture and pastoralization, origin of agriculture, earliest crops grown. Food as source of physical sustenance, food as religious and cultural symbols; importance of food in understanding human culture - variability, diversity, from basic ingredients to food preparation; impact of customs and traditions on food habits, heterogeneity within cultures (social groups) and specific social contexts - festive occasions, specific religious festivals, mourning etc. Kosher, Halal foods; foods for religious and other fasts.

UNIT II TRADITIONAL METHODS OF FOOD PROCESSING

UNIT III TRADITIONAL FOOD PATTERNS

Typical breakfast, meal and snack foods of different regions of India. Regional foods that have gone Pan Indian / Global. Popular regional foods; Traditional fermented foods, pickles and preserves, beverages, snacks, desserts and sweets, street foods; IPR issues in traditional foods.

UNIT IV COMMERCIAL PRODUCTION OF TRADITIONAL FOODS

Commercial production of traditional breads, snacks, ready-to-eat foods and instant mixes, frozen foods – types marketed, turnover; role of SHGs, SMES industries, national and multinational companies; commercial production and packaging of traditional beverages such as tender coconut water, neera, lassi, buttermilk, dahi. Commercial production of intermediate foods – ginger and garlic pastes, tamarind pastes, masalas (spice mixes), idli and dosa batters.

UNIT V HEALTH ASPECTS OF TRADITIONAL FOODS

Comparison of traditional foods with typical fast foods / junk foods – cost, food safety, nutrient composition, bioactive components; energy and environmental costs of traditional foods; traditional foods used for specific ailments /illnesses.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1 To understand the historical and traditional perspective of foods and food habits

CO2 To understand the wide diversity and common features of traditional Indian foods and meal patterns.

TEXT BOOKS:
COURSE OBJECTIVE:
- The course aims to introduce the students to the area of Food Processing. This is necessary for effective understanding of a detailed study of food processing and technology subjects. This course will enable students to appreciate the importance of food processing with respect to the producer, manufacturer and consumer.

UNIT I PROCESSING OF FOOD AND ITS IMPORTANCE
Source of food - plant, animal and microbial origin; different foods and groups of foods as raw materials for processing – cereals, pulses, grains, vegetables and fruits, milk and animal foods, sea weeds, algae, oil seeds & fats, sugars, tea, coffee, cocoa, spices and condiments, additives; need and significance of processing these foods.

UNIT II METHODS OF FOOD HANDLING AND STORAGE
Nature of harvested crop, plant and animal; storage of raw materials and products using low temperature, refrigerated gas storage of foods, gas packed refrigerated foods, sub atmospheric storage, Gas atmospheric storage of meat, grains, seeds and flour, roots and tubers; freezing of raw and processed foods.

UNIT III LARGE-SCALE FOOD PROCESSING
Milling of grains and pulses; edible oil extraction; Pasteurisation of milk and yoghurt; canning and bottling of foods; drying – Traditional and modern methods of drying, Dehydration of fruits, vegetables, milk, animal products etc; preservation by use of acid, sugar and salt; Pickling and curing with microorganisms, use of salt, and microbial fermentation; frying, baking, extrusion cooking, snack foods.

UNIT IV FOOD WASTES IN VARIOUS PROCESSES
Waste disposal-solid and liquid waste; rodent and insect control; use of pesticides; ETP; selecting and installing necessary equipment.

UNIT V FOOD HYGIENE
Food related hazards – Biological hazards – physical hazards – microbiological considerations in foods. Food adulteration – definition, common food adulterants, contamination with toxic metals, pesticides and insecticides; Safety in food procurement, storage handling and preparation; Relationship of microbes to sanitation, Public health hazards due to contaminated water and food; Personnel hygiene; Training& Education for safe methods of handling and processing food; sterilization and disinfection of manufacturing plant; use of sanitizers, detergents, heat, chemicals, Cleaning of equipment and premises.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On completion of the course the students are expected to

CO1 Be aware of the different methods applied to processing foods.
CO2 Be able to understand the significance of food processing and the role of foodand beverage industries in the supply of foods.

TEXT BOOKS/REFERENCES:
COURSE OBJECTIVES:
- To provide the basic fundamental knowledge of different forms of Intellectual Property Rights in national and international level.
- To provide the significance of the Intellectual Property Rights about the patents, copyrights, industrial design, plant and geographical indications.
- This paper is to study significance of the amended patent act on pharma industry.

UNIT I INTRODUCTION- INTELLECTUAL PROPERTY RIGHTS
Introduction, Types of Intellectual Property Rights - patents, plant varieties protection, geographical indicators, copyright, trademark, trade secrets.

UNIT II PATENTS
Patents-Objective, Introduction, Requirement for patenting- Novelty, Inventive step (Non-obviousness) and industrial application (utility), Non-patentable inventions, rights of patent owner, assignment of patent rights, patent specification (provisional and complete), parts of complete specification, claims, procedure for obtaining patents, compulsory license.

UNIT III PLANT VARIETY-TRADITIONAL KNOWLEDGE –GEOGRAPHICAL INDICATIONS
Plant variety- Justification, criteria for protection of plant variety and protection in India. Traditional knowledge- Concept of traditional knowledge, protection of traditional knowledge under Intellectual Property frame works in national level and Traditional knowledge digital library (TKDL). Geographical Indications – Justification for protection, National and International position.

UNIT IV ENFORCEMENT AND PRACTICAL ASPECTS OF IPR

UNIT V INTERNATIONAL BACKGROUND OF INTELLECTUAL PROPERTY

TOTAL:45 PERIODS

TEXT BOOKS:

254

REFERENCES:
2. Basic Principles of patent law – Basics principles and acquisition of IPR. Ramakrishna T. CIPRA, NLSIU, Bangalore, 2005

COURSE OUTCOME
The student will be able to
C1 Understand and differentiate the categories of intellectual property rights.
C2 Describe about patents and procedure for obtaining patents.
C3 Distinguish plant variety, traditional knowledge and geographical indications under IPR.
C4 Provide the information about the different enforcements and practical aspects involved in protection of IPR.
C5 Provide different organizations role and responsibilities in the protection of IPR in the international level.
C6 Understand the interrelationships between different Intellectual Property Rights on International Society

<table>
<thead>
<tr>
<th>CO’s-PO’s & PSO’s MAPPING</th>
<th>IPR FOR PHARMA INDUSTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>C1</td>
<td>3</td>
</tr>
<tr>
<td>C2</td>
<td>3</td>
</tr>
<tr>
<td>C3</td>
<td>3</td>
</tr>
<tr>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-'- no correlation

OTT351 BASICS OF TEXTILE FINISHING

COURSE OBJECTIVE:
- To enable the students to understand the basics and different types of finishes required for textile materials and machines used for finishing.

UNIT I RESIN FINISHING
UNIT II FLAME PROOF & WATERPROOF 9
Concept of Flame proof & flame retardancy. Flame retardant finishes for cotton, Concept of waterproof and water repellent Finishes, Durable & Semi durable and Temporary finishes, Concept of Antimicrobial finish.

UNIT III SOIL RELEASE AND ANTISTATIC FINISHES 9

UNIT IV MECHANICAL FINISHES 9

UNIT V STIFFENING AND SOFTENING 9
Concept of stiffening and softening of textile materials. Mechanism in the weight reduction of PET .Concept of Micro encapsulation techniques in finishing process, Nano finish, Plasma Treatment and Bio finishing.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, the students will be able to Understand the
CO: 2 Concept of Flame proof & flame retardancy, waterproof and water repellent, Antimicrobial finishes.
CO: 3 Concept of Soil Release, Anti Pilling, UV Protection and Antistatic finishes.
CO: 4 Concept of Mechanical finishing.
CO: 5 Basics of Micro encapsulation techniques, Nano finish, Plasma Treatment.

TEXT BOOKS:

REFERENCES:
1. Microencapsulation in finishing, Review of progress of Colouration, SDC, 2001 62

OTT352 INDUSTRIAL ENGINEERING FOR GARMENT INDUSTRY L T P C
3 0 0 3

COURSE OBJECTIVES:
- To enable the students to learn about basics of industrial engineering and different tools of industrial engineering and its application in apparel industry
UNIT I INTRODUCTION 9
Scope of industrial engineering in apparel Industry, role of industrial engineers.
Productivity: Definition - Productivity, Productivity measures .Reduction of work content due to
the product and process, Reduction of ineffective time due to the management, due to the
worker. Causes for low productivity in apparel industry and measures for improvement.

UNIT II WORK STUDY 9
Definition, Purpose, Basic procedure and techniques of work-study.
Work environment – Lighting, Ventilation, Climatic condition on productivity.
Temperature control, humidity control, noise control measures. Safety and ergonomics on
work station and work environment
Material Handling – Objectives, Classification and characteristics of material handling
equipments, Specialized material handling equipments.

UNIT III METHOD STUDY 9
Definition, Objectives, Procedure, Process charts and symbols. Various charts – Charts
indicating process sequence: Outline process chart, flow process chart (man type, material type
and equipment type); Charts using time scale – multiple activity chart. Diagrams indicating
movement – flow diagram, string diagram, cycle graph, chrono cycle graph, travel chart
MOTION STUDY: Principle of motion economy, Two handed process chart, micro motion
analysis – therbligs, SIMO chart.

UNIT IV WORK MEASUREMENT 9
Definition, purpose, procedure, equipments, techniques. Time study - Definition, basics of
time study- equipments. Time study forms, Stop watch procedure. Predetermined motion time
standards (PMTS). Time Study rating, calculation of standard time, Performance rating –
relaxation and other allowances. Calculation of SAM for different garments, GSD.

UNIT V WORK STUDY APPLICATION 9
Application of work study techniques in cutting, stitching and packing in garment industry.
Workaids in sewing, Pitch diagram, Line balancing, Capacity planning, scientific method
of training.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon the completion of the course the student shall be able to understand
CO1: Fundamental concepts of industrial Engineering and productivity
CO2: Method study
CO3: Motion analysis
CO4: Work measurement and SAM
CO5: Ergonomics and its application to garment industry

TEXTBOOKS:
REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>Course Outcome</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS O1 PS O2 PS O3</td>
</tr>
<tr>
<td>CO1</td>
<td>Fundamental concepts of industrial Engineering and productivity</td>
<td>2 2 3 3 2 1 1 2 2 1 2 2</td>
</tr>
<tr>
<td>CO2</td>
<td>Method study</td>
<td>1 2 3 3 2 1 1 2 2 1 2 1</td>
</tr>
<tr>
<td>CO3</td>
<td>Motion analysis</td>
<td>1 2 3 3 2 1 1 2 2 1 2 2</td>
</tr>
<tr>
<td>CO4</td>
<td>Work measurement and SAM</td>
<td>1 2 3 3 2 1 1 2 2 1 3 2</td>
</tr>
<tr>
<td>CO5</td>
<td>Ergonomics and its application to garment industry</td>
<td>1 2 3 3 2 1 2 2 2 1 3 2</td>
</tr>
</tbody>
</table>

Overall CO
1.2 2 3 3 2 1 1.2 2 2 1 2.4 2 1 1 -

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

OTT353 BASICS OF TEXTILE MANUFACTURE L T P C
3 0 0 3

COURSE OBJECTIVES:
- To enable the students to learn about the basics of fibre forming, yarn production, fabric formation, coloration of fabrics and garment manufacturing

UNIT I NATURAL FIBRES
Introduction: Definition of staple fibre, filament; Classification of natural and man-made fibres, essential and desirable properties of fibres. Production and cultivation of Natural Fibers: Cultivation of cotton, production of silk (sericulture), wool and jute – physical and chemical structure of these fibres.

UNIT II REGENERATED AND SYNTHETIC FIBRES
Production sequence of regenerated and modified cellulose fibres: viscose rayon, Acetate Rayon, high wet modulus and high tenacity fibres; synthetic fibres – chemical structure, fibre forming polymers, production principles.
UNIT III BASICS OF SPINNING 9
Spinning – principle of yarn formation, sequence of machines for yarn production with short staple fibres and blends, principles of opening and cleaning machines; yarn numbering – calculations

UNIT IV BASICS OF WEAVING 9
Woven fabric – warp, weft, weaving, path of warp; looms – classification, handloom and its parts, powerloom, automatic looms, shuttleless looms, special type of looms; preparatory machines for weaving process and their objectives; basic weaving mechanism - primary, secondary and auxiliary mechanisms,

UNIT V BASICS OF KNITTING AND NONWOVEN 9

TOTAL : 45 PERIODS

COURSE OUTCOMES:
On completion of this course, the students shall have the basic knowledge on
CO1: Classification of fibres and production of natural fibres
CO2: Regenerated and synthetic fibres
CO3: Yarn spinning
CO4: Weaving
CO5: Knitting and nonwoven

TEXTBOOKS

REFERENCES:
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1. Classification of fibres and production of natural fibres</td>
<td>-</td>
</tr>
<tr>
<td>CO2. Regenerated and synthetic fibres</td>
<td>-</td>
</tr>
<tr>
<td>CO3. Yarn spinning</td>
<td>-</td>
</tr>
<tr>
<td>CO4. Weaving</td>
<td>-</td>
</tr>
<tr>
<td>CO5. Knitting and nonwoven</td>
<td>-</td>
</tr>
<tr>
<td>Overall CO</td>
<td>-</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

CO’s-PO’s & PSO’s MAPPING

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

OPE351 INTRODUCTION TO PETROLEUM REFINING AND PETROCHEMICALS

COURSE OBJECTIVE:

- The course is aimed to
 Gain knowledge about petroleum refining process and production of petrochemical products.

UNIT I ORIGIN, FORMATION AND REFINING OF CRUDE OIL

UNIT II CRACKING

Cracking, Thermal Cracking, Vis-breaking, Catalytic Cracking (FCC), Hydro Cracking, Coking and Air Blowing of Bitumen.

UNIT III REFORMING AND HYDROTREATING

UNIT IV INTRODUCTION TO PETROCHEMICALS

Petrochemicals - Cracking of Naphtha and Feed stock gas for the production of Ethylene, Propylene, Isobutylene and Butadiene. Production of Acetylene from Methane, and Extraction of Aromatics.
UNIT V PRODUCTION OF PETROCHEMICALS

Production of Petrochemicals like Dimethyl Terephathalate (DMT), Ethylene Glycol, Synthetic glycerine, Linear Alkyl Benzene (LAB), Acrylonitrile, Methyl Methacrylate (MMA), Vinyl Acetate Monomer, Phthalic Anhydride, Maleic Anhydride, Phenol, Acetone, Methanol, Formaldehyde, Acetaldehyde, Pentaerythritol and production of Carbon Black.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On the completion of the course students are expected to

CO1: Understand the classification, composition and testing methods of crude petroleum and its products. Learn the mechanism of refining process.

CO2: Understand the insights of primary treatment processes to produce the precursors.

CO3: Study the secondary treatment processes cracking, vis-breaking and coking to produce more petroleum products.

CO4: Appreciate the need of treatment techniques for the removal of sulphur and other impurities from petroleum products.

CO5: Understand the societal impact of petrochemicals and learn their manufacturing processes.

CO6: Learn the importance of optimization of process parameters for the high yield of petroleum products.

TEXT BOOKS

REFERENCES

CPE334 ENERGY CONSERVATION AND MANAGEMENT

OBJECTIVES:
At the end of the course, the student is expected to

• understand and analyse the energy data of industries
• carryout energy accounting and balancing
• conduct energy audit and suggest methodologies for energy savings and
• utilise the available resources in optimal ways

UNIT I INTRODUCTION
UNIT II ELECTRICAL SYSTEMS 9

UNIT III THERMAL SYSTEMS 9

UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES 9
Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems – Cooling Towers – D.G. sets

UNIT V ECONOMICS 9
Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students can able to analyze the energy data of industries.

CO1: Remember the knowledge for Basic combustion and furnace design and selection of thermal and mechanical energy equipment.

CO2: Study the Importance of Stoichiometry relations, Theoretical air required for complete combustion.

CO3: Skills on combustion thermodynamics and kinetics.

CO4: Apply calculation and design tube still heaters.

CO5: Studied different heat treatment furnace.

CO6: Practical and theoretical knowledge burner design.

TEXT BOOKS:

REFERENCES:
COURSE OBJECTIVES

- Understand the fundamentals of plastics processing, such as the relationships between material structural properties and required processing parameters, and so on
- To gain practical knowledge on the polymer selection and its processing
- Understanding the major plastic material processing techniques (Extrusion, Injection molding, Compression and Transfer molding, Blow molding, Thermoforming and casting)
- To understand suitable additives for plastics compounding
- To Propose troubleshooting mechanisms for defects found in plastics products manufactured by various processing techniques

UNIT I INTRODUCTION TO PLASTICS PROCESSING

UNIT II EXTRUSION

UNIT III INJECTION MOLDING

Injection molding – Principles and processing outline, machinery, accessories and functions, specifications, process variables, mould cycle. Types of clamping: hydraulic and toggle mechanisms. Start-up and shut down procedures-Cylinder nozzles- Press capacity projected area -Shot weight Basic theoretical concepts and their relationship to processing - Interaction of moulding process aspect effects in quoted variables. Basic mould types. Reciprocating vs. plunger type injection moulding. Thermoplastic vs. thermosetting injection moulding. Injection moulding vs. other plastic processing techniques. State-of-the art injection moulding techniques - Introduction to trouble shooting

UNIT IV COMPRESSION AND TRANSFER MOLDING

Compression moulding – Basic principles of compression and transfer moulding-Meaning of terms-Bulk factor and flow properties, moulding materials, process variables and process cycle, Interaction of moulding process aspect effects in quoted variables. Basic mould types. Reciprocating vs. plunger type injection moulding. Thermoplastic vs. thermosetting injection moulding. Injection moulding vs. other plastic processing techniques. State-of-the art injection moulding techniques - Introduction to trouble shooting

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1: Ability to find out the correlation between various processing techniques with product properties.

CO2: Understand the major plastics processing techniques used in moulding (injection, blow, compression, and transfer), extrusion, thermoforming, and casting.

CO3: Acquire knowledge on additives for plastic compounding and methods employed for the same

CO4: Familiarize with the machinery and ancillary equipment associated with various plastic processing techniques.

CO5: Select an appropriate processing technique for the production of a plastic product

REFERENCES
COURSE OBJECTIVES:
- To understand the basic properties of signal & systems
- To know the methods of characterization of LTI systems in time domain
- To analyze continuous time signals and system in the Fourier and Laplace domain
- To analyze discrete time signals and system in the Fourier and Z transform domain

UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS
Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and Sinusoids_Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals - Classification of systems- CT systems and DT systems- – Linear & Nonlinear, Time-variant& Time-invariant,Causal & Non-causal, Stable & Unstable.

UNIT II ANALYSIS OF CONTINUOUS TIME SIGNALS
Fourier series for periodic signals - Fourier Transform – properties- Laplace Transforms and Properties

UNIT III LINEAR TIME INVARIANT CONTINUOUS TIME SYSTEMS

UNIT IV ANALYSIS OF DISCRETE TIME SIGNALS
Baseband signal Sampling–Fourier Transform of discrete time signals (DTFT)– Properties of DTFT - Z Transform & Properties

UNIT V LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS

COURSE OUTCOMES:
At the end of the course, the student will be able to:
CO1:determine if a given system is linear/causal/stable
CO2: determine the frequency components present in a deterministic signal
CO3:characterize continuous LTI systems in the time domain and frequency domain
CO4:characterize discrete LTI systems in the time domain and frequency domain
CO5:compute the output of an LTI system in the time and frequency domains

TEXT BOOKS:

REFERENCES :
CO’S-PO’S & PSO’S MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PO13</th>
<th>PO14</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OEC352 FUNDAMENTALS OF ELECTRONIC DEVICES AND CIRCUITS L T P C
3 0 0 3

COURSE OBJECTIVES:
- To give a comprehensive exposure to all types of devices and circuits constructed with discrete components. This helps to develop a strong basis for building linear and digital integrated circuits.
- To analyze the frequency response of small signal amplifiers.
- To design and analyze single stage and multistage amplifier circuits.
- To study about feedback amplifiers and oscillators principles.
- To understand the analysis and design of multi vibrators.

UNIT I SEMICONDUCTOR DEVICES
PN junction diode, Zener diode, BJT, MOSFET, UJT – structure, operation and V-I characteristics, Rectifiers – Half Wave and Full Wave Rectifier, Zener as regulator.

UNIT II AMPLIFIERS
Load line, operating point, biasing methods for BJT and MOSFET, BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response –Analysis of CS and Source follower – Gain and frequency response- High frequency analysis.

UNIT III MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER
Cascode amplifier, Differential amplifier – Common mode and Difference mode analysis – Tuned amplifiers – Gain and frequency response – Neutralization methods.

UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS

UNIT V POWER AMPLIFIERS AND DC/DC CONVERTERS
Power amplifiers- class A-Class B-Class AB-Class C-Temperature Effect- Class AB Power amplifier using MOSFET – DC/DC convertors – Buck, Boost, Buck-Boost analysis and design.

TOTAL: 45 PERIODS
COURSE OUTCOMES:
At the end of the course the students will be able to
CO1: Explain the structure and working operation of basic electronic devices.
CO2: Design and analyze amplifiers.
CO3: Analyze frequency response of BJT and MOSFET amplifiers
CO4: Design and analyze feedback amplifiers and oscillator principles.
CO5: Design and analyze power amplifiers and supply circuits

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-"- no correlation

CBM348 FOUNDATION SKILLS IN INTEGRATED PRODUCT DEVELOPMENT L T P C
3 0 0 3

COURSE OBJECTIVES:
- To understand the global trends and development methodologies of various types of products and services
- To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
- To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them in to design specification
- To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
- To develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer
UNIT I BASICS OF PRODUCT DEVELOPMENT 9

UNIT II REQUIREMENTS AND SYSTEM DESIGN 9

UNIT III DESIGN AND TESTING 9

UNIT IV SUSTENANCE ENGINEERING AND END-OF-LIFE (EOL) SUPPORT 9

UNIT V BUSINESS DYNAMICS – ENGINEERING SERVICES INDUSTRY 9

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, the students will be able to:
CO1: Define, formulate, and analyze a problem
CO2: Solve specific problems independently or as part of a team
CO3: Gain knowledge of the Innovation & Product Development process in the Business Context
CO4: Work independently as well as in teams
CO5: Manage a project from start to finish

TEXT BOOKS:
1. Book specially prepared by NASSCOM as per the MoU.
REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

AVg.

| 1 - low, 2 - medium, 3 - high, ‘-‘- no correlation |

CBM333 ASSISTIVE TECHNOLOGY L T P C 3 0 0 3

COURSE OBJECTIVES:
The student should be made to:
- To know the hardware requirement various assistive devices
- To understand the prosthetic and orthotic devices
- To know the developments in assistive technology

UNIT I CARDIAC ASSIST DEVICES 9
Cardiac functions and parameters, principle of External counter pulsation techniques, intra aortic balloon pump, Auxiliary ventricle and schematic for temporary bypass of left ventricle, prosthetic heart valves, cardiac pacemaker.

UNIT II HEMODIALYSERS 9
Physiology of kidney, Artificial kidney, Dialysis action, hemodialyser unit, membrane dialysis, portable dialyser monitoring and functional parameters.

UNIT III HEARING AIDS 9
Anatomy of ear, Common tests – audiograms, air conduction, bone conduction, masking techniques, SISI, Hearing aids – principles, drawbacks in the conventional unit, DSP based hearing aids.

UNIT IV PROSTHETIC AND ORTHODIC DEVICES 9
Hand and arm replacement – different types of models, externally powered limb prosthesis, feedback in orthotic system, functional electrical stimulation, sensory assist devices.
UNIT V

RECENT TRENDS

Transcutaneous electrical nerve stimulator, bio-feedback, assistive devices in drug delivery

TOTAL: 45 PERIODS

COURSE OUTCOMES:

On successful completion of this course, the student will be able to

CO1: Interpret the various mechanical techniques that will help in assisting the heart functions.

CO2: Describe the underlying principles of hemodialyzer machine.

CO3: Indicate the methodologies to assess the hearing loss.

CO4: Evaluate the types of assistive devices for mobilization.

CO5: Explain about TENS and biofeedback system.

TEXT BOOKS

REFERENCES

4. Cardiac Assist Devices, Daniel Goldstein (Editor), Mehmet Oz (Editor), Wiley-Blackwell April 2000 ISBN: 978-0-879-93449-1

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1 1 1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1 1 1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1 1 1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1 1 1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1 1 1</td>
</tr>
</tbody>
</table>

AVG: 3

1 - low, 2 - medium, 3 - high, "-" no correlation

OMA352

OPERATIONS RESEARCH

L T P C
3 0 0 3

COURSE OBJECTIVES:

This course will help the students to

- determine the optimum solution for Linear programming problems.
- study the Transportation and assignment models and various techniques to solve them.
- acquire the knowledge of optimality, formulation and computation of integer programming problems.
- acquire the knowledge of optimality, formulation and computation of dynamic programming

270
determine the optimum solution for non-linear programming problems.

UNIT I LINEAR PROGRAMMING

UNIT II TRANSPORTATION AND ASSIGNMENT PROBLEMS

UNIT III INTEGER PROGRAMMING

UNIT IV DYNAMIC PROGRAMMING PROBLEMS

UNIT V NON-LINEAR PROGRAMMING PROBLEMS

TOTAL:45 PERIODS

COURSE OUTCOMES:
At the end of the course, students will be able to

CO1: Could develop a fundamental understanding of linear programming models, able to develop a linear programming model from problem description, apply the simplex method for solving linear programming problems.

CO2: Analyze the concept of developing, formulating, modeling and solving transportation and assignment problems.

CO3: Solve the integer programming problems using various methods.

CO4: Conceptualize the principle of optimality and sub-optimization, formulation and computational procedure of dynamic programming.

CO5: Determine the optimum solution for non-linear programming problems.

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS 01</th>
<th>PS 02</th>
<th>PS 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

OMA353 ALGEBRA AND NUMBER THEORY

COURSE OBJECTIVES:
- To introduce the basic notions of groups, rings, fields which will then be used to solve related problems.
- To examine the key questions in the Theory of Numbers.
- To give an integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.

UNIT I GROUPS AND RINGS
Groups: Definition - Properties - Homomorphism - Isomorphism - Cyclic groups - Cosets - Lagrange's theorem.
Rings: Definition - Sub rings - Integral domain - Field - Integer modulo n - Ring homomorphism.

UNIT II FINITE FIELDS AND POLYNOMIALS
Rings - Polynomial rings - Irreducible polynomials over finite fields - Factorization of polynomials over finite fields.

UNIT III DIVISIBILITY THEORY AND CANONICAL DECOMPOSITIONS
Division algorithm- Base-b representations – Number patterns – Prime and composite numbers – GCD – Euclidean algorithm – Fundamental theorem of arithmetic – LCM.

UNIT IV DIOPHANTINE EQUATIONS AND CONGRUENCES
Linear Diophantine equations – Congruence’s – Linear Congruence’s - Applications : Divisibility tests - Modular exponentiation - Chinese remainder theorem – 2x2 linear systems.

UNIT V CLASSICAL THEOREMS AND MULTIPLICATIVE FUNCTIONS
Wilson's theorem – Fermat’s Little theorem – Euler’s theorem – Euler’s Phi functions – Tau and Sigma functions.
COURSE OUTCOMES:
CO1: Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.
CO2: Demonstrate accurate and efficient use of advanced algebraic techniques.
CO3: The students should be able to demonstrate their mastery by solving non-trivial problems related to the concepts, and by proving simple theorems about the statements proven by the text.

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>2.8</td>
<td>2.4</td>
<td>1.6</td>
<td>0.8</td>
<td>2.4</td>
<td>1</td>
<td>2.2</td>
<td>1</td>
<td>0.8</td>
<td>1</td>
<td>2.2</td>
<td>2.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-"- no correlation

OMA354 LINEAR ALGEBRA

COURSE OBJECTIVES:
- To test the consistency and solve system of linear equations.
- To find the basis and dimension of vector space.
- To obtain the matrix of linear transformation and its eigenvalues and eigenvectors.
- To find orthonormal basis of inner product space and find least square approximation.
- To find eigenvalues of a matrix using numerical techniques and perform matrix decomposition.

UNIT I MATRICES AND SYSTEM OF LINEAR EQUATIONS
UNIT II VECTOR SPACES
Vector spaces over Real and Complex fields - Subspace – Linear space - Linear independence and dependence - Basis and dimension.

UNIT III LINEAR TRANSFORMATION
Linear transformation - Rank space and null space - Rank and nullity - Dimension theorem– Matrix representation of linear transformation - Eigenvalues and eigenvectors of linear transformation – Diagonalization.

UNIT IV INNER PRODUCT SPACES
Inner product and norms - Properties - Orthogonal, Orthonormal vectors - Gram Schmidt orthonormalization process - Least square approximation.

UNIT V EIGEN VALUE PROBLEMS AND MATRIX DECOMPOSITION

TOTAL : 45 PERIODS

COURSE OUTCOMES:
After the completion of the course the student will be able to

CO1: Test the consistency and solve system of linear equations.
CO2: Find the basis and dimension of vector space.
CO3: Obtain the matrix of linear transformation and its eigenvalues and eigenvectors.
CO4: Find orthonormal basis of inner product space and find least square approximation.
CO5: Find eigenvalues of a matrix using numerical techniques and perform matrix decomposition.

TEXT BOOKS

REFERENCES
CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO</th>
<th>PS</th>
<th>PS</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.8</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-'- no correlation

OCE353 LEAN CONCEPTS, TOOLS AND PRACTICES L T P C

COURSE OBJECTIVE:
- To impart knowledge about the basics of lean principles, tools and techniques, and implementation in the construction industry.

UNIT I INTRODUCTION 9
Introduction and overview of the construction project management - Review of Project Management & Productivity Measurement Systems - Productivity in Construction - Daily Progress Report - The state of the industry with respect to its management practices - construction project phases - The problems with current construction management techniques.

UNIT II LEAN MANAGEMENT 9
Introduction to lean management - Toyota’s management principle - Evolution of lean in construction industry - Production theories in construction – Lean construction value - Value in construction - Target value design - Lean project delivery system - Forms of waste in construction industry - Waste Elimination.

UNIT III CORE CONCEPTS IN LEAN 9

UNIT IV LEAN TOOLS AND TECHNIQUES 9

UNIT V LEAN IMPLEMENTATION IN CONSTRUCTION INDUSTRY 9
Lean construction implementation- Enabling lean through information technology - Lean in design - Design Structure - BIM (Building Information Modelling) - IPD (Integrated Project Delivery) – Sustainability through lean construction approach.

COURSE OUTCOME:
On completion of this course, the student is expected to be able to
CO1 Explains the contemporary management techniques and the issues in present scenario.
CO2 Apply the basics of lean management principles and their evolution from manufacturing industry to construction industry.
CO3 Develops a better understanding of core concepts of lean construction tools and techniques and their importance in achieving better productivity.
CO4 Apply lean techniques to achieve sustainability in construction projects.
CO5 Apply lean construction techniques in design and modeling.

REFERENCES:

OBT352 BASICS OF MICROBIAL TECHNOLOGY L T P C 3 0 0 3

COURSE OBJECTIVE:
• Enable the Non-biological student’s to understand about the basics of life science and their pro and cons for living organisms.

UNIT I BASICS OF MICROBES AND ITS TYPES 9
Introduction to microbes, existence of microbes, inventions of great scientist and history, types of microorganisms – Bacteria, Virus, Fungi.

UNIT II MICROBIAL TECHNIQUES 9
Sterilization – types – physical and chemical sterilization, Decontamination, Preservation methods, fermentation, Cultivation and growth of microbes, Diagnostic methods.

UNIT III PATHOGENIC MICROBES 9
Infectious Disease – Awareness, Causative agent, Prevention and control - Cholera, Dengu, Malaria, Diarrhea, Typhoid, Covid, HIV.

UNIT IV BENEFICIAL MICROBES 9
Applications of microbes – Clinical microbiology, agricultural microbiology, Food Microbiology, Environmental Microbiology, Animal Microbiology, Marine Microbiology.

UNIT V PRODUCTS FROM MICROBES 9
Fermented products – Fermented Beverages, Curd, Cheese, Mushroom, Agricultural products – Biopesticide, Biofertilizers, Vermicompost, Pharmaceutical products - Antibiotics, Vaccines

TOTAL: 45 PERIODS
COURSE OUTCOME:
At the end of the course the students will be able to
CO1: Microbes and their types
CO2: Cultivation of microbes
CO3: Pathogens and control measures for safety
CO4: Microbes in different industry for economy.

TEXT BOOKS

OBT353 BASIC OF BIOMOLECULES

COURSE OBJECTIVES:
• The objective is to offer basic concepts of biochemistry to students with diverse background in life sciences including but not limited to the structure and function of various biomolecules and their metabolism.

UNIT I CARBOHYDRATES
Introduction to carbohydrate, classification, properties of monosaccharide, structural aspects of monosaccharides. Introduction to disaccharide (lactose, maltose, sucrose) and polysaccharide (Heparin, starch, and glycogen) biological function of carbohydrate.

UNIT II LIPID AND FATTY ACIDS
Introduction to lipid, occurrence, properties, classification of lipid. Importance of phospholipids, sphingolipid and glycerolipid. Biological function of lipid. Fatty acid, Introduction, Nomenclature and classification of fatty acid Essential and non essential fatty acids.

UNIT III AMINO ACIDS AND PROTEIN.

UNIT IV NUCLEIC ACIDS
Introduction to nucleic acid, Difference between nucleotide and nucleoside, composition of DNA & RNA Structure of Nitrogen bases in DNA and RNA along with the nomenclature. DNA double helix (Watson and crick) model, types of DNA, RNA.

UNIT V VITAMINS AND HORMONES
COURSE OUTCOMES:
CO1: Students will learn about various kinds of biomolecules and their physiological role.
CO2: Students will gain knowledge about various metabolic disorders and will help them to know the importance of various biomolecules in terms of disease correlation.

TOTAL: 45 PERIODS

TEXT BOOKS

REFERENCES

OBT354 FUNDAMENTALS OF CELL AND MOLECULAR BIOLOGY

COURSE OBJECTIVES:
- To provide knowledge on the fundamentals of cell biology.
- To understand the signalling mechanisms.
- Understand basic principles of molecular biology at intracellular level to regulate growth, division and development.

UNIT-I INTRODUCTION TO CELL
Cell, cell wall and Extracellular Matrix (ECM), composition, cellular dimensions, Evolution, Organisation, differentiation of prokaryotic and Eukaryotic cells, Virus, bacteria, cyanobacteria, mycoplasma and prions.

UNIT II CELL ORGANELLES
Molecular organisation, biogenesis and function Mitochondria, endoplasmic reticulum, golgi apparatus, plastids, chloroplast, leucoplast, centrosome, lysosome, ribosome, peroxisome, Nucleus and nucleolus. Endo membrane system, concept of compartmentalisation.

UNIT III BIO-MEMBRANE TRANSPORT
UNIT IV CELL CYCLE
Cell cycle- Cell division by mitosis and meiosis, Comparison of meiosis and mitosis, regulation of cell cycle, cell lysis, Cytokinesis, Cell signaling, Cell communication, Cell adhesion and Cell junction, cell cycle checkpoints.

UNIT V CENTRAL DOGMA

COURSE OUTCOMES:
CO1: Understanding of cell at structural and functional level.
CO2: Understand the central dogma of life and its significance.
CO3: Comprehend the basic mechanisms of cell division.

TEXTBOOKS:

REFERENCES:

OPEN ELECTIVE IV
OHS352 PROJECT REPORT WRITING L T P C
3 0 0 3

COURSE OBJECTIVE
The Course will enable Learners to,
- Understand the essentials of project writing.
- Perceive the difference between general writing and technical writing
- Assimilate the fundamental features of report writing.
- Understand the essential differences that exist between general and technical writing.
- Learn the structure of a technical and project report.

UNIT I WRITING SKILLS
UNIT II

UNIT III
Structure of the Project Report: (Part 1) Framing a Title – Content – Acknowledgement – Funding Details -Abstract – Introduction – Aim of the Study – Background - Writing the research question - Need of the Study/Project Significance, Relevance – Determining the feasibility – Theoretical Framework.

UNIT IV

UNIT V

TOTAL:45 PERIODS

COURSE OUTCOMES
By the end of the course, learners will be able to
CO1: Write effective project reports.
CO2: Use statistical tools with confidence.
CO3: Explain the purpose and intension of the proposed project coherently and with clarity.
CO4: Create writing texts to suit achieve the intended purpose.
CO5: Master the art of writing winning proposals and projects.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>AVG.</td>
<td>2.4</td>
<td>2.2</td>
<td>2.4</td>
<td>2.2</td>
<td>3</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.6</td>
<td>3</td>
<td>2.6</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-'- no correlation

Note: The average value of this course to be used for program articulation matrix.

REFERENCES
OMA355 ADVANCED NUMERICAL METHODS L T P C
3 0 0 3

COURSE OBJECTIVE:
- To impart knowledge on numerical methods that will come in handy to solve numerically the problems that arise in engineering and technology. This will also serve as a precursor for future research.

UNIT I ALGEBRAIC EQUATIONS AND EIGENVALUE PROBLEM 9

UNIT II INTERPOLATION 9
Central difference: Stirling and Bessel's interpolation formulae; Piecewise spline interpolation: Piecewise linear, piecewise quadratic and cubic spline; Least square approximation for continuous data (upto 3rd degree).

UNIT III NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS 9

UNIT IV FINITE DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS 9
Laplace and Poisson's equations in a rectangular region: Five point finite difference schemes - Leibmann's iterative methods - Dirichlet's and Neumann conditions - Laplace equation in polar coordinates: Finite difference schemes.

UNIT V FINITE DIFFERENCE METHOD FOR TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS 9
Parabolic equations: Explicit and implicit finite difference methods - Weighted average approximation - Dirichlet's and Neumann conditions - First order hyperbolic equations - Method of characteristics - Different explicit and implicit methods; Wave equation: Explicit scheme - Stability of above schemes.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
CO1: demonstrate the understandings of common numerical methods for nonlinear equations, system of linear equations and eigenvalue problems;
CO2: understand the interpolation theory;
CO3: understand the concepts of numerical methods for ordinary differential equations;
CO4: demonstrate the understandings of common numerical methods for elliptic equations;
CO5: understand the concepts of numerical methods for time dependent partial differential equations

TEXT BOOKS:
References:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO01</th>
<th>PO02</th>
<th>PO03</th>
<th>PO04</th>
<th>PO05</th>
<th>PO06</th>
<th>PO07</th>
<th>PO08</th>
<th>PO09</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PS01</th>
<th>PS02</th>
<th>PS03</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

OMA356 RANDOM PROCESSES L T P C
3 0 0 3

Course Objectives:
- To introduce the basic concepts of probability, one and two dimensional random variables with applications to engineering which can describe real life phenomenon.
- To understand the basic concepts of random processes which are widely used in communication networks.
- To acquaint with specialized random processes which are apt for modelling the real time scenario.
- To understand the concept of correlation and spectral densities.
- To understand the significance of linear systems with random inputs.

Unit I RANDOM VARIABLES

Unit II RANDOM PROCESSES

UNIT III SPECIAL RANDOM PROCESSES

UNIT IV CORRELATION AND SPECTRAL DENSITIES

UNIT V LINEAR SYSTEMS WITH RANDOM INPUTS
Linear time invariant system – System transfer function – Linear systems with random inputs – Auto correlation and cross correlation functions of input and output.

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:

CO1: Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.
CO2: Apply the concept random processes in engineering disciplines.
CO3: Understand and apply the concept of correlation and spectral densities.
CO4: Get an exposure of various distribution functions and help in acquiring skills in handling situations involving more than one variable.
CO5: Analyze the response of random inputs to linear time invariant systems.

TEXT BOOKS

REFERENCES
CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

OMA357 QUEUEING AND RELIABILITY MODELLING

COURSE OBJECTIVES:
- To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems in communication engineering.
- To understand the concept of queueing models and apply in engineering.
- To provide the required mathematical support in real life problems and develop probabilistic models which can be used in several areas of science and engineering.
- To study the system reliability and hazard function for series and parallel systems.
- To implement Markovian Techniques for availability and maintainability which opens up new avenues for research.

UNIT I RANDOM PROCESSES

UNIT II MARKOVIAN QUEUEING MODELS
Markovian queues – Birth and death processes – Single and multiple server queueing models – Little’s formula - Queues with finite waiting rooms.

UNIT III ADVANCED QUEUEING MODELS
M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E_k/1 as special cases – Series queues – Open Jackson networks.

UNIT IV SYSTEM RELIABILITY

UNIT V MAINTAINABILITY AND AVAILABILITY
Maintainability and Availability functions – Frequency of failures – Two Unit parallel system with repair – k out of m systems.

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO1: Enable the students to apply the concept of random processes in engineering disciplines.
CO2: Students acquire skills in analyzing various queueing models.
CO3: Students can understand and characterize phenomenon which evolve with respect to time in a probabilistic manner.
CO4: Students can analyze reliability of the systems for various probability distributions.
CO5: Students can be able to formulate problems using the maintainability and availability analyses by using theoretical approach.

TEXT BOOKS

REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS 01</th>
<th>PS 02</th>
<th>PS 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>1.4</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, *- no correlation

OMG354 PRODUCTION AND OPERATIONS MANAGEMENT FOR ENTREPRENEURS

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To know the basic concept and function of Production and Operation Management for entrepreneurship.
- To understand the Production process and planning.
- To understand the Production and Operations Management Control for business owners.

UNIT I INTRODUCTION TO PRODUCTION AND OPERATIONS MANAGEMENT

Functions of Production Management - Relationship between production and other functions – Production management and operations management, Characteristics of modern production and operation management, organisation of production function, recent trends in production /operations
management - production as an organisational function, decision making in production Operations research

UNIT II PRODUCTION & OPERATION SYSTEMS
Production Systems- principles – Models - CAD and CAM- Automation in Production - Functions and significance- Capacity and Facility Planning: Importance of capacity planning- Capacity measurement – Capacity Requirement Planning (CRP) process for manufacturing and service industry

UNIT III PRODUCTION & OPERATIONS PLANNING
Facility Planning – Location of facilities – Location flexibility – Facility design process and techniques – Location break even analysis-Production Process Planning: Characteristic of production process systems – Steps for production process- Production Planning Control Functions – Planning phase- Action phase- Control phase - Aggregate production planning

UNIT IV PRODUCTION & OPERATIONS MANAGEMENT PROCESS

UNIT V CONTROLLING PRODUCTION & OPERATIONS MANAGEMENT

TOTAL 45 : PERIODS

COURSE OUTCOMES
Upon completion of this course the learners will be able :
CO 1 To understand the basics and functions of Production and Operation Management for business owners.
CO 2 To learn about the Production & Operation Systems.
CO 3 To acquaint on the Production & Operations Planning Techniques followed by entrepreneurs in Industries.
CO 4 To known about the Production & Operations Management Processes in organisations.
CO 5 To comprehend the techniques of controlling , Production and Operations in industries.

REFERENCES
COURSE OBJECTIVE:
- To know various multivariate data analysis techniques for business research.

UNIT I INTRODUCTION
Univariate, Bi-variate and Multi-variate techniques – Classification of multivariate techniques – Guidelines for multivariate analysis and interpretation.

UNIT II PREPARING FOR MULTIVARIATE ANALYSIS
Conceptualization of research model with variables, collection of data — Approaches for dealing with missing data – Testing the assumptions of multivariate analysis.

UNIT III MULTIPLE LINEAR REGRESSION ANALYSIS, FACTOR ANALYSIS
Multiple Linear Regression Analysis – Inferences from the estimated regression function – Validation of the model. - Approaches to factor analysis – interpretation of results.

UNIT IV LATENT VARIABLE TECHNIQUES
Confirmatory Factor Analysis, Structural equation modelling, Mediation models, Moderation models, Longitudinal studies.

UNIT V ADVANCED MULTIVARIATE TECHNIQUES
Multiple Discriminant Analysis, Logistic Regression, Cluster Analysis, Conjoint Analysis, multidimensional scaling.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Demonstrate a sophisticated understanding of the concepts and methods; know the exact scopes and possible limitations of each method; and show capability of using multivariate techniques to provide constructive guidance in decision making.
CO2: Use advanced techniques to conduct thorough and insightful analysis, and interpret the results correctly with detailed and useful information.
CO3: Show substantial understanding of the real problems; conduct deep analysis using correct methods; and draw reasonable conclusions with sufficient explanation and elaboration.
CO4: Write an insightful and well-organized report for a real-world case study, including thoughtful and convincing details.
CO5: Make better business decisions by using advanced techniques in data analytics.

REFERENCES:
COURSE OBJECTIVES:

- To introduce the development, capabilities, applications, of Additive Manufacturing (AM), and its business opportunities.
- To be acquainted with vat polymerization and material extrusion processes
- To be familiar with powder bed fusion and binder jetting processes.
- To gain knowledge on applications of direct energy deposition, and material jetting processes.
- To impart knowledge on sheet lamination and direct write technologies.

UNIT I INTORODUCTION

UNIT II VAT POLYMERIZATION AND MATERIAL EXTRUSION

UNIT III POWDER BED FUSION AND BINDER JETTING

UNIT IV MATERIAL JETTING AND DIRECTED ENERGY DEPOSITION

UNIT V SHEET LAMINATION AND DIRECT WRITE TECHNOLOGY
Ink-Based Direct Writing (DW): Nozzle Dispensing Processes, Inkjet Printing Processes, Aerosol DW - Applications of DW.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of this course students shall be able to:
CO1: Recognize the development of AM technology and how AM technology propagated into various businesses and developing opportunities.

CO2: Acquire knowledge on process vat polymerization and material extrusion processes and its applications.

CO3: Elaborate the process and applications of powder bed fusion and binder jetting.

CO4: Evaluate the advantages, limitations, applications of material jetting and directed energy deposition processes.

CO5: Acquire knowledge on sheet lamination and direct write technology.

TEXT BOOKS:

REFERENCES:

CME343 NEW PRODUCT DEVELOPMENT

COURSE OBJECTIVES
- To introduce the fundamental concepts of the new product development
- To develop material specifications, analysis and process.
- To Learn the Feasibility Studies & reporting of new product development.
- To study the New product qualification and Market Survey on similar products of new product development
- To learn Reverse Engineering. Cloud points generation, converting cloud data to 3D model

UNIT I FUNDAMENTALS OF NPD
9

UNIT II MATERIAL SPECIFICATIONS, ANALYSIS & PROCESS
9
Material specification standards – ISO, DIN, JIS, ASTM, EN, etc. – Awareness on various manufacturing
process like Metal castings & Forming, Machining (Conventional, 3 Axis, 4 Axis, 5 Axis,), Fabrications, Welding process. Qualifications of parts mechanical, physical & Chemical properties and their test report preparation and submission. Fundamentals of DFMEA & PFMEA, Fundamentals of FEA, Bend Analysis, Hot Distortion, Metal and Material Flow, Fill and Solidification analysis.

UNIT III ESSENTIALS OF NPD

UNIT IV CRITERIONS OF NPD
New product qualification for Dimensions, Mechanical & Physical Properties, Internal Soundness proving through X-Ray, Radiography, Ultrasonic Testing, MPT, etc. Agreement with customer for testing frequencies. Market Survey on similar products, Risk analysis, validating samples with simulation results, Lesson Learned & Horizontal deployment in NPD.

UNIT V REPORTING & FORWARD-THinking OF NPD
Detailed study on PPAP with 18 elements reporting, APQP and its 5 Sections, APQP vs PPAP, Importance of SOP (Standard Operating Procedure) – Purpose & documents, deployment in shop floor. Prototyping & RPT - Concepts, Application and its advantages, 3D Printing – resin models, Sand cores for foundries; Reverse Engineering. Cloud points generation, converting cloud data to 3D model – Advantages & Limitation of RE, CE (Concurrent Engineering) – Basics, Application and its advantages in NPD (to reduce development lead time, time to Market, Improve productivity and product cost.)

COURSE OUTCOMES:
At the end of the course the students would be able to
CO1: Discuss fundamental concepts and customer specific requirements of the New Product development
CO2: Discuss the Material specification standards, analysis and fabrication, manufacturing process.
CO3: Develop Feasibility Studies & reporting of New Product development
CO4: Analyzing the New product qualification and Market Survey on similar products of new product development
CO5: Develop Reverse Engineering. Cloud points generation, converting cloud data to 3D model

TEXT BOOKS:
1. Product Development – Sten Jonsson
2. Product Design & Development – Karl T. Ulrich, Maria C. Young, Steven D. Eppinger

REFERENCES:
1. Revolutionizing Product Development – Steven C Wheelwright & Kim B. Clark
2. Change by Design
5. Product Design & Value Engineering – Dr. M.A. Bulsara & Dr. H.R. Thakkar

CO’s-PO’s & PSO’s MAPPING
OME355 INDUSTRIAL DESIGN & RAPID PROTOTYPING TECHNIQUES L T P C 3 0 0 3

COURSE OBJECTIVES:
The course aims to

- Outline Fundamental concepts in UI & UX
- Introduce the principles of Design and Building an mobile app
- Illustrate the use of CAD in product design
- Outline the choice and use of prototyping tools
- Understanding design of electronic circuits and fabrication of electronic devices

UNIT I UI/UX 9

UNIT II APP DEVELOPMENT 9
SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application.

UNIT III INDUSTRIAL DESIGN 9
Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation – Assembly - Product design and rendering basics - Dimensioning & Tolerancing

UNIT IV MECHANICAL RAPID PROTOTYPING 9
Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping; 3D Printing and classification - Laser Cutting and engraving - RD Works - Additive manufacturing

UNIT V ELECTRONIC RAPID PROTOTYPING 9
Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with
COURSE OUTCOMES
At the end of the course, learners will be able to:
CO1: Create quick UI/UX prototypes for customer needs
CO2: Develop web application to test product traction / product feature
CO3: Develop 3D models for prototyping various product ideas
CO4: Build prototypes using Tools and Techniques in a quick iterative methodology

TEXT BOOKS

REFERENCES

MF3010 MICRO AND PRECISION ENGINEERING
COURSE OBJECTIVES:
At the end of this course the student should be able to
• Learn about the precision machine tools
• Learn about the macro and micro components.
• Understand handling and operating of the precision machine tools.
• Learn to work with miniature models of existing machine tools/robots and other instruments.
• Learn metrology for micro system

UNIT I INTRODUCTION TO MICROSYSTEMS
Design, and material selection, micro-actuators: hydraulic, pneumatic, electrostatic/ magnetic etc. for medical to general purpose applications. Micro-sensors based on Thermal, mechanical, electrical properties; micro-sensors for measurement of pressure, flow, temperature, inertia, force, acceleration, torque, vibration, and monitoring of manufacturing systems.

UNIT II FABRICATION PROCESSES FOR MICRO-SYSTEMS:
Additive, subtractive, forming process, microsystems-Micro-pumps, micro- turbines, micro engines, micro-robot, and miniature biomedical devices

UNIT III INTRODUCTION TO PRECISION ENGINEERING
Machine tools, holding and handling devices, positioning fixtures for fabrication/ assembly of microsystems. Precision drives: inch worm motors, ultrasonic motors, stick- slip mechanism and other piezo-based devices.

TOTAL: 45 PERIODS
UNIT IV PRECISION MACHINING PROCESSES 9
Precision machining processes for macro components - Diamond turning, fixed and free abrasive processes, finishing processes.

UNIT V METROLOGY FOR MICRO SYSTEMS 9
Metrology for micro systems - Surface integrity and its characterization.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon the completion of this course the students will be able to
CO1: Select suitable precision machine tools and operate
CO2: Apply the macro and micro components for fabrication of micro systems.
CO3: Apply suitable machining process
CO4: Able to work with miniature models of existing machine tools/robots and other instruments.
CO5: Apply metrology for micro system

TEXT BOOKS:

REFERENCES:

OMF354 COST MANAGEMENT OF ENGINEERING PROJECTS L T P C
3 0 0 3

COURSE OBJECTIVES:
- Summarize the costing concepts and their role in decision making
- Infer the project management concepts and their various aspects in selection
- Interpret costing concepts with project execution
- Develop knowledge of costing techniques in service sector and various budgetary control techniques
- Illustrate with quantitative techniques in cost management

UNIT I INTRODUCTION TO COSTING CONCEPTS 9
Objectives of a Costing System; Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost; Creation of a Database for operational control.’

UNIT II INTRODUCTION TO PROJECT MANAGEMENT 9
Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities, Detailed Engineering activities, Pre project execution main clearances and
documents, Project team: Role of each member, Importance Project site: Data required with significance, Project contracts

UNIT III PROJECT EXECUTION AND COSTING CONCEPTS 9
Project execution Project cost control, Bar charts and Network diagram, Project commissioning: mechanical and process, Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis, Various decision-making problems, Pricing strategies: Pareto Analysis, Target costing, Life Cycle Costing

UNIT IV COSTING OF SERVICE SECTOR AND BUDGETERY CONTROL 9

UNIT V QUANTITATIVE TECHNIQUES FOR COST MANAGEMENT 9
Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Learning Curve Theory.

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO1: Understand the costing concepts and their role in decision making.
CO2: Understand the project management concepts and their various aspects in selection.
CO3: Interpret costing concepts with project execution.
CO4: Gain knowledge of costing techniques in service sector and various budgetary control techniques.
CO5: Become familiar with quantitative techniques in cost management.

TEXT BOOKS:

REFERENCES:

AU3002 BATTERIES AND MANAGEMENT SYSTEM L T P C
3 0 0 3

COURSE OBJECTIVES:
The objective of this course is to make the students
to understand the working and characteristics of different types of batteries and their management.

UNIT I ADVANCED BATTERIES
Li-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging. Characteristics-SOC, DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries- NCM and NCA Batteries. NCR18650B specifications.

UNIT II BATTERY PACK
Battery Pack- design, sizing, calculations, flow chart, real and simulation Model. Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging.

UNIT III BATTERY MODELLING
Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models-Introduction. Battery Modelling software/simulation frameworks

UNIT IV BATTERY STATE ESTIMATION

UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS
Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex Ray-CANedge1 package. ARBIN Battery Tester. BMS Development with Modeling software and Model-Based Design.

TOTAL :45 PERIODS

COURSE OUTCOMES:
At the end of this course, students will be able to
CO1: Acquire knowledge of different Li-ion Batteries performance.
CO2: Design a Battery Pack and make related calculations.
CO3: Demonstrate a Battery Model or Simulation.
CO5: Approach different BMS architectures during real world usage.

TEXT BOOKS

REFERENCE BOOKS
1. Developing Battery Management Systems with Simulink and Model-Based Design-whitepaper
2. Panasonic NCR18650B- DataSheet
3. bq76PL536A-Q1- IC DataSheet
COURSE OBJECTIVES:

The objective of this course is to make the students to list common types of sensor and actuators used in automotive vehicles.

UNIT I INTRODUCTION TO MEASUREMENTS AND SENSORS 9

UNIT II VARIABLE RESISTANCE AND INDUCTANCE SENSORS 9
Principle of operation- Construction details- Characteristics and applications of resistive potentiometer- Strain gauges- Resistive thermometers- Thermistors- Piezoresistive sensors Inductive potentiometer- Variable reluctance transducers:- EI pick up and LVDT

UNIT III VARIABLE AND OTHER SPECIAL SENSORS 9
Variable air gap type, variable area type and variable permittivity type- capacitor microphone Piezoelectric, Magnetostrictive, Hall Effect, semiconductor sensor- digital transducers-Humidity Sensor. Rain sensor, climatic condition sensor, solar, light sensor, antiglare sensor.

UNIT IV AUTOMOTIVE ACTUATORS 9

UNIT V AUTOMATIC TEMPERATURE CONTROL ACTUATORS 9
Different types of actuators used in automatic temperature control- Fixed and variable displacement temperature control- Semi Automatic- Controller design for Fixed and variable displacement type air conditioning system.

TOTAL = 45 PERIODS

COURSE OUTCOMES:

At the end of the course, the student will be able to
CO1: List common types of sensor and actuators used in vehicles.
CO2: Design measuring equipment’s for the measurement of pressure force, temperature and flow.
CO3: Generate new ideas in designing the sensors and actuators for automotive application
CO4: Understand the operation of the sensors, actuators and electronic control.
CO5: Design temperature control actuators for vehicles.

TEXT BOOKS:

REFERENCES:

OAS353 SPACE VEHICLES

COURSE OBJECTIVES:
- To interpret the missile space stations, space vs earth environment.
- To explain the life support systems, mission logistics and planning.
- To deploy the skills effectively in the understanding of space vehicle configuration design.
- To explain Engine system and support of space vehicle
- To interpret nose cone configuration of space vehicle

UNIT I FUNDAMENTAL ASPECTS
Energy and Efficiencies of power plants for space vehicles – Typical Performance Values – Mission design – Structural design aspects during launch - role of launch environment on launch vehicle integrity.

UNIT II SELECTION OF ROCKET PROPULSION SYSTEMS
Ascent flight mechanics – Launch vehicle selection process – Criteria for Selection for different missions – selection of subsystems – types of staging – Interfaces – selection and criteria for stages and their role in launch vehicle configuration design.

UNIT III ENGINE SYSTEMS, CONTROLS, AND INTEGRATION

UNIT IV THRUST VECTOR CONTROL
TVC Mechanisms with a Single Nozzle – TVC with Multiple Thrust Chambers or Nozzles – Testing – Integration with Vehicle – SITVC method – other jet control methods - exhaust plume problems in space environment

UNIT V NOSE CONE CONFIGURATION
Aerodynamic aspects on the selection of nose shape of a launch vehicle - design factors in the finalization of nose configuration with respect to payload - nose cone thermal protection system - separation of fairings - payload injection mechanism

TOTAL: 45 PERIODS
COURSE OUTCOMES:
On successful completion of this course, the student will be able to
CO1: Explain exotic space propulsion concepts, such as nuclear, solar sail, and antimatter.
CO2: Apply knowledge in selecting the appropriate rocket propulsion systems.
CO3: Interpret the air-breathing propulsion suitable for initial stages and fly-back boosters.
CO4: Analyze aerodynamics aspect, including boost-phase lift and drag, hypersonic, and re-entry.
CO5: Adapt from aircraft engineers moving into launch vehicle, spacecraft, and hypersonic vehicle design.

OIM352 MANAGEMENT SCIENCE L T P C
3 0 0 3

COURSE OBJECTIVES:
Of this course are
- To introduce fundamental concepts of management and organization to students.
- To impart knowledge to students on various aspects of marketing, quality control and marketing strategies.
- To make students familiarize with the concepts of human resources management.
- To acquaint students with the concepts of project management and cost analysis.
- To make students familiarize with the concepts of planning process and business strategies.

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANISATION 9
Concepts of Management and organization - nature, importance and Functions of Management,
LeadershipStyles, Social responsibilities of Management, Designing Organisational Structures:
Basic concepts related to Organisation - Departmentation and Decentralisation.

UNIT II OPERATIONS AND MARKETING MANAGEMENT 9
Principles and Types of Plant Layout-Methods of Production(Job, batch and Mass Production), Work Study - Basic procedure involved in Method Study and Work Measurement - BusinessProcessReengineering(BPR)-

UNIT III HUMAN RESOURCES MANAGEMENT 9
Concepts of HRM, HRD and Personnel Management and Industrial Relations (PMIR), HRM vs PMIR, Basic functions of HR Manager:Manpower planning, Recruitment, Selection, TrainingandDevelopment, Wage and Salary Administration, Promotion, Transfer, PerformanceAppraisal, Grievance Handling and Welfare Administration, Job Evaluation and Merit Rating – Capability Maturity Model (CMM) Levels.
UNIT IV PROJECT MANAGEMENT 9
Network Analysis, Programme Evaluation and Review Technique (PERT), Critical Path Method (CPM), identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing (simple problems).

UNIT V STRATEGIC MANAGEMENT AND CONTEMPORARY STRATEGIC ISSUES 9

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, Students will be able to
CO1: Plan an organizational structure for a given context in the organization to carry out production operations through Work-study.
CO2: Survey the markets, customers and competition better and price the given products appropriately.
CO3: Ensure quality for a given product or service.
CO4: Plan, schedule and control projects through PERT and CPM.
CO5: Evaluate strategy for a business or service organization.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AVG.</td>
<td>3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-" - no correlation

TEXTBOOKS:

REFERENCES:
COURSE OBJECTIVES:

- To understand the concept of production planning and control act work study,
- To apply the concept of product planning,
- To analyze the production scheduling,
- To apply the Inventory Control concepts.
- To prepare the manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

UNIT I INTRODUCTION 9
Objectives and benefits of planning and control-Functions of production control-Types of production-job- batch and continuous-Product development and design-Marketing aspect - Functional aspects- Operational aspect-Durability and dependability aspect aesthetic aspect. Profit consideration- Standardization, Simplification & specialization- Break even analysis-Economics of a new design.

UNIT II WORK STUDY 9
Method study, basic procedure-Selection-Recording of process - Critical analysis, Development - Implementation - Micro motion and memo motion study – work measurement - Techniques of work measurement - Time study - Production study - Work sampling - Synthesis from standard data - Predetermined motion time standards.

UNIT III PRODUCT PLANNING AND PROCESS PLANNING 9
Product planning-Extending the original product information-Value analysis-Problems in lack of product planning-Process planning and routing-Pre requisite information needed for process planning- Steps in process planning-Quantity determination in batch production-Machine capacity, balancing- Analysis of process capabilities in a multi product system.

UNIT IV PRODUCTION SCHEDULING 9

UNIT V INVENTORY CONTROL AND RECENT TRENDS IN PPC 9
Inventory control-Purpose of holding stock-Effect of demand on inventories-Ordering procedures. Two bin system - Ordering cycle system-Determination of Economic order quantity and economic lot size- ABC analysis - Recorder procedure-Introduction to computer integrated production planning systems- elements of JUST IN TIME SYSTEMS-Fundamentals of MRP II and ERP.

TOTAL : 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course,

CO1: The students can able to prepare production planning and control act work study,
CO2: The students can able to prepare product planning,
CO3: The students can able to prepare production scheduling,
CO4: The students can able to prepare Inventory Control.
CO5: They can plan manufacturing requirements manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

TEXT BOOKS:

REFERENCES

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

OIE353 OPERATIONS MANAGEMENT L T P C 3 0 0 3

COURSE OBJECTIVE:
- Recognize and appreciate the concept of Production and Operations Management in creating and enhancing a firm’s competitive advantages.
- Describe the concept and contribution of various constituents of Production and Operations Management (both manufacturing and service).
- Relate the interdependence of the operations function with the other key functional areas of a firm.
- Teach analytical skills and problem-solving tools to the analysis of the operations problems.
- Apply scheduling and Lean Concepts for improving System Performance.
UNIT I \hspace{2cm} INTRODUCTION TO OPERATIONS MANAGEMENT 9
Operations Management – Nature, Importance, historical development, transformation processes, differences between services and goods, a system perspective, functions, challenges, current priorities, recent trends; Operations Strategy – Strategic fit, framework; Supply Chain Management

UNIT II \hspace{2cm} FORECASTING, CAPACITY AND FACILITY DESIGN 9

UNIT III \hspace{2cm} DESIGN OF PRODUCT, PROCESS AND WORK SYSTEMS 9

UNIT IV \hspace{2cm} MATERIALS MANAGEMENT 9

UNIT V \hspace{2cm} SCHEDULING AND PROJECT MANAGEMENT 9
Project Management – Scheduling Techniques, PERT, CPM; Scheduling - work centers – nature, importance; Priority rules and techniques, shopfloor control; Flow shop scheduling – Johnson’s Algorithm – Gantt charts; personnel scheduling in services.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: The students will appreciate the role of Production and Operations management in enabling and enhancing a firm’s competitive advantages in the dynamic business environment.
CO2: The students will obtain sufficient knowledge and skills to forecast demand for Production and Service Systems.
CO3: The students will be able to Formulate and Assess Aggregate Planning strategies and Material Requirement Plan.
CO4: The students will be able to develop analytical skills to calculate capacity requirements and developing capacity alternatives.
CO5: The students will be able to apply scheduling and Lean Concepts for improving System Performance.
<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-"- no correlation

TEXT BOOKS

REFERENCES

OSF352 INDUSTRIAL HYGIENE

COURSE OBJECTIVES:
- Demonstrate an understanding of how occupational hygiene standards are set and used in work health and safety.
- Compare and contrast the roles of environmental and biological monitoring in work health and safety
- Outline strategies for identifying, assessing and controlling risks associated with airborne gases, vapours and particulates
- Discuss how personal protective equipment can be used to reduce risks associated with workplace exposures
- Provide high-level advice on managing and controlling noise and noise-related hazards

UNIT I INTRODUCTION AND SCOPE
UNIT II
MONITORING FOR SAFETY, HEALTH & ENVIRONMENT
9
Occupational Health and Environment Safety Management System, ILO and EPA Standards
Industrial Hygiene: Definition of Industrial Hygiene, Industrial Hygiene: Control Methods,
Substitution, Changing the process, Local Exhaust Ventilation, Isolation, Wet method, Personal
hygiene, housekeeping and maintenance, waste disposal, special control measures.

UNIT III
OCCUPATIONAL HEALTH AND ENVIRONMENTAL SAFETY EDUCATION
9
Element of training cycle, Assessment of needs. Techniques of training, design and development
of training programs. Training methods and strategies types of training. Evaluation and review of
training programs. Occupational Health Hazards, Promoting Safety, Safety and Health training,
Stress and Safety, Exposure Limit .

UNIT IV
OCCUPATIONAL SAFETY, HEALTH AND ENVIRONMENT MANAGEMENT
9
Bureau of Indian standards on safety and health 14489 - 1998 and 15001 – 2000, OSHA, Process
Safety Management (PSM) as per OSHA, PSM principles, OHSAS – 18001, EPA Standards,
Performance measurements to determine effectiveness of PSM. Importance of Industrial safety,
role of safety department,

UNIT V
INDUSTRIAL HAZARDS
9
i. Radiation: Types and effects of radiation on human body, Measurement and detection of
radiation intensity. Effects of radiation on human body, Measurement – disposal of radioactive
waste, Control of radiation ii. Noise and Vibration: Sources, and its control, Effects of noise on the
auditory system and health, Measurement of noise , Different air pollutants in industries, Effect of
different gases and particulate matter ,acid fumes ,smoke, fog on human health, Vibration: effects.

TOTAL PERIODS: 45

COURSE OUTCOMES:
Students able to
CO1: Explain and apply human factors engineering concepts in both evaluation of existing systems
and design of new systems
CO2: Specify designs that avoid occupation related injuries
CO3: Define and apply the principles of work design, motion economy, and work environment
design.
CO4: Identify the basic human sensory, cognitive, and physical capabilities and limitations with
respect to human-machine system performance.
CO5: Acknowledge the impact of workplace design and environment on productivity

TEXT BOOKS:
1. R. K. Jain and Sunil S. Rao , Industrial Safety , Health and Environment Management Systems,
Khanna publishers, New Delhi (2006)

REFERENCES:
Jourdan publication
2. Frank P Lees - Loss of prevention in Process Industries, Vol. 1 and 2,
India

304

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>AVg.</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-" - no correlation

OSF353 CHEMICAL PROCESS SAFETY L T P C 3 0 0 3

COURSE OBJECTIVES
- Teach the principles of safety applicable to the design, and operation of chemical process plants.
- Ensure that potential hazards are identified and mitigation measures are in place to prevent unwanted release of energy.
- Learn about the hazardous chemicals into locations that could expose employees and others to serious harm.
- Focuses on preventing incidents and accidents during large scale manufacturing of chemicals and pharmaceuticals.
- Ensure that the general design of the plant is capable of complying with the dose limits in force and with the radioactive releases.

UNIT I SAFETY IN THE STORAGE AND HANDLING OF CHEMICALS AND GASES
Types of storage—general considerations for storage layouts—atmospheric venting, pressure and temperature relief—relief valve sizing calculations—storage and handling of hazardous chemicals and industrial gases, safe disposal methods, reaction with other chemicals, hazards during transportation—pipe line transport—safety in chemical laboratories.

UNIT II CHEMICAL REACTION HAZARDS
Hazardous inorganic and organic reactions and processes, Reactivity as a process hazard, Detonations, Deflagrations, and Runaways, Assessment and Testing strategies, Self-heating hazards of solids, Explosive potential of chemicals, Structural groups and instability of chemicals, Thermochemical screening.

UNIT III SAFETY IN THE DESIGN OF CHEMICAL PROCESS PLANTS
Design principles—Process design development—types of designs, feasibility survey, preliminary design, Flow diagrams, piping and instrumentation diagram, batch versus continuous operation, factors in equipment scale up and design, equipment specifications—reliability and safety in
designing - inherent safety - engineered safety - safety during startup and shutdown - non destructive testing methods - pressure and leak testing - emergency safety devices - scrubbers and flares - new concepts in safety design and operation - Pressure vessel testing standards - Inspection techniques for boilers and reaction vessels.

UNIT IV SAFETY IN THE OPERATION OF CHEMICAL PROCESS PLANTS 9
Properties of chemicals - Material Safety Data Sheets - the various properties and formats used - methods available for property determination. Operational activities and hazards - standards operating procedures - safe operation of pumps, compressors, heaters, column, reactors, pressure vessels, storage vessels, piping systems - effects of pressure, temperature, Flow rate and humidity on operations - corrosion and control measures - condition monitoring - control valves - safety valves - pressure reducing valves, drains, bypass valves, inert gases. Chemical splashes, eye irrigation and automatic showers.

UNIT V SAFETY AND ANALYSIS 9
Safety vs reliability - quantification of basic events, system safety quantification, Human error analysis, Accident investigation and analysis, OSHAS 18001 and OSHMS.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Students able to
CO1 Differentiate between inherent safety and engineered safety and recognize the importance of safety in the design of chemical process plants.
CO2 Develop thorough knowledge about safety in the operation of chemical plants.
CO3 Apply the principles of safety in the storage and handling of gases.
CO4 Identify the conditions that lead to reaction hazards and adopt measures to prevent them.
CO5 Develop thorough knowledge about

TEXT BOOK

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AVg.</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>1.5</td>
<td>1</td>
<td>-</td>
<td>1.5</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-"- no correlation
OML352 ELECTRICAL, ELECTRONIC AND MAGNETIC MATERIALS L T P C 3 0 0 3

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:

- Understanding the importance of various materials used in electrical, electronics and magnetic applications.
- Acquiring knowledge on the properties of electrical, electronics and magnetic materials.
- Gaining knowledge on the selection of suitable materials for the given application.
- Knowing the fundamental concepts in Semiconducting materials.
- Getting equipped with the materials used in optical and optoelectronic applications.

UNIT I DIELECTRIC MATERIALS
Dielectric as Electric Field Medium, leakage currents, dielectric loss, dielectric strength, breakdown voltage, breakdown in solid dielectrics, flashover, liquid dielectrics, electric conductivity in solid, liquid and gaseous dielectrics. Ferromagnetic materials, properties of ferromagnetic materials in static fields, spontaneous polarization, Curie point, anti-ferromagnetic materials, piezoelectric materials, pyroelectric materials.

UNIT II MAGNETIC MATERIALS
Classification of magnetic materials, spontaneous magnetization in ferromagnetic materials, magnetic Anisotropy, Magnetostriction, diamagnetism, magnetically soft and hard materials, special purpose materials, feebly magnetic materials, Ferrites, cast and cermet permanent magnets, ageing of magnets. Factors effecting permeability and Hysteresis.

UNIT III SEMICONDUCTOR MATERIALS
Properties of semiconductors, Silicon wafers, integration techniques. Concept of superconductivity; theories and examples for high temperature superconductivity; discussion on specific superconducting materials; comments on fabrication and engineering applications.

UNIT IV MATERIALS FOR ELECTRICAL APPLICATIONS
Materials used for Resistors, rheostats, heaters, transmission line structures, stranded conductors, bimetals fuses, soft and hard solders, electric contact materials, electric carbon materials, thermocouple materials. Solid, Liquid and Gaseous insulating materials, Effect of moisture on insulation.

UNIT V OPTICAL AND OPTOELECTRONIC MATERIALS

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completion of this course, the students will be able to

CO1: Understand various types of dielectric materials, their properties in various conditions.
CO2: Evaluate magnetic materials and their behavior.
CO3: Evaluate semiconductor materials and technologies.
CO4: Select suitable materials for electrical engineering applications.
CO5: Identify right material for optical and optoelectronic applications

TEXT BOOKS:

REFERENCE BOOKS:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>C02</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C03</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C04</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C05</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>1.8</td>
<td>1.6</td>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, -“- no correlation

OML353 NANOMATERIALS AND APPLICATIONS

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:

- Understanding the evolution of nanomaterials in the scientific era and make them to understand different types of nanomaterials for the future engineering applications
- Gaining knowledge on dimensionality effects on different properties of nanomaterials
- Getting acquainted with the different processing techniques employed for fabricating nanomaterials
- Having knowledge on the different characterisation techniques employed to characterise the nanomaterials
- Acquiring knowledge on different applications of nanomaterials in different disciplines of engineering.
UNIT I NANOMATERIALS 9
Introduction, Classification: 0D, 1D, 2D, 3D nanomaterials and nano-composites, their mechanical, electrical, optical, magnetic properties; Nanomaterials versus bulk materials.

UNIT II THERMODYNAMICS & KINETICS OF NANOSTRUCTURED MATERIALS 9
Size and interface/interphase effects, interfacial thermodynamics, phase diagrams, diffusivity, grain growth, and thermal stability of nanomaterials.

UNIT III PROCESSING 9
Bottom-up and top-down approaches for the synthesis of nanomaterials, mechanical alloying, chemical routes, severe plastic deformation, and electrical wire explosion technique.

UNIT IV STRUCTURAL CHARACTERISTICS 9
Principles of emerging nanoscale X-ray techniques such as small angle X-ray scattering and X-ray absorption fine structure (XAFS), electron and neutron diffraction techniques and their application to nanomaterials; SPM, Nanoindentation, Grain size, phase formation, texture, stress analysis.

UNIT V APPLICATIONS 9
Applications of nanoparticles, quantum dots, nanotubes, nanowires, nanocoatings; applications in electronic, electrical and medical industries.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completion of this course, the students will be able to
CO1: Evaluate nanomaterials and understand the different types of nanomaterials
CO2: Recognise the effects of dimensionality of materials on the properties
CO3: Process different nanomaterials and use them in engineering applications
CO4: Use appropriate techniques for characterising nanomaterials
CO5: Identify and use different nanomaterials for applications in different engineering fields.

TEXT BOOKS:

REFERENCES:
CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C02</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C03</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C04</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C05</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>2.8</td>
<td>1.6</td>
<td>1.7</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1.8</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

OMR352 HYDRAULICS AND PNEUMATICS

COURSE OBJECTIVES:
- To knowledge on fluid power principles and working of hydraulic pumps
- To obtain the knowledge in hydraulic actuators and control components
- To understand the basics in hydraulic circuits and systems
- To obtain the knowledge in pneumatic and electro pneumatic systems
- To apply the concepts to solve the trouble shooting

UNIT I FLUID POWER PRINCIPLES AND HYDRAULIC PUMPS

UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS

UNIT III HYDRAULIC CIRCUITS AND SYSTEMS
Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Hydrostatic transmission, Electro hydraulic circuits, Mechanical hydraulic servo systems.

UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS
UNIT V TROUBLE SHOOTING AND APPLICATIONS

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

CO 1: Analyze the methods in fluid power principles and working of hydraulic pumps

CO 2: Recognize the concepts in hydraulic actuators and control components

CO 3: Obtain the knowledge in basics of hydraulic circuits and systems

CO 4: Know about the basics concept in pneumatic and electro pneumatic systems

CO 5: Apply the concepts to solve the trouble shooting hydraulic and pneumatics

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>COs/POs & PSOs</th>
<th>POs 1</th>
<th>POs 2</th>
<th>POs 3</th>
<th>POs 4</th>
<th>POs 5</th>
<th>POs 6</th>
<th>POs 7</th>
<th>POs 8</th>
<th>POs 9</th>
<th>POs 10</th>
<th>POs 11</th>
<th>POs 12</th>
<th>PSOs 1</th>
<th>PSOs 2</th>
<th>PSOs 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO/PO & PSO</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

TEXT BOOKS

REFERENCES

COURSE OBJECTIVES:

- To learn the various types of sensors, transducers, sensor output signal types, calibration techniques, formulation of system equation and its characteristics.
- To understand basic working principle, construction, Application and characteristics of displacement, speed and ranging sensors.
- To understand and analyze the working principle, construction, application and characteristics of force, magnetic and heading sensors.
- To learn and analyze the working principle, construction, application and characteristics of optical, pressure, temperature and other sensors.
- To familiarize students with different signal conditioning circuits design and data acquisition system.

UNIT I
SENSOR CLASSIFICATION, CHARACTERISTICS AND SIGNAL TYPES 9

UNIT II
DISPLACEMENT, PROXIMITY AND RANGING SENSORS 9

UNIT III
FORCE, MAGNETIC AND HEADING SENSORS 9

UNIT IV
OPTICAL, PRESSURE, TEMPERATURE AND OTHER SENSORS 9

UNIT V
SIGNAL CONDITIONING 9

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO1: Understand various sensor effects, sensor characteristics, signal types, calibration methods and obtain transfer function and empirical relation of sensors. They can also analyze the sensor response.
CO2: Analyze and select suitable sensor for displacement, proximity and range measurement.
CO3: Analyze and select suitable sensor for force, magnetic field, speed, position and direction measurement.

CO4: Analyze and Select suitable sensor for light detection, pressure and temperature measurement and also familiar with other miniaturized smart sensors.

CO5: Select and design suitable signal conditioning circuit with proper compensation and linearizing element based on sensor output signal.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>COs/POs & PSOs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>12</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO/PO & PSO</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>8</td>
<td>8</td>
<td>0.</td>
<td>8</td>
<td>8</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-"- no correlation

TEXT BOOKS

REFERENCES

ORA352 CONCEPTS IN MOBILE ROBOTS

L T P C
3 0 0 3

COURSE OBJECTIVES

- To introduce mobile robotic technology and its types in detail.
- To learn the kinematics of wheeled and legged robot.
- To familiarize the intelligence into the mobile robots using various sensors.
- To acquaint the localization strategies and mapping technique for mobile robot.
- To aware the collaborative mobile robotics in task planning, navigation and intelligence.

UNIT I INTRODUCTION TO MOBILE ROBOTICS

Introduction – Locomotion of the Robots – Key Issues on Locomotion – Legged Mobile Roots –
Configurations and Stability – Wheeled Mobile Robots – Design Space and Mobility Issues – Unmanned Aerial and Underwater Vehicles

UNIT II KINEMATICS

UNIT III PERCEPTION

UNIT IV LOCALIZATION

UNIT V PLANNING, NAVIGATION AND COLLABORATIVE ROBOTS

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:

CO1: Evaluate the appropriate mobile robots for the desired application.
CO2: Create the kinematics for given wheeled and legged robot.
CO3: Analyse the sensors for the intelligence of mobile robotics.
CO4: Create the localization strategies and mapping technique for mobile robot.
CO5: Create the collaborative mobile robotics for planning, navigation and intelligence for desired applications.

TEXTBOOK

REFERENCES:
6. Alonzo Kelly, Mobile Robotics: Mathematics, Models, and Methods, Cambridge
MV3501 MARINE PROPULSION

3 0 0 3

COourse Objectives:

- To impart knowledge on basics of propulsion system and ship dynamic movements
- To educate them on basic layout and propulsion equipment’s
- To impart basic knowledge on performance of the ship
- To impart basic knowledge on Ship propeller and its types
- To impart knowledge on ship rudder and its types

UNIT I Basics Ship Propulsion System and Equipments 9
law of floatation - Basics principle of propulsion- Earlier methods of propulsion- ship propulsion
machinery- boiler, Marine steam engine, diesel engine, ship power transmission system, ship
dynamic structure, Marine propulsion equipment - shaft tunnel, Intermediate shaft and bearing,
ster tube, stern tube sealing etc. degree of freedom, Modern propelling methods- water jet
propulsion , screw propulsion.

UNIT II Ships Movements and Ship Stabilization 9
Thrust augmented devices, Ship hull, modern ship propulsion design, bow thruster – Advantages,
various methods to stabilize the ship- passive and active stabilizer, fin stabilizer, bilge keel -
stabilizing and securing ship in port- effect of tides on ship – effect of river water and sea water
sailing vessel, Load line and load line of marking- draught markings.

UNIT III Ships Speed and Its Performance 9
Ship propulsion factors, factors affecting ships speed, various velocities of ship, hull drag, effects of
fouling on ships hull, ship wake, relation between powers, Fuel consumption of ship, cavitations -
effects of cavitation’s, ship turning radius.

UNIT IV Basics of Propeller 9
Propeller dimension, Propeller and its types – fixed propeller, control pitch propeller, kort nozzle,
ducted propeller, voith schneider, Parts of propeller, 3 blade - 5 blade - 6 blade propellers and its
advantages, propeller boss hub, crown nut, propeller skew, pitch of propeller - Thrust creation by

UNIT V Basics of Rudder 9
Rudder dimension, Area of rudder and its design, Rudder arrangements, Rudder fittings- Rudder
pintle - Rudder types- Balanced rudder, semi balanced rudder, Spade rudder, merits and demerits
of various types of rudders, Propeller and rudder interaction, Rudder stopper, movement of
rudders, Basic construction of Rudder

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon successful completion of the course, students should be able to:
CO1: Explain the basics of propulsion system and ship dynamic movements
CO2: Familiarize with various components assisting ship stabilization.
CO3: Demonstrate the performance of the ship.
CO4: Classify the Propeller and its types, Materials etc.
CO5: Categories the Rudder and its types, design criteria of rudder.

TEXT BOOKS:
1. GP. Ghose, “Basic Ship propulsion”, 2015

REFERENCES BOOKS:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’ - no correlation

OMV351 MARINE MERCHANT VESSELS L T P C
3 0 0 3

COURSE OBJECTIVES:
At the end of the course, students are expected to acquire
- Knowledge on basics of Hydrostatics
- Familiarization on types of merchant ships
- Knowledge on Shipbuilding Materials
- Knowledge on marine propeller and rudder
- Awareness on governing bodies in shipping industry

UNIT I INTRODUCTION TO HYDROSTATICS 9
Archimedes Principle- Laws of floatation– Meta centre – stability of floating and submerged bodies-
Density, relative density - Displacement –Pressure –centre of pressure.

UNIT II TYPES OF SHIP 10
General cargo ship - Refrigerated cargo ships - Container ships - Roll-on Roll-off ships – Oil
tankers- Bulk carriers - Liquefied Natural Gas carriers - Liquefied Petroleum Gas carriers - Chemical
tankers - Passenger ships
UNIT III SHIPBUILDING MATERIALS 9
Types of Steels used in Shipbuilding - High tensile steels, Corrosion resistant steels, Steel sandwich panels, Steel castings, Steel forgings - Other shipbuilding materials, Aluminium alloys, Aluminium alloy sandwich panels, Fire protection especially for Aluminium Alloys, Fiber Reinforced Composites

UNIT IV MARINE PROPELLER AND RUDDER 8
Types of rudder, construction of Rudder-Types of Propeller, Propeller material-Cavitations and its effects on propeller

UNIT V GOVERNING BODIES FOR SHIPPING INDUSTRY 9
Role of IMO (International Maritime Organization), SOLAS (International Convention for the Safety of Life at Sea), MARPOL (International Convention for the Prevention of Pollution from Ships), MLC (Maritime Labour Convention), STCW 2010 (International Convention on Standards of Training, Certification and Watch keeping for Seafarers), Classification societies Administration authorities

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course, students would
CO1: Acquire Knowledge on floatation of ships
CO2: Acquire Knowledge on features of various ships
CO3: Acquire Knowledge of Shipbuilding Materials
CO4: Acquire Knowledge to identify the different types of marine propeller and rudder
CO5: Understand the Roles and responsibilities of governing bodies

TEXT BOOKS:
2. Dr.DA Taylor, “Merchant Ship Naval Architecture” I. Mar EST publications, 2006

REFERENCES:
2. MARPOL Consolidated Edition, Bhandakar Publications, 2018

OMV352 ELEMENTS OF MARINE ENGINEERING
L T P C
3 0 0 3

COURSE OBJECTIVES:
At the end of the course, students are expected to
• Understand the role of Marine machinery systems
• Be familiar with Marine propulsion machinery system
• Acquaint with Marine Auxiliary machinery system
• Have acquired basics of Marine Auxiliary boiler system
• Be aware of ship propellers and steering system
UNIT I ELEMENTARY KNOWLEDGE ON MARINE MACHINERY SYSTEMS 9

Marine Engineering Terminologies, Parts of Ship, Introduction to Machinery systems on board ships – Propulsion Machinery system, Electricity Generator system, Steering gear system, Air compressors & Air reservoirs, Fuel oil and Lubricating Oil Purifiers, Marine Boiler systems

UNIT II MARINE PROPULSION MACHINERY SYSTEM 9

Two stroke Large Marine slow speed Diesel Engine – General Construction, Basic knowledge of Air starting and reversing mechanism, Cylinder lubrication oil system, Main lubricating oil system and cooling water system

UNIT III MARINE AUXILIARY MACHINERY SYSTEM 9

Four stroke medium speed Diesel engine – General Construction, Inline, V-type arrangement of engine, Difference between slow speed and medium speed engines – advantages, limitations and applications

UNIT IV MARINE BOILER SYSTEM 9

Types of Boiler – Difference between Water tube boiler and Fire tube boiler, Need for boiler on board ships, Uses of steam, Advantages of using steam as working medium, Boiler mountings and accessories – importance of mountings, need for accessories

UNIT V SHIP PROPELLERS AND STEERING MECHANISM 9

Importance of Propellor and Steering gear, Types of propellers - Fixed pitch propellers, Controllable pitch propellers, Water jet propellers, Steering gear systems - 2-Ram and 4 Ram steering gear, Electric steering gear

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course, students should able to,

CO1: Distinguish the role of various marine machinery systems
CO2: Relate the components of marine propulsion machinery system
CO3: Explain the importance of marine auxiliary machinery system
CO4: Acquire knowledge of marine boiler system
CO5: Understand the importance of ship propellers and steering system

TEXT BOOKS:

REFERENCES:
1. Alan L.Rowen, “Introduction to Practical Marine Engineering, Volume 1&2, The Institute of Marine Engineers (India), Mumbai, 2006
2. A.S.Tambwekar, “Naval Architecture and Ship Construction”, The Institute of Marine Engineers (India), Mumbai, 2015
CRA332 DRONE TECHNOLOGIES L T P C
3 0 0 3

COURSE OBJECTIVES:
- To understand the basics of drone concepts
- To learn and understand the fundamentals of design, fabrication and programming of drone
- To impart the knowledge of an flying and operation of drone
- To know about the various applications of drone
- To understand the safety risks and guidelines of fly safely

UNIT I INTRODUCTION TO DRONE TECHNOLOGY 9
Drone Concept - Vocabulary Terminology - History of drone - Types of current generation of drones based on their method of propulsion - Drone technology impact on the businesses - Drone business through entrepreneurship - Opportunities/applications for entrepreneurship and employability

UNIT II DRONE DESIGN, FABRICATION AND PROGRAMMING 9
Classifications of the UAV - Overview of the main drone parts - Technical characteristics of the parts - Function of the component parts - Assembling a drone - The energy sources - Level of autonomy - Drones configurations - The methods of programming drone - Download program - Install program on computer - Running Programs - Multi rotor stabilization - Flight modes - Wi-Fi connection.

UNIT III DRONE FLYING AND OPERATION 9
Concept of operation for drone - Flight modes - Operate a small drone in a controlled environment - Drone controls Flight operations - management tool - Sensors - Onboard storage capacity - Removable storage devices - Linked mobile devices and applications

UNIT IV DRONE COMMERCIAL APPLICATIONS 9
Choosing a drone based on the application - Drones in the insurance sector - Drones in delivering mail, parcels and other cargo - Drones in agriculture - Drones in inspection of transmission lines and power distribution - Drones in filming and panoramic picturing

UNIT V FUTURE DRONES AND SAFETY 9
The safety risks - Guidelines to fly safely - Specific aviation regulation and standardization - Drone license - Miniaturization of drones - Increasing autonomy of drones - The use of drones in swarms

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO1: Know about a various type of drone technology, drone fabrication and programming.
CO2: Execute the suitable operating procedures for functioning a drone
CO3: Select appropriate sensors and actuators for Drones
CO4: Develop a drone mechanism for specific applications
CO5: Create the programs for various drones
CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>COs/Pos&P SOs</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO/PO & PSO</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Average</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

TEXT BOOKS

REFERENCES

OGI352 GEOGRAPHICAL INFORMATION SYSTEM L T P C
3 0 0 3

COURSE OBJECTIVES:
- To impart the knowledge on basic components, data preparation and implementation of Geographical Information System.

UNIT I FUNDAMENTALS OF GIS

UNIT II SPATIAL DATA MODELS

UNIT III DATA INPUT AND TOPOLOGY
Scanner - Raster Data Input – Raster Data File Formats – Georeferencing – Vector Data Input –

UNIT IV DATA QUALITY AND STANDARDS
Data quality - Basic aspects - completeness, logical consistency, positional accuracy, temporal accuracy, thematic accuracy and lineage – Metadata – GIS Standards –Interoperability - OGC - Spatial Data Infrastructure

UNIT V DATA MANAGEMENT AND OUTPUT
Import/Export – Data Management functions- Raster to Vector and Vector to Raster Conversion - Data Output - Map Compilation – Chart/Graphs – Multimedia – Enterprise Vs. Desktop GIS- distributed GIS.

COURSE OUTCOMES:
On completion of the course, the student is expected to
CO1 Have basic idea about the fundamentals of GIS.
CO2 Understand the types of data models.
CO3 Get knowledge about data input and topology
CO4 Gain knowledge on data quality and standards
CO5 Understand data management functions and data output

TEXTBOOKS:

REFERENCES:
CO’s-PO’s & PSO’s MAPPING: GEOGRAPHIC INFORMATION SYSTEM

<table>
<thead>
<tr>
<th>PO</th>
<th>Graduate Attribute</th>
<th>Course Outcome</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Engineering Knowledge</td>
<td>3 3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO2</td>
<td>Problem Analysis</td>
<td>3 3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO3</td>
<td>Design/Development of Solutions</td>
<td>3 3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO4</td>
<td>Conduct Investigations of Complex Problems</td>
<td>3 3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td>3 3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PO6</td>
<td>The Engineer and Society</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and Sustainability</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and Team Work</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PO11</td>
<td>Project Management and Finance</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long Learning</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSO1</td>
<td>Knowledge of Geoinformatics discipline</td>
<td>3 3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PSO2</td>
<td>Critical analysis of Geoinformatics</td>
<td>3 3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>PSO3</td>
<td>Conceptualization and evaluation of Design solutions</td>
<td>3 3 3 3 3 3</td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

OAI352 AGRICULTURE ENTREPRENEURSHIP DEVELOPMENT L T P C
3 0 0 3

COURSE OBJECTIVES

- To introduce the importance of Agri-business management, its characteristics and principles
- To impart knowledge on the functional areas of Agri-business like Marketing management, Product pricing methods and Market potential assessment.

UNIT I ENTREPRENEURIAL ENVIRONMENT IN INDIAN CONTEXT 9
Entrepreneur Development(ED): Concept of entrepreneur and entrepreneurship assessing overall business environment in Indian economy- Entrepreneurial and managerial characteristics-Entrepreneurship development programmers (EDP)-Generation incubation and commercialization of ideas and innovations- Motivation and entrepreneurship development- Globalization and the emerging business entrepreneurial environment.

UNIT II AGRIPRNEURSHIP IN GLOBAL ARENA: LEGAL PERSPECTIVE 9
Importance of agribusiness in Indian economy - International trade-WTO agreements- Provisions related to agreements in agricultural and food commodities - Agreements on Agriculture (AOA)-Domestic supply, market access, export subsidies agreements on sanitary and phyto-sanitary (SPS) measures, Trade related intellectual property rights (TRIPS).
UNIT III ENTREPRENEURSHIP MANAGEMENT: FINANCIAL PERSPECTIVE
Entrepreneurship - Essence of managerial Knowledge - Management functions - Planning, organizing, directing, motivating, ordering, leading, supervising - communication and control - Understanding Financial Aspects of Business - Importance of financial statements - liquidity ratios - leverage ratios, coverage ratios - turnover ratios - profitability ratios. Agro-based industries - Project cycle - Project appraisal and evaluation techniques - undiscounted measures - Payback period - proceeds per rupee of outlay, Discounted measures - Net Present Value (NPV) - Benefit-Cost Ratio (BCR) - Internal Rate of Return (IRR) - Net benefit investment ratio (N/K ratio) - sensitivity analysis.

UNIT IV ENTREPRENEURIAL OPPORTUNITIES: ECONOMIC GROWTH PERSPECTIVE
Managing an enterprise: Importance of planning, budgeting, monitoring evaluation and follow-up managing competition. Role of ED in economic development of a country - Overview of Indian social, political system and their implications for decision making by individual entrepreneurs - Economic system and its implication for decision making by individual entrepreneurs.

UNIT V ENTREPRENEURIAL PROMOTION MEASURES AND GOVERNMENT SUPPORT
Social responsibility of business. Morals and ethics in enterprise management - SWOT analysis - Government schemes and incentives for promotions of entrepreneurship. Government policy on small and medium enterprises (SMEs)/SSIs/MSME sectors - Venture capital (VC), contract framing (CF) and Joint Venture (JV), public-private partnerships (PPP) - overview of agricultural engineering industry, characteristics of Indian farm machinery industry.

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1: Judge about agricultural finance, banking and cooperation
CO2: Evaluate basic concepts, principles and functions of financial management
CO3: Improve the skills on basic banking and insurance schemes available to customers
CO4: Analyze various financial data for efficient farm management
CO5: Identify the financial institutions

TEXT BOOKS

REFERENCES
CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>Overall correlation of COs with POs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1 Engineering Knowledge</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO2 Problem Analysis</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PO3 Design/ Development of Solutions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO4 Conduct Investigations of Complex Problems</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO5 Modern Tool Usage</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO6 The Engineer and Society</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO7 Environment and sustainability</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO8 Ethics</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO9 Individual and team work:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO10 Communication</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO11 Project management and finance</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO12 Life-long learning:</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

PSO1	To make expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill	1	2	1	1	1	1
PSO2	To enhance students ability to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies.	1	1	2	1	1	1
PSO3	To inculcate entrepreneurial skills through strong Industry-Institution linkage.	1	2	1	1	2	1

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

OEN352 BIODIVERSITY CONSERVATION

COURSE OBJECTIVE:
- The identification of different aspects of biological diversity and conservation techniques.

UNIT I INTRODUCTION
9

Concept of Species, Variation; Introduction to Major Plant Groups; Evolutionary relationships between Plant Groups; Nomenclature and History of plant taxonomy; Systems of Classification and their Application; Study of Plant Groups; Study of Identification Characters; Study of important families of Angiosperms; Plant Diversity Application.
UNIT II INTRODUCTION TO ANIMAL DIVERSITY AND TAXONOMY 9
Principles and Rules of Taxonomy; ICZN Rules, Animal Study Techniques; Concepts of Taxon, Categories, Holotype, Paratype, Topotype etc; Classification of Animal kingdom, Invertebrates, Vertebrates, Evolutionary relationships between Animal Groups.

UNIT III MICROBIAL DIVERSITY 9
Microbes and Earth History, Magnitude, Occurrence and Distribution. Concept of Species, Criteria for Classification, Outline Classification of Microorganisms (Bacteria, Viruses and Protozoa); Criteria for Classification and Identification of Fungi; Chemical and Biochemical Methods of Microbial Diversity Analysis

UNIT IV MEGA DIVERSITY 9
Biodiversity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Red List; Factors affecting Diversity, Impact of Exotic Species and Human Disturbance on Diversity, Dispersal, Diversity-Stability Relationship; Socio- economic Issues of Biodiversity; Sustainable Utilization of Bioresources; National Movements and International Convention/Treaties on Biodiversity.

UNIT V CONSERVATIONS OF BIODIVERSITY 9
In-Situ Conservation- National parks, Wildlife sanctuaries, Biosphere reserves; Ex-situ conservation- Gene bank, Cryopreservation, Tissue culture bank; Long term captive breeding, Botanical gardens, Animal Translocation, Zoological Gardens; Concept of Keystone Species, Endangered Species, Threatened Species, Rare Species, Extinct Species

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:

COURSE OUTCOMES
Upon successful completion of this course, students will:
CO1: An insight into the structure and function of diversity for ecosystem stability.
CO2: Understand the concept of animal diversity and taxonomy
CO3: Understand socio-economic issues pertaining to biodiversity
CO4: An understanding of biodiversity in community resource management.
CO5: Student can apply fundamental knowledge of biodiversity conservation to solve problems associated with infrastructure development.
CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1.low, 2-medium, 3-high, ‘-‘- no correlation
Note: The average value of this course to be used for program articulation matrix.

OEE353 INTRODUCTION TO CONTROL SYSTEMS

COURSE OBJECTIVES
- To impart knowledge on various representations of systems.
- To familiarize time response analysis of LTI systems and steady state error.
- To analyze the frequency responses and stability of the systems.
- To analyze the stability of linear systems in frequency domain and time domain.
- To develop linear models mainly state variable model and transfer function model.

UNIT I MATHEMATICAL MODELS OF PHYSICAL SYSTEMS
Definition & classification of system – terminology & structure of feedback control theory – Analogous systems - Physical system representation by Differential equations – Block diagram reduction–Signal flow graphs.

UNIT II TIME RESPONSE ANALYSIS & ROOTLOCUSTECHNIQUE

UNIT III FREQUENCY RESPONSE ANALYSIS
Correlation between Time & Frequency response – Polar plots – Bode Plots – Determination of Transfer Function from Bode plot.

UNIT IV STABILITY CONCEPTS & ANALYSIS

UNIT V STATE VARIABLE ANALYSIS
Concept of state – State Variable & State Model – State models for linear & continuous time systems–Solution of state & output equation–controllability & observability.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Ability to
CO1: Design the basic mathematical model of physical System.
CO2: Analyze the time response analysis and techniques.
CO3: Analyze the transfer function from different plots.
CO4: Apply the stability concept in various criterion.
CO5: Assess the state models for linear and continuous Systems.

TEXTBOOKS

REFERENCES
2. Control System Dynamics" by Robert Clark, Cambridge University Press, 1996 USA.

CO’s-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO1</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-"- no correlation

OEI354 INTRODUCTION TO INDUSTRIAL AUTOMATION SYSTEMS L T P C

COURSE OBJECTIVES:
- To educate on design of signal conditioning circuits for various applications.
- To Introduce signal transmission techniques and their design.
- Study of components used in data acquisition systems interface techniques
- To educate on the components used in distributed control systems
- To introduce the communication buses used in automation industries.

UNIT I INTRODUCTION
UNIT II AUTOMATION COMPONENTS

Sensors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH measurement. Actuators, process control valves, power electronics devices DIAC, TRIAC, power MOSFET and IGBT. Introduction of DC and AC servo drives for motion control.

UNIT III COMPUTER AIDED MEASUREMENT AND CONTROL SYSTEMS

Role of computers in measurement and control, Elements of computer aided measurement and control, man-machine interface, computer aided process control hardware, process related interfaces, Communication and networking, Industrial communication systems, Data transfer techniques, Computer aided process control software, Computer based data acquisition system, Internet of things (IoT) for plant automation.

UNIT IV PROGRAMMABLE LOGIC CONTROLLERS

Programmable controllers, Programmable logic controllers, Analog digital input and output modules, PLC programming, Ladder diagram, Sequential flow chart, PLC Communication and networking, PLC selection, PLC Installation, Advantage of using PLC for Industrial automation, Application of PLC to process control industries.

UNIT V DISTRIBUTED CONTROL SYSTEM

Overview of DCS, DCS software configuration, DCS communication, DCS Supervisory Computer Tasks, DCS integration with PLC and Computers, Features of DCS, Advantages of DCS.

TOTAL: 45 PERIODS

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc) 5

1. Market survey of the recent PLCs and comparison of their features.
2. Summarize the PLC standards
3. Familiarization of any one programming language (Ladder diagram/ Sequential Function Chart/ Function Block Diagram/ Equivalent open source software)

COURSE OUTCOMES:

Students able to

CO1 Design a signal conditioning circuits for various application (L3).
CO2 Acquire a detail knowledge on data acquisition system interface and DCS system (L2).
CO3 Understand the basics and Importance of communication buses in applied automation Engineering (L2).
CO4 Ability to design PLC Programmes by Applying Timer/Counter and Arithmetic and Logic Instructions Studied for Ladder Logic and Function Block.(L3)
CO5 Able to develop a PLC logic for a specific application on real world problem. (L5)

TEXT BOOKS:

REFERENCES:

List of Open Source Software/ Learning website:
1. https://archive.nptel.ac.in/courses/108/105/108105062/
2. https://nptel.ac.in/courses/108105063

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>2.25</td>
<td>2</td>
<td>2.6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-‘- no correlation

OCH353 ENERGY TECHNOLOGY

UNIT I INTRODUCTION
Units of energy, conversion factors, general classification of energy, world energy resources and energy consumption, Indian energy resources and energy consumption, energy crisis, energy alternatives, Renewable and non-renewable energy sources and their availability. Prospects of Renewable energy sources

UNIT II CONVENTIONAL ENERGY
Conventional energy resources, Thermal, hydel and nuclear reactors, thermal, hydel and nuclear power plants, efficiency, merits and demerits of the above power plants, combustion processes, fluidized bed combustion.

UNIT III NON-CONVENTIONAL ENERGY
Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar energy application in India, energy plantations. Wind energy, types of windmills,
types of wind rotors, Darrieus rotor and Gravian rotor, wind electric power generation, wind power in India, economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy.

UNIT IV BIOMASS ENERGY 10
Biomass energy resources, thermo-chemical and biochemical methods of biomass conversion, combustion, gasification, pyrolysis, biogas production, ethanol, fuel cells, alkaline fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, solid polymer electrolyte fuel cell, magneto hydrodynamic power generation, energy storage routes like thermal energy storage, chemical, mechanical storage and electrical storage.

UNIT V ENERGY CONSERVATION 9
Energy conservation in chemical process plants, energy audit, energy saving in heat exchangers, distillation columns, dryers, ovens and furnaces and boilers, steam economy in chemical plants, energy conservation.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
On completion of the course, the students will be able to

CO1: Students will be able to describe the fundamentals and main characteristics of renewable energy sources and their differences compared to fossil fuels.

CO2: Students will excel as professionals in the various fields of energy engineering

CO3: Compare different renewable energy technologies and choose the most appropriate based on local conditions.

CO4: Explain the technological basis for harnessing renewable energy sources.

CO5: Identify and critically evaluate current developments and emerging trends within the field of renewable energy technologies and to develop in-depth technical understanding of energy problems at an advanced level.

TEXT BOOKS

REFERENCES
<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statements</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Students will be able to describe the fundamentals and main characteristics of renewable energy sources and their differences compared to fossil fuels.</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>Students will excel as professionals in the various fields of energy engineering</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Compare different renewable energy technologies and choose the most appropriate based on local conditions.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Explain the technological basis for harnessing renewable energy sources.</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Identify and critically evaluate current developments and emerging trends within the field of renewable energy technologies and to develop in-depth technical understanding of energy problems at an advanced level</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

OVERALL CO

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively
COURSE OBJECTIVE:

- To enable the students to analyze properties of a surfaces and correlate them to structure, chemistry, and physics and surface modification technique.

UNIT I SURFACE STRUCTURE AND EXPERIMENTAL PROBES 9
Relevance of surface science to Chemical and Electrochemical Engineering, Heterogeneous Catalysis and Nanoscience; Surface structure and reconstructions, absorbate structure, Band and Vibrational structure, Importance of UHV techniques, Electronic probes and molecular beams, Scanning probes and diffraction, Qualitative introduction to electronic and vibrational spectroscopy

UNIT II ADSORPTION, DYNAMICS, THERMODYNAMICS AND KINETICS AT SURFACES 9
Interactions at the surface, Physisorption, Chemisorption, Diffusion, dynamics and reactions of atoms/molecules on surfaces, Generic reaction mechanism on surfaces, Adsorption isotherms, Kinetics of adsorption, Use of temperature desorption methods

UNIT III LIQUID INTERFACES 9
Structure and Thermodynamics of liquid-solid interface, Self-assembled monolayers, Electrified interfaces, Charge transfer at the liquid-solid interfaces, Photoelectrochemical processes, Gratzel cells

UNIT IV HETEROGENEOUS CATALYSIS 9
Characterization of heterogeneous catalytic processes, Microscopic kinetics to catalysis, Overview of important heterogeneous catalytic processes: Haber-Bosch, Fisher-Tropsch and Automotive catalysis, Role of promoters and poisons, Bimetallic surfaces, surface functionalization and clusters in catalysis, Role of Sabatier principle in catalyst design, Rate oscillations and spatiotemporal pattern formation

UNIT V EPITAXIAL GROWTH AND NANO SURFACE-STRUCTURES 9
Origin of surface forces, Role of stress and strain in epitaxial growth, Energetic and growth modes, Nucleation theory, Nonequilibrium growth modes, MBE, CVD and ablation techniques, Catalytic growth of nanotubes, Etching of surfaces, Formation of nanopillars and nanorods and its application in photoelectrochemical processes, Polymer surfaces and biointerfaces

TOTAL: 45 PERIODS

COURSE OUTCOME:

- Upon completion of this course, the students can understand, predict and design surface properties based on surface structure. Students would understand the physics and chemistry behind surface phenomena

TEXT BOOK:

REFERENCE:

COURSE OBJECTIVES
The course aims to
- acquaint and equip the students with different techniques of measurement of engineering properties.
- make the students understand the nature of food constituents in the design of processing equipment

UNIT I
Engineering properties of food materials: physical, thermal, aerodynamic, mechanical, optical and electromagnetic properties.

UNIT II
Drying and dehydration: Basic drying theory, heat and mass transfer in drying, drying rate curves, calculation of drying times, dryer efficiencies; classification and selection of dryers; tray, vacuum, osmotic, fluidized bed, pneumatic, rotary, tunnel, trough, bin, belt, microwave, IR, heat pump and freeze dryers; dryers for liquid: Drum or roller dryer, spray dryer and foammat dryers

UNIT III
Size reduction: Benefits, classification, determination and designation of the fineness of ground material, sieve/screen analysis, principle and mechanisms of comminution of food, Rittinger’s, Kick’s and Bond’s equations, work index, energy utilization; Size reduction equipment: Principal types, crushers (jaw crushers, gyratory, smooth roll), hammer mills and impactors, attrition mills, buhr mill, tumbling mills, tumbling mills, ultra fine grinders, fluid jet pulverizer, colloid mill, cutting machines (slicing, dicing, shredding, pulping)

UNIT IV
Mixing: theory of solids mixing, criteria of mixer effectiveness and mixing indices, rate of mixing, theory of liquid mixing, power requirement for liquids mixing; Mixing equipment: Mixers for low or medium-viscosity liquids (paddle agitators, impeller agitators, powder-liquid contacting devices, other mixers), mixers for high viscosity liquids and pastes, mixers for dry powders and particulate solids.

UNIT V
Mechanical Separations: Theory, centrifugation, liquid-liquid centrifugation, liquid-solid centrifugation, clarifiers, desludging and decanting machine, Filtration: Theory of filtration, rate of filtration, pressure drop during filtration, applications, constant-rate filtration and constant-pressure filtration, derivation of equation; Filtration equipment; plate and frame filter press, rotary filters, centrifugal filters and air filters, filter aids, Membrane separation: General considerations, materials for membrane construction, ultra-filtration, microfiltration, concentration, polarization, processing variables, membrane fouling, applications of ultra-filtration in food processing, reverse osmosis, mode of operation, and applications; Membrane separation methods, demineralization by electrodialysis, gel filtration, ion exchange, per-evaporation and osmotic dehydration.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course the students will be able to
CO1 understand the importance of food polymers
CO2 understand the effect of various methods of processing on the structure and texture of food materials

CO3 understand the interaction of food constituents with respect to thermal, electrical properties to develop new technologies for processing and preservation.

TEXTBOOKS:

OFD355 FOOD SAFETY AND QUALITY REGULATIONS

COURSE OBJECTIVES:
- To characterize different type of food hazards, physical, chemical and biological in the industry and food service establishments
- To help become skilled in systems for food safety surveillance
- To be aware of the regulatory and statutory bodies in India and the world
- To ensure processed food meets global standards

UNIT I
Introduction to food safety and security: Hygienic design of food plants and equipments, Food Contaminants (Microbial, Chemical, Physical), Food Adulteration (Common adulterants), Food Additives (functional role, safety issues), Food Packaging & labeling. Sanitation in warehousing, storage, shipping, receiving, containers and packaging materials. Control of rats, rodents, mice, birds, insects and microbes. Cleaning and Disinfection, ISO 22000 – Importance and Implementation

UNIT II
Food quality: Various Quality attributes of food, Instrumental, chemical and microbial Quality control. Sensory evaluation of food and statistical analysis. Water quality and other utilities.

UNIT III
Critical Quality control point in different stages of production including raw materials and processing materials. Food Quality and Quality control including the HACCP system. Food inspection and Food Law, Risk assessment – microbial risk assessment, dose response and
exposure response modelling, risk management, implementation of food surveillance system to monitor food safety, risk communication

UNIT IV
Indian and global regulations: FAO in India, Technical Cooperation programmes, Bio-security in Food and Agriculture, World Health Organization (WHO), World Animal Health Organization (OIE), International Plant Protection Convention (IPPC)

UNIT V
Codex Alimentarius Commission - Codex India – Role of Codex Contact point, National Codex contact point (NCCP), National Codex Committee of India – ToR, Functions, Shadow Committees etc.

COURSE OUTCOMES:
CO1 Thorough Knowledge of food hazards, physical, chemical and biological in the industry and food service establishments
CO2 Awareness on regulatory and statutory bodies in India and the world

REFERENCES:
1. Handbook of food toxicology by S. S. Deshpande, 2002
2. The food safety information handbook by Cynthia A. Robert, 2009
4. Microbiological safety of Food by Hobbs BC, 1973

OPY353 NUTRACEUTICALS

COURSE OBJECTIVES:
• To understand the basic concepts of Nutraceuticals and functional food, their chemical nature and methods of extraction.
• To understand the role of Nutraceuticals and functional food in health and disease.

UNIT I INTRODUCTION AND SIGNIFICANCE
Introduction to Nutraceuticals and functional foods; importance, history, definition, classification, list of functional foods and their benefits, Phytochemicals, zoochemicals and microbes in food, plants, animals and microbes.

UNIT II PHYTOCHEMICALS AS NUTRACEUTICALS
Phytoestrogens in plants; isoflavones; flavonols, polyphenols, tannins, saponins, lignans, lycopene, chitin, carotenoids. Manufacturing practice of selected nutraceuticals such as lycopene, isoflavonoids, glucosamine, phytosterols. Formulation of functional foods containing nutraceuticals - stability, analytical and labelling issues.
UNIT III ASSESSMENT OF ANTIOXIDANT ACTIVITY 11
In vitro and in vivo methods for the assessment of antioxidant activity, Comparison of different in vitro methods to evaluate the antioxidant, antioxidant mechanism, Prediction of the antioxidant activity of natural phenolics from electrotopological state indices, Optimising phytochemical release by process technology; Variation of Antioxidant Activity during technological treatments, new food grade peptidases from plant sources.

UNIT IV ROLE IN HEALTH AND DISEASE 11
The health benefit of - Soy protein, Spirulina, Tea, Olive oil, plant sterols, Broccoli, omega3 fatty acid and eicosanoids. Nutraceuticals and Functional foods in Gastrointestinal disorder, Cancer, CVD, Diabetic Mellitus, HIV and Dental disease; Importance and function of probiotic, prebiotic and synbiotic and their applications, Functional foods and immune competence; role and use in obesity and nervous system disorders.

UNIT V SAFETY ISSUES 6
Health Claims, Adverse effects and toxicity of nutraceuticals, regulations and safety issues International and national.

TOTAL: 45 PERIODS

TEXT BOOKS:
3. WEBB, PP, Dietary Supplements and Functional Foods Blackwell Publishing Ltd (United Kingdom), 2006

REFERENCES:
1. Asian Functional Foods (Nutraceutical Science and Technology) by John Shi (Editor), Fereidoon Shahidi (Editor), Chi-Tang Ho (Editor), CRC Publications, Taylor & Francis, 2007

COURSE OUTCOME - NUTRACEUTICALS

CO 1	acquire knowledge about the Nutraceuticals and functional foods, their classification and benefits.
CO 2	acquire knowledge of phytochemicals, zoochemicals and microbes in food, plants, animals and microbes
CO 3	attain the knowledge of the manufacturing practices of selected nutraceutical components and formulation considerations of functional foods.

336
CO 4 | distinguish the various *In vitro* and *In vivo* assessment of Antioxidant activity of compounds from plant sources.

CO 5 | gain information about the health benefits of various functional foods and nutraceuticals in the prevention and treatment of various lifestyle diseases.

CO 6 | Attain the knowledge of the regulatory and safety issues of nutraceuticals at national and international level.

<table>
<thead>
<tr>
<th>CO's-PO's & PSO's MAPPING</th>
<th>NUTRACEUTICALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course outcome</td>
<td>PO1</td>
</tr>
<tr>
<td>CO 1</td>
<td>3</td>
</tr>
<tr>
<td>CO 2</td>
<td>3</td>
</tr>
<tr>
<td>CO 3</td>
<td>3</td>
</tr>
<tr>
<td>CO 4</td>
<td>3</td>
</tr>
<tr>
<td>CO 5</td>
<td>3</td>
</tr>
<tr>
<td>CO 6</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-'- no correlation

OTT354
BASICS OF DYEING AND PRINTING
L T P C
3 0 0 3

COURSE OBJECTIVE:
- To enable the students to learn about the basics of Pretreatment, dyeing, printing and machinery in textile processing.

UNIT I
INTRODUCTION
Impurities present in different fibres, Inspection of grey goods and lot preparation. Shearing.

UNIT II
PRE TREATMENT

UNIT III
DYEING

UNIT IV
PRINTING
Definition of printing – Difference between printing and dyeing- Classification thickeners – Requirements to be good thickener, printing paste Preparati - different styles of printing.
UNIT V MACHINERIES

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, the students will be able to Understand the
CO1: Basics of grey fabric
CO2: Basics of pre treatment
CO3: Concept of Dyeing
CO4: Concept of Printing
CO5: Machinery in processing industry

TEXT BOOKS:

REFERENCES:
2. Dr. N N Mahapatra., “Textile dyeing”, Wood head publishing India, 2018
4. Bleaching & Mercerizing – BTRA Silver Jubilee Monograph series

CO’s-PO’s & PSO’s MAPPING:
1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1 Classification of fibres and production of natural fibres</td>
<td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3</td>
</tr>
<tr>
<td>CO2 Regenerated and synthetic fibres</td>
<td>- - - - - - - 2 1 - 1 1 - 1 -</td>
</tr>
<tr>
<td>CO3 Yarn spinning</td>
<td>- - - - - - - 2 1 - 1 1 - 1 -</td>
</tr>
<tr>
<td>CO4 Weaving</td>
<td>- - - - - - - 2 1 - 1 1 - 1 -</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

To enable the students to learn about the types of fibre and its properties

UNIT I INTRODUCTION TO TEXTILE FIBRES
Definition of various forms of textile fibres - staple fibre, filament, bicomponent fibres. Classification of Natural and Man-made fibres, essential and desirable properties of Fibres. Production and cultivation of Natural Fibers: Cotton, Silk, Wool - Physical and chemical structure of the above fibres.

UNIT II REGENERATED FIBRES
Production Sequence of Regenerated Cellulosic fibres: Viscose Rayon, Acetate rayon – High wet modulus fibres: Modal and Lyocell, Tencel

UNIT III SYNTHEITC FIBRES
Production Sequence of Synthetic Fibers: polymer-Polyester, Nylon, Acrylic and polypropylene. Mineral fibres: fibre glass, carbon. Introduction to spin finishes and texturization

UNIT IV SPECIALITY FIBRES
Properties and end uses of high tenacity and high modulus fibres, high temperature and flame retardant fibres, Chemical resistant fibres

UNIT V FUNCTIONAL SPECIALITY FIBRES
Properties and end uses: Fibres for medical application – Biodegradable fibres based on PLA, Super absorbent fibres elastomeric fibres, ultra-fine fibres, electrospun nano fibres, metallic fibres – Gold and Silver coated.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon completion of this course, the student would be able to

CO1: Understand the process sequence of various fibres
CO2: Understand the properties of various fibres

TEXT BOOKS:
REFERENCES:

OTT355 GARMENT MANUFACTURING TECHNOLOGY

COURSE OBJECTIVE:
- To enable the students to understand the basics of pattern making, cutting and sewing.
- To expose the students to various problems & remedies during garment manufacturing

UNIT I PATTERN MAKING, MARKER PLANNING, CUTTING
Anthropometry, specification sheet, pattern making – principles, basic pattern set drafting, grading, marker planning, spreading & cutting

UNIT II TYPES OF SEAMS, STITCHES AND FUNCTIONS OF NEEDLES
Different types of seams and stitches; single needle lock stitch machine – mechanism and accessories; needle – functions, special needles, needlepoint

UNIT III COMPONENTS AND TRIMS USED IN GARMENT
Sewing thread-construction, material, thread size, packages, accessories – labels, linings, interlinings, wadding, lace, braid, elastic, hook and loop fastening, shoulder pads, eyelets and laces, zip fasteners, buttons

UNIT IV GARMENT INSPECTION AND DIMENSIONAL CHANGES
Raw material, in process and final inspection; needle cutting; sewability of fabrics; strength properties of apparel; dimensional changes in apparel due to laundering, dry-cleaning, steaming and pressing.

UNIT V GARMENT PRESSING, PACKING AND CARE LABELING
Garment pressing – categories and equipment, packing; care labeling of apparels

COURSE OUTCOMES:
Upon completion of the course, the students will be able to Understand
CO1: Pattern making, marker planning, cutting
CO2: Types of seams, stitches and functions of needles
CO3: Components and trims used in garment
CO4: Garment inspection and dimensional changes

TOTAL: 45 PERIODS
CO5: Garment pressing, packing and careabelling

TEXT BOOKS:
2. Gerry Cooklin, “Introduction to Clothing Manufacture” Blackwell Science Ltd., 1995. 64

REFERENCES:

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>1.6</td>
<td>1.2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation

OPE353
INDUSTRIAL SAFETY

COURSE OBJECTIVES:
• To educate about the health hazards and the safety measures to be followed in the industrial environment.
• Describe industrial legislations (Factories Acts, Workmen's Compensation and other laws) enacted for the protection of employees health at work settings
• Describe methods of prevention and control of Occupational Health diseases, accidents / emergencies and other hazards

UNIT I
INTRODUCTION

Need for developing Environment, Health and Safety systems in work places - Accident Case Studies - Status and relationship of Acts - Regulations and Codes of Practice - Role of trade union safety representatives. International initiatives - Ergonomics and work place.
UNIT II OCCUPATIONAL HEALTH AND HYGIENE

UNIT III WORKPLACE SAFETY AND SAFETY SYSTEMS

UNIT IV HAZARDS AND RISK MANAGEMENT

UNIT V ENVIRONMENTAL HEALTH AND SAFETY MANAGEMENT

COURSE OUTCOMES:
After completion of this course, the student is expected to be able to:
CO1: Describe, with example, the common work-related diseases and accidents in occupational setting
CO2: Name essential members of the Occupational Health team
CO3: What roles can a community health practitioners play in an Occupational setting to ensure the protection, promotion and maintenance of the health of the employee

OPE354 UNIT OPERATIONS IN PETRO CHEMICAL INDUSTRIES L T P C 3 0 0 3

COURSE OBJECTIVES:
• To impart to the student basic knowledge on fluid mechanics, mechanical operations, heat transfer operations and mass transfer operations.

UNIT I FLUID MECHANICS CONCEPTS
Fluid definition and classification of fluids, types of fluids, Rheological behaviour of fluids & Newton’s Law of viscosity. Fluid statics-Pascal’s law, Hydrostatic equilibrium, Barometric equation and pressure measurement(problems),Basic equations of fluid flow - Continuity equation, Euler’s equation and Bernoulli equation; Types of flow - laminar and turbulent; Reynolds experiment; Flow through circular and non-circular conduits - Hagen Poiseuille equation (no derivation). Flow through stagnant fluids – theory of Settling and Sedimentation – Equipment (cyclones, thickeners) Conceptual numericals.
UNIT II FLOW MEASUREMENTS & MECHANICAL OPERATIONS
Different types of flow measuring devices (Orifice meter, Venturimeter, Rotameter) with
derivations, flow measurements – Pumps – types of pumps (Centrifugal & Reciprocating pumps),
Energy calculations and characteristics of pumps. Size reduction–characteristics of comminute
products, sieve analysis, Properties and handling of particulate solids – characterization of solid
particles, average particle size, screen analysis- Conceptual numerical of differential and
cumulative analysis. Size reduction, crushing laws, working principle of ball mill. Filtration & types,
filtration equipments (plate and frame, rotary drum). Conceptual numericals.

UNIT III CONDUCTIVE & CONVECTIVE HEAT TRANSFER
Modes of heat transfer; Conduction – steady state heat conduction through unilayer and multilayer
walls, cylinders; Insulation, critical thickness of insulation. Convection- Forced and Natural
convection, principles of heat transfer co-efficient, log mean temperature difference, individual and
overall heat transfer co-efficient, fouling factor; Condensation – film wise and drop wise (no
derivation). Heat transfer equipments – double pipe heat exchanger, shell and tube heat
exchanger (with working principle and construction with applications).

UNIT IV BASICS OF MASS TRANSFER
Diffusion-Fick’s law of diffusion. Types of diffusion. Steady state molecular diffusion in fluids at rest
and laminar flow (stagnant / unidirection and bi direction). Measurement of diffusivity, Mass
transfer coefficients and their correlations. Conceptual numerical.

UNIT V MASS TRANSFER OPERATIONS
Basic concepts of Liquid-liquid extraction – equilibrium, stage type extractors (belt extraction and
basket extraction).Distillation – Methods of distillation, distillation of binary mixtures using McCabe

COURSE OUTCOMES:
At the end of the course the student will be able to:
CO1:State and describe the nature and properties of the fluids.
CO2:Study the different flow measuring instruments, the principles of various size reductions,
conveying equipment’s, sedimentation and mixing tanks.
CO3:Comprehend the laws governing the heat and mass transfer operations to solve the
problems.
CO4:Design the heat transfer equipment suitable for specific requirement.

TEXTBOOK(S)
1. Unit operations in Chemical Engineering Warren L. McCabe, Julian C. Smith & Peter
2. Fluid Mechanics K L Kumar S Chand & Company Ltd 2008
3. Introduction to Chemical Engineering Badger W.I. and Banchero, J.T., Tata McGraw Hill
 New York 1997

REFERENCE BOOKS
1. Principles of Unit Operations Alan S Foust, L.A. Wenzel, C.W. Clump, L. Maus, and
COURSE OBJECTIVES

- Understand the advantages, disadvantages and general classification of plastic materials
- To know the manufacturing, sources, and applications of engineering thermoplastics
- Understand the basics as well as the advanced applications of various plastic materials in the industry
- To understand the preparation methods of thermosetting materials
- Select suitable specialty plastics for different end applications

UNIT I INTRODUCTION TO PLASTIC MATERIALS
Introduction to Plastics – Brief history of plastics, advantages and disadvantages, thermoplastic and thermosetting behavior, amorphous polymers, crystalline polymers and cross-linked structures. General purpose thermoplastics/Commodity plastics: manufacture, structure, properties and applications of polyethylene (PE), cross-linked PE, chlorinated PE, polypropylene, polyvinyl chloride-compounding, formulation, polypropylene (PP)

UNIT II ENGINEERING THERMOPLASTICS AND APPLICATIONS
Engineering thermoplastics – Aliphatic polyamides: structure, properties, manufacture and applications of Nylon 6, Nylon 66. Polyesters: manufacture, structure, properties and uses of PET, PBT. Manufacture, structure, properties and uses of Polycarbonates, acetal resins, polyimides, PMMA, polyphenylene oxide, thermoplastic polyurethane (PU)

UNIT III THERMOSETTING PLASTICS
Thermosetting Plastics – Manufacture, curing, moulding powder, laminates, properties and uses of phenol formaldehyde resins, urea formaldehyde, melamine formaldehyde, unsaturated polyester resin, epoxy resin, silicone resins, polyurethane resins.

UNIT IV MISCELLANEOUS PLASTICS FOR END APPLICATIONS
Miscellaneous plastics- Manufacture, properties and uses of polystyrene, HIPS, ABS, SAN, poly(tetrafluoroethylene) (PTFE), TFE and copolymers, PVDF, PVA, poly (vinyl acetate), poly (vinyl carbazole), cellulose acetate, PEEK, High energy absorbing polymers, super absorbent polymers-their synthesis, properties and applications

UNIT V PLASTICS MATERIALS FOR BIOMEDICAL APPLICATIONS
Sources, raw materials, methods of manufacturing, properties and applications of bio-based polymers- poly lactic acid (PLA), poly hydroxy alkanoates (PHA), PBAT, bioplastics- bio-PE, bio-PP, bio-PET, polymers for biomedical applications

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1: To study the importance, advantages and classification of plastic materials
CO2: Summarize the raw materials, sources, production, properties and applications of various engineering thermoplastics
CO3: To understand the application of polyamides, polyesters and other engineering thermoplastics, thermosetting resins
CO4: Know the manufacture, properties and uses of thermosetting resins based on polyester, epoxy, silicone and PU
CO5: To understand the engineering applications of various polymers in miscellaneous areas and applications of different biopolymers

REFERENCES

COURSE OBJECTIVES
- To understand the relevance of standards and specifications as well as the specimen preparation for polymer testing.
- To study the mechanical properties and testing of polymer materials and their structural property relationships.
- To understand the thermal properties of polymers and their testing methods.
- To gain knowledge on the electrical and optical properties of polymers and their testing methods.
- To study about the environmental effects and prevent polymer degradation.

UNIT I INTRODUCTION TO CHARACTERIZATION AND TESTING OF POLYMERS

UNIT II MECHANICAL PROPERTIES
Mechanical properties: Tensile, compression, flexural, shear, tear strength, hardness, impact strength, resilience, abrasion resistance, creep and stress relaxation, compression set, dynamic fatigue, ageing properties, Basic concepts of stress and strain, short term tests: Viscoelastic behavior (simple models: Kelvin model for creep and stress relaxation, Maxwell-Voigt model, strain recovery and dynamic response), Effect of structure and composition on mechanical properties, Behavior of reinforced polymers.
UNIT III THERMAL RHEOLOGICAL PROPERTIES
Thermal properties: Transition temperatures, specific heat, thermal conductivity, co-efficient of thermal expansion, heat deflection temperature, Vicat softening point, shrinkage, brittleness temperature, thermal stability and flammability. Product testing: Plastic films, sheeting, pipes, laminates, foams, containers, cables and tubes.

UNIT IV ELECTRICAL AND OPTICAL PROPERTIES
Electrical properties: volume and surface resistivity, dielectric strength, dielectric constant and power factor, arc resistance, tracking resistance, dielectric behavior of polymers (dielectric co-efficient, dielectric polarization), dissipation factor and its importance. Optical properties: transparency, refractive index, haze, gloss, clarity, birefringence.

UNIT V ENVIRONMENTAL AND CHEMICAL RESISTANCE

TOTAL : 45 PERIODS

COURSE OUTCOMES
CO1: Understand the relevance of standards and specifications.
CO2: Summarize the various test methods for evaluating the mechanical properties of the polymers.
CO3: To know the thermal, electrical & optical properties of polymers.
CO4: Identify various techniques used for characterizing polymers.
CO5: Distinguish the processability tests used for thermoplastics, thermosets and elastomers.

REFERENCES

OEC353 VLSI DESIGN L T P C
3 0 0 3

COURSE OBJECTIVES:
- Understand the fundamentals of IC technology components and their characteristics.
- Understand combinational logic circuits and design principles.
- Understand sequential logic circuits and clocking strategies.
- Understand Interconnects and Memory Architecture.
- Understand the design of arithmetic building blocks.
UNIT I MOS TRANSISTOR PRINCIPLES

MOS logic families (NMOS and CMOS), Ideal and Non Ideal IV Characteristics, CMOS devices. MOS(FET) Transistor DC transfer Characteristics ,small signal analysis of MOSFET.

UNIT II COMBINATIONAL LOGIC CIRCUITS

UNIT III SEQUENTIAL LOGIC CIRCUITS AND CLOCKING STRATEGIES

UNIT IV INTERCONNECT, MEMORY ARCHITECTURE

Interconnect Parameters – Capacitance, Resistance, and Inductance, Logic Implementation using Programmable Devices (ROM, PLA, FPGA), Memory Architecture and Building Blocks.

UNIT V DESIGN OF ARITHMETIC BUILDING BLOCKS

Arithmetic Building Blocks: Data Paths, Adders-Ripple Carry Adder, Carry-Bypass Adder, Carry Select Adder, Carry-Look Ahead Adder, Multipliers, Barrel Shifter, power and speed tradeoffs.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon successful completion of the course the student will be able to

CO1: Understand the working principle and characteristics of MOSFET
CO2: Design Combinational Logic Circuits
CO3: Design Sequential Logic Circuits and Clocking systems
CO4: Understand Memory architecture and interconnects
CO5: Design of arithmetic building blocks.

TEXTBOOKS

REFERENCES
COURSE OBJECTIVES:
The student should be made to:
- To know the hardware requirement of wearable systems
- To understand the communication and security aspects in the wearable devices
- To know the applications of wearable devices in the field of medicine

UNIT I INTRODUCTION TO WEARABLE SYSTEMS AND SENSORS

UNIT II SIGNAL PROCESSING AND ENERGY HARVESTING FOR WEARABLE DEVICES
Wearability issues -physical shape and placement of sensor, Technical challenges - sensor design, signal acquisition, sampling frequency for reduced energy consumption, Rejection of irrelevant information. Power Requirements- Solar cell, Vibration based, Thermal based, Human body as a heat source for power generation, Hybrid thermoelectric photovoltaic energy harvests, Thermopiles.

UNIT III WIRELESS HEALTH SYSTEMS

UNIT IV SMART TEXTILE

UNIT V APPLICATIONS OF WEARABLE SYSTEMS
Medical Diagnostics, Medical Monitoring-Patients with chronic disease, Hospital patients, Elderly patients, neural recording, Gait analysis, Sports Medicine.
COURSE OUTCOMES:
On successful completion of this course, the student will be able to
CO1: Describe the concepts of wearable system.
CO2: Explain the energy harvestings in wearable device.
CO3: Use the concepts of BAN in health care.
CO4: Illustrate the concept of smart textile
CO5: Compare the various wearable devices in healthcare system

TOTAL:45 PERIODS

TEXT BOOKS

REFERENCES

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, -"- no correlation

CBM356 MEDICAL INFORMATICS L T P C 3 0 0 3

Preamble:
1. To study the applications of information technology in health care management.
2. This course provides knowledge on resources, devices, and methods required to optimize the acquisition, storage, retrieval, and use of information in health and biomedicine.

UNIT I INTRODUCTION TO MEDICAL INFORMATICS 9
Introduction - Structure of Medical Informatics - Internet and Medicine - Security issues, Computer based medical information retrieval, Hospital management and information system, Functional capabilities of a computerized HIS, Health Informatics – Medical Informatics, Bioinformatics
UNIT II COMPUTERS IN CLINICAL LABORATORY AND MEDICAL IMAGING
Automated clinical laboratories-Automated methods in hematology, cytology and histology, Intelligent Laboratory Information System - Computer assisted medical imaging- nuclear medicine, ultrasound imaging, computed X-ray tomography, Radiation therapy and planning, Nuclear Magnetic Resonance.

UNIT III COMPUTERISED PATIENT RECORD
Introduction - conventional patient record, Components and functionality of CPR, Development tools, Intranet, CPR in Radiology- Application server provider, Clinical information system, Computerized prescriptions for patients.

UNIT IV COMPUTER ASSISTED MEDICAL DECISION-MAKING
Neuro computers and Artificial Neural Networks application, Expert system-General model of CMD, Computer–assisted decision support system-production rule system cognitive model, semantic networks, decisions analysis inclinical medicine-computers in the care of critically ill patients, Computer aids for the handicapped.

UNIT V RECENT TRENDS IN MEDICAL INFORMATICS
Virtual reality applications in medicine, Virtual endoscopy, Computer assisted surgery, Surgical simulation, Telemedicine - Tele surgery, Computer assisted patient education and health- Medical education and healthcare information, computer assisted instruction in medicine.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, students will be able to:
CO1: Explain the structure and functional capabilities of Hospital Information System.
CO2: Describe the need of computers in medical imaging and automated clinical laboratory.
CO3: Articulate the functioning of information storage and retrieval in computerized patient record system.
CO4: Apply the suitable decision support system for automated clinical diagnosis.
CO5: Discuss the application of virtual reality and telehealth technology in medical industry.

TEXT BOOKS:

REFERENCES:

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Av.</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, ‘-’- no correlation
COURSE OBJECTIVES

- To introduce the interdisciplinary approach of water management.
- To develop knowledge base and capacity building on IWRM.

UNIT I OVERVIEW OF IWRM 9

UNIT II WATER USE SECTORS: IMPACTS AND SOLUTION 9
Water users: People, Agriculture, ecosystem and others - Impacts of the water use sectors on water resources - Securing water for people, food production, ecosystems and other uses - IWRM relevance in water resources management.

UNIT III WATER ECONOMICS 9
Economic characteristics of water good and services – Economic instruments – Private sector involvement in water resources management - PPP experiences through case studies.

UNIT IV RECENT TRENDS IN WATER MANAGEMENT 9
River basin management - Ecosystem Regeneration – 5 Rs - WASH - Sustainable livelihood - Water management in the context of climate change.

UNIT V IMPLEMENTATION OF IWRM 9
Barriers to implementing IWRM - Policy and legal framework - Bureaucratic reforms and inclusive development - Institutional Transformation - Capacity building - Case studies on conceptual framework of IWRM.

TOTAL: 45 PERIODS

COURSE OUTCOMES

On completion of the course, the student will be able to apply appropriate management techniques towards managing the water resources.

CO1 Describe the context and principles of IWRM; Compare the conventional and integrated ways of water management.

CO2 Discuss on the different water uses; how it is impacted and ways to tackle these impacts.

CO3 Explain the economic aspects of water and choose the best economic option among the alternatives; illustrate the pros and cons of PPP through case studies.

CO4 Illustrate the recent trends in water management.

CO5 Understand the implementation hitches and the institutional frameworks.

TEXT BOOKS

REFERENCES
2. IWRM Guidelines at River Basin Level (UNESCO, 2008).

OBT355
BIOTECHNOLOGY FOR WASTE MANAGEMENT
L T P C
3 0 0 3

UNIT I
BIOLOGICAL TREATMENT PROCESS
9

UNIT II
WASTE BIOMASS AND ITS VALUE ADDITION
9

UNIT III
BIOCONVERSION OF WASTES TO ENERGY
9
Perspective of biofuels from wastes - Bioethanol production – Biohydrogen Production – dark and photofermentative process - Biobutanol production – Biogas and Biomethane production - Single stage anaerobic digestion, Two stage anaerobic digestion - Biodiesel production - Enzymatic hydrolysis technologies

UNIT IV
CHEMICALS AND ENZYME PRODUCTION FROM WASTES
9
Production of lactic acid, succinic acid, citric acid – Biopolymer synthesis – Production of Amylases - Lignocellulolytic enzymes - Pectinolytic enzymes - Proteases – Lipases

UNIT V
BIOCOMPOSTING OF ORGANIC WASTES
9
Overview of composting process - Benefits of composting, Role of microorganisms in composting - Factors affecting the composting process - Waste Materials for Composting, Fundamentals of composting process - Composting technologies, Composting systems – Nonreactor Composting, Reactor composting - Compost Quality

TOTAL: 45 PERIODS

COURSE OUTCOMES
After completion of this course, the students should be able
- To learn the various methods biological treatment
- To know the details of waste biomass and its value addition
- To develop the bioconversion processes to convert wastes to energy
- To synthesize the chemicals and enzyme from wastes
- To produce the biocompost from wastes
- To apply the theoretical knowledge for the development of value added products
TEXT BOOKS

REFERENCE BOOKS

OBT356
LIFESTYLE DISEASES

UNIT I
INTRODUCTION
Lifestyle diseases – Definition; Risk factors – Eating, smoking, drinking, stress, physical activity, illicit drug use; Obesity, diabetes, cardiovascular diseases, respiratory diseases, cancer; Prevention – Diet and exercise.

UNIT II
CANCER
Types - Lung cancer, Mouth cancer, Skin cancer, Cervical cancer, Carcinoma oesophagus; Causes Tobacco usage, Diagnosis – Biomarkers, Treatment

UNIT III
CARDIOVASCULAR DISEASES
Coronary atherosclerosis – Coronary artery disease; Causes - Fat and lipids, Alcohol abuse – Diagnosis - Electrocardiograph, echocardiograph, Treatment, Exercise and Cardiac rehabilitation

UNIT IV
DIABETES AND OBESITY
Types of Diabetes mellitus; Blood glucose regulation; Complications of diabetes – Paediatric and adolescent obesity – Weight control and BMI

UNIT V
RESPIRATORY DISEASES
Chronic lung disease, Asthma, COPD; Causes - Breathing pattern (Nasal vs mouth), Smoking – Diagnosis - Pulmonary function testing

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
COURSE OBJECTIVES
The aim of this course is to
- Create higher standard of knowledge on healthcare system and services
- Prioritize advanced technologies for the diagnosis and treatment of various diseases

UNIT I PUBLIC HEALTH

UNIT II CLINICAL DISEASES
Communicable diseases: Chickenpox / Shingles, COVID-19, Tuberculosis, Hepatitis B, Hepatitis C, HIV / AIDS, Influenza, Swine flu. Non Communicable diseases: Diabetes mellitus, atherosclerosis, fatty liver, Obesity, Cancer

UNIT III VACCINOLOGY
History of Vaccinology, conventional approaches to vaccine development, live attenuated and killed vaccines, adjuvants, quality control, preservation and monitoring of microorganisms in seed lot systems. Instruments related to monitoring of temperature, sterilization, environment.

UNIT IV OUTPATIENT & IN PATIENT SERVICES
Radiotherapy, Nuclear medicine, surgical units, OT Medical units, G & Obs. units Pediatric, neonatal units, Critical care units, Physical medicine & Rehabilitation, Neurology, Gastroenterology, Endoscopy, Pulmonology, Cardiology.

UNIT V BASICS OF IMAGING MODALITIES

TOTAL: 45 PERIODS

TEXT BOOKS

REFERENCE BOOKS
LEARNING OBJECTIVES
1. To acquire the knowledge of the decision areas in finance.
2. To learn the various sources of Finance
3. To describe about capital budgeting and cost of capital.
4. To discuss on how to construct a robust capital structure and dividend policy
5. To develop an understanding of tools on Working Capital Management.

UNIT I INTRODUCTION TO FINANCIAL MANAGEMENT
Definition and Scope of Finance Functions - Objectives of Financial Management - Profit Maximization and Wealth Maximization- Time Value of money- Risk and return concepts.

UNIT II SOURCES OF FINANCE
Long term sources of Finance -Equity Shares – Debentures - Preferred Stock – Features – Merits and Demerits. Short term sources - Bank Sources, Trade Credit, Overdrafts, Commercial Papers, Certificate of Deposits, Money market mutual funds etc

UNIT III INVESTMENT DECISIONS:

UNIT IV FINANCING AND DIVIDEND DECISION

UNIT V WORKING CAPITAL DECISION

TOTAL : 45 PERIODS

TEXT BOOKS

REFERENCES.
2. Prasanna Chandra, Financial Management,
COURSE OBJECTIVES:
- Describe the investment environment in which investment decisions are taken.
- Explain how to Value bonds and equities
- Explain the various approaches to value securities
- Describe how to create efficient portfolios through diversification
- Discuss the mechanism of investor protection in India.

UNIT I THE INVESTMENT ENVIRONMENT
The investment decision process, Types of Investments – Commodities, Real Estate and Financial Assets, the Indian securities market, the market participants and trading of securities, security market indices, sources of financial information, Concept of return and risk, Impact of Taxes and Inflation on return.

UNIT II FIXED INCOME SECURITIES
Bond features, types of bonds, estimating bond yields, Bond Valuation types of bond risks, default risk and credit rating.

UNIT III APPROACHES TO EQUITY ANALYSIS
Introduction to Fundamental Analysis, Technical Analysis and Efficient Market Hypothesis, dividend capitalisation models, and price-earnings multiple approach to equity valuation.

UNIT IV PORTFOLIO ANALYSIS AND FINANCIAL DERIVATIVES
Portfolio and Diversification, Portfolio Risk and Return; Mutual Funds; Introduction to Financial Derivatives; Financial Derivatives Markets in India.

UNIT V INVESTOR PROTECTION
Role of SEBI and stock exchanges in investor protection; Investor grievances and their redressal system, insider trading, investors’ awareness and activism.

REFERENCES

COURSE OBJECTIVES
- Understand the Banking system in India
- Grasp how banks raise their sources and how they deploy it
- Understand the development in banking technology
- Understand the financial services in India
• Understand the insurance Industry in India

UNIT I INTRODUCTION TO INDIAN BANKING SYSTEM 9
Overview of Banking system – Structure – Functions – Banking system in India - Key Regulations in Indian Banking sector – RBI. Relationship between Banker and Customer - Retail & Wholesale Banking – types of Accounts - Opening and operation of Accounts.

UNIT II MANAGING BANK FUNDS/ PRODUCTS 9

UNIT III DEVELOPMENT IN BANKING TECHNOLOGY 9

UNIT IV FINANCIAL SERVICES 9

UNIT V INSURANCE 9

TOTAL : 45 PERIODS

REFERENCES:

CMG334 INTRODUCTION TO BLOCKCHAIN AND ITS APPLICATIONS L T P C
3 0 0 3

UNIT I INTRODUCTION TO BLOCKCHAIN 9
Blockchain: The growth of blockchain technology - Distributed systems - The history of blockchain and Bitcoin - Features of a blockchain - Types of blockchain, Consensus: Consensus mechanism - Types of consensus mechanisms - Consensus in blockchain. Decentralization: Decentralization using blockchain - Methods of decentralization - Routes to decentralization- Blockchain and full ecosystem decentralization - Smart contracts - Decentralized Organizations- Platforms for decentralization.
UNIT II INTRODUCTION TO CRYPTOCURRENCY 9
Bitcoin – Digital Keys and Addresses – Transactions – Mining – Bitcoin Networks and Payments –
Wallets – Alternative Coins – Theoretical Limitations – Bitcoin limitations – Name coin – Prime coin –
Zcash – Smart Contracts – Ricardian Contracts- Deploying smart contracts on a blockchain

UNIT III ETHEREUM 9
Introduction - The Ethereum network - Components of the Ethereum ecosystem - Transactions and messages - Ether cryptocurrency / tokens (ETC and ETH) - The Ethereum Virtual Machine (EVM), Ethereum Development Environment: Test networks - Setting up a private net - Starting up the private network

UNIT IV WEB3 AND HYPERLEDGE 9

UNIT V EMERGING TRENDS 9

REFERENCE
2. Peter Borovykh, Blockchain Application in Finance, Blockchain Driven, 2nd Edition, 2018
UNIT IV PEER TO PEER LENDING
P2P and Marketplace Lending, New Models and New Products in marketplace lending P2P Infrastructure and technologies, Concept of Crowdfunding Crowdfunding Architecture and Technology, P2P and Crowdfunding unicorns and business models, SME/MSME Lending: Unique opportunities and Challenges, Solutions and Innovations

UNIT V REGULATORY ISSUES

REFERENCE
5. IIBF, Digital Banking, Taxmann Publication, 2016

CMG336 INTRODUCTION TO FINTECH LT P C 3 0 0 3

COURSE OBJECTIVES:
- To learn about history, importance and evolution of Fintech
- To acquire the knowledge of Fintech in payment industry
- To acquire the knowledge of Fintech in insurance industry
- To learn the Fintech developments around the world
- To know about the future of Fintech

UNIT I INTRODUCTION
Fintech - Definition, History, concept, meaning, architecture, significance, Goals, key areas in Fintech, Importance of Fintech, role of Fintech in economic development, opportunities and challenges in Fintech, Evolution of Fintech in different sectors of the industry - Infrastructure, Banking Industry, Startups and Emerging Markets, recent developments in FinTech, future prospects and potential issues with Fintech.

UNIT II PAYMENT INDUSTRY
FinTech in Payment Industry-Multichannel digital wallets, applications supporting wallets, onboarding and KYC application, FinTech in Lending Industry- Formal lending, Informal lending, P2P lending, POS lending, Online lending, Payday lending, Microfinance, Crowdfunding.
UNIT III INSURANCE INDUSTRY 9

UNIT IV FINTECH AROUND THE GLOBE 9

UNIT V FUTURE OF FINTECH 9
How emerging technologies will change financial services, the future of financial services, banking on innovation through data, why FinTech banks will rule the world, The FinTech Supermarket, Banks partnering with FinTech start-ups, The rise of BankTech, Fintech impact on Retail Banking, A future without money, Ethics in Fintech.

REFERENCES
4. Parag Y Arjunwadkar, FinTech: The Technology Driving Disruption in the financial service industry CRC Press, 2018
6. Pranay Gupta, T. Mandy Tham, Fintech: The New DNA of Financial Services Paperback, 2018

TOTAL : 45 PERIODS
entrepreneurial development – Achievement Motivation – Contributions of Entrepreneurship to Economic Development.

UNIT II BUSINESS OWNERSHIP & ENVIRONMENT 9

UNIT III FUNDAMENTALS OF TECHNOPRENEURSHIP 9
Introduction to Technopreneurship - Definition, Need, Scope- Emerging Concepts- Principles - Characteristics of a technopreneur - Impacts of Technopreneurship on Society – Economy- Job Opportunities in Technopreneurship - Recent trends

UNIT IV APPLICATIONS OF TECHNOPRENEURSHIP 9
Technology Entrepreneurship - Local, National and Global practices - Intrapreneurship and Technology interactions, Networking of entrepreneurial activities – Launching - Managing Technology based Product / Service entrepreneurship -- Success Stories of Technopreneurs - Case Studies

UNIT V EMERGING TRENDS IN ENTREPRENEURSHIP 9

TOTAL 45 : PERIODS

COURSE OUTCOMES:
Upon completion of this course, the student should be able to:

CO 1 Learn the basics of Entrepreneurship
CO 2 Understand the business ownership patterns and environment
CO 3 Understand the Job opportunities in Industries relating to Technopreneurship
CO 4 Learn about applications of technopreneurship and successful technopreneurs
CO 5 Acquaint with the recent and emerging trends in entrepreneurship

TEXT BOOKS:
2 Donal F Kuratko Entrepreneurship (11th Edition) Theory, Process, Practice by Published 2019 by Cengage Learning,

REFERENCES:
4 David Sheff 2002, China Dawn: The Story of a Technology and Business Revolution,

361
CMG338 TEAM BUILDING & LEADERSHIP MANAGEMENT FOR BUSINESS

L T P C
3 0 0 3

COURSE OBJECTIVES
- To develop and strengthen the Leadership qualities and motivation of learners.
- To impart the Leadership skills and traits essential to become successful entrepreneurs.
- To apply the principles and theories of Team Building in managing Technology oriented businesses.
- To empower the learners to build robust teams for running and leading a business efficiently and effectively.

UNIT I INTRODUCTION TO MANAGING TEAMS
Introduction to Team - Team Dynamics - Team Formation – Stages of Team Development - Enhancing teamwork within a group - Team Coaching - Team Decision Making - Virtual Teams - Self Directed Work Teams (SDWTs) - Multicultural Teams.

UNIT II MANAGING AND DEVELOPING EFFECTIVE TEAMS
Team-based Organisations- Leadership roles in team-based organisations - Offsite training and team development - Experiential Learning - Coaching and Mentoring in team building - Building High-Performance Teams - Building Credibility and Trust - Skills for Developing Others - Team Building at the Top - Leadership in Teamwork Effectiveness.

UNIT III INTRODUCTION TO LEADERSHIP
Introduction to Leadership - Leadership Myths – Characteristics of Leader, Follower and Situation - Leadership Attributes - Personality Traits and Leadership - Intelligence Types and Leadership - Power and Leadership - Delegation and Empowerment.

UNIT IV LEADERSHIP IN ORGANISATIONS

UNIT V LEADERSHIP EFFECTIVENESS

TOTAL 45 : PERIODS

COURSE OUTCOMES
Upon completion of this course, the student should be able to:
CO 1 Learn the basics of managing teams for business.
CO 2 Understand developing effective teams for business management.
CO 3 Understand the fundamentals of leadership for running a business.
CO 4 Learn about the importance of leadership for business development.
CO 5 Acquaint with emerging trends in leadership effectiveness for entrepreneurs.

REFERENCES:

CMG339 CREATIVITY & INNOVATION IN ENTREPRENEURSHIP L T P C
3 0 0 3

COURSE OBJECTIVES
- To develop the creativity skills among the learners
- To impart the knowledge of creative intelligence essential for entrepreneurs
- To know the applications of innovation in entrepreneurship.
- To develop innovative business models for business.

UNIT I CREATIVITY
Creativity: Definition- Forms of Creativity-Essence, Elaborative and Expressive Creativities- Quality of Creativity-Existential, Entrepreneurial and Empowerment Creativities – Creative Environment- Creative Technology- Creative Personality and Motivation.

UNIT II CREATIVE INTELLIGENCE
Creative Intelligence: Convergent thinking ability – Traits Congenial to creativity – Creativity Training--Criteria for evaluating Creativity-Credible Evaluation- Improving the quality of our creativity – Creative Tools and Techniques - Blocks to creativity- fears and Disabilities- Strategies for Unblocking- Designing Creativity Enabling Environment.

UNIT III INNOVATION

UNIT IV INNOVATION AND ENTREPRENEURSHIP
UNIT V INNOVATIVE BUSINESS MODELS

COURSE OUTCOMES
Upon completion of this course, the student should be able to:

CO 1 Learn the basics of creativity for developing Entrepreneurship
CO 2 Understand the importance of creative intelligence for business growth
CO 3 Understand the advances through Innovation in Industries
CO 4 Learn about applications of innovation in building successful ventures
CO 5 Acquaint with developing innovative business models to run the business efficiently and effectively

Suggested Readings:
Creativity and Innovation in Entrepreneurship, Kankha, Sultan Chand
Strategic Innovation: Building and Sustaining Innovative Organizations- Course Era, Raj Echambadi.

CMG340 PRINCIPLES OF MARKETING MANAGEMENT FOR BUSINESS L T P C
3 0 0 3

COURSE OBJECTIVES:
- To provide basic knowledge of concepts, principles, tools and techniques of marketing for entrepreneurs
- To provide an exposure to the students pertaining to the nature and Scope of marketing, which they are expected to possess when they enter the industry as practitioners.
- To give them an understanding of fundamental premise underlying market driven strategies and the basic philosophies and tools of marketing management for business owners.

UNIT I INTRODUCTION TO MARKETING MANAGEMENT

UNIT II MARKETING ENVIRONMENT
UNIT III PRODUCT AND PRICING MANAGEMENT 9

UNIT IV PROMOTION AND DISTRIBUTION MANAGEMENT 9

UNIT V CONTEMPORARY ISSUES IN MARKETING MANAGEMENT 9

COURSE OUTCOMES:
After completion of this course, the students will be able to:
CO1 Have the awareness of marketing management process
CO 2 Understand the marketing environment
CO 3 Acquaint about product and pricing strategies
CO 4 Knowledge of promotion and distribution in marketing management.
CO 5 Comprehend the contemporary marketing scenarios and offer solutions to marketing issues.

REFERENCES:

CMG341 HUMAN RESOURCE MANAGEMENT FOR ENTREPRENEURS L T P C
3 0 0 3

COURSE OBJECTIVES:
- To introduce the basic concepts, structure and functions of human resource management for entrepreneurs.
• To create an awareness of the roles, functions and functioning of human resource department.
• To understand the methods and techniques followed by Human Resource Management practitioners.

UNIT I INTRODUCTION TO HRM 9

UNIT II HUMAN RESOURCE PLANNING 9
HR Planning - Definition - Factors- Tools - Methods and Techniques - Job analysis- Job rotation- Job Description - Career Planning - Succession Planning - HRIS - Computer Applications in HR - Recent Trends

UNIT III RECRUITMENT AND SELECTION 9
Sources of recruitment- Internal Vs. External - Domestic Vs. Global Sources -eRecruitment - Selection Process - Selection techniques - eSelection - Interview Types - Employee Engagement.

UNIT IV TRAINING AND EMPLOYEE DEVELOPMENT 9

UNIT V CONTROLLING HUMAN RESOURCES 9

TOTAL 45 : PERIODS

COURSE OUTCOMES
Upon completion of this course the learners will be able:
CO 1 To understand the Evolution of HRM and Challenges faced by HR Managers
CO 2 To learn about the HR Planning Methods and practices.
CO 3 To acquaint about the Recruitment and Selection Techniques followed in Industries.
CO 4 To known about the methods of Training and Employee Development.
CO 5 To comprehend the techniques of controlling human resources in organisations.

REFERENCES
COURSE OBJECTIVES

- To develop the basics of business venture financing.
- To impart the knowledge essential for entrepreneurs for financing new ventures.
- To acquaint the learners with the sources of debt and equity financing.
- To empower the learners towards fund raising for new ventures effectively.

UNIT I ESSENTIALS OF NEW BUSINESS VENTURE 9

UNIT II INTRODUCTION TO VENTURE FINANCING 9

UNIT III SOURCES OF DEBT FINANCING 9

UNIT IV SOURCES OF EQUITY FINANCING 9
Own Capital, Unsecured Loan - Government Subsidies , Margin Money- Equity Funding - Private Equity Fund- Schemes of Commercial banks - Angel Funding – Crowdfunding- Venture Capital.

UNIT V METHODS OF FUND RAISING FOR NEW VENTURES 9

COURSE OUTCOMES:
Upon completion of this course, the students should be able to:

CO 1 Learn the basics of starting a new business venture.
CO 2 Understand the basics of venture financing.
CO 3 Understand the sources of debt financing.
CO 4 Understand the sources of equity financing.
CO 5 Acquaint with the methods of fund raising for new business ventures.

REFERENCES :
1) Principles of Corporate Finance by Brealey and Myers et al.,12TH ed, McGraw Hill Education (India) Private Limited, 2018

VERTICAL 3: PUBLIC ADMINISTRATION

CMG343 PRINCIPLES OF PUBLIC ADMINISTRATION L T P C
3 0 0 3 (9)

UNIT I
1. Meaning, Nature and Scope of Public Administration
2. Importance of Public Administration
3. Evolution of Public Administration

UNIT II
1. New Public Administration
2. New Public Management
3. Public and Private Administration

UNIT III
1. Relationships with Political Science, History and Sociology
2. Classical Approach
3. Scientific Management Approach

UNIT IV
1. Bureaucratic Approach: Max Weber
2. Human Relations Approach: Elton Mayo
3. Ecological Approach: Riggs

UNIT V
1. Leadership: Leadership - Styles - Approaches
2. Communication: Communication Types - Process - Barriers

TOTAL: 45 PERIODS

REFERENCES:
5. R. Tyagi, Public Administration, Atma Ram & Sons, New Delhi, 1983.

CMG344
CONSTITUTION OF INDIA

UNIT I
1. Constitutional Development Since 1909 to 1947
3. Constituent Assembly

UNIT II
1. Fundamental Rights
2. Fundamental Duties
3. Directive Principles of State Policy

UNIT III
1. President
2. Parliament
3. Supreme Court

UNIT IV
1. Governor
2. State Legislature
3. High Court

UNIT V
1. Secularism
2. Social Justice
3. Minority Safeguards

TOTAL: 45 PERIODS

REFERENCES:
3. Johari J.C.: Indian Politics, Vishal Publications Ltd, New Delhi
4. Agarwal R.C: Indian Political System; S.Chand & Co., New Delhi
CMG345 PUBLIC PERSONNEL ADMINISTRATION

UNIT I
1. Meaning, Scope and Importance of Personnel Administration
2. Types of Personnel Systems: Bureaucratic, Democratic and Representative systems

UNIT II
1. Generalist Vs Specialist
2. Civil Servants’ Relationship with Political Executive
3. Integrity in Administration.

UNIT III
1. Recruitment: Direct Recruitment and Recruitment from Within
2. Training: Kinds of Training
3. Promotion

UNIT IV
1. All India Services
2. Service Conditions
3. State Public Service Commission

UNIT V
1. Employer Employee Relations
2. Wage and Salary Administration
3. Allowances and Benefits

REFERENCES:
1. Stahl Glean O: Public Personnel Administration
4. Dwivedi O.P and Jain R.B: India’s Administrative state.
7. Davar R.S. Personnel Management & Industrial Relations

TOTAL: 45 PERIODS

CMG346 ADMINISTRATIVE THEORIES

UNIT I
Meaning, Scope and significance of Public Administration, Evolution of Public Administration as a discipline and Identity of Public Administration
UNIT II
Theories of Organization: Scientific Management Theory, Classical Model, Human Relations Theory

UNIT III
Organization goals and Behaviour, Groups in organization and group dynamics, Organizational Design.

UNIT IV
Motivation Theories, content, process and contemporary; Theories of Leadership: Traditional and Modern: Process and techniques of decision-making

UNIT V
Administrative thinkers: Kautilya, Woodrow Willson, C.I. Barnard . Peter Drucker

REFERENCES:
1. Crozior M : The Bureaucratic phenomenon (Chand)
3. Presthus. R : The Organizational Society (MAC)
5. Keith Davis : Organization Theory (MAC)

TOTAL: 45 PERIODS

CMG347

INDIAN ADMINISTRATIVE SYSTEM

UNIT I
Evolution and Constitutional Context of Indian Administration, Constitutional Authorities: Finance Commission, Union Public Services Commission, Election Commission, Comptroller and Auditor General of India, Attorney General of India

UNIT II
Role & Functions of the District Collector, Relationship between the District Collector and Superintendent of Police, Role of Block Development Officer in development programmes, Local Government

UNIT III
Main Features of 73rd Constitutional Amendment Act 1992, Salient Features of 74th Constitutional Amendment Act 1992

UNIT IV
Coalition politics in India, Integrity and Vigilance in Indian Administration

UNIT V
Corruption – Ombudsman, Lok Pal & Lok Ayuktha

REFERENCES:
1. S.R. Maheswari : Indian Administration
2. Khera. S.S : Administration in India

TOTAL: 45 PERIODS
3. Ramesh K. Arora : Indian Public Administration
4. T.N. Chaturvedi : State administration in India
5. Basu, D.D : Introduction to the Constitution of India

CMG348 PUBLIC POLICY ADMINISTRATION

UNIT I

UNIT II
Approaches in Policy Analysis - Institutional Approach – Incremental Approach and System’s Approach – Dror’s Optimal Model

UNIT III

UNIT IV
Institutional Framework of Policy making – Role of Bureaucracy – Role of Interest Groups and Role of Political Parties.

UNIT V
Introduction to the following Public Policies – New Economic Policy – Population Policy – Agriculture policy - Information Technology Policy.

TOTAL: 45 PERIODS

REFERENCES:
4. Pradeep Saxena : Public Policy Administration and Development
COURSE OBJECTIVE:
- To learn the applications of statistics in business decision making.

UNIT I INTRODUCTION
Basic definitions and rules for probability, Baye's theorem and random variables, Probability distributions: Binomial, Poisson, Uniform and Normal distributions.

UNIT II SAMPLING DISTRIBUTION AND ESTIMATION
Introduction to sampling distributions, Central limit theorem and applications, sampling techniques, Point and Interval estimates of population parameters.

UNIT III TESTING OF HYPOTHESIS - PARAMETRIC TESTS
Hypothesis testing: one sample and two sample tests for means of large samples (z-test), one sample and two sample tests for means of small samples (t-test), ANOVA one way.

UNIT IV NON-PARAMETRIC TESTS

UNIT V CORRELATION AND REGRESSION

TOTAL:45 PERIODS

COURSE OUTCOMES:
CO1: To facilitate objective solutions in business decision making.
CO2: To understand and solve business problems
CO3: To apply statistical techniques to data sets, and correctly interpret the results.
CO4: To develop skill-set that is in demand in both the research and business environments
CO5: To enable the students to apply the statistical techniques in a work setting.

REFERENCES:
COURSE OBJECTIVES:
- To know how to derive meaning from huge volume of data and information.
- To understand how knowledge discovering process is used in business decision making.

UNIT I INTRODUCTION
Data mining, Text mining, Web mining, Data ware house.

UNIT II DATA MINING PROCESS
Datamining process – KDD, CRISP-DM, SEMMA
Prediction performance measures

UNIT III PREDICTION TECHNIQUES
Data visualization, Time series – ARIMA, Winter Holts.

UNIT IV CLASSIFICATION AND CLUSTERING TECHNIQUES
Classification, Association, Clustering.

UNIT V MACHINE LEARNING AND AI
Genetic algorithms, Neural network, Fuzzy logic, Ant Colony optimization, Particle Swarm optimization

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Learn to apply various data mining techniques into various areas of different domains.
CO2: Be able to interact competently on the topic of data mining for business intelligence.
CO3: Apply various prediction techniques.
CO4: Learn about supervised and unsupervised learning technique.
CO5: Develop and implement machine learning algorithms

REFERENCES:
1. Jaiwei Ham and Micheline Kamber, Data Mining concepts and techniques, Kauffmann Publishers 2006
2. Efraim Turban, Ramesh Sharda, Jay E. Aronson and David King, Business Intelligence, Prentice Hall, 2008.
7. G. K. Gupta, Introduction to Data mining with Case Studies, Prentice hall of India, 2011
9. Elizabeth Vitt, Michael Luckevich Stacia Misner, Business Intelligence, Microsoft, 2011
COURSE OBJECTIVE:

- To develop the ability of the learners to define and implement HR metrics that are aligned with the overall business strategy.
- To know the different types of HR metrics and understand their respective impact and application.
- To understand the impact and use of HR metrics and their connection with HR analytics.
- To understand common workforce issues and resolving them using people analytics.

UNIT I INTRODUCTION TO HR ANALYTICS
People Analytics - stages of maturity - Human Capital in the Value Chain: impact on business – HR metrics and KPIs.

UNIT II HR ANALYTICS I: RECRUITMENT
Recruitment Metrics: Fill-up ratio - Time to hire - Cost per hire - Early turnover - Employee referral hires - Agency hires - Lateral hires - Fulfillment ratio - Quality of hire.

UNIT III HR ANALYTICS - TRAINING AND DEVELOPMENT
Training & Development Metrics: Percentage of employees trained - Internally and externally trained - Training hours and cost per employee - ROI.

UNIT IV HR ANALYTICS EMPLOYEE ENGAGEMENT AND CAREER PROGRESSION
Employee Engagement Metrics: Talent Retention index - Voluntary and involuntary turnover - Grades, performance, and service tenure - Internal hired index Career Progression Metrics: Promotion index - Rotation index - Career path index.

UNIT V HR ANALYTICS IV: WORKFORCE DIVERSITY AND DEVELOPMENT
Workforce Diversity and Development Metrics: Employees per manager – Workforce age profiling - Workforce service profiling - Churnover index - Workforce diversity index - Gender mix

TOTAL: 45 PERIODS

COURSE OUTCOME:

CO1: The learners will be conversant about HR metrics and ready to apply at work settings.
CO2: The learners will be able to resolve HR issues using people analytics.

REFERENCES:
CMG352 MARKETING AND SOCIAL MEDIA WEB ANALYTICS

COURSE OBJECTIVE:

- To showcase the opportunities that exist today to leverage the power of the web and social media.

UNIT I MARKETING ANALYTICS
Marketing Budget and Marketing Performance Measure, Marketing - Geographical Mapping, Data Exploration, Market Basket Analysis

UNIT II COMMUNITY BUILDING AND MANAGEMENT
History and Evolution of Social Media - Understanding Science of Social Media - Goals for using Social Media - Social Media Audience and Influencers - Digital PR - Promoting Social Media Pages - Linking Social Media Accounts - The Viral Impact of Social Media.

UNIT III SOCIAL MEDIA POLICIES AND MEASUREMENTS
Social Media Policies - Etiquette, Privacy - ethical problems posed by emerging social media technologies - The Basics of Tracking Social Media.

UNIT IV WEB ANALYTICS
Data Collection, Overview of Qualitative Analysis, Business Analysis, KPI and Planning, Critical Components of a Successful Web Analytics Strategy, Proposals & Reports, Web Data Analysis.

UNIT V SEARCH ANALYTICS
Search engine optimization (SEO), user engagement, user-generated content, web traffic analysis, online security, online ethics, data visualization.

TOTAL: 45 PERIODS

COURSE OUTCOME:

- The Learners will understand social media, web and social media analytics and their potential impact.

REFERENCES:

2. Christian Fuchs, Social Media a critical introduction, SAGE Publications Ltd, 2014
5. Ric T. Peterson, Web Analytics Demystified, Celilo Group Media and CafePress 2004
COURSE OBJECTIVE:
- To treat the subject in depth by emphasizing on the advanced quantitative models and methods in operations and supply chain management and its practical aspects and the latest developments in the field.

UNIT I INTRODUCTION 9
Descriptive, predictive and prescriptive analytics, Data Driven Supply Chains – Basics, transforming supply chains.

UNIT II WAREHOUSING DECISIONS 9
P-Median Methods - Guided LP Approach, Greedy Drop Heuristics, Dynamic Location Models, Space Determination and Layout Methods.

UNIT III INVENTORY MANAGEMENT 9
Dynamic Lot sizing Methods, Multi-Echelon Inventory models, Aggregate Inventory system and LIMIT, Risk Analysis in Supply Chain, Risk pooling strategies.

UNIT IV TRANSPORTATION NETWORK MODELS 9

UNIT V MCDM MODELS 9
Analytic Hierarchy Process(AHP), Data Envelopment Analysis (DEA), Fuzzy Logic and Techniques, the analytical network process (ANP), TOPSIS.

COURSE OUTCOME:
- To enable quantitative solutions in business decision making under conditions of certainty, risk and uncertainty.

REFERENCES:
COURSE OBJECTIVE:
- This course introduces a core set of modern analytical tools that specifically target finance applications.

UNIT I CORPORATE FINANCE ANALYSIS 9
Basic corporate financial predictive modelling - Project analysis - cash flow analysis - cost of capital, Financial Break even modelling, Capital Budget model - Payback, NPV, IRR.

UNIT II FINANCIAL MARKET ANALYSIS 9
Estimation and prediction of risk and return (bond investment and stock investment) – Time series - examining nature of data, Value at risk, ARMA, ARCH and GARCH.

UNIT III PORTFOLIO ANALYSIS 9
Portfolio Analysis – capital asset pricing model, Sharpe ratio, Option pricing models - binomial model for options, Black Scholes model and Option implied volatility.

UNIT IV TECHNICAL ANALYSIS 9

UNIT V CREDIT RISK ANALYSIS 9
Credit Risk analysis - Data processing, Decision trees, logistic regression and evaluating credit risk model.

TOTAL: 45 PERIODS

COURSE OUTCOME
- The learners should be able to perform financial analysis for decision making using excel, Python and R.

REFERENCES:
COURSE OBJECTIVE:

- To impart knowledge about sustainable Infrastructure development goals, practices and to understand the concepts of sustainable planning, design, construction, maintenance and decommissioning of infrastructure projects.

UNIT I SUSTAINABLE DEVELOPMENT GOALS

UNIT II SUSTAINABLE INFRASTRUCTURE PLANNING

UNIT III SUSTAINABLE CONSTRUCTION PRACTICES AND TECHNIQUES

UNIT IV SUSTAINABLE CONSTRUCTION MATERIALS
Thermodynamic LCA - Extending LCA - economic dimension, social dimension - Life cycle costing (LCC) - Combining LCA and LCC – Case studies

UNIT V SUSTAINABLE MAINTENANCE OF INFRASTRUCTURE PROJECTS

TOTAL: 45 PERIODS

COURSE OUTCOME:
On completion of the course, the student is expected to be able to
CO1 Understand the environment sustainability goals at global and Indian scenario.
CO2 Understand risks in development of projects and suggest mitigation measures.
CO3 Apply lean techniques, LBMS and new construction techniques to achieve sustainability in infrastructure construction projects.
CO4 Explain Life Cycle Analysis and life cycle cost of construction materials.
CO5 Explain the new technologies for maintenance of infrastructure projects.

REFERENCES:
3. Craig A. Langston & Grace K.C. Ding, Sustainable Practices in the Built Environment,
6. New Building Materials and Construction World magazine
8. Munier N, "Introduction to Sustainability", Springer2005
CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Avg.</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, "-" - no correlation

CES332 SUSTAINABLE AGRICULTURE AND ENVIRONMENTAL MANAGEMENT L T P C
3 0 0 3

COURSE OBJECTIVES:
• To educate the students about the issues of sustainability in agroecosystems, introduce the concepts and principles of agroecology as applied to the design and management of sustainable agricultural systems for a changing world.

UNIT I AGROECOLOGY, AGROECOSYSTEM AND SUSTAINABLE AGRICULTURE CONCEPTS 9
Ecosystem definition - Biotic Vs. abiotic factors in an ecosystem - Ecosystem processes - Ecological services and agriculture - Problems associated with industrial agriculture/food systems - Defining sustainability - Characteristics of sustainable agriculture - Difference between regenerative and sustainable agriculture systems

UNIT II SOIL HEALTH, NUTRIENT AND PEST MANAGEMENT 9
Soil health definition - Factors to consider (physical, chemical and biological) - Composition of healthy soils - Soil erosion and possible control measures - Techniques to build healthy soil - Management practices for improving soil nutrient - Ecologically sustainable strategies for pest and disease control

UNIT III WATER MANAGEMENT 9
Soil water storage and availability - Plant yield response to water - Reducing evaporation in agriculture - Earthworks and tanks for rainwater harvesting - Options for improving the productivity of water - Localized irrigation - Irrigation scheduling - Fertigation - Advanced irrigation systems and agricultural practices for sustainable water use

UNIT IV ENERGY AND WASTE MANAGEMENT 9
Types and sources of agricultural wastes - Composition of agricultural wastes - Sustainable technologies for the management of agricultural wastes - Useful and high value materials produced using different processes from agricultural wastes - Renewable energy for sustainable agriculture
UNIT V EVALUATING SUSTAINABILITY IN AGROECOSYSTEMS

Indicators of sustainability in agriculture - On-farm evaluation of agroecosystem sustainability - Alternative agriculture approaches/ farming techniques for sustainable food production - Goals and components of a community food system - Case studies

COURSE OUTCOME
On completion of the course, the student is expected to be able to

CO1 Have an in-depth knowledge about the concepts, principles and advantages of sustainable agriculture
CO2 Discuss the sustainable ways in managing soil health, nutrients, pests and diseases
CO3 Suggest the ways to optimize the use of water in agriculture to promote an ecological use of resources
CO4 Develop energy and waste management plans for promoting sustainable agriculture in non-sustainable farming areas
CO5 Assess an ecosystem for its level of sustainability and prescribe ways of converting to a sustainable system through the redesign of a conventional agroecosystem

REFERENCES:
1. Approaches to Sustainable Agriculture – Exploring the Pathways Towards the Future of Farming, Oberc, B.P. & Arroyo Schnell, A., IUCN, Belgium, 2020

CO’s-PO’s & PSO’s MAPPING - SUSTAINABLE AGRICULTURE PRACTICES

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1 – Low; 2 – Medium; 3 – High; ‘- ‘– No correlation

CES333 SUSTAINABLE BIOMATERIALS L T P C
 3 0 0 3

COURSE OBJECTIVES
- To Impart knowledge of biomaterials and their properties
- To learn about Fundamentals aspects of Biopolymers and their applications
- To learn about bioceramics and biopolymers
To introduce the students about metals as biomaterials and their usage as implants
To make the students understand the significance of bionanomaterials and its applications.

UNIT I INTRODUCTION TO BIOMATERIALS

UNIT II BIO POLYMERS
Molecular structure of polymers-Molecular weight-Types of polymerization techniques-Types of polymerization reactions-Physical states of polymers-Common polymeric biomaterials-Polyethylene-Polymethylmethacrylate (PMMA)-Polyactic acid (PLA) and polyglycolic acid (PGA)-Polycaprolactone (PCL)-Other biodegradable polymers-Polyurethan-reactions polymers for medical purposes-Collagens-Elastin-Cellulose and derivatives-Synthetic polymeric membranes and their biological applications

UNIT III BIO CERAMICS AND BIOCOMPOSITES
General properties-Bio ceramics-Silicate glass-Alumina (Al2O3)-Zirconia (ZrO2)-Carbon-Calcium phosphates (CaP)-Resorbable Ceramics-surface reactive ceramics-Biomedical Composites-Polymer Matrix Composite (PMC)-Ceramic Matrix Composite (CMC)-Metal Matrix Composite (MMC)-glass ceramics-Orthopedic implants-Tissue engineering scaffolds

UNIT IV METALS AS BIOMATERIALS
Biomedical metals-types and properties-stainless steel-Cobalt chromium alloys-Titanium alloys-Tantalum-Nickel titanium alloy (Nitinol)-magnesium-based biodegradable alloys-surface properties of metal implants for osteointegration-medical application-corrosion of metallic implants-biological tolerance of implant metals

UNIT V NANOBIOCOMPATIBLE MATERIALS

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1: Students will gain familiarity with Biomaterials and they will understand their importance.
CO2: Students will get an overview of different biopolymers and their properties
CO3: Students gain knowledge on some of the important Bioceramics and Biocomposite materials
CO4: Students gain knowledge on metals as biomaterials
CO5: Student gains knowledge on the importance of nanobiomaterials in biomedical applications.
REFERENCES
6. VasifHasirci, NesrinHasirci “Fundamentals of Biomaterials” Springer, 2018

CES334 MATERIALS FOR ENERGY SUSTAINABILITY L T P C
3 0 0 3

COURSE OBJECTIVES
• To familiarize the students about the challenges and demands of energy sustainability
• To provide fundamental knowledge about electrochemical devices and the materials used.
• To introduce the students to various types of fuel cell
• To enable students to appreciate novel materials and their usage in photovoltaic application
• To introduce students to the basic principles of various types Supercapacitors and the materials used.

UNIT I SUSTAINABLE ENERGY SOURCES
Introduction to energy demand and challenges ahead – sustainable source of energy (wind, solar etc.) – electrochemical energy systems for energy harvesting and storage – materials for sustainable electrochemical systems building – India centric solutions based on locally available materials – Economics of wind and solar power generators vs. conventional coal plants – Nuclear energy

UNIT II ELECTROCHEMICAL DEVICES
Electrochemical Energy – Difference between primary and secondary batteries – Secondary battery (Li-ion battery, Sodium-ion battery, Li-S battery, Li-O₂ battery, Nickel Cadmium, Nickel Metal Hydride) – Primary battery (Alkaline battery, Zinc-Carbon battery) – Materials for battery (Anode materials – Lithiated graphite, Sodiated hard carbon, Silicon doped graphene, Lithium Titanate) (Cathode Materials – S, LiCoO₂, LiFePO₄, LiMn₂O₄) – Electrolytes for Lithium-ion battery (ethylene carbonate and propylene carbonate based)
UNIT III FUEL CELLS

UNIT IV PHOTOVOLTAICS

UNIT V SUPERCAPACITORS

Supercapacitor –types of supercapacitors (electrostatic double-layer capacitors, pseudo capacitors and hybrid capacitors) - design of supercapacitor-three and two electrode cell-parameters of supercapacitor- Faradaic and non - Faradaic capacitance – electrode materials (transition metal oxides (MO), mixed metal oxides, conducting polymers (CP), Mxenes, nanocarbons, non-noble metal, chalcogenides, hydroxides and 1D-3D metal-organic frame work (MOF), activated carbon fibres (ACF) - Hydroxides-Based Materials - Polyaniline (PANI), a ternary hybrid composite-conductive polypyrrole hydrogels – Different types of nanocomposites for the SC electrodes (carbon–carbon composites, carbon-MOs composites, carbon-CPs composites and MOs-CPs composites) - Two-Dimensional (2D) Electrode Materials - 2D transition metal carbides, carbonitrides, and nitrides.

TOTAL : 45 PERIODS

COURSE OUTCOMES

CO1: Students will acquire knowledge about energy sustainability.
CO2: Students understand the principles of different electrochemical devices.
CO3: Students learn about the working of fuel cells and their application.
CO4: Students will learn about various Photovoltaic applications and the materials used.
CO5: The students gain knowledge on different types of supercapacitors and the performance of various materials

REFERENCES

5. Materials for Supercapacitor applications; B.Viswanathan. M.Aulice Scibioh

CES335 GREEN TECHNOLOGY L T P C 3 0 0 3

COURSE OBJECTIVE:
- To acquire knowledge on green systems and the environment, energy technology and efficiency, and sustainability.
- To provide green engineering solutions to energy demand, reduced energy footprint.

UNIT I PRINCIPLES OF GREEN CHEMISTRY 9
Historical Perspectives and Basic Concepts. The twelve Principles of Green Chemistry and green engineering. Green chemistry metrics- atom economy, E factor, reaction mass efficiency, and other green chemistry metrics, application of green metrics analysis to synthetic plans.

UNIT II POLLUTION TYPES 9
Pollution – types, causes, effects, and abatement. Waste – sources of waste, different types of waste, chemical, physical and biochemical methods of waste minimization and recycling.

UNIT III GREEN REAGENTS AND GREEN SYNTHESIS 9
Environmentally benign processes- alternate solvents- supercritical solvents, ionic liquids, water as a reaction medium, energy-efficient design of processes- photo, electro and sono chemical methods, microwave-assisted reactions

UNIT IV DESIGNING GREEN PROCESSES 9
Safe design, process intensification, in process monitoring. Safe product and process design – Design for degradation, Real-time Analysis for pollution prevention, inherently safer chemistry for accident prevention

UNIT V GREEN NANOTECHNOLOGY 9
Nanomaterials for water treatment, nanotechnology for renewable energy, nanotechnology for environmental remediation and waste management, nanotechnology products as potential substitutes for harmful chemicals, environmental concerns with nanotechnology

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1: To understand the principles of green engineering and technology
CO2: To learn about pollution using hazardous chemicals and solvents
CO3: To modify processes and products to make them green and safe.
CO4: To design processes and products using green technology
CO5: To understand advanced technology in green synthesis
TEXT BOOKS

REFERENCE BOOKS
1. Environmental chemistry, Stanley E. Manahan, Taylor and Francis, 2017

CES336 ENVIRONMENTAL QUALITY MONITORING AND ANALYSIS

COURSE OBJECTIVES:
- to understand and study the complexity of the environment in relation to pollutants generated due to industrial activity.
- To analyze the quality of the environmental parameters and monitor the same for the purpose of environmental risk assessment.

UNIT I ENVIRONMENTAL MONITORING AND STANDARDS

UNIT II MONITORING OF ENVIRONMENTAL ARAMETERS

UNIT III ANALYTICAL METHODS FOR ENVIRONMENTAL MONITORING
Classification of Instrumental Method- Analysis of Organic Pollutants by Spectrophotometric methods - Determination of nitrogen, phosphorus and, chemical oxygen demand (COD) in sewage; Biochemical oxygen demand (BOD)- Sampling techniques for air pollution measurements; analysis of particulates and air pollutants like oxides of nitrogen, oxides of sulfur, carbon monoxide, hydrocarbon; Introduction to advanced instruments for environmental analysis

UNIT IV ENVIRONMENTAL MONITORING PROGRAMME (EMP) & RISKASSESSMENT

UNIT V AUTOMATED DATA ACQUISITION AND PROCESSING
Data Acquisition for Process Monitoring and Control - The Data Acquisition System - Online Data Acquisition, Monitoring, and Control - Implementation of a Data Management System - Review of Observational Networks - Sensors and transducers- classification of transducers- data acquisition
COURSE OUTCOMES

After completion of this course, the students will know

CO1	Basic concepts of environmental standards and monitoring.
CO2	the ambient air quality and water quality standards;
CO3	the various instrumental methods and their principles for environmental monitoring
CO4	The significance of environmental standards in monitoring quality and sustainability of the environment.
CO5	the various ways of raising environmental awareness among the people.
CO6	Know the standard research methods that are used worldwide for monitoring the environment.

TEXTBOOKS
2. Handbook of environmental analysis: chemical pollutants in the air, water, soil, and solid wastes / Pradyot Patnaik, © 1997 by CRC Press, Inc

REFERENCES
1. Environmental monitoring / edited by G. Bruce Wiersma, © 2004 by CRC Press LLC.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO6</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Overall</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-'- no correlation

CES337 INTEGRATED ENERGY PLANNING FOR SUSTAINABLE DEVELOPMENT L T P C
3 0 0 3

COURSE OBJECTIVES:
- To create awareness on the energy scenario of India with respect to world
- To understand the fundamentals of energy sources, energy efficiency and resulting environmental implications of energy utilisation
- Familiarisation on the concept of sustainable development and its benefits
• Recognize the potential of renewable energy sources and its conversion technologies for attaining sustainable development
• Acquainting with energy policies and energy planning for sustainable development

UNIT I ENERGY SCENARIO
Comparison of energy scenario – India and World (energy sources, generation mix, consumption pattern, T&D losses, energy demand, per capita energy consumption) – energy pricing – Energy security

UNIT II ENERGY AND ENVIRONMENT
Conventional Energy Sources - Emissions from fuels – Air, Water and Land pollution – Environmental standards – measurement and controls

UNIT III SUSTAINABLE DEVELOPMENT

UNIT IV RENEWABLE ENERGY TECHNOLOGY

UNIT V ENERGY PLANNING FOR SUSTAINABLE DEVELOPMENT

COURSE OUTCOMES:
Upon completion of this course, the students will be able to

CO1: Understand the world and Indian energy scenario
CO2: Analyse energy projects, its impact on environment and suggest control strategies
CO3: Recognise the need of Sustainable development and its impact on human resource development
CO4: Apply renewable energy technologies for sustainable development
CO5: Fathom Energy policies and planning for sustainable development.

REFERENCES:
CES338 ENERGY EFFICIENCY FOR SUSTAINABLE DEVELOPMENT L T P C
3 0 0 3

COURSE OBJECTIVES:

- To understand the types of energy sources, energy efficiency and environmental implications of energy utilisation
- To create awareness on energy audit and its impacts
- To acquaint the techniques adopted for performance evaluation of thermal utilities
- To familiarise on the procedures adopted for performance evaluation of electrical utilities
- To learn the concept of sustainable development and the implication of energy usage

UNIT I ENERGY AND ENVIRONMENT 9
Primary energy sources - Coal, Oil, Gas – India Vs World with respect to energy production and consumption, Climate Change, Global Warming, Ozone Depletion, UNFCCC, COP

UNIT II ENERGY AUDITING 9
Need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel & energy substitution, energy audit instruments

UNIT III ENERGY EFFICIENCY IN THERMAL UTILITIES 9
Energy conservation avenues in steam generation and utilisation, furnaces, Thermic Fluid Heaters. Insulation and Refractories - Commercial waste heat recovery devices: recuperator, regenerator, heat pipe, heat exchangers (Plate, Shell & Tube), heat pumps, and thermocompression

UNIT IV ENERGY CONSERVATION IN ELECTRICAL UTILITIES 9
Demand side management - Power factor improvement – Energy efficient transformers - Energy conservation avenues in Motors, HVAC, fans, blowers, pumps, air compressors, illumination systems and cooling towers

UNIT V SUSTAINABLE DEVELOPMENT 9

COURSE OUTCOMES:

Upon completion of this course, the students will be able to
CO1: Understand the prevailing energy scenario
CO2: Familiarise on energy audits and its relevance
CO3: Apply the concept of energy audit on thermal utilities
CO4: Employ relevant techniques for energy improvement in electrical utilities
CO5: Understand Sustainable development and its impact on human resource development

TOTAL: 45 PERIODS
REFERENCES: