PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

I. Have ability to understand, analyse and solve real case problems in core mechanical engineering as well as in other allied fields.

II. Have ability to adapt well into career in mechanical related Industries and to perceive higher studies.

III. Contribute for R&D efforts in technological development to meet international standards and future needs.

IV. Provide leadership skill by upholding ethical values with social responsibility.

V. Assimilate with the spirit of entrepreneurship and innovation.

PROGRAM OUTCOMES (POs)
GRADUATE ATTRIBUTE

1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3 Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4 Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9 Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

10 **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11 **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12 **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

1. ability to utilize state-of-art IT tools to analyse, design and evaluate mechanical components.
2. ability to design and evaluate the performance of thermal systems and execute processes to manufacture various components and systems with quality assurance.
3. ability to apply modern management techniques with a concern for environment upholding ethical values.

PEO's – PO's & PSO's MAPPING:

<table>
<thead>
<tr>
<th>PEO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>II.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>III.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>IV.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>V.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course name</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>Professional English- I</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Matrices and Calculus</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Engineering Physics</td>
<td>3</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Engineering Chemistry</td>
<td>2</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Problem Solving and Python Programming</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>குறிப்பிட்டுவர் இலக்கணம்/Heritage of Tamils</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Physics and Chemistry Laboratory</td>
<td>3</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>English Laboratory*</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Professional English- II</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Statistics and Numerical Methods</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Materials Science</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>2</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Engineering Graphics</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>குறிப்பிட்டுவர் இலக்கணம்/Tamils and Technology</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Engineering Practices Laboratory</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Basic Electrical and Electronics Engineering Laboratory</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Communication Laboratory / Foreign Language</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Transforms and Partial Differential Equations</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Engineering Mechanics</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Engineering Thermodynamics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Fluid Mechanics and Machinery</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Engineering Materials and Metallurgy</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Manufacturing Processes</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Professional Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Theory of Machines</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Thermal Engineering</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Hydraulics and Pneumatics</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Manufacturing Technology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Strength of Materials</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Environmental Sciences and Sustainability</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Design for Manufacturing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Automobile Engineering</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>Design for Manufacturing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*English Laboratory includes laboratory for Tamils and Technology.
<table>
<thead>
<tr>
<th>Course Section</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational Research</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Composite Materials</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>and Mechanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Power</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumentation and</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Control Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design of Transmission</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-traditional</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Machining Processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Planning</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>and Cost Estimation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finite Element Analysis</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design of Machine</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metrology and</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Measurements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat and Mass</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Transfer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechatronics and IoT</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Integrated</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Values and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Management</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>IX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNA UNIVERSITY, CHENNAI
NON-AUTONOMOUS COLLEGES AFFILIATED TO ANNA UNIVERSITY
B. E. MECHANICAL ENGINEERING (SANDWICH)
REGULATIONS 2021
CHOICE BASED CREDIT SYSTEM
CURRICULUM AND SYLLABI FOR I TO X SEMESTERS

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>IP3151</td>
<td>Induction Programme</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>HS3152</td>
<td>Professional English - I</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>MA3151</td>
<td>Matrices and Calculus</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>PH3151</td>
<td>Engineering Physics</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>CY3151</td>
<td>Engineering Chemistry</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>GE3151</td>
<td>Problem Solving and Python Programming</td>
<td>ESC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>GE3152</td>
<td>கொள்வ மாதா/ Heritage of Tamils</td>
<td>HSMC</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GE3171</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>ESC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>BS3171</td>
<td>Physics and Chemistry Laboratory</td>
<td>BSC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>GE3172</td>
<td>English Laboratory #$</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$ Skill Based Course

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS3252</td>
<td>Professional English - II</td>
<td>HSMC</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>MA3251</td>
<td>Statistics and Numerical Methods</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>PH3251</td>
<td>Materials Science</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>BE3251</td>
<td>Basic Electrical and Electronics</td>
<td>ESC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>GE3251</td>
<td>Engineering Graphics</td>
<td>ESC</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>GE3252</td>
<td>கொள்வ மாதா/ Tamils and Technology</td>
<td>HSMC</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>NCC Credit Course Level 1#$</td>
<td>-</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

$ Skill Based Course
SEMESTER III

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA3351</td>
<td>Transforms and Partial Differential Equations</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>ME3351</td>
<td>Engineering Mechanics</td>
<td>ESC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>ME3391</td>
<td>Engineering Thermodynamics</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>CE3391</td>
<td>Fluid Mechanics and Machinery</td>
<td>ESC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>ME3392</td>
<td>Engineering Materials and Metallurgy</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>ME3393</td>
<td>Manufacturing Processes</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>ME3381</td>
<td>Computer Aided Machine Drawing</td>
<td>ESC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>ME3382</td>
<td>Manufacturing Technology Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>GE3361</td>
<td>Professional Development$</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>MS3311</td>
<td>Industrial Training I</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>18</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

$ Skill Based Course

SEMESTER IV

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>ME3491</td>
<td>Theory of Machines</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>ME3451</td>
<td>Thermal Engineering</td>
<td>PCC</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>ME3492</td>
<td>Hydraulics and Pneumatics</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>ME3493</td>
<td>Manufacturing Technology</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>CE3491</td>
<td>Strength of Materials</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>GE3451</td>
<td>Environmental Sciences and Sustainability</td>
<td>BSC</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>NCC Credit Course Level 2$</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>CE3481</td>
<td>Strength of Materials and Fluid Machinery Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>ME3461</td>
<td>Thermal Engineering Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>10.</td>
<td>MS3411</td>
<td>Industrial Training II</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>18</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.
SEMESTER V

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course title</th>
<th>Category</th>
<th>Periods per week</th>
<th>Total contact periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CME391</td>
<td>Design for Manufacturing</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>CME380</td>
<td>Automobile Engineering</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>CME399</td>
<td>Operational Research</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>CME382</td>
<td>Composite Materials and</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>CME390</td>
<td>Thermal Power Engineering</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>MS3511</td>
<td>Metallurgy Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>MS3512</td>
<td>Industrial Training III</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

SEMESTER VI

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course title</th>
<th>Category</th>
<th>Periods per week</th>
<th>Total contact periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MS3601</td>
<td>Instrumentation and Control Systems</td>
<td>PCC</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>CME389</td>
<td>Design of Transmission System</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>CME387</td>
<td>Non-traditional Machining Processes</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>CME396</td>
<td>Process Planning and Cost Estimation</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>CPR332</td>
<td>Finite Element Analysis</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>MS3611</td>
<td>Computer Aided Engineering Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>MS3612</td>
<td>Design and Fabrication Project</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>MS3613</td>
<td>Industrial Training IV</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>
SEMESTER VII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>ME3591</td>
<td>Design of Machine Elements</td>
<td>PCC</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>ME3592</td>
<td>Metrology and Measurements</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Professional Elective I</td>
<td>PEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Professional Elective II</td>
<td>PEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective III</td>
<td>PEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Mandatory Course-I*</td>
<td>MC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PRACTICALS								
7.	ME3581	Metrology and Dynamics Laboratory	PCC	0	0	4	4	2
8.	MS3711	Industrial Training V	EEC	0	0	0	0	2

TOTAL | - | - | - | - | 20 |

*Two weeks Summer Internship carries one credit and it will be done during IV semester summer vacation and same will be evaluated in V semester.

Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under MC-I)

SEMESTER VIII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course title</th>
<th>Category</th>
<th>Periods per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>ME3691</td>
<td>Heat and Mass Transfer</td>
<td>PCC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Open Elective – I*</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Professional Elective IV</td>
<td>PEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Professional Elective V</td>
<td>PEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective VI</td>
<td>PEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective VII</td>
<td>PEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Mandatory Course-II*</td>
<td>MC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>NCC Credit Course Level 3#</td>
<td>MC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PRACTICALS								
9.	ME3681	CAD/CAM Laboratory	PCC	0	0	4	4	2
10.	ME3682	Heat Transfer Laboratory	PCC	0	0	4	4	2
11.	MS3811	Industrial Training VI	EEC	0	0	0	0	2

TOTAL | - | - | - | - | 25 |

*Open Elective – I shall be chosen from the emerging technologies.

Mandatory Course-II is a Non-credit Course

NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA
SEMESTER IX / X

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>ME3791</td>
<td>Mechatronics and IoT</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>ME3792</td>
<td>Computer Integrated Manufacturing</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>GE3791</td>
<td>Human Values and Ethics</td>
<td>HSMC</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>GE3792</td>
<td>Industrial Management</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>Open Elective – II**</td>
<td></td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>Open Elective – III***</td>
<td></td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>Open Elective – IV***</td>
<td></td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PRACTICALS

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>8.</td>
<td>ME3781</td>
<td>Mechatronics and IoT Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>MS3911</td>
<td>Industrial Training VII</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL | 20 | 0 | 4 | 24 | 24 |

*If students undergo internship in Semester IX, then the courses offered during semester IX will be offered during semester X.

**Open Elective – II shall be chosen from the emerging technologies.

***Open Elective III and IV (Shall be chosen from the list of open electives offered by other Programmes).

SEMESTER X/IX

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MS3111</td>
<td>Project Work / Internship</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

TOTAL | 0 | 0 | 20 | 20 | 10 |

*If students undergo internship in Semester IX, then the courses offered during semester IX will be offered during semester X.

TOTAL CREDITS = 216
MANDATORY COURSES I*

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MX3081</td>
<td>Introduction to Women and Gender Studies</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MX3082</td>
<td>Elements of Literature</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MX3083</td>
<td>Film Appreciation</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MX3084</td>
<td>Disaster Risk Reduction and Management</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
</tr>
</tbody>
</table>

*Mandatory Courses are offered as Non-Credit courses

MANDATORY COURSES II*

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MX3085</td>
<td>Well Being with Traditional Practices - Yoga, Ayurveda and Siddha</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MX3086</td>
<td>History of Science and Technology in India</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MX3087</td>
<td>Political and Economic Thought for a Humane Society</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MX3088</td>
<td>State, Nation Building and Politics in India</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>MX3089</td>
<td>Industrial Safety</td>
<td>MC</td>
<td>3 0 0</td>
<td>3</td>
</tr>
</tbody>
</table>

*Mandatory Courses are offered as Non-Credit courses
Professional Elective Courses: Verticals

<table>
<thead>
<tr>
<th>VERTICAL 1</th>
<th>VERTICAL 2</th>
<th>VERTICAL 3</th>
<th>VERTICAL 4</th>
<th>VERTICAL 5</th>
<th>VERTICAL 6</th>
<th>VERTICAL 7</th>
<th>VERTICAL 8</th>
<th>VERTICAL 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODERN MOBILITY SYSTEMS</td>
<td>PRODUCT AND PROCESS DEVELOPMENT</td>
<td>ROBOTICS AND AUTOMATION</td>
<td>DIGITAL AND GREEN MANUFACTURING</td>
<td>PROCESS EQUIPMENT AND PIPING DESIGN</td>
<td>CLEAN AND GREEN ENERGY TECHNOLOGIES</td>
<td>COMPUTATIONAL ENGINEERING</td>
<td>DIVERSIFIED COURSES GROUP 1</td>
<td>DIVERSIFIED COURSES GROUP 2</td>
</tr>
<tr>
<td>CAE and CFD Approach in Future Mobility</td>
<td>Ergonomics in Design</td>
<td>Smart Mobility and Intelligent Vehicles</td>
<td>Environment Sustainability and Impact Assessment</td>
<td>Thermal and Fired Equipment design</td>
<td>Energy Storage Devices</td>
<td>Advanced Statistics and Data Analytics</td>
<td>Power Plant Engineering</td>
<td>Precision Manufacturing</td>
</tr>
<tr>
<td>Hybrid and Electric Vehicle Technology</td>
<td>New Product Development</td>
<td>Haptics and Immersive Technologies</td>
<td>Energy Saving Machinery and Components</td>
<td>Industrial Layout and Safety</td>
<td>Renewable Energy Technologies</td>
<td>CAD and CAE</td>
<td>Refrigeration and Air Conditioning</td>
<td>Gas Dynamics and Jet Propulsion</td>
</tr>
<tr>
<td>Thermal Management of Batteries and Fuel Cells</td>
<td>Product Life Cycle Management</td>
<td>Drone Technologies</td>
<td>Green Supply Chain Management</td>
<td>Design Codes and Standards</td>
<td>Equipment for Pollution Control</td>
<td>Machine Learning for Intelligent Systems</td>
<td>Dynamics of Ground Vehicles</td>
<td>Power Generation Equipment Design</td>
</tr>
</tbody>
</table>

Registration of Professional Elective Courses from Verticals:

Refer to the Regulations 2021, Clause 6.3. (Amended on 27.07.2023)
VERTICAL 1 : MODERN MOBILITY SYSTEMS

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per week</th>
<th>Total Contact period</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CME331</td>
<td>Automotive Materials, Components, Design and Testing</td>
<td>PEC</td>
<td>2 L 0 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CME332</td>
<td>Conventional and Futuristic Vehicle Technology</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CME333</td>
<td>Renewable Powered Off Highway Vehicles and Emission Control Technology</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CME334</td>
<td>Vehicle Health Monitoring, Maintenance and Safety</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CME335</td>
<td>CAE and CFD Approach in Future Mobility</td>
<td>PEC</td>
<td>2 L 0 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CME336</td>
<td>Hybrid and Electric Vehicle Technology</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CME337</td>
<td>Thermal Management of Batteries and Fuel Cells</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 2 : PRODUCT AND PROCESS DEVELOPMENT

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per week</th>
<th>Total Contact period</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CME338</td>
<td>Value Engineering</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CME339</td>
<td>Additive Manufacturing</td>
<td>PEC</td>
<td>2 L 0 P</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CME340</td>
<td>CAD/CAM</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CME341</td>
<td>Design For X</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CME342</td>
<td>Ergonomics in Design</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CME343</td>
<td>New Product Development</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CME344</td>
<td>Product Life cycle Management</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 3: ROBOTICS AND AUTOMATION

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per week</th>
<th>Total Contact period</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MR3491</td>
<td>Sensors and Instrumentation</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MR3392</td>
<td>Electrical Drives and Actuators</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>MR3492</td>
<td>Embedded Systems and Programming</td>
<td>PEC</td>
<td>2 L 0 T</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MR3691</td>
<td>Robotics</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CMR338</td>
<td>Smart Mobility and Intelligent Vehicles</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CME345</td>
<td>Haptics and Immersive Technologies</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CRA332</td>
<td>Drone Technologies</td>
<td>PEC</td>
<td>3 L 0 T</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
VERTICAL 4: DIGITAL AND GREEN MANUFACTURING

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per week</th>
<th>Total Contact Period</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CME346</td>
<td>Digital Manufacturing and IoT</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:2 T:0 P:2</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CME347</td>
<td>Lean Manufacturing</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CME348</td>
<td>Modern Robotics</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:2 T:0 P:2</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CME349</td>
<td>Green Manufacturing Design and Practices</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CME350</td>
<td>Environment Sustainability and Impact Assessment</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CME351</td>
<td>Energy Saving Machinery and Components</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CME352</td>
<td>Green Supply Chain Management</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 5: PROCESS EQUIPMENT AND PIPING DESIGN

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per week</th>
<th>Total Contact Period</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CME353</td>
<td>Design of Pressure Vessels</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CME354</td>
<td>Failure Analysis and NDT Techniques</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:2 T:0 P:2</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CME355</td>
<td>Material Handling and Solid Processing Equipment</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CME356</td>
<td>Rotating Machinery Design</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CME357</td>
<td>Thermal and Fired Equipment Design</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CME358</td>
<td>Industrial Layout Design and Safety</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:2 T:0 P:2</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CME359</td>
<td>Design Codes and Standards</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 6: CLEAN AND GREEN ENERGY TECHNOLOGIES

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per week</th>
<th>Total contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CME360</td>
<td>Bioenergy Conversion Technologies</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CME361</td>
<td>Carbon Footprint Estimation and Reduction Techniques</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CME362</td>
<td>Energy Conservation in Industries</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CME363</td>
<td>Energy Efficient Buildings</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CME364</td>
<td>Energy Storage Devices</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CME365</td>
<td>Renewable Energy Technologies</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CME366</td>
<td>Equipment for Pollution Control</td>
<td>PEC</td>
<td>L:0 T:0 P:2</td>
<td>L:3 T:0 P:0</td>
<td>3</td>
</tr>
</tbody>
</table>
VERTICAL 7: COMPUTATIONAL ENGINEERING

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CME367</td>
<td>Computational Solid Mechanics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CME368</td>
<td>Computational Fluid Dynamics and Heat transfer</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CME369</td>
<td>Theory on Computation and Visualization</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CME370</td>
<td>Computational Bio-Mechanics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CME371</td>
<td>Advanced Statistics and Data Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CME372</td>
<td>CAD and CAE</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CRA342</td>
<td>Machine Learning for Intelligent Systems</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 8: DIVERSIFIED COURSES GROUP 1

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CAE353</td>
<td>Turbo Machines</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CME381</td>
<td>Design Concepts in Engineering</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CME388</td>
<td>Industrial safety</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CME383</td>
<td>Electrical Drives and Control</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CME384</td>
<td>Power Plant Engineering</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CME385</td>
<td>Refrigeration and Air Conditioning</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CAU332</td>
<td>Dynamics of Ground Vehicles</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 9: DIVERSIFIED COURSES GROUP 2

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CME393</td>
<td>Advanced Vehicle Engineering</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CME394</td>
<td>Advanced Internal Combustion Engineering</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CME395</td>
<td>Casting and Welding Processes</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CME397</td>
<td>Surface Engineering</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CME398</td>
<td>Precision Manufacturing</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CME386</td>
<td>Gas Dynamics and Jet Propulsion</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CME392</td>
<td>Power Generation Equipment Design</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
OPEN ELECTIVES
(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories)

OPEN ELECTIVE I AND II
(EMERGING TECHNOLOGIES)
To be offered other than Faculty of Information and Communication Engineering

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OCS351</td>
<td>Artificial Intelligence and Machine Learning Fundamentals</td>
<td>OEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OCS352</td>
<td>IoT Concepts and Applications</td>
<td>OEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OCS353</td>
<td>Data Science Fundamentals</td>
<td>OEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CCS333</td>
<td>Augmented Reality / Virtual Reality</td>
<td>OEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

OPEN ELECTIVES – III

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OCE353</td>
<td>Lean Concepts, Tools And Practices</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OHS351</td>
<td>English for Competitive Examinations</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>OMG352</td>
<td>NGOs and Sustainable Development</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>OMG353</td>
<td>Democracy and Good Governance</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>OME354</td>
<td>Applied Design Thinking</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>MF3003</td>
<td>Reverse Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>OPR351</td>
<td>Sustainable Manufacturing</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>AU3791</td>
<td>Electric and Hybrid Vehicles</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>OAS352</td>
<td>Space Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>OIM351</td>
<td>Industrial Management</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>OIE354</td>
<td>Quality Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>OSF351</td>
<td>Fire Safety Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>OAE352</td>
<td>Fundamentals of Aeronautical engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>OML351</td>
<td>Introduction to non-destructive testing</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>OMR351</td>
<td>Mechatronics</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>ORA351</td>
<td>Foundation of Robotics</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>OGI351</td>
<td>Remote Sensing</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Department</td>
<td>Type</td>
<td>Credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------</td>
<td>------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAI351</td>
<td>Urban Agriculture</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEN351</td>
<td>Drinking Water Supply and Treatment</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEE352</td>
<td>Electric Vehicle Technology</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEI353</td>
<td>Introduction to PLC Programming</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCH351</td>
<td>Nano Technology</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCH352</td>
<td>Functional Materials</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFD352</td>
<td>Traditional Indian Foods</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFD353</td>
<td>Introduction to food processing</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPY352</td>
<td>IPR for Pharma Industry</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTT351</td>
<td>Basics of Textile Finishing</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTT352</td>
<td>Industrial Engineering for Garment Industry</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTT353</td>
<td>Basics of Textile Manufacture</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPE351</td>
<td>Introduction to Petroleum Refining and Petrochemicals</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPE334</td>
<td>Energy Conservation and Management</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPT351</td>
<td>Basics of Plastics Processing</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEC351</td>
<td>Signals and Systems</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEC352</td>
<td>Fundamentals of Electronic Devices and Circuits</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBM348</td>
<td>Foundation Skills in integrated product Development</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBM333</td>
<td>Assistive Technology</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMA352</td>
<td>Operations Research</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMA353</td>
<td>Algebra and Number Theory</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMA354</td>
<td>Linear Algebra</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBT352</td>
<td>Basics of Microbial Technology</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBT353</td>
<td>Basics of Biomolecules</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBT354</td>
<td>Fundamentals of Cell and Molecular Biology</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL. NO.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>PERIODS PER WEEK</td>
<td>TOTAL CONTACT Periods</td>
<td>CREDITS</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>OCE354</td>
<td>Basics of Integrated Water Resources Management</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>OHS352</td>
<td>Project Report Writing</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>OMA355</td>
<td>Advanced Numerical Methods</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>OMA356</td>
<td>Random Processes</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>OMA357</td>
<td>Queueing and Reliability Modelling</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>OMG354</td>
<td>Production and Operations Management for Entrepreneurs</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>OMG355</td>
<td>Multivariate Data Analysis</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>OME355</td>
<td>Industrial Design & Rapid Prototyping Techniques</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>MF3010</td>
<td>Micro and Precision Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>OMF354</td>
<td>Cost Management of Engineering Projects</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>AU3002</td>
<td>Batteries and Management system</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>OAU352</td>
<td>Sensors and Actuators</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>OAS353</td>
<td>Space Vehicles</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>OIM352</td>
<td>Management Science</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>OIM353</td>
<td>Production Planning and Control</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>OIE353</td>
<td>Operations Management</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>OSF352</td>
<td>Industrial Hygiene</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>OSF353</td>
<td>Chemical Process Safety</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>OML352</td>
<td>Electrical, Electronic and Magnetic materials</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>OML353</td>
<td>Nanomaterials and applications</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>OMR353</td>
<td>Sensors</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>ORA352</td>
<td>Concepts in Mobile Robots</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>MV3501</td>
<td>Marine Propulsion</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>OMV351</td>
<td>Marine Merchant Vessels</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>OMV352</td>
<td>Elements of Marine Engineering</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>CRA332</td>
<td>Drone Technologies</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>OGI352</td>
<td>Geographical Information System</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Department</td>
<td>Credits</td>
<td>Theory</td>
<td>Lab</td>
<td>Practical</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>OAI352</td>
<td>Agriculture Entrepreneurship Development</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OEN352</td>
<td>Biodiversity Conservation</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OEE353</td>
<td>Introduction to control systems</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OEI354</td>
<td>Introduction to Industrial Automation Systems</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OCH353</td>
<td>Energy Technology</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OCH354</td>
<td>Surface Science</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OFD354</td>
<td>Fundamentals of Food Engineering</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OFD355</td>
<td>Food safety and Quality Regulations</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OPY353</td>
<td>Nutraceuticals</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OTT354</td>
<td>Basics of Dyeing and Printing</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>FT3201</td>
<td>Fibre Science</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OTT355</td>
<td>Garment Manufacturing Technology</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OPE353</td>
<td>Industrial Safety</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OPE354</td>
<td>Unit Operations in Petro Chemical Industries</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OPT352</td>
<td>Plastic Materials for Engineers</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OPT353</td>
<td>Properties and Testing of Plastics</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OEC353</td>
<td>VLSI Design</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OBM370</td>
<td>Wearable devices</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OBM356</td>
<td>Medical Informatics</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OBT355</td>
<td>Biotechnology for Waste Management</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OBT356</td>
<td>Lifestyle Diseases</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OBT357</td>
<td>Biotechnology in Health Care</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>S.No</td>
<td>Subject Area</td>
<td>Credits per Semester</td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>----------------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I II III IV V VI VII VIII XI X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>HSMC</td>
<td>4 3</td>
<td>5</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BSC</td>
<td>12 7 4 2</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ESC</td>
<td>5 11 9</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCC</td>
<td>11 20 17 18 9 8 8</td>
<td></td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PEC</td>
<td>9 12</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>OEC</td>
<td>3 9</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EEC</td>
<td>1 2 3 2 2 4 2 2 2 2 2 10</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Non-Credit / (Mandatory)</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>22 23 27 24 19 22 20 25 24 10</td>
<td>216</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ENROLLMENT FOR B.E. / B. TECH. (HONOURS) / MINOR DEGREE (OPTIONAL)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E. / B. Tech. (Honours) or Minor Degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes. Moreover, for minor degree the student can register for courses from any one of the following verticals also.

Complete details are available in clause 4.10 (Amendments) of Regulations 2021.

VERTICALS FOR MINOR DEGREE (In addition to all the verticals of other programmes)

<table>
<thead>
<tr>
<th>Vertical I</th>
<th>Vertical II</th>
<th>Vertical III</th>
<th>Vertical IV</th>
<th>Vertical V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fintech and Block Chain</td>
<td>Entrepreneurship</td>
<td>Public Administration</td>
<td>Business Data Analytics</td>
<td>Environment and Sustainability</td>
</tr>
<tr>
<td>Financial Management</td>
<td>Foundations of Entrepreneurship</td>
<td>Principles of Public Administration</td>
<td>Statistics for Management</td>
<td>Sustainable infrastructure Development</td>
</tr>
<tr>
<td>Fundamentals of Investment</td>
<td>Team Building and Leadership Management for Business</td>
<td>Constitution of India</td>
<td>Data Mining for Business Intelligence</td>
<td>Sustainable Agriculture and Environmental Management</td>
</tr>
<tr>
<td>Banking, Financial Services and Insurance</td>
<td>Creativity and Innovation in Entrepreneurship</td>
<td>Public Personnel Administration</td>
<td>Human Resource Analytics</td>
<td>Sustainable Bio Materials</td>
</tr>
<tr>
<td>Introduction to Blockchain and its Applications</td>
<td>Principles of Marketing Management for Business</td>
<td>Administrative Theories</td>
<td>Marketing and Social Media Web Analytics</td>
<td>Materials for Energy Sustainability</td>
</tr>
<tr>
<td>Fintech Personal Finance and Payments</td>
<td>Human Resource Management for Entrepreneurs</td>
<td>Indian Administrative System</td>
<td>Operation and Supply Chain Analytics</td>
<td>Green Technology</td>
</tr>
<tr>
<td>Introduction to Fintech</td>
<td>Financing New Business Ventures</td>
<td>Public Policy Administration</td>
<td>Financial Analytics</td>
<td>Environmental Quality Monitoring and Analysis</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Integrated Energy Planning for Sustainable Development</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Energy Efficiency for Sustainable Development</td>
</tr>
</tbody>
</table>
(Choice of courses for Minor degree is to be made from any one vertical of other programmes or from anyone of the following verticals)

VERTICAL 1: FINTECH AND BLOCK CHAIN

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CMG331</td>
<td>Financial Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CMG332</td>
<td>Fundamentals of Investment</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CMG333</td>
<td>Banking, Financial Services and Insurance</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CMG334</td>
<td>Introduction to Blockchain and its Applications</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CMG335</td>
<td>Fintech Personal Finance and Payments</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CMG336</td>
<td>Introduction to Fintech</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 2: ENTREPRENEURSHIP

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CMG337</td>
<td>Foundations of Entrepreneurship</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CMG338</td>
<td>Team Building and Leadership Management for Business</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CMG339</td>
<td>Creativity and Innovation in Entrepreneurship</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CMG340</td>
<td>Principles of Marketing Management for Business</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CMG341</td>
<td>Human Resource Management for Entrepreneurs</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CMG342</td>
<td>Financing New Business Ventures</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
VERTICAL 3: PUBLIC ADMINISTRATION

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CMG343</td>
<td>Principles of Public Administration</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CMG344</td>
<td>Constitution of India</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CMG345</td>
<td>Public Personnel Administration</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CMG346</td>
<td>Administrative Theories</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CMG347</td>
<td>Indian Administrative System</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CMG348</td>
<td>Public Policy Administration</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

VERTICAL 4: BUSINESS DATA ANALYTICS

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CMG349</td>
<td>Statistics for Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CMG350</td>
<td>Datamining for Business Intelligence</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CMG351</td>
<td>Human Resource Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CMG352</td>
<td>Marketing and Social Media Web Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CMG353</td>
<td>Operation and Supply Chain Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CMG354</td>
<td>Financial Analytics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SL. NO.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>PERIODS PER WEEK</td>
<td>TOTAL CONTACT PERIODS</td>
<td>CREDITS</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>CES331</td>
<td>Sustainable infrastructure Development</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CES332</td>
<td>Sustainable Agriculture and Environmental Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CES333</td>
<td>Sustainable Bio Materials</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CES334</td>
<td>Materials for Energy Sustainability</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CES335</td>
<td>Green Technology</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CES336</td>
<td>Environmental Quality Monitoring and Analysis</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CES337</td>
<td>Integrated Energy Planning for Sustainable Development</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CES338</td>
<td>Energy Efficiency for Sustainable Development</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
This is a mandatory 2 week programme to be conducted as soon as the students enter the institution. Normal classes start only after the induction program is over.

The induction programme has been introduced by AICTE with the following objective:

"Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed."

"One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character."

Hence, the purpose of this programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

(i) Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.

(ii) Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it everyday for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, grow into engineering design later.

(iii) Universal Human Values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and dont's, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing. Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It would be effective that the faculty mentor assigned is also the faculty advisor for the student for the full duration of the UG programme.

(iv) Literary Activity

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.
(v) Proficiency Modules

This would address some lacunas that students might have, for example, English, computer familiarity etc.

(vi) Lectures by Eminent People

Motivational lectures by eminent people from all walks of life should be arranged to give the students exposure to people who are socially active or in public life.

(vii) Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged.

(viii) Familiarization to Dept./Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

(ix) Department Specific Activities

About a week can be spent in introducing activities (games, quizzes, social interactions, small experiments, design thinking etc.) that are relevant to the particular branch of Engineering/Technology/Architecture that can serve as a motivation and kindle interest in building things (become a maker) in that particular field. This can be conducted in the form of a workshop. For example, CSE and IT students may be introduced to activities that kindle computational thinking, and get them to build simple games. ECE students may be introduced to building simple circuits as an extension of their knowledge in Science, and so on. Students may be asked to build stuff using their knowledge of science.

Induction Programme is totally an activity based programme and therefore there shall be no tests / assessments during this programme.

References:
Guide to Induction program from AICTE
OBJECTIVES:

- To improve the communicative competence of learners
- To learn to use basic grammatic structures in suitable contexts
- To acquire lexical competence and use them appropriately in a sentence and understand their meaning in a text
- To help learners use language effectively in professional contexts
- To develop learners’ ability to read and write complex texts, summaries, articles, blogs, definitions, essays and user manuals.

UNIT I INTRODUCTION TO EFFECTIVE COMMUNICATION 1
What is effective communication? (Explain using activities) Why is communication critical for excellence during study, research and work? What are the seven C’s of effective communication? What are key language skills? What is effective listening? What does it involve? What is effective speaking? What does it mean to be an excellent reader? What should you be able to do? What is effective writing? How does one develop language and communication skills? What does the course focus on? How are communication and language skills going to be enhanced during this course? What do you as a learner need to do to enhance your English language and communication skills to get the best out of this course?

INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION 8
Reading - Reading brochures (technical context), telephone messages / social media messages relevant to technical contexts and emails. Writing - Writing emails / letters introducing oneself. Grammar - Present Tense (simple and progressive); Question types: Why/ Yes or No/ and Tags. Vocabulary - Synonyms; One word substitution; Abbreviations & Acronyms (as used in technical contexts).

UNIT II NARRATION AND SUMMATION 9
Reading - Reading biographies, travelogues, newspaper reports, Excerpts from literature, and travel & technical blogs. Writing - Guided writing-- Paragraph writing Short Report on an event (field trip etc.) Grammar –Past tense (simple); Subject-Verb Agreement; and Prepositions. Vocabulary - Word forms (prefixes& suffixes); Synonyms and Antonyms. Phrasal verbs.

UNIT III DESCRIPTION OF A PROCESS / PRODUCT 9
Reading – Reading advertisements, gadget reviews; user manuals. Writing - Writing definitions; instructions; and Product /Process description. Grammar - Imperatives; Adjectives; Degrees of comparison; Present & Past Perfect Tenses. Vocabulary - Compound Nouns, Homonyms; and Homophones, discourse markers (connectives & sequence words).

UNIT IV CLASSIFICATION AND RECOMMENDATIONS 9
Reading – Newspaper articles; Journal reports –and Non Verbal Communication (tables, pie charts etc.). Writing – Note-making / Note-taking (*Study skills to be taught, not tested); Writing recommendations; Transferring information from non verbal (chart , graph etc, to verbal mode) Grammar – Articles; Pronouns - Possessive & Relative pronouns. Vocabulary - Collocations; Fixed / Semi fixed expressions.

UNIT V EXPRESSION 9
Reading – Reading editorials; and Opinion Blogs; Writing – Essay Writing (Descriptive or narrative). Grammar – Future Tenses, Punctuation; Negation (Statements & Questions); and Simple, Compound & Complex Sentences. Vocabulary - Cause & Effect Expressions – Content vs Function words.

TOTAL : 45 PERIODS

LEARNING OUTCOMES:
At the end of the course, learners will be able

- To use appropriate words in a professional context
• To gain understanding of basic grammatical structures and use them in right context.
• To read and infer the denotative and connotative meanings of technical texts
• To read and interpret information presented in tables, charts and other graphic forms
• To write definitions, descriptions, narrations and essays on various topics

TEXT BOOKS:
1. English for Engineers & Technologists Orient Blackswan Private Ltd. Department of English, Anna University, (2020 edition)
2. English for Science & Technology Cambridge University Press, 2021. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

REFERENCE BOOKS:

ASSESSMENT PATTERN
Two internal assessments and an end semester examination to test students’ reading and writing skills along with their grammatical and lexical competence.

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.6</td>
<td>2.2</td>
</tr>
</tbody>
</table>

• 1-low, 2-medium, 3-high, "-"- no correlation
• Note: The average value of this course to be used for program articulation matrix.
COURSE OBJECTIVES:

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

UNIT - I MATRICES 9 + 3

UNIT - II DIFFERENTIAL CALCULUS 9 + 3

UNIT - III FUNCTIONS OF SEVERAL VARIABLES 9 + 3

UNIT - IV INTEGRAL CALCULUS 9 + 3
Definite and Indefinite integrals - Substitution rule - Techniques of Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals - Applications : Hydrostatic force and pressure, moments and centres of mass.

UNIT - V MULTIPLE INTEGRALS 9 + 3

COURSE OUTCOMES:
At the end of the course the students will be able to
- Use the matrix algebra methods for solving practical problems.
- Apply differential calculus tools in solving various application problems.
- Able to use differential calculus ideas on several variable functions.
- Apply different methods of integration in solving practical problems.
- Apply multiple integral ideas in solving areas, volumes and other practical problems.

TEXT BOOKS:
3. James Stewart, "Calculus : Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015. [For Units II & IV - Sections 1.1, 2.2, 2.3, 2.5, 2.7 (Tangents problems only), 2.8, 3.1 to
REFERENCES:

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

PH3151 ENGINEERING PHYSICS

OBJECTIVES
- To make the students effectively to achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of oscillations, optics and lasers.
- Equipping the students to be successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS

UNIT II ELECTROMAGNETIC WAVES
The Maxwell’s equations - wave equation; Plane electromagnetic waves in vacuum, Conditions on the wave field - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - polarization - Producing electromagnetic waves - Energy and momentum in EM waves: Intensity, waves from localized sources, momentum and radiation pressure - Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.
UNIT III OSCILLATIONS, OPTICS AND LASERS

UNIT IV BASIC QUANTUM MECHANICS

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D, 2D and 3D Boxes - Normalization, probabilities and the correspondence principle.

UNIT V APPLIED QUANTUM MECHANICS

The harmonic oscillator (qualitative)- Barrier penetration and quantum tunneling (qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch’s theorem for particles in a periodic potential – Basics of Kronig-Penney model and origin of energy bands.

TOTAL : 45 PERIODS

COURSE OUTCOMES

After completion of this course, the students should be able to

- Understand the importance of mechanics.
- Express their knowledge in electromagnetic waves.
- Demonstrate a strong foundational knowledge in oscillations, optics and lasers.
- Understand the importance of quantum physics.
- Comprehend and apply quantum mechanical principles towards the formation of energy bands.

TEXT BOOKS:

2. E. M. Purcell and D. J. Morin, Electricity and Magnetism, Cambridge Univ. Press, 2013.

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3</td>
</tr>
<tr>
<td>1</td>
<td>3 3 2 1 1 1 - - - - - -</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3 3 2 1 2 1 - - - - - -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3 3 2 2 2 1 - - - - - -</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3 3 1 1 2 1 - - - - - -</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3 3 1 1 2 1 - - - - - -</td>
<td></td>
</tr>
<tr>
<td>AVG</td>
<td>3 3 1.6 1.2 1.8 1 - - - - -</td>
<td></td>
</tr>
</tbody>
</table>

1-Low, 2-Medium, 3-High,”-“no correlation

Note: the average value of this course to be used for program articulation matrix.
COURSE OBJECTIVES:

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage devices.

UNIT I WATER AND ITS TREATMENT 9

UNIT II NANO CHEMISTRY 9
Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials: Definition, properties and uses of – nanoparticle, nanocluster, nanorod, nanowire and nanotube. Preparation of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, agriculture, energy, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES 9
Phase rule: Introduction, definition of terms with examples. One component system - water system; Reduced phase rule; Construction of a simple eutectic phase diagram - Thermal analysis; Two component system: lead-silver system - Pattinson process. Composites: Introduction: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix composites and Polymer matrix composites. Hybrid composites - definition and examples.

UNIT IV FUELS AND COMBUSTION 9

UNIT V ENERGY SOURCES AND STORAGE DEVICES 9
Stability of nucleus: mass defect (problems), binding energy; Nuclear energy: light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery - dry cell, Secondary battery - lead acid battery and lithium-ion-battery; Electric vehicles – working principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell; Supercapacitors: Storage principle, types and examples.

TOTAL: 45 PERIODS
COURSE OUTCOMES
At the end of the course, the students will be able:

- To infer the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- To apply the knowledge of phase rule and composites for material selection requirements.
- To recommend suitable fuels for engineering processes and applications.
- To recognize different forms of energy resources and apply them for suitable applications in energy sectors.

TEXT BOOKS:

REFERENCES:

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high, "-"- no correlation
COURSE OBJECTIVES:
- To understand the basics of algorithmic problem solving.
- To learn to solve problems using Python conditionals and loops.
- To define Python functions and use function calls to solve problems.
- To use Python data structures - lists, tuples, dictionaries to represent complex data.
- To do input/output with files in Python.

UNIT I COMPUTATIONAL THINKING AND PROBLEM SOLVING 9

UNIT II DATA TYPES, EXPRESSIONS, STATEMENTS 9
Python interpreter and interactive mode, debugging; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT III CONTROL FLOW, FUNCTIONS, STRINGS 9
Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES 9
Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: simple sorting, histogram, Students marks statement, Retail bill preparation.

UNIT V FILES, MODULES, PACKAGES 9
Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file, Voter’s age validation, Marks range validation (0-100).

COURSE OUTCOMES:
Upon completion of the course, students will be able to:
CO1: Develop algorithmic solutions to simple computational problems.
CO2: Develop and execute simple Python programs.
CO3: Write simple Python programs using conditionals and looping for solving problems.
CO4: Decompose a Python program into functions.
CO5: Represent compound data using Python lists, tuples, dictionaries etc.
CO6: Read and write data from/to files in Python programs.

TEXT BOOKS:
REFERENCES:
5. https://www.python.org/

COs- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's 1</th>
<th>PO's 2</th>
<th>PO's 3</th>
<th>PO's 4</th>
<th>PO's 5</th>
<th>PO's 6</th>
<th>PO's 7</th>
<th>PO's 8</th>
<th>PO's 9</th>
<th>PO's 10</th>
<th>PO's 11</th>
<th>PO's 12</th>
<th>PSO's 1</th>
<th>PSO's 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

GE3152

| 1 0 0 1 |

Источники:
5. https://www.python.org/
TEXT-CUM-REFERENCE BOOKS

1. Social Life of Tamils (Dr. K. K. Pillay) A joint publication of TNTB & ESC and RMRL – (in print)

2. Social Life of the Tamils - The Classical Period (Dr. S. Singaravelu) (Published by: International Institute of Tamil Studies).

3. Historical Heritage of the Tamils (Dr. S. V. Subatamanian, Dr. K. D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).

4. The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Published by: International Institute of Tamil Studies.)

5. Keeladi – ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

6. Studies in the History of India with Special Reference to Tamil Nadu (Dr. K. K. Pillay) (Publishedby: The Author)

7. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)

TOTAL : 15 PERIODS
UNIT I LANGUAGE AND LITERATURE

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE

UNIT III FOLK AND MARTIAL ARTS
Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV THINAI CONCEPT OF TAMILS
Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE
Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India - Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

TOTAL : 15 PERIODS

TEXT-CUM-REFERENCE BOOKS
1. தமிழ் மொழியியல் - மத்தியப் பராமரிப் - சதுரகா. பெ.டாக்ஸா (தொல்கபியியம்: தமிழ்மொழியியல் பராமரிப் பெருரிய பாரதிகர் கதை).
2. முதல்பகுதி - முதல். படிகம். (பண்டைய முதல்).
3. தொல்கபியியம் - நாயனார் மார்பான் சுதாரசன் தகவல் தகவிறி (தொல்கபியியம் நாயனார் மார்பான்).
4. பொருநை - பொருநார் மக்கள் கதை புராணத்தில். (பொருநை மார்பான் பொருநை புராணம்).
5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies).
7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
9. Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
COURSE OBJECTIVES:

- To understand the problem solving approaches.
- To learn the basic programming constructs in Python.
- To practice various computing strategies for Python-based solutions to real world problems.
- To use Python data structures - lists, tuples, dictionaries.
- To do input/output with files in Python.

EXPERIMENTS:

Note: The examples suggested in each experiment are only indicative. The lab instructor is expected to design other problems on similar lines. The Examination shall not be restricted to the sample experiments listed here.

1. Identification and solving of simple real life or scientific or technical problems, and developing flow charts for the same. (Electricity Billing, Retail shop billing, Sin series, weight of a motorbike, Weight of a steel bar, compute Electrical Current in Three Phase AC Circuit, etc.)
2. Python programming using simple statements and expressions (exchange the values of two variables, circulate the values of n variables, distance between two points).
3. Scientific problems using Conditionals and Iterative loops. (Number series, Number Patterns, pyramid pattern)
4. Implementing real-time/technical applications using Lists, Tuples. (Items present in a library/Components of a car/ Materials required for construction of a building –operations of list & tuples)
5. Implementing real-time/technical applications using Sets, Dictionaries. (Language, components of an automobile, Elements of a civil structure, etc.- operations of Sets & Dictionaries)
6. Implementing programs using Functions. (Factorial, largest number in a list, area of shape)
7. Implementing programs using Strings. (reverse, palindrome, character count, replacing characters)
9. Implementing real-time/technical applications using File handling. (copy from one file to another, word count, longest word)
10. Implementing real-time/technical applications using Exception handling. (divide by zero error, voter’s age validity, student mark range validation)
12. Developing a game activity using Pygame like bouncing ball, car race etc.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

On completion of the course, students will be able to:

CO1: Develop algorithmic solutions to simple computational problems
CO2: Develop and execute simple Python programs.
CO3: Implement programs in Python using conditionals and loops for solving problems.
CO4: Deploy functions to decompose a Python program.
CO5: Process compound data using Python data structures.
CO6: Utilize Python packages in developing software applications.

TEXT BOOKS:

REFERENCES:
5. https://www.python.org/

COs- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>AVG.</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, - - - no correlation

BS3171 PHYSICS AND CHEMISTRY LABORATORY

PHYSICS LABORATORY: (Any Seven Experiments)

COURSE OBJECTIVES:
- To learn the proper use of various kinds of physics laboratory equipment.
- To learn how data can be collected, presented and interpreted in a clear and concise manner.
- To learn problem solving skills related to physics principles and interpretation of experimental data.
- To determine error in experimental measurements and techniques used to minimize such error.
- To make the student as an active participant in each part of all lab exercises.

1. Torsional pendulum - Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects.
2. Simple harmonic oscillations of cantilever.
3. Non-uniform bending - Determination of Young’s modulus
4. Uniform bending – Determination of Young’s modulus
5. Laser- Determination of the wave length of the laser using grating
6. Air wedge - Determination of thickness of a thin sheet/wire
7. a) Optical fibre - Determination of Numerical Aperture and acceptance angle
 b) Compact disc- Determination of width of the groove using laser.
8. Acoustic grating- Determination of velocity of ultrasonic waves in liquids.
9. Ultrasonic interferometer – determination of the velocity of sound and compressibility of liquids
11. Photoelectric effect
12. Michelson Interferometer.
13. Melde’s string experiment
14. Experiment with lattice dynamics kit.

TOTAL: 30 PERIODS

COURSE OUTCOMES:
Upon completion of the course, the students should be able to
- Understand the functioning of various physics laboratory equipment.
- Use graphical models to analyze laboratory data.
- Use mathematical models as a medium for quantitative reasoning and describing physical reality.
- Access, process and analyze scientific information.
- Solve problems individually and collaboratively.

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AVG</td>
<td>3</td>
<td>2.4</td>
<td>2.6</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- 1-Low, 2-Medium, 3-High, “-”-no correlation
- Note: the average value of this course to be used for program articulation matrix.

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

COURSE OBJECTIVES:
- To inculcate experimental skills to test basic understanding of water quality parameters, such as, acidity, alkalinity, hardness, DO, chloride and copper.
- To induce the students to familiarize with electroanalytical techniques such as, pH metry, potentiometry and conductometry in the determination of impurities in aqueous solutions.
- To demonstrate the analysis of metals and alloys.
- To demonstrate the synthesis of nanoparticles

1. Preparation of Na₂CO₃ as a primary standard and estimation of acidity of a water sample using the primary standard
2. Determination of types and amount of alkalinity in water sample.
 - Split the first experiment into two
3. Determination of total, temporary & permanent hardness of water by EDTA method.
4. Determination of DO content of water sample by Winkler’s method.
5. Determination of chloride content of water sample by Argentometric method.
6. Estimation of copper content of the given solution by iodometry.
7. Estimation of TDS of a water sample by gravimetry.
8. Determination of strength of given hydrochloric acid using pH meter.
9. Determination of strength of acids in a mixture of acids using conductivity meter.
10. Conductometric titration of barium chloride against sodium sulphate (precipitation titration)
11. Estimation of iron content of the given solution using potentiometer.
13. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method.
14. Estimation of Nickel in steel
15. Proximate analysis of Coal

TOTAL: 30 PERIODS
COURSE OUTCOMES:
- To analyse the quality of water samples with respect to their acidity, alkalinity, hardness and DO.
- To determine the amount of metal ions through volumetric and spectroscopic techniques
- To analyse and determine the composition of alloys.
- To learn simple method of synthesis of nanoparticles
- To quantitatively analyse the impurities in solution by electroanalytical techniques

TEXT BOOK:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.6</td>
<td>1.3</td>
<td>1.6</td>
<td>1</td>
<td>1</td>
<td>1.4</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- 1-low, 2-medium, 3-high, “-”- no correlation

GE3172 ENGLISH LABORATORY L T P C
0 0 2 1

OBJECTIVES:
- To improve the communicative competence of learners
- To help learners use language effectively in academic/work contexts
- To develop various listening strategies to comprehend various types of audio materials like lectures, discussions, videos etc.
- To build on students’ English language skills by engaging them in listening, speaking and grammar learning activities that are relevant to authentic contexts.
- To use language efficiently in expressing their opinions via various media.

UNIT I INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION
Listening for general information-specific details- conversation: Introduction to classmates - Audio / video (formal & informal); Telephone conversation; Listening to voicemail & messages; Listening and filling a form. Speaking - making telephone calls-Self Introduction; Introducing a friend; - politeness strategies- making polite requests, making polite offers, replying to polite requests and offers-understanding basic instructions(filling out a bank application for example).

UNIT II NARRATION AND SUMMATION
Listening - Listening to podcasts, anecdotes / stories / event narration; documentaries and interviews with celebrities. Speaking - Narrating personal experiences / events-Talking about current and temporary situations & permanent and regular situations* - describing experiences and feelings-engaging in small talk-describing requirements and abilities.
UNIT III DESCRIPTION OF A PROCESS / PRODUCT
Listening - Listen to product and process descriptions; a classroom lecture; and advertisements about products. Speaking – Picture description- describing locations in workplaces- Giving instruction to use the product- explaining uses and purposes- Presenting a product- describing shapes and sizes and weights- talking about quantities(large & small)-talking about precautions.

UNIT IV CLASSIFICATION AND RECOMMENDATIONS
Listening – Listening to TED Talks; Listening to lectures - and educational videos. Speaking – Small Talk; discussing and making plans-talking about tasks-talking about progress- talking about positions and directions of movement-talking about travel preparations- talking about transportation-

UNIT V EXPRESSION
Listening – Listening to debates/ discussions; different viewpoints on an issue; and panel discussions. Speaking –making predictions- talking about a given topic-giving opinions- understanding a website-describing processes

TOTAL : 30 PERIODS

LEARNING OUTCOMES:
At the end of the course, learners will be able
• To listen to and comprehend general as well as complex academic information
• To listen to and understand different points of view in a discussion
• To speak fluently and accurately in formal and informal communicative contexts
• To describe products and processes and explain their uses and purposes clearly and accurately
• To express their opinions effectively in both formal and informal discussions

ASSESSMENT PATTERN
• One online / app based assessment to test listening /speaking
• End Semester ONLY listening and speaking will be conducted online.
• Proficiency certification is given on successful completion of listening and speaking internal test and end semester exam.

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high, "-"- no correlation

Note: The average value of this course to be used for program articulation matrix.
OBJECTIVES:
- To engage learners in meaningful language activities to improve their reading and writing skills
- To learn various reading strategies and apply in comprehending documents in professional context.
- To help learners understand the purpose, audience, contexts of different types of writing
- To develop analytical thinking skills for problem solving in communicative contexts
- To demonstrate an understanding of job applications and interviews for internship and placements

UNIT I MAKING COMPARISONS 6
Reading - Reading advertisements, user manuals, brochures; Writing – Professional emails, Email etiquette - Compare and Contrast Essay; Grammar – Mixed Tenses, Prepositional phrases

UNIT II EXPRESSING CAUSAL RELATIONS IN SPEAKING AND WRITING 6
Reading - Reading longer technical texts – Cause and Effect Essays, and Letters / emails of complaint, Writing - Writing responses to complaints. Grammar - Active Passive Voice transformations, Infinitive and Gerunds

UNIT III PROBLEM SOLVING 6
Reading - Case Studies, excerpts from literary texts, news reports etc. Writing – Letter to the Editor, Checklists, Problem solution essay / Argumentative Essay. Grammar – Error correction; If conditional sentences

UNIT IV REPORTING OF EVENTS AND RESEARCH 6

UNIT V THE ABILITY TO PUT IDEAS OR INFORMATION COGENTLY 6
Reading – Company profiles. Statement of Purpose, (SOP), an excerpt of interview with professionals; Writing – Job / Internship application – Cover letter & Resume; Grammar – Numerical adjectives, Relative Clauses.

TOTAL : 30 PERIODS

OUTCOMES:
At the end of the course, learners will be able
- To compare and contrast products and ideas in technical texts.
- To identify and report cause and effects in events, industrial processes through technical texts
- To analyse problems in order to arrive at feasible solutions and communicate them in the written format.
- To present their ideas and opinions in a planned and logical manner
- To draft effective resumes in the context of job search.

TEXT BOOKS:
3. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.
REFERENCES:

ASSESSMENT PATTERN
Two internal assessments and an end semester examination to test students’ reading and writing skills along with their grammatical and lexical competence.

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

- 1-low, 2-medium, 3-high, "-"- no correlation
- Note: The average value of this course to be used for program articulation matrix.

MA3251 STATISTICS AND NUMERICAL METHODS

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT I TESTING OF HYPOTHESIS 9+3
Sampling distributions - Tests for single mean, proportion and difference of means (Large and small samples) – Tests for single variance and equality of variances – Chi square test for goodness of fit – Independence of attributes.

UNIT II DESIGN OF EXPERIMENTS 9+3
One way and two way classifications - Completely randomized design – Randomized block design – Latin square design - 2^2 factorial design.

UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS 9+3
Solution of algebraic and transcendental equations - Fixed point iteration method – Newton Raphson method- Solution of linear system of equations - Gauss elimination method – Pivoting - Gauss

UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION 9+3
Lagrange’s and Newton’s divided difference interpolations – Newton’s forward and backward difference interpolation – Approximation of derivatives using interpolation polynomials – Numerical single and double integrations using Trapezoidal and Simpson’s 1/3 rules.

UNIT V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 9+3

TOTAL: 60 PERIODS

COURSE OUTCOMES:
Upon successful completion of the course, students will be able to:
- Apply the concept of testing of hypothesis for small and large samples in real life problems.
- Apply the basic concepts of classifications of design of experiments in the field of agriculture.
- Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.
- Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
- Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

TEXT BOOKS:

REFERENCES:
COURSE OBJECTIVES:

- To make the students to understand the basics of crystallography and its importance in studying materials properties.
- To understand the electrical properties of materials including free electron theory, applications of quantum mechanics and magnetic materials.
- To instil knowledge on physics of semiconductors, determination of charge carriers and device applications
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications
- To inculcate an idea of significance of nano structures, quantum confinement and ensuing nano device applications.

UNIT I CRYSTALLOGRAPHY

UNIT II ELECTRICAL AND MAGNETIC PROPERTIES OF MATERIALS

UNIT III SEMICONDUCTORS AND TRANSPORT PHYSICS

UNIT IV OPTICAL PROPERTIES OF MATERIALS

UNIT V NANOELECTRONIC DEVICES

COURSE OUTCOMES:
At the end of the course, the students should be able to

- know basics of crystallography and its importance for varied materials properties
- gain knowledge on the electrical and magnetic properties of materials and their applications
- understand clearly of semiconductor physics and functioning of semiconductor devices
• understand the optical properties of materials and working principles of various optical devices
• appreciate the importance of functional nanoelectronic devices.

TEXT BOOKS:

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AVG</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1-Low, 2-Medium, 3-High, “-“-no correlation
Note: the average value of this course to be used for program articulation matrix.

BE3251 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE OBJECTIVES:
• To introduce the basics of electric circuits and analysis
• To impart knowledge in the basics of working principles and application of electrical machines
• To introduce analog devices and their characteristics
• To educate on the fundamental concepts of digital electronics
• To introduce the functional elements and working of measuring instruments

UNIT I ELECTRICAL CIRCUITS
DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor – Ohm’s Law - Kirchhoff’s Laws – Independent and Dependent Sources – Simple problems- Nodal Analysis, Mesh analysis with Independent sources only (Steady state)
Introduction to AC Circuits and Parameters: Waveforms, Average value, RMS Value, Instantaneous power, real power, reactive power and apparent power, power factor – Steady state analysis of RLC circuits (Simple problems only)
UNIT II ELECTRICAL MACHINES 9

UNIT III ANALOG ELECTRONICS 9

UNIT IV DIGITAL ELECTRONICS 9
Review of number systems, binary codes, error detection and correction codes, Combinational logic - representation of logic functions-SOP and POS forms, K-map representations - minimization using K maps (Simple Problems only)

UNIT V MEASUREMENTS AND INSTRUMENTATION 9

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completing this course, the students will be able to
1. Compute the electric circuit parameters for simple problems
2. Explain the working principle and applications of electrical machines
3. Analyze the characteristics of analog electronic devices
4. Explain the basic concepts of digital electronics
5. Explain the operating principles of measuring instruments

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>COs/PoS&PSOs</th>
<th>PEs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C02</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C03</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C04</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C05</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C0/PO & PSO</td>
<td>2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Average 1.8

1 – Slight, 2 – Moderate, 3 – Substantial
COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
1. Drawing engineering curves.
2. Drawing freehand sketch of simple objects.
3. Drawing orthographic projection of solids and section of solids.
4. Drawing development of solids
5. Drawing isometric and perspective projections of simple solids.

CONCEPTS AND CONVENTIONS (Not for Examination)
Importance of graphics in engineering applications - Use of drafting instruments - BIS conventions and specifications — Size, layout and folding of drawing sheets — Lettering and dimensioning.

UNIT I PLANE CURVES 6+12
Basic Geometrical constructions, Curves used in engineering practices: Conics — Construction of ellipse, parabola and hyperbola by eccentricity method — Construction of cycloid — construction of involutes of square and circle — Drawing of tangents and normal to the above curves.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6+12
Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS AND FREEHAND SKETCHING 6+12
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles — Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination)

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 6+12
Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other — obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids — Prisms, pyramids cylinders and cones. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination)

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6+12
Principles of isometric projection — isometric scale - Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method. Practicing three dimensional modeling of isometric projection of simple objects by CAD Software (Not for examination)

TOTAL: (L=30; P=60) 90 PERIODS

COURSE OUTCOMES:
On successful completion of this course, the student will be able to
• Use BIS conventions and specifications for engineering drawing.
• Construct the conic curves, involutes and cycloid.
• Solve practical problems involving projection of lines.
• Draw the orthographic, isometric and perspective projections of simple solids.
• Draw the development of simple solids.

TEXT BOOK:

REFERENCES:

Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
4. The examination will be conducted in appropriate sessions on the same day

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
TEXT-CUM-REFERENCE BOOKS

1. کتابی بیشتر - مکتب کم - صبح - صبح (گیاهی:

2. کتابی بیشتر - بیش - صبح - صبح (گیاهی:

3. کتابی بیشتر - بیش - صبح - صبح (گیاهی:

TOTAL : 15 PERIODS
4. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
5. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.}
6. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
7. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
8. Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
9. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
10. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

GE3252 TAMILS AND TECHNOLOGY L T P C 1 0 0 1
UNIT I WEAVING AND CERAMIC TECHNOLOGY 3
Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY 3
Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)- Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III MANUFACTURING TECHNOLOGY 3

UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY 3
Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society.

UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING 3

TOTAL : 15 PERIODS
TEXT-CUM-REFERENCE BOOKS

1. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
2. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
3. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
4. Keeladi - ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
5. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
6. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
NCC CREDIT COURSE LEVEL 1*

NX3251 (ARMY WING) NCC Credit Course Level - I

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC GENERAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCC 1 Aims, Objectives & Organization of NCC</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NCC 2 Incentives</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>NCC 3 Duties of NCC Cadet</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NCC 4 NCC Camps: Types & Conduct</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>NATIONAL INTEGRATION AND AWARENESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI 1 National Integration: Importance & Necessity</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NI 2 Factors Affecting National Integration</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NI 3 Unity in Diversity & Role of NCC in Nation Building</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NI 4 Threats to National Security</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PERSONALITY DEVELOPMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD 1 Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>PD 2 Communication Skills</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PD 3 Group Discussion: Stress & Emotions</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>LEADERSHIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 1 Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour ‘</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>L 2 Case Studies: Shivaji, Jhasi Ki Rani</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>SOCIAL SERVICE AND COMMUNITY DEVELOPMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 1 Basics, Rural Development Programmes, NGOs, Contribution of Youth</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>SS 2 Protection of Children and Women Safety</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SS 3 Road / Rail Travel Safety</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SS 4 New Initiatives</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>SS 5 Cyber and Mobile Security Awareness</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL: 30 PERIODS

NX3252 (NAVAL WING) NCC Credit Course Level - I

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC GENERAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCC 1 Aims, Objectives & Organization of NCC</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NCC 2 Incentives</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>NCC 3 Duties of NCC Cadet</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NCC 4 NCC Camps: Types & Conduct</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>NATIONAL INTEGRATION AND AWARENESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI 1 National Integration: Importance & Necessity</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NI 2 Factors Affecting National Integration</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NI 3 Unity in Diversity & Role of NCC in Nation Building</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NI 4 Threats to National Security</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PERSONALITY DEVELOPMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD 1 Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>PD 2 Communication Skills</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
GROUP DISCUSSION: STRESS & EMOTIONS

LEADERSHIP

L 1 Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code
L 2 Case Studies: Shivaji, Jhansi Ki Rani

SOCIAL SERVICE AND COMMUNITY DEVELOPMENT

SS 1 Basics, Rural Development Programmes, NGOs, Contribution of Youth
SS 4 Protection of Children and Women Safety
SS 5 Road / Rail Travel Safety
SS 6 New Initiatives
SS 7 Cyber and Mobile Security Awareness

TOTAL : 30 PERIODS
COURSE OBJECTIVES:
The main learning objective of this course is to provide hands on training to the students in:

1. Drawing pipe line plan; laying and connecting various pipe fittings used in common household plumbing work; Sawing; planing; making joints in wood materials used in common household wood work.
2. Wiring various electrical joints in common household electrical wire work.
3. Welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipments; Making a tray out of metal sheet using sheet metal work.
4. Soldering and testing simple electronic circuits; Assembling and testing simple electronic components on PCB.

GROUP – A (CIVIL & ELECTRICAL)

PART I CIVIL ENGINEERING PRACTICES
PLUMBING WORK:
 a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in household.
 b) Preparing plumbing line sketches.
 c) Laying pipe connection to the suction side of a pump
 d) Laying pipe connection to the delivery side of a pump.
 e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK:
 a) Sawing,
 b) Planing and
 c) Making joints like T-Joint, Mortise joint and Tenon joint and Dovetail joint.

Wood Work Study:
 a) Studying joints in door panels and wooden furniture
 b) Studying common industrial trusses using models.

PART II ELECTRICAL ENGINEERING PRACTICES
 a) Introduction to switches, fuses, indicators and lamps - Basic switch board wiring with lamp, fan and three pin socket
 b) Staircase wiring
 c) Fluorescent Lamp wiring with introduction to CFL and LED types.
 d) Energy meter wiring and related calculations/calibration
 e) Study of Iron Box wiring and assembly
 f) Study of Fan Regulator (Resistor type and Electronic type using Diac/Triac/quadac)
 g) Study of emergency lamp wiring/Water heater
GROUP – B (MECHANICAL AND ELECTRONICS)

PART III
MECHANICAL ENGINEERING PRACTICES

WELDING WORK:
a) Welding of Butt Joints, Lap Joints, and Tee Joints using arc welding.
b) Practicing gas welding.

BASIC MACHINING WORK:
a) (simple)Turning.
b) (simple)Drilling.
c) (simple)Tapping.

ASSEMBLY WORK:
a) Assembling a centrifugal pump.
b) Assembling a household mixer.
c) Assembling an air conditioner.

SHEET METAL WORK:
a) Making of a square tray

FOUNDRY WORK:
a) Demonstrating basic foundry operations.

PART IV
ELECTRONIC ENGINEERING PRACTICES

SOLDERING WORK:
a) Soldering simple electronic circuits and checking continuity.

ELECTRONIC ASSEMBLY AND TESTING WORK:
a) Assembling and testing electronic components on a small PCB.

ELECTRONIC EQUIPMENT STUDY:
a) Study an elements of smart phone.
b) Assembly and dismantle of LED TV.
c) Assembly and dismantle of computer/ laptop

TOTAL = 60 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
1. Draw pipe line plan; lay and connect various pipe fittings used in common household plumbing work; Saw; plan; make joints in wood materials used in common household wood work.
2. Wire various electrical joints in common household electrical wire work.
3. Weld various joints in steel plates using arc welding work; Machine various simple processes like turning, drilling, tapping in parts; Assemble simple mechanical assembly of common household equipments; Make a tray out of metal sheet using sheet metal work.
4. Solder and test simple electronic circuits; Assemble and test simple electronic components on PCB.

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) : Medium (2) : High (3)
COURSE OBJECTIVES:
- To train the students in conducting load tests on electrical machines
- To gain practical experience in characterizing electronic devices
- To train the students to use DSO for measurements.

LIST OF EXPERIMENTS
1. Verification of ohms and Kirchhoff’s Laws.
2. Load test on DC Shunt Motor.
3. Load test on Self Excited DC Generator
4. Load test on Single phase Transformer
5. Load Test on Induction Motor
6. Characteristics of PN and Zener Diodes
7. Characteristics of BJT, SCR and MOSFET
8. Half wave and Full Wave rectifiers
9. Study of Logic Gates
10. Implementation of Binary Adder and Subtractor
11. Study of DSO

TOTAL: 60 PERIODS

COURSE OUTCOMES:
After completing this course, the students will be able to
1. Use experimental methods to verify the Ohm’s and Kirchhoff’s Laws.
2. Analyze experimentally the load characteristics of electrical machines
3. Analyze the characteristics of basic electronic devices
4. Use DSO to measure the various parameters

<table>
<thead>
<tr>
<th>COs/POs&P SOs</th>
<th>P0s</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO/PO & PSO</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 – Slight, 2 – Moderate, 3 – Substantial
OBJECTIVES
- To identify varied group discussion skills and apply them to take part in effective discussions in a professional context.
- To analyse concepts and problems and make effective presentations explaining them clearly and precisely.
- To be able to communicate effectively through formal and informal writing.
- To be able to use appropriate language structures to write emails, reports and essays
- To give instructions and recommendations that are clear and relevant to the context

UNIT I
Speaking: Role Play Exercises Based on Workplace Contexts, - talking about competition- discussing progress toward goals-talking about experiences- talking about events in life- discussing past events-Writing: writing emails (formal & semi-formal).

UNIT II
Speaking: discussing news stories-talking about frequency-talking about travel problems-discussing travel procedures- talking about travel problems- making arrangements-describing arrangements-discussing plans and decisions-discussing purposes and reasons- understanding common technology terms-Writing: - writing different types of emails.

UNIT III
Speaking: discussing predictions-describing the climate-discussing forecasts and scenarios-talking about purchasing-discussing advantages and disadvantages- making comparisons-discussing likes and dislikes- discussing feelings about experiences-discussing imaginary scenarios Writing: short essays and reports-formal/semi-formal letters.

UNIT IV
Speaking: discussing the natural environment-describing systems-describing position and movement- explaining rules-(example- discussing rental arrangements)- understanding technical instructions-Writing: writing instructions-writing a short article.

UNIT V
Speaking: describing things relatively-describing clothing-discussing safety issues (making recommendations) talking about electrical devices-describing controlling actions- Writing: job application(Cover letter + Curriculum vitae)-writing recommendations.

TOTAL: 45 PERIODS

LEARNING OUTCOMES
At the end of the course, learners will be able
- Speak effectively in group discussions held in a formal/semi formal contexts.
- Discuss, analyse and present concepts and problems from various perspectives to arrive at suitable solutions
- Write emails, letters and effective job applications.
- Write critical reports to convey data and information with clarity and precision
- Give appropriate instructions and recommendations for safe execution of tasks

Assessment Pattern
- One online / app based assessment to test speaking and writing skills
- Proficiency certification is given on successful completion of speaking and writing.
MA3351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS L T P C 3 1 0 4

COURSE OBJECTIVES:

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier, transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9+3
Formation of partial differential equations –Solutions of standard types of first order partial differential equations - First order partial differential equations reducible to standard types- Lagrange’s linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES 9+3
Dirichlet’s conditions – General Fourier series – Odd and even functions – Half range sine series and cosine series – Root mean square value – Parseval’s identity – Harmonic analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9+3
Classification of PDE – Method of separation of variables - Fourier series solutions of one-dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two-dimensional equation of heat conduction (Cartesian coordinates only).

UNIT IV FOURIER TRANSFORMS 9+3

UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS 9+3

TOTAL: 60 PERIODS
OUTCOMES:
Upon successful completion of the course, students should be able to:
1. Understand how to solve the given standard partial differential equations.
2. Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
3. Appreciate the physical significance of Fourier series techniques in solving one- and two-dimensional heat flow problems and one-dimensional wave equations.
4. Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.
5. Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

ME3351 ENGINEERING MECHANICS

COURSE OBJECTIVES:
1. To Learn the use scalar and vector analytical techniques for analysing forces in statically determinate structures
2. To introduce the equilibrium of rigid bodies, vector methods and free body diagram
3. To study and understand the distributed forces, surface, loading on beam and intensity.
4. To learn the principles of friction, forces and to determine the apply the concepts of frictional forces at the contact surfaces of various engineering systems.
5. To develop basic dynamics concepts – force, momentum, work and energy;

UNIT I STATICS OF PARTICLES
UNIT II EQUILIBRIUM OF RIGID BODIES

UNIT III DISTRIBUTED FORCES
Centroids of lines and areas – symmetrical and unsymmetrical shapes, Determination of Centroids by Integration, Theorems of Pappus-Guldinus, Distributed Loads on Beams, Centre of Gravity of a Three-Dimensional Body, Centroid of a Volume, Composite Bodies, Determination of Centroids of Volumes by Integration. Moments of Inertia of Areas and Mass - Determination of the Moment of Inertia of an Area by Integration, Polar Moment of Inertia, Radius of Gyration of an Area, Parallel-Axis Theorem, Moments of Inertia of Composite Areas, Moments of Inertia of a Mass - Moments of Inertia of Thin Plates, Determination of the Moment of Inertia of a Three-Dimensional Body by Integration.

UNIT IV FRICTION
The Laws of Dry Friction, Coefficients of Friction, Angles of Friction, Wedge friction, Wheel Friction, Rolling Resistance, Ladder friction.

UNIT V DYNAMICS OF PARTICLES

OUTCOMES:
At the end of the course the students would be able to
1. Illustrate the vector and scalar representation of forces and moments
2. Analyse the rigid body in equilibrium
3. Evaluate the properties of distributed forces
4. Determine the friction and the effects by the laws of friction
5. Calculate dynamic forces exerted in rigid body

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
ME3391 ENGINEERING THERMODYNAMICS

L T P C
3 0 0 3

COURSE OBJECTIVES:
1. Impart knowledge on the basics and application of zeroth and first law of thermodynamics.
2. Impart knowledge on the second law of thermodynamics in analysing the performance of thermal devices.
3. Impart knowledge on availability and applications of second law of thermodynamics.
4. Teach the various properties of steam through steam tables and Mollier chart.
5. Impart knowledge on the macroscopic properties of ideal and real gases.

UNIT I BASICS, ZEROOTH AND FIRST LAW

UNIT II SECOND LAW AND ENTROPY

UNIT III AVAILABILITY AND APPLICATIONS OF II LAW
Ideal gases undergoing different processes - principle of increase in entropy. Applications of II Law. High- and low-grade energy. Availability and Irreversibility for open and closed system processes - I and II law Efficiency.

UNIT IV PROPERTIES OF PURE SUBSTANCES
Steam - formation and its thermodynamic properties - p-v, p-T, T-v, T-s, h-s diagrams. PVT surface. Determination of dryness fraction. Calculation of work done and heat transfer in non-flow and flow processes using Steam Table and Mollier Chart.

UNIT V GAS MIXTURES AND THERMODYNAMIC RELATIONS

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course the students would be able to
1. Apply the zeroth and first law of thermodynamics by formulating temperature scales and calculating the property changes in closed and open engineering systems.
2. Apply the second law of thermodynamics in analysing the performance of thermal devices through energy and entropy calculations.
3. Apply the second law of thermodynamics in evaluating the various properties of steam through steam tables and Mollier chart
4. Apply the properties of pure substance in computing the macroscopic properties of ideal and real gases using gas laws and appropriate thermodynamic relations.
5. Apply the properties of gas mixtures in calculating the properties of gas mixtures and applying various thermodynamic relations to calculate property changes.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) Medium (2) ; High (3)
COURSE OBJECTIVES:
1. To introduce the students about properties of the fluids, behaviour of fluids under static conditions.
2. To impart basic knowledge of the dynamics of fluids and boundary layer concept.
3. To expose to the applications of the conservation laws to a) flow measurements b) flow through pipes (both laminar and turbulent) and c) forces on pipe bends.
4. To exposure to the significance of boundary layer theory and its thicknesses.
5. To expose the students to basic principles of working of hydraulic machineries and to design Pelton wheel, Francis and Kaplan turbine, centrifugal and reciprocating pumps.

UNIT I FLUID PROPERTIES AND FLOW CHARACTERISTICS 10+3
Properties of fluids – Fluid statics - Pressure Measurements - Buoyancy and floatation - Flow characteristics - Eulerian and Lagrangian approach - Concept of control volume and system - Reynold’s transportation theorem - Continuity equation, energy equation and momentum equation - Applications.

UNIT II FLOW THROUGH PIPES AND BOUNDARY LAYER 9+3
Reynold’s Experiment - Laminar flow through circular conduits - Darcy Weisbach equation - friction factor - Moody diagram - Major and minor losses - Hydraulic and energy gradient lines - Pipes in series and parallel - Boundary layer concepts - Types of boundary layer thickness.

UNIT III DIMENSIONAL ANALYSIS AND MODEL STUDIES 8+3
Fundamental dimensions - Dimensional homogeneity - Rayleigh’s method and Buckingham Pi theorem - Dimensionless parameters - Similitude and model studies - Distorted and undistorted models.

UNIT IV TURBINES 9+3

UNIT V PUMPS 9+3
Classification of pumps - Centrifugal pumps - Working principle - Heads and efficiencies – Velocity triangles - Work done by the impeller - Performance curves - Reciprocating pump working principle - Indicator diagram and it’s variations - Work saved by fitting air vessels - Rotary pumps.

TOTAL: 60 PERIODS

OUTCOMES:
On completion of the course, the student is expected to be able to
1. Understand the properties and behaviour in static conditions. Also, to understand the conservation laws applicable to fluids and its application through fluid kinematics and dynamics
2. Estimate losses in pipelines for both laminar and turbulent conditions and analysis of pipes connected in series and parallel. Also, to understand the concept of boundary layer and its thickness on the flat solid surface.
3. Formulate the relationship among the parameters involved in the given fluid phenomenon and to predict the performances of prototype by model studies
4. Explain the working principles of various turbines and design the various types of turbines.
5. Explain the working principles of centrifugal, reciprocating and rotary pumps and design the centrifugal and reciprocating pumps

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)

ME3392 ENGINEERING MATERIALS AND METALLURGY L T P C

3 0 0 3

COURSE OBJECTIVES:
1. To learn the constructing the phase diagram and using of iron-iron carbide phase diagram for microstructure formation.
2. To learn selecting and applying various heat treatment processes and its microstructure formation.
3. To illustrate the different types of ferrous and non-ferrous alloys and their uses in engineering field.
4. To illustrate the different polymer, ceramics and composites and their uses in engineering field.
5. To learn the various testing procedures and failure mechanism in engineering field.

UNIT I CONSTITUTION OF ALLOYS AND PHASE DIAGRAMS

UNIT II HEAT TREATMENT

UNIT III FERROUS AND NON-FERROUS METALS

UNIT IV NON-METALLIC MATERIALS

UNIT V MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students would be able to
2. Explain isothermal transformation, continuous cooling diagrams and different heat treatment processes.
3. Clarify the effect of alloying elements on ferrous and non-ferrous metals.
4. Summarize the properties and applications of non-metallic materials.
5. Explain the testing of mechanical properties.

TEXT BOOKS:

REFERENCES:
ME3393 MANUFACTURING PROCESSES

COURSE OBJECTIVES:

1. To illustrate the working principles of various metal casting processes.
2. To learn and apply the working principles of various metal joining processes.
3. To analyse the working principles of bulk deformation of metals.
4. To learn the working principles of sheet metal forming process.
5. To study and practice the working principles of plastics molding.

UNIT I METAL CASTING PROCESSES

UNIT II METAL JOINING PROCESSES

UNIT III BULK DEFORMATION PROCESSES

UNIT IV SHEET METAL PROCESSES

UNIT V MANUFACTURE OF PLASTIC COMPONENTS
Types and characteristics of plastics – Molding of thermoplastics & Thermosetting polymers– working principles and typical applications – injection molding – Plunger and screw machines – Compression

OUTCOMES:
At the end of the course the students would be able to
1. Explain the principle of different metal casting processes.
2. Describe the various metal joining processes.
3. Illustrate the different bulk deformation processes.
4. Apply the various sheet metal forming process.
5. Apply suitable molding technique for manufacturing of plastics components.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES:
1. To acquaint the skills and practical experience in handling 2D drafting and 3D modelling software systems, standard drawing practices using fits and tolerances.
2. To prepare assembly drawings both manually and using standard CAD packages.
3. To Preparing standard drawing layout for modeled parts, assemblies with BoM.

PART I DRAFTING STANDARDS & FITS AND TOLERANCES 12

PART II 2D DRAFTING 48
Drawing, Editing, Dimensioning, Layering, Hatching, Block, Array, Detailing, Detailed Drawing.
1. Bearings – Bush Bearing,
3. Couplings – Flange, Oldham’s, Muff, Gear couplings.
5. Engine parts – Piston, Connecting Rod, Crosshead (vertical and horizontal), Stuffing box, multi-plate clutch.
Total: 20% of classes for theory classes and 80% of classes for practice
Note: 25% of assembly drawings must be done manually and remaining 75% of assembly drawings must be done by using any CAD software. The above tasks can be performed manually and using standard commercial 2D CAD software.

OUTCOMES: At the end of the course the students would be able to
1. Prepare standard drawing layout for modelled assemblies with BoM.
3. Prepare standard drawing layout for modelled parts

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES:
1. To Selecting appropriate tools, equipment’s and machines to complete a given job.
2. To Performing various welding process using GMAW and fabricating gears using gear making machines.
3. To Performing various machining process such as rolling, drawing, turning, shaping, drilling, milling and analysing the defects in the cast and machined components.

LIST OF EXPERIMENTS
1. Fabricating simple structural shapes using Gas Metal Arc Welding machine.
2. Preparing green sand moulds with cast patterns.
3. Taper Turning and Eccentric Turning on circular parts using lathe machine.
4. Knurling, external and internal thread cutting on circular parts using lathe machine.
5. Shaping – Square and Hexagonal Heads on circular parts using shaper machine.
8. Cutting spur and helical gear using milling machine.
13. Cutting force calculation using dynamometer in milling machine
14. Cutting force calculation using dynamometer in lathe machine

TOTAL: 60 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Demonstrate the safety precautions exercised in the mechanical workshop and join two metals using GMAW.
2. The students able to make the work piece as per given shape and size using machining process such as rolling, drawing, turning, shaping, drilling and milling.
3. The students become make the gears using gear making machines and analyze the defects in the cast and machined components

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
OBJECTIVES:

- To be proficient in important Microsoft Office tools: MS WORD, EXCEL, POWERPOINT.
- To be proficient in using MS WORD to create quality technical documents, by using standard templates, widely acceptable styles and formats, variety of features to enhance the presentability and overall utility value of content.
- To be proficient in using MS EXCEL for all data manipulation tasks including the common statistical, logical, mathematical etc., operations, conversion, analytics, search and explore, visualize, interlink, and utilizing many more critical features offered.
- To be able to create and share quality presentations by using the features of MS PowerPoint, including: organization of content, presentability, aesthetics, using media elements and enhance the overall quality of presentations.

MS WORD: 10 Hours

Create and format a document
Working with tables
Working with Bullets and Lists
Working with styles, shapes, smart art, charts
Inserting objects, charts and importing objects from other office tools
Creating and Using document templates
Inserting equations, symbols and special characters
Working with Table of contents and References, citations
Insert and review comments
Create bookmarks, hyperlinks, endnotes footnote
Viewing document in different modes
Working with document protection and security
Inspect document for accessibility

MS EXCEL: 10 Hours

Create worksheets, insert and format data
Work with different types of data: text, currency, date, numeric etc.
Split, validate, consolidate, Convert data
Sort and filter data
Perform calculations and use functions: (Statistical, Logical, Mathematical, date, Time etc.)
Work with Lookup and reference formulae
Create and Work with different types of charts
Use pivot tables to summarize and analyse data
Perform data analysis using own formulae and functions
Combine data from multiple worksheets using own formulae and built-in functions to generate results
Export data and sheets to other file formats
Working with macros
Protecting data and Securing the workbook

MS POWERPOINT: 10 Hours

Select slide templates, layout and themes
Formatting slide content and using bullets and numbering
Insert and format images, smart art, tables, charts
Using Slide master, notes and handout master
Working with animation and transitions
Organize and Group slides
Import or create and use media objects: audio, video, animation
Perform slideshow recording and Record narration and create presentable videos

TOTAL: 30 PERIODS
OUTCOMES:
On successful completion the students will be able to
- Use MS Word to create quality documents, by structuring and organizing content for their
day to day technical and academic requirements
- Use MS EXCEL to perform data operations and analytics, record, retrieve data as per
requirements and visualize data for ease of understanding
- Use MS PowerPoint to create high quality academic presentations by including common
tables, charts, graphs, interlinking other elements, and using media objects.

MS3311 INDUSTRIAL TRAINING I L T P C
(PROCESS ENGINEERING AND ASSEMBLY TECHNOLOGIES) 0 0 0 2

Machining, assembly and process engineering - preparation of process sheets for spur gear – helical gear -
sprockets - worm - worm wheel and rack - sequence of operations – machine tools used - speed and feed
in each type of machine tool-setting time - operating time -cutting tools - Jigs and fixtures - gauges and
instruments - study of assembly method for conventional lathe, pre assembly, sub-assembly and final
assembly -study of assembly drawings - preparation of ration of loading sheets - assembly flow chart -
assembly time - fits and tolerance between components – inspection methods – material flow diagrams.

ME3491 THEORY OF MACHINES L T P C
 3 0 0 3

COURSE OBJECTIVES:

1. To study the basic components of mechanisms, analyzing the assembly with respect to the
displacement, velocity, and acceleration at any point in a link of a mechanism and design cam
mechanisms for specified output motions.
2. To study the basic concepts of toothed gearing and kinematics of gear trains
3. To Analyzing the effects of friction in machine elements
4. To Analyzing the force-motion relationship in components subjected to external forces and
analyzing of standard mechanisms.
5. To Analyzing the undesirable effects of unbalances resulting from prescribed motions in
mechanism and the effect of dynamics of undesirable vibrations.

UNIT – I KINEMATICS OF MECHANISMS
Mechanisms – Terminology and definitions – kinematics inversions of 4 bar and slide crank chain –
kinematics analysis in simple mechanisms – velocity and acceleration polygons– Analytical methods –
computer approach – cams – classifications – displacement diagrams - layout of plate cam profiles –
derivatives of followers motion – circular arc and tangent cams.

UNIT – II GEARS AND GEAR TRAINS
Spur gear – law of toothed gearing – involute gearing – Interchangeable gears – Gear tooth action
interference and undercutting – nonstandard teeth – gear trains – parallel axis gears trains – epicyclic gear
trains – automotive transmission gear trains.

UNIT – III FRICTION IN MACHINE ELEMENTS
Surface contacts – Sliding and Rolling friction – Friction drives – Friction in screw threads – Bearings and
lubrication – Friction clutches – Belt and rope drives – Friction aspects in brakes– Friction in vehicle
propulsion and braking.
UNIT – IV FORCE ANALYSIS

UNIT – V BALANCING AND VIBRATION

OUTCOMES: At the end of the course the students would be able to
1. Discuss the basics of mechanism.
2. Solve problems on gears and gear trains.
3. Examine friction in machine elements.
4. Calculate static and dynamic forces of mechanisms.
5. Calculate the balancing masses and their locations of reciprocating and rotating masses. Computing the frequency of free vibration, forced vibration and damping coefficient.

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
ME3451 THERMAL ENGINEERING L T P C
4 0 0 4

COURSE OBJECTIVES:
1. To learn the concepts and laws of thermodynamics to predict the operation of thermodynamic cycles and performance of Internal Combustion (IC) engines and Gas Turbines.
2. To analyzing the performance of steam nozzle, calculate critical pressure ratio.
3. To Evaluating the performance of steam turbines through velocity triangles, understand the need for governing and compounding of turbines.
4. To analyzing the working of IC engines and various auxiliary systems present in IC engines.
5. To evaluating the various performance parameters of IC engines.

UNIT I THERMODYNAMIC CYCLES 12

UNIT II STEAM NOZZLES AND INJECTOR 12
Types and Shapes of nozzles, Flow of steam through nozzles, Critical pressure ratio, Variation of mass flow rate with pressure ratio. Effect of friction. Metastable flow.

UNIT III STEAM AND GAS TURBINES 12

UNIT IV INTERNAL COMBUSTION ENGINES – FEATURES AND COMBUSTION 12

UNIT V INTERNAL COMBUSTION ENGINE PERFORMANCE AND AUXILIARY SYSTEMS 12

TOTAL : 60 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Apply thermodynamic concepts to different air standard cycles and solve problems.
2. To solve problems in steam nozzle and calculate critical pressure ratio.
3. Explain the flow in steam turbines, draw velocity diagrams, flow in Gas turbines and solve problems.
4. Explain the functioning and features of IC engine, components and auxiliaries.
5. Calculate the various performance parameters of IC engines.

TEXT BOOKS:

REFERENCES:
ME3492 HYDRAULICS AND PNEUMATICS

COURSE OBJECTIVES:

1. To provide the knowledge on the working principles of fluid power systems.
2. To study the fluids and components used in modern industrial fluid power systems.
3. To develop the design, construction and operation of fluid power circuits.
4. To learn the working principles of pneumatic power system and its components.
5. To provide the knowledge of trouble shooting methods in fluid power systems.

UNIT I FLUID POWER PRINCIPLES AND HYDRAULIC PUMPS

UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS

UNIT III HYDRAULIC CIRCUITS AND SYSTEMS
Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double-Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits, – Servo and Proportional valves – Applications- Mechanical, hydraulic servo systems.

UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS

UNIT V TROUBLE SHOOTING AND APPLICATIONS
Installation, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic systems, Conditioning of hydraulic fluids Design of hydraulic circuits for Drilling, Planning, Shaping, Surface grinding, Press and Forklift applications- mobile hydraulics; Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low-cost Automation – Hydraulic and Pneumatic power packs, IOT in
Hydraulics and pneumatics
Note: (Use of standard Design Data Book is permitted in the University examination)

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Apply the working principles of fluid power systems and hydraulic pumps.
2. Apply the working principles of hydraulic actuators and control components.
3. Design and develop hydraulic circuits and systems.
4. Apply the working principles of pneumatic circuits and power system and its components.
5. Identify various troubles shooting methods in fluid power systems.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

ME3493 MANUFACTURING TECHNOLOGY

COURSE OBJECTIVES:
1. To study the concepts and basic mechanics of metal cutting and the factors affecting machinability
2. To learn working of basic and advanced turning machines.
3. To teach the basics of machine tools with reciprocating and rotating motions and abrasive finishing processes.
4. To study the basic concepts of CNC of machine tools and constructional features of CNC
5. To learn the basics of CNC programming concepts to develop the part programme for Machine centre and turning centre

UNIT – I MECHANICS OF METAL CUTTING
Mechanics of chip formation, forces in machining, Types of chip, cutting tools – single point cutting tool nomenclature, orthogonal and oblique metal cutting, thermal aspects, cutting tool materials, tool wear, tool life, surface finish, cutting fluids and Machinability.
UNIT – II TURNING MACHINES 9
Centre lathe, constructional features, specification, operations – taper turning methods, thread cutting methods, special attachments, surface roughness in turning, machining time and power estimation. Special lathes - Capstan and turret lathes - tool layout – automatic lathes: semi-automatic – single spindle: Swiss type, automatic screw type – multi spindle

UNIT – III RECIPROCATING MACHINE TOOLS 9

UNIT – IV CNC MACHINES 9
Computer Numerical Control (CNC) machine tools, constructional details, special features – Drives, Recirculating ball screws, tool changers; CNC Control systems – Open/closed, point-to-point/continuous - Turning and machining centres – Work holding methods in Turning and machining centres, Coolant systems, Safety features.

UNIT – V PROGRAMMING OF CNC MACHINE TOOLS 9
Coordinates, axis and motion, Absolute vs Incremental, Interpolators, Polar coordinates, Program planning, G and M codes, Manual part programming for CNC machining centers and Turning centers – Fixed cycles, Loops and subroutines, Setting up a CNC machine for machining.

TOTAL 45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Apply the mechanism of metal removal process and to identify the factors involved in improving machinability.
2. Describe the constructional and operational features of centre lathe and other special purpose lathes.
3. Describe the constructional and operational features of reciprocating machine tools.
4. Apply the constructional features and working principles of CNC machine tools.
5. Demonstrate the Program CNC machine tools through planning, writing codes and setting up CNC machine tools to manufacture a given component.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES:

- To understand the concepts of stress, strain, principal stresses and principal planes.
- To study the concept of shearing force and bending moment due to external loads in determinate beams and their effect on stresses.
- To determine stresses and deformation in circular shafts and helical spring due to torsion.
- To compute slopes and deflections in determinate beams by various methods.
- To study the stresses and deformations induced in thin and thick shells.

UNIT I STRESS, STRAIN AND DEFORMATION OF SOLIDS

Rigid bodies and deformable solids – Tension, Compression and Shear Stresses - Deformation of simple and compound bars – Thermal stresses – Elastic constants - Volumetric strains – Stresses on inclined planes – Principal stresses and principal planes – Mohr’s circle of stress.

UNIT II TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM

UNIT III TORSION

Theory of Torsion – Stresses and Deformations in Solid and Hollow Circular Shafts – Combined bending moment and torsion of shafts - Power transmitted to shaft – Shaft in series and parallel – Closed and Open Coiled helical springs – springs in series and parallel.

UNIT IV DEFLECTION OF BEAMS

UNIT V THIN CYLINDERS, SPHERES AND THICK CYLINDERS

Stresses in thin cylindrical shell due to internal pressure - circumferential and longitudinal stresses - Deformation in thin cylinders – Spherical shells subjected to internal pressure – Deformation in spherical shells – Thick cylinders - Lame's theory.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students would be able to
1. Understand the concepts of stress and strain in simple and compound bars, importance of principal stresses and principal planes.
2. Understand the load transferring mechanism in beams and stress distribution due shearing force and bending moment.
3. Apply basic equation of torsion in designing of shafts and helical springs
4. Calculate slope and deflection in beams using different methods.
5. Analyze thin and thick shells for applied pressures.

TEXT BOOK

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

GE3451 ENVIRONMENTAL SCIENCES AND SUSTAINABILITY L T P C 2 0 0 2

OBJECTIVES:
- To introduce the basic concepts of environment, ecosystems and biodiversity and emphasize on the biodiversity of India and its conservation.
- To impart knowledge on the causes, effects and control or prevention measures of environmental pollution and natural disasters.
- To facilitate the understanding of global and Indian scenario of renewable and nonrenewable resources, causes of their degradation and measures to preserve them.
- To familiarize the concept of sustainable development goals and appreciate the interdependence of economic and social aspects of sustainability, recognize and analyze climate changes, concept of carbon credit and the challenges of environmental management.
- To inculcate and embrace sustainability practices and develop a broader understanding on green materials, energy cycles and analyze the role of sustainable urbanization.

UNIT I ENVIRONMENT AND BIODIVERSITY

UNIT II ENVIRONMENTAL POLLUTION

UNIT III RENEWABLE SOURCES OF ENERGY
Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of- Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.
UNIT IV SUSTAINABILITY AND MANAGEMENT 6
Development, GDP, Sustainability-concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global, Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

UNIT V SUSTAINABILITY PRACTICES 6

TOTAL : 30 PERIODS

OUTCOMES:

- To recognize and understand the functions of environment, ecosystems and biodiversity and their conservation.
- To identify the causes, effects of environmental pollution and natural disasters and contribute to the preventive measures in the society.
- To identify and apply the understanding of renewable and non-renewable resources and contribute to the sustainable measures to preserve them for future generations.
- To recognize the different goals of sustainable development and apply them for suitable technological advancement and societal development.
- To demonstrate the knowledge of sustainability practices and identify green materials, energy cycles and the role of sustainable urbanization.

TEXT BOOKS:
5. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.

REFERENCES:
CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Avg. 2.8 1.8 1 1 - 2.2 2.4 - - - - 1.8 - - -

1-low, 2-medium, 3-high, "-" no correlation

NCC Credit Course Level 2*

NX3451

(ARMY WING) NCC Credit Course Level - II

<table>
<thead>
<tr>
<th>Course</th>
<th>LTPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD 3</td>
<td>Group Discussion: Change your mindset, Time Management, Social Skills</td>
</tr>
<tr>
<td>PD 5</td>
<td>Public Speaking</td>
</tr>
<tr>
<td>L 2</td>
<td>Case Studies: APJ Abdul Kalam, Deepa Malik, Maharana Pratap, N Narayan Murty, Ratan Tata, Rabindra Nath Tagore, Role of NCC cadets in 1965</td>
</tr>
<tr>
<td>DM 1</td>
<td>Disaster Management Capsule: Organisation, Types of Disasters, Essential Services, Assistance, Civil Defence Organisation</td>
</tr>
<tr>
<td>DM 2</td>
<td>Initiative Training, Organising Skills, Do's & Don't's, Natural Disasters, Man Made Disasters</td>
</tr>
<tr>
<td>DM 3</td>
<td>Fire Service & Fire Fighting</td>
</tr>
<tr>
<td>EA 1</td>
<td>Environmental Awareness and Conservation</td>
</tr>
<tr>
<td>GA 1</td>
<td>General Knowledge</td>
</tr>
<tr>
<td>AF 1</td>
<td>Armed Forces, Army, CAPF, Police</td>
</tr>
<tr>
<td>AD 1</td>
<td>Introduction to Adventure Activities</td>
</tr>
<tr>
<td>BCA 1</td>
<td>History, Geography & Topography of Border/Coastal areas</td>
</tr>
</tbody>
</table>

TOTAL: 45 PERIODS
<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSONALITY DEVELOPMENT</td>
<td>9</td>
<td>PD 3 Group Discussion: Change your mindset, Time Management, Social Skills</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PD 5 Public Speaking</td>
</tr>
<tr>
<td>LEADERSHIP</td>
<td>7</td>
<td>L 2 Case Studies: APJ Abdul Kalam, Deepa Malik, Maharana Pratap, N Narayan Murty, Ratan Tata, Rabindra Nath Tagore, Role of NCC cadets in 1965</td>
</tr>
<tr>
<td>DISASTER MANAGEMENT</td>
<td>13</td>
<td>DM 1 Disaster Management Capsule: Organisation, Types of Disasters, Essential Services, Assistance, Civil Defence Organisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DM 2 Initiative Training, Organising Skills, Do's & Don't's, Natural Disasters, Man Made Disasters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DM 3 Fire Service & Fire Fighting</td>
</tr>
<tr>
<td>ENVIRONMENTAL AWARENESS & CONSERVATION</td>
<td>3</td>
<td>EA 1 Environmental Awareness and Conservation</td>
</tr>
<tr>
<td>GENERAL AWARENESS</td>
<td>4</td>
<td>GA 1 General Knowledge</td>
</tr>
<tr>
<td>NAVAL ORIENTATION</td>
<td>6</td>
<td>AF 1 Armed Forces and Navy Capsule</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEZ 1 EEZ Maritime Security and ICG</td>
</tr>
<tr>
<td>ADVENTURE</td>
<td>1</td>
<td>AD 1 Introduction to Adventure Activities</td>
</tr>
<tr>
<td>BORDER & COASTAL AREAS</td>
<td>2</td>
<td>BCA 1 History, Geography & Topography of Border/Coastal areas</td>
</tr>
</tbody>
</table>

TOTAL: 45 PERIODS
NCC Credit Course Level 2*

NX3453
(AIR FORCE WING) NCC Credit Course Level - II

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>Personality Development</td>
<td>9</td>
</tr>
<tr>
<td>PD 3</td>
<td>Group Discussion: Change your mindset, Time Management, Social Skills</td>
<td>6</td>
</tr>
<tr>
<td>PD 5</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>L</td>
<td>Leadership</td>
<td>7</td>
</tr>
<tr>
<td>L 2</td>
<td>Case Studies: APJ Abdul Kalam, Deepa Malik, Maharana Pratap, N Narayan Murty, Ratan Tata, Rabindra Nath Tagore, Role of NCC cadets in 1965</td>
<td>7</td>
</tr>
<tr>
<td>DM</td>
<td>Disaster Management</td>
<td>13</td>
</tr>
<tr>
<td>DM 1</td>
<td>Disaster Management Capsule: Organisation, Types of Disasters, Essential Services, Assistance, Civil Defence Organisation</td>
<td>3</td>
</tr>
<tr>
<td>DM 2</td>
<td>Initiative Training, Organising Skills, Do's & Don't's, Natural Disasters, Man Made Disasters</td>
<td>9</td>
</tr>
<tr>
<td>DM 3</td>
<td>Fire Service & Fire Fighting</td>
<td>1</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Awareness & Conservation</td>
<td>3</td>
</tr>
<tr>
<td>EA 1</td>
<td>Environmental Awareness and Conservation</td>
<td>3</td>
</tr>
<tr>
<td>GA</td>
<td>General Awareness</td>
<td>4</td>
</tr>
<tr>
<td>GA 1</td>
<td>General Knowledge</td>
<td>4</td>
</tr>
<tr>
<td>GSK</td>
<td>General Service Knowledge</td>
<td>6</td>
</tr>
<tr>
<td>GSK 1</td>
<td>Armed Forces & IAF Capsule</td>
<td>2</td>
</tr>
<tr>
<td>GSK 2</td>
<td>Modes of Entry in IAF, Civil Aviation</td>
<td>2</td>
</tr>
<tr>
<td>GSK 3</td>
<td>Aircrafts - Types, Capabilities & Role</td>
<td>2</td>
</tr>
<tr>
<td>AD</td>
<td>Adventure</td>
<td>1</td>
</tr>
<tr>
<td>AD 1</td>
<td>Introduction to Adventure Activities</td>
<td>1</td>
</tr>
<tr>
<td>BCA</td>
<td>Border & Coastal Areas</td>
<td>2</td>
</tr>
<tr>
<td>BCA 1</td>
<td>History, Geography & Topography of Border/Coastal areas</td>
<td>2</td>
</tr>
</tbody>
</table>
CE3481 STRENGTH OF MATERIALS AND FLUID MACHINERY LABORATORY L T P C 0 0 4 2

COURSE OBJECTIVE:
1. To study the mechanical properties of metals, wood and spring by testing in laboratory.
2. To verify the principles studied in fluid mechanics and machinery theory by performing experiments in laboratory.

UNIT – I STRENGTH OF MATERIALS
LIST OF EXPERIMENTS
1. Tension test on mild steel rod
2. Torsion test on mild steel rod
3. Hardness test on metal (Rockwell and Brinell Hardness)
4. Compression test on helical spring
5. Deflection test on carriage spring

UNIT – II FLUID MECHANICS AND MACHINES LABORATORY
LIST OF EXPERIMENTS
1. (a) Determination of coefficient of discharge of a venturimeter
 (b) Determination of friction factor for flow through pipes
2. (a) Determination of metacentric height
 (b) Determination of forces due to impact of jet on a fixed plate
3. Characteristics of centrifugal pumps
4. Characteristics of reciprocating pump
5. Characteristics of Pelton wheel turbine

TOTAL: 60 PERIODS

OUTCOMES: On completion of the course, the student is expected to be able to
1. Determine the tensile, torsion and hardness properties of metals by testing
2. Determine the stiffness properties of helical and carriage spring
3. Apply the conservation laws to determine the coefficient of discharge of a venturimeter and finding the friction factor of given pipe
4. Apply the fluid static and momentum principles to determine the metacentric height and forces due to impact of jet
5. Determine the performance characteristics of turbine, rotodynamic pump and positive displacement pump.

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

ME3461 THERMAL ENGINEERING LABORATORY L T P C 0 0 4 2

COURSE OBJECTIVES
1 To study the valve and port timing diagram and performance characteristics of IC engines
2 To study the Performance of refrigeration cycle / components
To study the Performance and Energy Balance Test on a Steam Generator.

PART I: IC ENGINES LABORATORY

List of Experiments
2. Actual p-v diagrams of IC engines.
3. Performance Test on four – stroke Diesel Engine.
5. Morse Test on Multi-Cylinder Petrol Engine.
6. Retardation Test on a Diesel Engine.
7. Determination of p-θ diagram and heat release characteristics of an IC engine.
8. Determination of Flash Point and Fire Point of various fuels / lubricants
9. Performance test on a two stage Reciprocating Air compressor
10. Determination of COP of a Refrigeration system

PART II STEAM LABORATORY

List of Experiments:
1. Study of Steam Generators and Turbines.

TOTAL: 60 PERIODS

OUTCOMES:

At the end of the course the students would be able to
1. Conduct tests to evaluate performance characteristics of IC engines
2. Conduct tests to evaluate the performance of refrigeration cycle
3. Conduct tests to evaluate Performance and Energy Balance on a Steam Generator.

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

MS3411 INDUSTRIAL TRAINING II

L T P C

0 0 0 2

Inspection and testing of lathes, pumps and motors - BIS specification for motors and pump sets – list of testing instrument - functions - foot mounting motor dimensions as per IS: 1231 - importance of name plate and identification of name plate details - trouble shooting of induction motors - type of routine test of induction motor as per IS : 7538 (Performance Calculations) 1) Measurement of stator resistance 2) High voltage test 3) Measurement of insulation resistance 4) Reduced voltage test 5) No load test 6) Full load test 7) Locked rotor test 8) Starting torque and starting current 9) Pull up torque 10) Pull out torque 11) Momentary over load test 12) Temperature rise test - Final inspection and testing for conventional lathes - Test charts - Inspection of the machine tool for BIS and IMTMA standard - Cutting test - Method of inspection testing - Gauges and instruments required – Accuracy requirements - Deviation observed - Study of inspection methods and preparation of inspection format for lathe bed - Head stock body - Tail stock body - Apron body -
Threading and feed box – Gear box - Head stock spindle - Tail stock spindle - Gear - Lead screw - Feed shaft - Spine shaft. – Exposure to metrological aspects of components used for lathes, pumps and motors.

CME391 DESIGN FOR MANUFACTURING

COURSE OBJECTIVES

1. To introduce economic process selection principles and general design principles for manufacturability in the development and design of products for various engineering applications. Also, apply design consideration principles of casting in the design of cast products.
2. To learn design consideration principles of forming in the design of extruded, stamped, and forged products.
3. To learn design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
4. To learn design consideration principles of welding in the design of welded products.
5. To learn design consideration principles of assembly in the design of assembled products.

UNIT – I INTRODUCTION AND CASTING

Introduction - Economics of process selection - General design principles for manufacturability; Design considerations for: Sand cast – Die cast – Permanent mold cast parts.

UNIT – II FORMING

Design considerations for: Metal extruded parts – Impact/Cold extruded parts – Stamped parts – Forged parts.

UNIT – III MACHINING

Design considerations for: Turned parts – Drilled parts – Milled, planed, shaped and slotted parts – Ground parts.

UNIT – IV WELDING

UNIT – V ASSEMBLY

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

1. Discuss the economic process selection principles and general design principles for manufacturability in the development and design of products for various engineering applications. Also, apply design consideration principles of casting in the design of cast products.
2. Explain design consideration principles of forming in the design of extruded, stamped, and forged products.
3. Explain design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
4. Explain design consideration principles of welding in the design of welded products.
5. Explain design consideration principles of assembly in the design of assembled products.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME380 AUTOMOBILE ENGINEERING

COURSE OBJECTIVES

1. To study the construction and working principle of various parts of an automobile.
2. To study the practice for assembling and dismantling of engine parts and transmission system
3. To study various transmission systems of automobile.
4. To study about steering, brakes and suspension systems
5. To study alternative energy sources

UNIT – I VEHICLE STRUCTURE AND ENGINES
Types of automobiles vehicle construction and different layouts, chassis, frame and body, Vehicle aerodynamics (various resistances and moments involved), IC engines – components-functions and materials, variable valve timing (VVT).

UNIT – II ENGINE AUXILIARY SYSTEMS
Electronically controlled gasoline injection system for SI engines, Electronically controlled diesel injection system (Unit injector system, Rotary distributor type and common rail direct injection system), Electronic ignition system (Transistorized coil ignition system, capacitive discharge ignition system), Turbo chargers (WGT, VGT), Engine emission control by three way catalytic converter system, Emission norms (Euro and BS).

UNIT – III TRANSMISSION SYSTEMS
Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, Overdrive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints, Differential and rear axle, Hotchkiss Drive and Torque Tube Drive.

UNIT – IV STEERING, BRAKES AND SUSPENSION SYSTEMS
Steering geometry and types of steering gear box-Power Steering, Types of Front Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, Antilock Braking System (ABS), electronic brake force distribution (EBD) and Traction Control.
UNIT – V ALTERNATIVE ENERGY SOURCES

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Recognize the various parts of the automobile and their functions and materials.
2. Discuss the engine auxiliary systems and engine emission control.
3. Distinguish the working of different types of transmission systems.
4. Explain the Steering, Brakes and Suspension Systems.
5. Predict possible alternate sources of energy for IC Engines.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME399 OPERATIONAL RESEARCH L T P C
3 0 0 3

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
1. To learn Selecting the constraints on the availability of resources and developing a model and rendering an optimal solution for the given circumstances.
2. To study Appraising the challenges in the transportation and production problems and furnishing a rational solution to maximize the benefits.
3. To learn Planning the purchase/ manufacturing policies, managing the spares/ stocks and meeting the customer demands.
4. To Analysing the queue discipline and exploring the avenues for better customer service.
5. To Investigating the nature of the project and offering methodical assistance towards decision making in maintenance.
UNIT – I INTRODUCTION TO OPERATIONS RESEARCH AND LINEAR PROGRAMMING 9

UNIT – II TRANSPORTATION, ASSIGNMENT AND PRODUCTION SCHEDULING PROBLEMS 9

UNIT – III INVENTORY CONTROL MODELS & SYSTEMS 9

Inventory Control: Introduction, Models – Problems in Purchase and Production(Manufacturing) models with and without shortages – Theory on types of inventory control systems: P& Q, ABC, VED, FNS, XYZ, SDE and HML.

UNIT – IV QUEUING THEORY 9

Queuing Theory: Introduction; Applications; Terminology, Poisson process and exponential distribution – Problems in Single Server and Multi Server Queueing Models –Case study on simulation using Monte Carlo technique.

UNIT – V PROJECT MANAGEMENT AND REPLACEMENT MODELS 9

TOTAL :45 PERIODS

OUTCOMES: At the end of the course the students would be able to

1. Discuss the selection of the constraints on the availability of resources, develop a model and render an optimal solution for the given circumstances.
2. Explain the appraise the challenges in the transportation and production problems and furnish a rational solution to maximize the benefits.
3. Explain plan the purchase/ manufacturing policies, manage the spares/ stocks, and meet the customer demands.
4. Analyze the queue discipline and explore the avenues for better customer service.
5. Investigate the nature of the project and offer methodical assistance towards decision making in maintenance.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
CME382 COMPOSITE MATERIALS AND MECHANICS

COURSE OBJECTIVES
1. To study the fundamentals of composite material strength and its mechanical behavior
2. To study the analysis of fiber reinforced Laminate design for different combinations of plies with different orientations of the fiber.
3. To study Thermo-mechanical behavior and study of residual stresses in Laminates during processing.
4. To Implementation of Classical Laminate Theory (CLT) to study and analysis for residual stresses in an isotropic layered structure such as electronic chips.
5. To study the fundamentals of composite material strength and its mechanical behavior

UNIT – I INTRODUCTION, LAMINA CONSTITUTIVE EQUATIONS & MANUFACTURING

UNIT – II FLAT PLATE LAMINATE CONSTITUTE EQUATIONS

UNIT – III LAMINA STRENGTH ANALYSIS

UNIT – IV THERMAL ANALYSIS

UNIT – V ANALYSIS OF LAMINATED FLAT PLATES

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Summarize the various types of Fibers, Equations and manufacturing methods for
2. Derive Flat plate Laminate equations
3. Analyze Lamina strength
4. Analyze the thermal behavior of Composite laminates
5. Analyze Laminate flat plates

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME390 THERMAL POWER ENGINEERING L T P C
3 0 0 3

Course Objectives
1. To study the fuel properties and arrive at proximate and ultimate analysis of fuels.
2. To study the different types of boilers and compute their performance parameters.
3. To study the performance parameters of an air compressor.
4. To study the working principles of various refrigeration systems and perform cop calculations.
5. To study the psychrometric properties and how they are utilized in arriving at calculations to determine heating loads.

UNIT – I FUELS AND COMBUSTION
Fuels - Types and Characteristics of Fuels - Determination of Properties of Fuels – Fuels Analysis - Proximate and Ultimate Analysis - Moisture Determination - Calorific Value -Gross & Net Calorific Values

UNIT – II BOILERS
Types and comparison, Mountings and Accessories. Performance calculations, Boiler trial.
UNIT – III AIR COMPRESSORS
Classification and comparison, working principle, work of compression - with and without clearance,
Volumetric efficiency, Isothermal efficiency and Isentropic efficiency. Multistage air compressor with
Intercooling. Working principle and comparison of Rotary compressors with reciprocating air compressors

UNIT – IV REFRIGERATION SYSTEMS
Vapour compression refrigeration cycle, Effect of Superheat and Sub-cooling, Performance calculations,
Working principle of air cycle, vapour absorption system, and Thermoelectric refrigeration.

UNIT – V PSYCHROMETRY AND AIR-CONDITIONING
Psychrometric properties – Property calculations using Psychrometric chart and expressions. Psychrometric
processes – adiabatic saturation, sensible heating and cooling, humidification, dehumidification, evaporative
cooling and adiabatic mixing Air conditioning systems, concept of RSHF, GSHF and ESHF, Cooling load
calculations. Cooling towers – concept and types.

OUTCOMES: At the end of the course the students would be able to
1. Evaluate the fuel properties and arrive at proximate and ultimate analysis of fuels.
2. Analyze different types of boilers and compute their performance parameters.
3. Evaluate the performance parameters of an air compressor
4. Apply the working principles of various refrigeration systems and perform cop calculations
5. Analyze the psychrometric properties and how they are utilized in arriving at calculations to
determine heating loads.

TOTAL:45 PERIODS

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

MS3511 METALLURGY LABORATORY L T P C
0 0 4 2

OBJECTIVES:
• To train the students in observation and interpretation of Microstructure of Engineering materials.
• To train students in Heat treatment, hardenability and surface treatment of Engineering Materials
• To train the students in testing of Foundry sand

LIST OF EXPERIMENTS:

1. Specimen preparation for macro – examination.
2. Specimen preparation for micro examination and study of Micro structure of –
 a) Carbon steel s(High, Medium, and Low)
 b) Cast Iron (Gray, White, Nodular, Malleable)
 c) Brass (70/30), Bronze (tin bronze), Al-Si alloy, cupro-nickel, Ti alloy.
4. Cooling curves
 a) Pure Metal (Pb or Sn)
 b) Alloy (Pb-Sn or Pb-Sb)
5. Heat treatments (carry out the following heat treatment and study the micro structure before and after heat treatments)
 a) Annealing
 b) Normalising
 c) Quench Hardening
 d) Tempering
6. Jominy End Quench Test
7. Foundry Sand testing
 a) Sieve analysis
 b) Strength of moulding sand
 c) Permeability of moulding sand
 d) Clay content of moulding sand
 e) Moisture content of moulding sand
8. Electro-chemical Test
 a) Electro deposition
 b) Electro-chemical etching test

TOTAL: 60 PERIODS

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

MS3512 INDUSTRIAL TRAINING III (PRODUCT DEVELOPMENT AND QUALITY SYSTEMS)
L T P C 0 0 0 2
Total product knowledge, reverse engineering and quality system skill (Mini Project- I), Detailed constructional knowledge of product assembly, sub assembly, components, Sequential assembly and disassembly procedure, capturing of all geometrical dimensions, drawings, tolerances, fits,
form error, material of construction and to understand the product development skills for lathes, drilling machines, submersible pumps, mono block pumps& electric motors - Comparison of design construction of other makes for above products and analysis - To develop any new product with innovation & creativity - Report preparation, presentation and evaluation - Awareness of TQM, ISO9000, ISO14000 and other standards etc. - Process capability studies – Rejection analysis – Six sigma applications – Calibration needs – Calibration authorities – Records – Charts – Applications – Form error understanding and verification - Case studies in quality systems.

MS3601 INSTRUMENTATION AND CONTROL SYSTEMS

COURSE OBJECTIVES
1 To impart knowledge on measurements and variables
2 To introduce different parameters in environment and measuring techniques
3 To familiarise the working principle of temperature, pressure, vibration and flow measurement sensors.
4 To teach the control system principle and build times response of different system

UNIT I TRANSDUCER VARIABLES AND MEASUREMENT SIGNALS

Three stages of generalized measurement system – mechanical loading – static characteristics of instruments- factors considered in selection of instruments – commonly used terms, error analysis and classification – sources of error – frequency response – displacement transducers – potentiometer, strain gauge – orientation of strain gauge, LVDT – variable reluctance transducers, proximity sensors, capacitance transducers, tacho generator; smart sensors, integrated sensors, radio telemetry, torque measurements, precision systems like video discs and drives, laser printer etc

UNIT II VIBRATION AND TEMPERATURE

Elementary accelerometer and vibrometer – seismic instrument for acceleration – velocity measurement, piezo electric accelerometer, temperature measurement-liquid in glass thermometer, pressure thermometer, resistance temperature detector, thermocouples and thermopiles, thermistor, total radiation pyrometer, optical pyrometer – temperature measuring problem in flowing fluid.

UNIT III PRESSURE AND FLOW MEASUREMENT

Manometer, elastic transducer, elastic diaphragm transducer – pressure cell, bulk modulus pressure gauge – Mc Leod gauge – thermal conductivity gauge, calibration of pressure gauge, flow measurement – turbine type meter, hotwire anemometer, magnetic flow meter; liquid level sensors, light sensors, selection of sensors.

UNIT IV CONTROL SYSTEM PRINCIPLE

Basic elements of control systems – open loop and closed loop control – elements of closed loop control system – introduction to sampled data, digital control and multivariable control systems. Elements of lead and lag compensation, elements of proportional, integral - derivative (PID) control.

MODELLING OF SYSTEMS: Mathematical Model for mechanical and electrical system - Transfer function – transfer function of hydraulic and pneumatic elements – flapper valve. Transfer function of D C Generator, DC servomotor and AC servomotors, tacho generators, gear trains, potentiometers, synchros – Transfer function of closed loop systems: determination of transfer function for position control, speed control system, temperature control system – block diagram reduction and signal flow graph
UNIT V SYSTEM ANALYSIS

TOTAL:60 PERIODS

OUTCOMES: Upon the completion of this course the students will be able to
1. Classify uncertainties in measurement data and review various measurement signals.
2. Explain the working principle of temperature, pressure, vibration and flow measurement sensors
3. Understand the concept of instrumentation which can be applied to integrate the same with control systems
4. Apply control system principle and illustrate the use of the sensor to design close loop system
5. Develop appropriate mathematical model for mechanical and electrical system.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME389 DESIGN OF TRANSMISSION SYSTEM L T P C 3 0 0 3

COURSE OBJECTIVES
1. To gain knowledge on the principles and procedure for the design of Mechanical power Transmission components.
2. To understand the standard procedure available for Design of Transmission of Mechanical elements spur gears and parallel axis helical gears.
3. To learn the design bevel, worm and cross helical gears of Transmission system.
4. To learn the concepts of design multi and variable speed gear box for machine tool applications.
5. To learn the concepts of design to cams, brakes and clutches
 (Use of P S G Design Data Book permitted)

UNIT – I DESIGN OF FLEXIBLE ELEMENTS
Design of Flat belts and pulleys - Selection of V belts and pulleys – Selection of hoisting wire ropes and pulleys – Design of Transmission chains and Sprockets.

UNIT – II SPUR GEARS AND PARALLEL AXIS HELICAL GEARS

Speed ratios and number of teeth-Force analysis -Tooth stresses - Dynamic effects – Fatigue strength - Factor of safety - Gear materials – Design of straight tooth spur & helical gears based on strength and wear considerations – Pressure angle in the normal and transverse plane-Equivalent number of teeth-forces for helical gears.

UNIT – III BEVEL, WORM AND CROSS HELICAL GEARS

UNIT – IV GEAR BOXES

Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box - Speed reducer unit. – Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications.

UNIT – V CAMS, CLUTCHES AND BRAKES

Cam Design: Types-pressure angle and under cutting base circle determination-forces and surface stresses. Design of plate clutches –axial clutches-cone clutches-internal expanding rim clutches- Electromagnetic clutches. Band and Block brakes - external shoe brakes – Internal expanding shoe brake.

OUTCOMES: At the end of the course the students would be able to

1. Apply the concepts of design to belts, chains and rope drives.
2. Apply the concepts of design to spur, helical gears.
3. Apply the concepts of design to worm and bevel gears.
4. Apply the concepts of design to gear boxes.
5. Apply the concepts of design to cams, brakes and clutches

TEXT BOOKS:

REFERENCES:

| CO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 3 | 2 | 3 | 1 | 1 | 1 | 2 | 3 | 2 |
| 2 | 3 | 2 | 3 | 1 | 1 | 1 | 2 | 3 | 2 |
| 3 | 3 | 2 | 3 | 1 | 1 | 1 | 2 | 3 | 2 |
| 4 | 3 | 2 | 3 | 1 | 1 | 1 | 2 | 3 | 2 |
| 5 | 3 | 2 | 3 | 1 | 1 | 1 | 2 | 3 | 2 |

Low (1) ; Medium (2) ; High (3)
CME387 NON-TRADITIONAL MACHINING PROCESSES L T P C
3 0 0 3

COURSE OBJECTIVES
1. To classify non-traditional machining processes and describe mechanical energy based non-traditional machining processes.
2. To differentiate chemical and electro chemical energy-based processes.
3. To describe thermo-electric energy-based processes.
4. To explain nano finishing processes.
5. To introduce hybrid non-traditional machining processes and differentiate hybrid non-traditional machining processes.

UNIT – I INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES 9
Introduction - Need for non-traditional machining processes - Classification of non-traditional machining processes - Applications, advantages and limitations of non-traditional machining processes - Abrasive jet machining, Abrasive water jet machining, Ultrasonic machining their principles, equipment, effect of process parameters, applications, advantages and limitations.

UNIT – II CHEMICAL AND ELECTRO CHEMICAL ENERGY BASED PROCESSES 9
Principles, equipments, effect of process parameters, applications, advantages and limitations of Chemical machining, Electro-chemical machining, Electro-chemical honing, Electro-chemical grinding, Electro chemical deburring.

UNIT – III THERMO-ELECTRIC ENERGY BASED PROCESSES 9
Principles, equipments, effect of process parameters, applications, advantages and limitations of Electric discharge machining, Wire electric discharge machining, Laser beam machining, Plasma arc machining, Electron beam machining, Ion beam machining.

UNIT – IV NANO FINISHING PROCESSES 9
Principles, equipments, effect of process parameters, applications, advantages and limitations of Abrasive flow machining – Chemo mechanical polishing, Magnetic abrasive finishing, Magnetorheological finishing, Magneto rheological abrasive flow finishing.

UNIT – V HYBRID NON-TRADITIONAL MACHINING PROCESSES 9
Introduction - Various hybrid non-traditional machining processes, their working principles, equipments, effect of process parameters, applications, advantages and limitations. Selection and comparison of different non-traditional machining processes.

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Formulate different types of non-traditional machining processes and evaluate mechanical energy based non-traditional machining processes.
2. Illustrate chemical and electro chemical energy based processes.
3. Evaluate thermo-electric energy based processes.
4. Interpret nano finishing processes.
5. Analyse hybrid non-traditional machining processes and differentiate non-traditional machining processes.

TEXT BOOKS:
CME396 PROCESS PLANNING AND COST ESTIMATION

COURSE OBJECTIVES

1. To introduce the process planning concepts to make cost estimation for various products after process planning
2. To learn the various Process Planning Activities
3. To provide the knowledge of importance of costing and estimation.
4. To provide the knowledge of estimation of production costing.
5. To learn the knowledge of various Machining time calculations

UNIT – I INTRODUCTION TO PROCESS PLANNING
Introduction- methods of process planning-Drawing Interpretation-Material evaluation – steps in process selection- Production equipment and tooling selection

UNIT – II PROCESS PLANNING ACTIVITIES
Process parameters calculation for various production processes-Selection jigs and fixture selection of quality assurance methods - Set of documents for process planning-Economics of process planning- case studies

UNIT – III INTRODUCTION TO COST ESTIMATION

UNIT – IV PRODUCTION COST ESTIMATION
Estimation of Different Types of Jobs - Estimation of Forging Shop, Estimation of Welding Shop, Estimation of Foundry Shop
UNIT – V MACHINING TIME CALCULATION

Estimation of Machining Time - Importance of Machine Time Calculation - Calculation of Machining Time for Different Lathe Operations, Drilling and Boring - Machining Time Calculation for Milling, Shaping and Planning - Machining Time Calculation for Grinding.

Total: 45 periods

OUTCOMES: At the end of the course the students would be able to
1. Discuss select the process, equipment and tools for various industrial products.
2. Explain the prepare process planning activity chart.
3. Explain the concept of cost estimation.
4. Compute the job order cost for different type of shop floor.
5. Calculate the machining time for various machining operations.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
1. Developing mathematical models for Boundary Value Problems and their numerical solution.
2. Applying concepts of Finite Element Analysis to solve one dimensional problem.
3. Determining field variables for two dimensional scalar variable problems.
4. Determining field variables for two dimensional vector variable problems.
5. Applying the need for Isoparametric transformation and the use of numerical integration.

UNIT I INTRODUCTION
Historical Background – Mathematical Modeling of field problems in Engineering – Governing Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems –
Weighted Residual Methods – Variational Formulation of Boundary Value Problems – Ritz Technique – Basic concepts of the Finite Element Method.

UNIT II ONE-DIMENSIONAL PROBLEMS 9

UNIT III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS 9

UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS 9

UNIT V ISOPARAMETRIC FORMULATION AND ADVANCED TOPICS 9

TOTAL = 45 PERIODS

COURSE OUTCOMES: Upon completion of this course, the students will be able to:
1. Develop mathematical models for Boundary Value Problems and their numerical solution
2. Apply concepts of Finite Element Analysis to solve one dimensional problems
3. Determine field variables for two dimensional scalar variable problems
4. Determine field variables for two dimensional vector variable problems
5. Apply the need for Isoparametric transformation and the use of numerical integration

TEXT BOOKS:

REFERENCES:
OBJECTIVE:
- To expose the students in the usage of software for modeling and analysis of machine components.

LIST OF EXPERIMENTS:
1. Solid modeling of engineering components of a typical assembly and extraction of production drawings of the above components and assembly.
2. Determination of stresses and factor of safety in critical machine components by FEM and experimental validation of the results by strain measurement.
3. Dynamic analysis of chassis frame of an automobile.
4. Thermal analysis of IC engine components using FEA software.
5. Crash analysis of an automobile using FEA software.
10. Tolerance stack up using simulation software.

TOTAL: 60 PERIODS

OUTCOMES:
- Exposed to use CAD software for creating wire frame and solid models of machine parts
- Ability to conduct kinematic and dynamic simulations of mechanisms
- Knowledge in using softwares for Crash/Impact, flow analysis.
- Usage of FEA softwares in mechanical and thermal load analysis

OBJECTIVE:
- The main objective is to give an opportunity to the student to get hands on training in the fabrication of one or more components of a complete working model, which is designed by them.

GUIDELINE FOR REVIEW AND EVALUATION
The students may be grouped into 2 to 4 and work under a project supervisor. The device/system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL : 60 PERIODS

OUTCOMES:
Upon the completion of this course the students will be able to
CO1 design and Fabricate the machine element or the mechanical product.
CO2 demonstrate the working model of the machine element or the mechanical product.
MS3613
INDUSTRIAL TRAINING IV
(DESIGN AND PRODUCTION OF CASTINGS)

ME3591
DESIGN OF MACHINE ELEMENTS

COURSE OBJECTIVES
1. To learn the various steps involved in the Design Process.
2. To Learn designing shafts and couplings for various applications.
3. To Learn the design of temporary and permanent Joints.
4. To Learn designing helical, leaf springs, flywheels, connecting rods and crank shafts for various applications.
5. To Learn designing and select sliding and rolling contact bearings, seals and gaskets.
(Use of PSG Design Data book is permitted)

UNIT – I FUNDAMENTAL CONCEPTS IN DESIGN

UNIT – II DESIGN OF SHAFTS AND COUPLINGS
Shafts and Axles - Design of solid and hollow shafts based on strength, rigidity and critical speed – Keys and splines – Rigid and flexible couplings.

UNIT – III DESIGN OF TEMPORARY AND PERMANENT JOINTS
Threaded fasteners - Bolted joints including eccentric loading, Knuckle joints, Cotter joints – Welded joints-Butt, Fillet and parallel transverse fillet welds – welded joints subjected to bending, torsional and eccentric loads, riveted joints for structures - theory of bonded joints.

UNIT – IV DESIGN OF ENERGY STORING ELEMENTS AND ENGINE COMPONENTS
Types of springs, design of helical and concentric springs--surge in springs, Design of laminated springs - rubber springs - Flywheels considering stresses in rims and arms for engines and punching machines--Solid and Rimmed flywheels- connecting rods and crank shafts

UNIT – V DESIGN OF BEARINGS AND MISCELLANEOUS ELEMENTS
Sliding contact and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number, Raimondi & Boyd graphs, -- Selection of Rolling Contact bearings –Design of Seals and Gaskets.

Total: 60 Periods
OUTCOMES: At the end of the course the students would be able to
1. Explain the design machine members subjected to static and variable loads.
2. Apply the concepts design to shafts, key and couplings.
3. Apply the concepts of design to bolted, Knuckle, Cotter, riveted and welded joints.
4. Apply the concept of design helical, leaf springs, flywheels, connecting rods and crank shafts.
5. Apply the concepts of design and select sliding and rolling contact bearings, seals and gaskets.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>PSO</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

ME3592 METROLOGY AND MEASUREMENTS L T P C 3 0 0 3

COURSE OBJECTIVES
1. To learn basic concepts of the metrology and importance of measurements.
2. To teach measurement of linear and angular dimensions assembly and transmission elements.
3. To study the tolerance analysis in manufacturing.
4. To develop the fundamentals of GD & T and surface metrology.
5. To provide the knowledge of the advanced measurements for quality control in manufacturing industries.

UNIT – I BASICS OF METROLOGY

UNIT – II MEASUREMENT OF LINEAR, ANGULAR DIMENSIONS, ASSEMBLY AND TRANSMISSION ELEMENTS
Linear Measuring Instruments – Vernier caliper, Micrometer, Vernier height gauge, Depth Micrometer, Bore gauge, Telescoping gauge; Gauge blocks – Use and precautions, Comparators – Working and advantages; Opto-mechanical measurements using measuring microscope and Profile projector - Angular measuring

UNIT – III TOLERANCE ANALYSIS 9
Tolerancing – Interchangeability, Selective assembly, Tolerance representation, Terminology, Limits and Fits, Problems (using tables IS919); Design of Limit gauges, Problems. Tolerance analysis in manufacturing, Process capability, tolerance stackup, tolerance charting.

UNIT – IV METROLOGY OF SURFACES 9
Fundamentals of GD & T– Conventional vs Geometric tolerance, Datums, Inspection of geometric deviations like straightness, flatness, roundness deviations; Simple problems – Measurement of Surface finish – Functionality of surfaces, Parameters, Comparative, Stylus based and Optical Measurement techniques, Filters, Introduction to 3D surface metrology- Parameters.

UNIT – V ADVANCES IN METROLOGY 9

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Discuss the concepts of measurements to apply in various metrological instruments.
2. Apply the principle and applications of linear and angular measuring instruments, assembly and transmission elements.
3. Apply the tolerance symbols and tolerance analysis for industrial applications.
4. Apply the principles and methods of form and surface metrology.
5. Apply the advances in measurements for quality control in manufacturing Industries.

TEXT BOOKS:

REFERENCES:
ME3581 METROLOGY AND DYNAMICS LABORATORY

L T P C
0 0 4 2

COURSE OBJECTIVES
1. To study the different measurement equipment and use of this industry for quality inspection.
2. To supplements the principles learnt in dynamics of machinery.
3. To understand how certain measuring devices are used for dynamic testing.

UNIT – I METROLOGY

LIST OF EXPERIMENTS
6. Non-contact (Optical) measurement using Measuring microscope / Profile projector and Video measurement system.
8. Measurement of Surface finish in components manufactured using various processes (turning, milling, grinding, etc.,) using stylus based instruments.

UNIT – II DYNAMICS LABORATORY

List of Experiments:
1. Study of gear parameters.
2. Epicycle gear Train.
3. Determination of moment of inertia of flywheel and axle system.
4. Determination of mass moment of inertia of a body about its axis of symmetry.
5. Undamped free vibrations of a single degree freedom spring-mass system.
6. Torsional Vibration (Undamped) of single rotor shaft system.
7. Dynamic analysis of cam mechanism.
8. Experiment on Watts Governor.
9. Experiment on Porter Governor.
10. Experiment on Proell Governor.
11. Experiment on motorized gyroscope.
12. Determination of critical speed of shafts.

TOTAL: 60 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. The students able to measure the gear tooth dimensions, angle using sine bar, straightness.
2. Determine mass moment of inertia of mechanical element, governor effort and range of sensitivity.
3. Determine the natural frequency and damping coefficient, critical speeds of shafts.

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
ME3691 HEAT AND MASS TRANSFER

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

1. To Learn the principal mechanism of heat transfer under steady state and transient conditions.
2. To learn the fundamental concept and principles in convective heat transfer.
3. To learn the theory of phase change heat transfer and design of heat exchangers.
4. To study the fundamental concept and principles in radiation heat transfer.
5. To develop the basic concept and diffusion, convective di mass transfer.

UNIT – I CONDUCTION

UNIT – II CONVECTION

UNIT – III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

UNIT – IV RADIATION

UNIT – V MASS TRANSFER

TOTAL: 60 PERIODS

OUTCOMES: At the end of the course the students would be able to

1. Apply heat conduction equations to different surface configurations under steady state and transient conditions and solve problems.
2. Apply free and forced convective heat transfer correlations to internal and external flows through/over various surface configurations and solve problems.
3. Explain the phenomena of boiling and condensation, apply LMTD and NTU methods of thermal analysis to different types of heat exchanger configurations and solve problems.
4. Explain basic laws for Radiation and apply these principles to radiative heat transfer between different types of surfaces to solve problems.
5. Apply diffusive and convective mass transfer equations and correlations to solve problems for different applications.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

NCC Credit Course Level 3*
NX3651 (ARMY WING) NCC Credit Course - III
PERSONALITY DEVELOPMENT
PD 3 Group Discussion: Team Work
PD 4 Career Counselling, SSB Procedure & Interview Skills
PD 5 Public Speaking
BORDER & COASTAL AREAS
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCA 2</td>
<td>Security Setup and Border/Coastal management in the area</td>
<td>2</td>
</tr>
<tr>
<td>BCA 3</td>
<td>Security Challenges & Role of cadets in Border management</td>
<td>2</td>
</tr>
</tbody>
</table>

ARMED FORCES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF 2</td>
<td>Modes of Entry to Army, CAPF, Police</td>
<td>3</td>
</tr>
</tbody>
</table>

COMMUNICATION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 1</td>
<td>Introduction to Communication & Latest Trends</td>
<td>3</td>
</tr>
</tbody>
</table>

INFANTRY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF 1</td>
<td>Organisation of Infantry Battalion & its weapons</td>
<td>3</td>
</tr>
</tbody>
</table>

MILITARY HISTORY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH 1</td>
<td>Biographies of Renowned Generals</td>
<td>4</td>
</tr>
<tr>
<td>MH 2</td>
<td>War Heroes - PVC Awardees</td>
<td>4</td>
</tr>
<tr>
<td>MH 3</td>
<td>Study of Battles - Indo Pak War 1965, 1971 & Kargil</td>
<td>9</td>
</tr>
<tr>
<td>MH 4</td>
<td>War Movies</td>
<td>6</td>
</tr>
</tbody>
</table>

TOTAL: 45 PERIODS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX3652</td>
<td>(NAVAL WING) NCC Credit Course - III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PERSONALITY DEVELOPMENT

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD 3</td>
<td>Group Discussion: Team Work</td>
<td>2</td>
</tr>
<tr>
<td>PD 4</td>
<td>Career Counselling, SSB Procedure & Interview Skills</td>
<td>3</td>
</tr>
<tr>
<td>PD 5</td>
<td>Public Speaking</td>
<td>4</td>
</tr>
</tbody>
</table>

BORDER & COASTAL AREAS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCA 2</td>
<td>Security Setup and Border/Coastal management in the area</td>
<td>2</td>
</tr>
<tr>
<td>BCA 3</td>
<td>Security Challenges & Role of cadets in Border management</td>
<td>2</td>
</tr>
</tbody>
</table>

NAVAL ORIENTATION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO 3</td>
<td>Modes of Entry - IN, ICG, Merchant Navy</td>
<td>3</td>
</tr>
<tr>
<td>AF 2</td>
<td>Naval Expeditions & Campaigns</td>
<td>3</td>
</tr>
</tbody>
</table>

NAVAL COMMUNICATION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC 1</td>
<td>Introduction to Naval Communications</td>
<td>1</td>
</tr>
<tr>
<td>NC 2</td>
<td>Semaphore</td>
<td>1</td>
</tr>
</tbody>
</table>

NAVIGATION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 1</td>
<td>Navigation of Ship - Basic Requirements</td>
<td>1</td>
</tr>
<tr>
<td>N 2</td>
<td>Chart Work</td>
<td>1</td>
</tr>
</tbody>
</table>

SEAMANSHIP

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH 1</td>
<td>Introduction to Anchor Work</td>
<td>2</td>
</tr>
<tr>
<td>MH 2</td>
<td>Rigging Capsule</td>
<td>6</td>
</tr>
<tr>
<td>MH 3</td>
<td>Boatwork - Parts of Boat</td>
<td>2</td>
</tr>
<tr>
<td>MH 4</td>
<td>Boat Pulling Instructions</td>
<td>2</td>
</tr>
<tr>
<td>MH 5</td>
<td>Whaler Sailing Instructions</td>
<td>3</td>
</tr>
</tbody>
</table>

FIRE FIGHTING FLOODING & DAMAGE CONTROL

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFDC 1</td>
<td>Fire Fighting</td>
<td>2</td>
</tr>
<tr>
<td>FFDC 2</td>
<td>Damage Control</td>
<td>2</td>
</tr>
</tbody>
</table>

SHIP MODELLING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>Ship Modelling Capsule</td>
<td>3</td>
</tr>
</tbody>
</table>
NCC Credit Course Level 3*

NX3653 (AIR FORCE WING) NCC Credit Course Level - III

<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSONALITY DEVELOPMENT</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PD 3 Group Discussion: Team Work</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD 4 Career Counselling, SSB Procedure & Interview Skills</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD 5 Public Speaking</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BORDER & COASTAL AREAS</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCA 2 Security Setup and Border/Coastal management in the area</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCA 3 Security Challenges & Role of cadets in Border management</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRMANSHP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 1 Airmanship</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BASIC FLIGHT INSTRUMENTS</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI 1 Basic Flight Instruments</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AERO MODELLING</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM 1 Aero Modelling Capsule</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENERAL SERVICE KNOWLEDGE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSK 4 Latest Trends & Acquisitions</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR CAMPAIGNS</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC 1 Air Campaigns</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRINCIPLES OF FLIGHT</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF 1 Principles of Flight</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF 2 Forces acting on Aircraft</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVIGATION</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM 1 Navigation</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM 2 Introduction to Met and Atmosphere</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AERO ENGINES</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1 Introduction and types of Aero Engine</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 2 Aircraft Controls</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL : 45 PERIODS

ME3681 CAD/CAM LABORATORY

<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD/CAM LABORATORY</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

1. To gain practical experience in handling 2D drafting and 3D modelling software systems
2. Designing 3 Dimensional geometric model of parts, sub-assemblies, assemblies and exporting it to drawing
3. Programming G & M Code programming and simulate the CNC program and Generating part programming data through CAM software

3D GEOMETRIC MODELLING
1. CAD Introduction
 Sketch:
 Solid modeling: Extrude, Revolve, Sweep, Variational sweep and Loft.
 Surface modeling: Extrude, Sweep, Trim, Mesh of curves and Free form.
 Feature manipulation: Copy, Edit, Pattern, Suppress, History operations.
 Assembly: Constraints, Exploded Views, Interference check
 Drafting: Layouts, Standard & Sectional Views, Detailing & Plotting

2. Creation of 3D assembly model of following machine elements using 3D Modelling software
 1. Flange Coupling
 2. Plummer Block
 3. Screw Jack
 4. Lathe Tailstock
 5. Universal Joint
 6. Machine Vice
 7. Stuffing box
 8. Crosshead
 9. Safety Valves
 10. Non-return valves
 11. Connecting rod
 12. Piston
 13. Crankshaft

 * Students may also be trained in manual drawing of some of the above components (specify the number – progressive arrangement of 3D)

MANUAL PART PROGRAMMING 30

1. CNC Machining Centre
 i) Linear Cutting.
 ii) Circular cutting.
 iii) Cutter Radius Compensation.
 iv) Canned Cycle Operations.

2. CNC Turning Centre
 i) Straight, Taper and Radial Turning.
 ii) Thread Cutting.
 iii) Rough and Finish Turning Cycle.
 iv) Drilling and Tapping Cycle.

3. COMPUTER AIDED PART PROGRAMMING
 i) Generate CL Data and Post process data using CAM packages for Machining and Turning Centre.
 ii) Application of CAPP in Machining and Turning

TOTAL: 60 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Design experience in handling 2D drafting and 3D modelling software systems
2. Design 3 Dimensional geometric model of parts, sub-assemblies, assemblies and export it to drawing
3. Demonstrate manual part programming and simulate the CNC program and Generate part programming using G and M code through CAM software.
ME3682 HEAT TRANSFER LABORATORY

COURSE OBJECTIVES
1. To gain experimental knowledge of Predicting the thermal conductivity of solids and liquids.
2. To gain experimental knowledge of Estimating the heat transfer coefficient values of various fluids.
3. To gain experimental knowledge of Testing the performance of tubes in tube heat exchangers

LIST OF EXPERIMENTS:
1. Thermal conductivity measurement of pipe insulation using lagged pipe apparatus.
2. Determination of thermal conductivity of a composite wall, insulating powder, oils, and water.
3. Determination of heat transfer coefficient of air under natural convection and forced convection.
4. Heat transfer from pin-fin under natural and forced convection.
5. Determination of heat flux under pool boiling and flow boiling in various regimes.
8. Determination of Stefan – Boltzmann constant.

TOTAL: 60 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Conduct experiment on Predict the thermal conductivity of solids and liquids
2. Conduct experiment on Estimate the heat transfer coefficient values of various fluids.
3. Conduct experiment on Test the performance of tubes in tube heat exchangers

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

ME3791 MECHATRONICS AND IoT

COURSE OBJECTIVES
1. To make students get acquainted with the sensors and the actuators, which are commonly used in mechatronics systems.
2. To provide insight into the signal conditioning circuits, and also to develop competency in PLC programming and control.
3. To make students familiarize with the fundamentals of IoT and Embedded systems.
To impart knowledge about the Arduino and the Raspberry Pi.
To inculcate skills in the design and development of mechatronics and IoT based systems.

UNIT – I SENSORS AND ACTUATORS

UNIT – II SIGNAL CONDITIONING CIRCUITS AND PLC

UNIT – III FUNDAMENTALS OF IoT AND EMBEDDED SYSTEMS

UNIT – IV CONTROLLERS

UNIT – V MECHATRONICS AND IoT CASE STUDIES

OUTCOMES: At the end of the course the students would be able to
1. Explain Select suitable sensors and actuators to develop mechatronics systems.
2. Discuss Devise proper signal conditioning circuit for mechatronics systems, and also able to implement PLC as a controller for an automated system.
3. Elucidate the fundamentals of float and Embedded Systems
4. Discuss Control I/O devices through Arduino and Raspberry Pi.
5. Design and develop an apt mechatronics/IoT based system for the given real-time application.

TOTAL:45 PERIODS

TEXT BOOKS:

REFERENCES:
ME3792 COMPUTER INTEGRATED MANUFACTURING L T P C

3 0 0 3

COURSE OBJECTIVES

1. To provide the overview of evolution of automation, CIM and its principles.
2. To learn the various Automation tools, include various material handling system.
3. To train students to apply group technology and FMS.
4. To familiarize the computer aided process planning in manufacturing.
5. To introduce to basics of data transaction, information integration and control of CIM.

UNIT – I INTRODUCTION

UNIT – II AUTOMATED MANUFACTURING SYSTEMS

UNIT – III GROUP TECHNOLOGY AND FMS

UNIT – IV PROCESS PLANNING

Process planning – Activities in process planning, Informations required. From design to process planning

UNIT – V PROCESS CONTROL AND DATA ANALYSIS

OUTCOMES: At the end of the course the students would be able to
1. Discuss the basics of computer aided engineering.
2. Choose appropriate automotive tools and material handling systems.
3. Discuss the overview of group technology, FMS and automation identification methods.
4. Design using computer aided process planning for manufacturing of various components
5. Acquire knowledge in computer process control techniques.

TEXT BOOKS:
2. CIM: Computer Integrated Manufacturing: Computer Steered Industry Book by August-Wilhelm Scheer

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

GE3791 HUMAN VALUES AND ETHICS L T P C

COURSE DESCRIPTION
This course aims to provide a broad understanding about the modern values and ethical principles that have evolved and are enshrined in the Constitution of India with regard to the democratic, secular and scientific aspects. The course is designed for undergraduate students so that they could study, understand and apply these values in their day to day life.

COURSE OBJECTIVES:
- To create awareness about values and ethics enshrined in the Constitution of India
- To sensitize students about the democratic values to be upheld in the modern society.
➢ To inculcate respect for all people irrespective of their religion or other affiliations.
➢ To instill the scientific temper in the students’ minds and develop their critical thinking.
➢ To promote sense of responsibility and understanding of the duties of citizen.

UNIT I DEMOCRATIC VALUES
Reading Text: Excerpts from John Stuart Mills’ On Liberty

UNIT II SECULAR VALUES
Understanding Secular values – Interpretation of secularism in Indian context - Disassociation of state from religion – Acceptance of all faiths – Encouraging non-discriminatory practices.
Reading Text: Excerpt from Secularism in India: Concept and Practice by Ram Puniyani

UNIT III SCIENTIFIC VALUES
Reading Text: Excerpt from The Scientific Temper by Antony Michaelis R

UNIT IV SOCIAL ETHICS
Application of ethical reasoning to social problems – Gender bias and issues – Gender violence – Social discrimination – Constitutional protection and policies – Inclusive practices.
Reading Text: Excerpt from 21 Lessons for the 21st Century by Yuval Noah Harari

UNIT V SCIENTIFIC ETHICS
Transparency and Fairness in scientific pursuits – Scientific inventions for the betterment of society - Unfair application of scientific inventions – Role and Responsibility of Scientist in the modern society.

TOTAL: 30 PERIODS

COURSE OUTCOMES
Students will be able to
CO1 : Identify the importance of democratic, secular and scientific values in harmonious functioning of social life
CO2 : Practice democratic and scientific values in both their personal and professional life.
CO3 : Find rational solutions to social problems.
CO4 : Behave in an ethical manner in society
CO5 : Practice critical thinking and the pursuit of truth.

REFERENCES:
4. The Civic Culture: Political Attitudes and Democracy in Five Nations by Gabriel A. Almond and Sidney Verba, Princeton University Press,
5. Research Methodology for Natural Sciences by Soumitro Banerjee, IISc Press, January 2022
COURSE OBJECTIVES
1. To study the basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.
2. To study the planning; organizing and staffing functions of management in professional organization.
3. To study the leading; controlling and decision making functions of management in professional organization.
4. To learn the organizational theory in professional organization.
5. To learn the principles of productivity and modern concepts in management in professional organization.

UNIT – I INTRODUCTION TO MANAGEMENT
Management: Introduction; Definition and Functions – Approaches to the study of Management – Mintzberg’s Ten Managerial Roles – Principles of Taylor; Fayol; Weber; Parker – Forms of Organization: Sole Proprietorship; Partnership; Company (Private and Public); Cooperative – Public Sector Vs Private Sector Organization – Business Environment: Economic; Social; Political; Legal – Trade Union: Definition; Functions; Merits & Demerits.

UNIT – II FUNCTIONS OF MANAGEMENT - I
Planning: Characteristics; Nature; Importance; Steps; Limitation; Planning Premises; Strategic Planning; Vision & Mission statement in Planning– Organizing: Organizing Theory; Principles; Types; Departmentalization; Centralization and Decentralization; Authority & Responsibility – Staffing: Systems Approach; Recruiting and Selection Process; Human Resource Development (HRD) Concept and Design.

UNIT – III FUNCTIONS OF MANAGEMENT - II
Directing (Leading): Leadership Traits; Style; Morale; Managerial Grids (Blake-Mounton, Reddin) – Communication: Purpose; Model; Barriers – Controlling: Process; Types; Levels; Guidelines; Audit (External, Internal, Merits); Preventive Control – Decision Making: Elements; Characteristics; Nature; Process; Classifications.

UNIT – IV ORGANIZATION THEORY
Organizational Conflict: Positive Aspects; Individual; Role; Interpersonal; Intra Group; Inter Group; Conflict Management – Maslow’s hierarchy of needs theory; Herzberg’s motivation-hygiene theory; McClelland’s three needs motivation theory; Vroom’s valence-expectancy theory – Change Management: Concept of Change; Lewin’s Process of Change Model; Sources of Resistance; Overcoming Resistance; Guidelines to managing Conflict.

UNIT – V PRODUCTIVITY AND MODERN TOPICS
Productivity: Concept; Measurements; Affecting Factors; Methods to Improve – Modern Topics (concept, feature/characteristics, procedure, merits and demerits): Business Process Reengineering (BPR); Benchmarking; SWOT/SWOC Analysis; Total Productive Maintenance; Enterprise Resource Planning (ERP); Management of Information Systems (MIS), Industry 4.0.

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Discuss basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.
2. Discuss the planning; organizing and staffing functions of management in professional organization.
3. Apply the leading; controlling and decision making functions of management in professional organization.
4. Discuss the organizational theory in professional organization.
5. Apply principles of productivity and modern concepts in management in professional organization.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

MS3911 INDUSTRIAL TRAINING VII (INDUSTRIAL VISIT AND COLLOQUIUM II)

ME3781 MECHATRONICS AND IoT LABORATORY

Course Objectives
1. To study the concept of mechatronics to design, modelling and analysis of basic electrical hydraulic systems.
2. To provide the hands on-training in the control of linear and rotary actuators.
3. To study the concepts and fundamentals of IoT, sensors, actuators and IoT boards

MECHATRONICS
LIST OF EXPERIMENTS:
1. Measurement of Linear/Angular of Position, Direction and Speed using Transducers.
3. Speed and Direction control of DC Servomotor, AC Servomotor and Induction motors.
5. Programming and Interfacing of Stepper motor and DC motor using 8051/PLC.
7. Sequencing of Hydraulic and Pneumatic circuits.
9. Electro-pneumatic/hydraulic control using PLC.
10. Vision based image acquisition and processing technique for inspection and classification.

INTERNET OF THINGS

1. Familiarization with concept of IoT and its open source microcontroller/SBC.
2. Write a program to turn ON/OFF motor using microcontroller/SBC through internet.
3. Write a program to interface sensors to display the data on the screen through internet.
4. Interface the sensors with microcontroller/SBC and write a program to turn ON/OFF Solenoid valve through internet when sensor data is detected.
5. To interface sensor with microcontroller/SBC and write a program to turn ON/OFF Linear/Rotary Actuator through IoT when sensor data is detected.
6. To interface Bluetooth/Wifi with microcontroller/SBC and write a program to send sensor data to smart phone using Bluetooth/wifi.

TOTAL : 60 PERIODS

OUTCOMES: At the end of the course the students would be able to

1. Demonstrate the functioning of mechatronics systems with various pneumatic, hydraulic and electrical systems.
2. Demonstrate the microcontroller and PLC as controllers in automation systems by executing proper interfacing of I/O devices and programming
3. Demonstrate of IoT based Home automation, CNC router, Robotic arm.

<table>
<thead>
<tr>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVE:
The objective of this course is to help the students to develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same, and to train the students in preparing project reports and to face reviews and viva voce examination.
The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 300 PERIODS

COURSE OUTCOME:
At the end of this course, students will be able to
1. Take up any challenging practical problems and find solution by formulating proper methodology.

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg.</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES
1. To study the functional requirements of engine components and suitable materials
2. To learn to design of cylinder and piston components
3. To learn to design of connecting rod and crank shaft
4. To learn to design of flywheel and valve train
5. To study the Engine Testing cycles, Emission measurement technologies

UNIT – I FUNCTIONAL REQUIREMENTS OF ENGINE COMPONENTS AND SUITABLE MATERIALS
Functional requirements of engine components – Piston, piston pin, cylinder liner, connecting rod, crank shaft, valves, spring, engine block, cylinder head, and flywheel. Suitable materials for engine components.

UNIT – II DESIGN OF CYLINDER AND PISTON COMPONENTS
Design of cylinder, cylinder head, piston, piston rings and piston pin – more details in necessary

UNIT – III DESIGN OF CONNECTING ROD AND CRANK SHAFT
Design of connecting rod – Shank design – small end design – big end design – bolts design. Design of overhang crank shaft under bending and twisting – Crank pin design – Crank web design – Shaft design.

UNIT – IV DESIGN OF FLYWHEEL AND VALVE TRAIN

UNIT – V ENGINE TESTING

EXPERIMENTS
1. Design and animate Piston Cylinder assembly and motion study using CAD software.
2. Design and simulate Connecting rod and crank shaft
3. Design flywheel and valve
4. Design and simulate Two Cylinder Engine assembly using CAD software.
5. Conduct the engine performance test using analysis software
6. Conduct the emission test using analysis software

OUTCOMES:
At the end of the course the students would be able to
1. Discuss the requirements of engine components and select suitable materials.
2. Apply the concept of design to cylinder and piston components and solve problems.
3. Apply the concept of design to Connecting rod and crank shaft and solve problems.
4. Apply the concept of design to flywheel and valve train and solve problems.
5. Discuss engine teste cycles, dynamometer and emission measurement technologies and instruments

TEXT BOOKS:
2. The Automotive Chassis: Volume 1: Components Design (Mechanical Engineering Series) by Giancarlo Genta and Lorenzo Morello | 24 December 2019
REFERENCES:

3. Manufacturing Automotive Components from Sustainable Natural Fiber Composites (SpringerBriefs in Materials) by Lobna A. Elseify, Mohamad Midani, et al. | 9 August 2021
5. Advanced Technology for Design and Fabrication of Composite Materials and Structures: Applications to the Automotive, Marine, Aerospace and ... Applications of Fracture Mechanics) by George C. Sih, Alberto Carpinteri, et al. | 15 December 2010

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME332 CONVENTIONAL AND FUTURISTIC VEHICLE TECHNOLOGY

COURSE OBJECTIVES

1. To study the advanced engine technologies
2. To learn various advanced combustion technologies and its benefits
3. To learn the methods of using low carbon fuels and its significance
4. To learn and understand the hybrid and electric vehicle configurations
5. To study the application of fuel cell technology in automotives

UNIT – I ADVANCED ENGINE TECHNOLOGY

UNIT – II COMBUSTION TECHNOLOGY
Spark Ignition combustion, Compression Ignition Combustion, Conventional Dual Fuel Combustion, Low Temperature Combustion Concepts– Controlled Auto Ignition, Homogeneous Charge Compression Ignition, Premixed Charge Compression Ignition, Partially Premixed Compression Ignition, Reactivity Controlled Compression Ignition, Gasoline Direct Injection Compression Ignition.

UNIT – III LOW CARBON FUEL TECHNOLOGY
Alcohol Fuels, Ammonia Fuel and Combustion, Methane Technology, Dimethyl Ether, Hydrogen Fuel Technology, Challenges, and way forward

UNIT – IV HYBRID AND ELECTRIC VEHICLE (BATTERY POWERED)
Conventional Hybrids (Conventional ICE + Battery), Modern Hybrids (RCCI/GDCI Engine + Battery), Pure Electric Vehicle Technology – Challenges and Way forward
UNIT – V FUEL CELL TECHNOLOGY

Fuel cells for automotive applications - Technology advances in fuel cell vehicle systems - Onboard hydrogen storage - Liquid hydrogen and compressed hydrogen - Metal hydrides, Fuel cell control system - Alkaline fuel cell - Road map to market.

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Discuss the latest trends in engine technology
2. Discuss the need of advanced combustion technologies and its impact on reducing carbon foot-print on the environment.
3. Analyzing the basic characteristics of low carbon fuels, its impact over conventional fuels and in achieving sustainable development goals.
4. Discuss the working and energy flow in various hybrid and electric configurations.
5. Analyzing the need for fuel cell technology in automotive applications.

TEXT BOOKS:
2. Rakesh Kumar Maurya, Characteristics and Control of Low Temperature Combustion Engines. ISBN 978-3-319-68507-6, SPRINGER

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME333 RENEWABLE POWERED OFF HIGHWAY VEHICLES AND EMISSION CONTROL TECHNOLOGY L T P C

COURSE OBJECTIVES
1. To study the low and zero carbon fuels suitability and methods of use in off-road vehicles.
2. To learn and understand the green energy production methodologies and its use in off-road vehicle categories.
3. To learn various fuel cell types and its suitability in off-highway vehicles applications
4. To illustrate the impact of in-cylinder technologies on engine out emissions control.
5. To study the existing after-treatment technologies used in off-highway vehicle applications.
UNIT – I LOW AND ZERO CARBON FUELS POWERED OFF-HIGHWAY VEHICLES 9
Ethanol, Methanol, Butanol, Biodiesel, CNG, LNG, DME, Polyoxymethylene Dimethyl Ether (PODE), Ammonia and Hydrogen Fuels suitability, methods, and technologies for powering off-road vehicles.

UNIT – II GREEN ENERGY POWERED OFF-HIGHWAY VEHICLES 9

UNIT – III FUEL CELL POWERED OFF-HIGHWAY VEHICLES 9
Fuel Cell, Types, Applications, Fuel Cell Requirement, Sizing and Design for Off-Highway applications, Merits and Demerits, Pathway to overcome the limitations. Scope of the fuel cell research on Off-road vehicle applications.

UNIT – IV IN-CYLINDER TREATMENT TECHNOLOGIES 9
Low temperature Combustion Modes - Homogeneous Charge Compression Ignition, Premixed-Charge Compression Ignition, Reactivity Controlled Compression Ignition, Gasoline Direct Injection Compression Ignition, Water Injection Technologies.

UNIT – V AFTER TREATMENT TECHNOLOGIES 9

TOTAL : 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

1. Evaluate the availability, suitability, and its role in off-road vehicle categories in reducing the carbon footprint on the environment.
2. Gain the knowledge on various green energy production methods and its impact on meeting energy demand of off-road vehicle applications.
3. Develop the working of fuel cell, various fuel cell types, and its design for off-road vehicle applications.
4. Gain the knowledge on various in-cylinder low temperature combustion technologies and its key role in controlling the engine-out emissions.
5. Develop the working of various existing aftertreatment systems in controlling the engine out emissions.

TEXT BOOKS:

2. Rakesh Kumar Maurya, Characteristics and Control of Low Temperature Combustion Engines.

REFERENCES:

3. Toward Zero Carbon: The Chicago Central Area DeCarbonization Plan by Adrian Smith and Gordon Gill | 1 June 2011
4. Transportation in a Net Zero World: Transitioning Towards Low Carbon Public Transport (Green Energy and Technology) by Kathryn G. Logan, Astley Hastings, et al. | 7 April 2022
5. The Political Economy of Low Carbon Transformation: Breaking the habits of capitalism (Routledge Studies in Low Carbon Development) by Harold Wilhite | 21 December 2017
CME334 VEHICLE HEALTH MONITORING, MAINTENANCE, AND SAFETY

COURSE OBJECTIVES

1. To enable the student to understand the principles, functions and practices adapted in maintenance activities of vehicles.
2. To study the powertrain maintenance, fault diagnosis, maintenance of Batteries.
3. To develop vehicle system maintenance and service of clutch, brake.
4. To study the concepts of vehicle safety and regulations.
5. To study and understand the simulation of safety concepts.

UNIT – I INTRODUCTION 9
Need for Maintenance – importance, classification of maintenance work-basic problem diagnosis. Maintenance of vehicle systems – power pack, tyres, safety systems. Scheduled maintenance services – service intervals – On-board diagnostics, Computerized engine analyzer study and practice- OBD and scan tools;

UNIT – II POWERTRAIN MAINTENANCE 9
Exhaust emission test of petrol and diesel engine; - Electronic fuel injection and engine management service - fault diagnosis- OBD-III and scan tool, identifying DTC and servicing emission controls, Maintenance of Batteries, Starting System, Charging System and Body Electrical -Fault Diagnosis Using Scan Tools.

UNIT – III VEHICLE SYSTEM MAINTENANCE 9
Clutch- adjustment and service, Maintenance and Service of Hydraulic brake, Bleeding of brakes, Checking ABS and components. Maintenance and Service of McPherson strut, coil spring, tyre wear, measurement of read depth and tyre rotation, Computerized wheel balancing & wheel alignment, Maintenance and Service of steering linkage, steering column, Rack and pinion steering.

UNIT – IV VEHICLE SAFETY 9
Concepts of vehicle safety -Seat belt, regulations, automatic seat belt tightener system, collapsible steering column, air bags, electronic system for activating air bags, bumper design for safety, Active Safety - ABS, EBD, CSC, Traction control system, Modern electronic features in vehicles like tyre pressure monitoring, Automatic headlamp ON, Rain sensing wipers.

UNIT – V SIMULATION OF SAFETY CONCEPTS 9
Active safety: driving safety, conditional safety, perceptibility safety, operating safety passive safety: exterior safety, interior safety, deformation behavior of vehicle body, speed and acceleration characteristics of passenger compartment on impact. Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system with braking system Interactions.

TOTAL: 45 PERIODS
OUTCOMES: At the end of the course the students would be able to
1. The students have the knowledge of vehicle health monitoring, maintenance and safety.
2. The students able to maintenance of powertrain.
3. The students can ability to maintenance of Vehicle system.
4. Explain and awareness of vehicle safety.
5. Explain the simulation of safety concepts.

TEXT BOOKS:

REFERENCES:
5. Vehicle Service Manuals of Reputed Indian Manufacturers.

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME335 CAE AND CFD APPROACH IN FUTURE MOBILITY

COURSE OBJECTIVES
1. To study the use of computer in mobility software or mobility.
2. To study the concepts computer aided design and rapid prototyping
3. To introduce the basic concepts of the finite elements methods.
4. To introduce basics and fundamental of the computational fluid dynamics
5. To introduce Turbulence Modelling and various simulation techniques.

UNIT – I INTRODUCTION TO CAE /CFD
Introduction to use of computer in Mobility Product Life Cycle, Software for mobility. Introduction to design process and role of computers in the design process, use of modern computational tools used for design and analysis, Concept of modelling and simulation. CFD as a design and research tool, Applications of CFD in mobility engineering
UNIT – II CAD AND RAPID PROTOTYPING

UNIT – III INTRODUCTION TO FEA
Basic Concept of Finite Element Method, Ritz and Rayleigh Ritz methods, Method of weighed residuals, Galerkin method. Governing differential equations of one- and two dimensional problems, One Dimensional Second Order Equations – Discretization – Linear and Higher order Elements – Interpolation and shape functions, Derivation of Shape functions and Stiffness matrices and force vectors-Assembly of Matrices - Solution of static problems and case studies in stress analysis of mechanical components using 2D and 3D elements

UNIT – IV INTRODUCTION TO CFD
CFD vs. experimentation; continuity, navier-stokes and energy equations; modelling and discretization techniques; basic steps in CFD computation Various simplifications, Dimensionless equations and parameters, Incompressible inviscid flows, Source panel method, and Vortex panel method. Conservation form of the equations, shock fitting and shock capturing, Time marching and space marching. 3-D structured and unstructured grid generation, mesh smoothing and sensitivity checks

UNIT – V PROBLEM SOLVING USING CFD
Turbulence Modelling, different turbulent modelling scheme. Incompressible Viscous Flows;, Applications to internal flows and boundary layer flows. Eddy viscosity and non-eddy viscosity models; Vehicle Aerodynamic Simulation Wind tunnel and on-road simulation of vehicles; Simulation of Ahmed and Windsor bodies; Vorticity based grid-free simulation technique; simulation in climatic and acoustic wind tunnels; velocity vector and pressure contour simulation

TOTAL :30 PERIODS

CAE AND CFD LABORATORY
1. Coupled analysis of structural / thermal
2. buckling analysis
3. CFD simulation of flow analysis over a Cylinder Surface 3D
4. CFD simulation of Intermixing of Fluids in a Bent-Pipe 3D
5. CFD simulation of flow and heat transfer analysis of Double Pipe Counter Flow Heat Exchanger
6. Design & processing of Engine components by RPT

OUTCOMES: At the end of the course the students would be able to
1. discuss the basic concept of the CAE /CFD
2. Develop the computer aided design and rapid prototyping.
3. Discuss the basic concept of Finite Element methods.
4. discuss the concepts of computational fluid dynamics
5. solving the problem and simulation using computational fluid dynamics.

TEXT BOOKS:
1. Computational Fluid Dynamics: A Practical Approach by Jiyuan Tu, Guan Heng Yeoh, Chaqun Liu
2. Applied Computational Fluid Dynamics by S. C. Gupta

REFERENCES:
3. TirupathiR.Chandrupatla and Ashok D.Belegundu, “Introduction to Finite Elements in
CME336 HYBRID AND ELECTRIC VEHICLE TECHNOLOGY

COURSE OBJECTIVES
1. To introduce the concept of hybrid and electric drive trains.
2. To elaborate on the types and utilisation of hybrid and electric drive trains.
3. To expose on different types of AC and DC drives for electric vehicles.
4. To learn and utilise different types of energy storage systems.
5. To introduce concept of energy management strategies and drive sizing.

UNIT – I INTRODUCTION
Basics of vehicle performance, vehicle power source characterization, transmission characteristics, History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.

UNIT – II HYBRID ELECTRIC DRIVE TRAINS
Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis.

UNIT – III CONTROL OF AC & DC DRIVES
Introduction to electric components used in hybrid and electric vehicles, Configuration, and control - DC Motor drives, Induction Motor drives, Permanent Magnet Motor drive, and Switch Reluctance Motor drives, drive system efficiency.

UNIT – IV ENERGY STORAGE

UNIT – V DRIVE SIZING AND ENERGY MANAGEMENT STRATEGIES
Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selection of appropriate energy storage technology, Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification, and comparison of energy management strategies, Implementation issues.

TOTAL: 45 PERIODS
OUTCOMES: At the end of the course the students would be able to
1. Discuss Characterise and configure hybrid drivetrains requirement for a vehicle
2. Design and apply appropriate hybrid and electric drive trains in a vehicle
3. Design and install suitable AC and DC drives for electric vehicles.
4. Discuss arrive at a suitable energy storage system for a hybrid / electric vehicle
5. Apply energy management strategies to ensure better economy and efficiency

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME337 THERMAL MANAGEMENT OF BATTERIES AND FUEL CELLS

COURSE OBJECTIVES

1. To study the working principle of Li-ion Batteries and Battery Packs.
2. To learn the thermal management system in Battery modules.
3. To develop the different case studies in Battery Thermal Management System.
4. To learn the working principle of Fuel Cells cooling methods.
5. To learn the inside components of Thermal Management Systems in various famous Electric and Fuel Cell Electric Vehicles.

UNIT – I ADVANCED BATTERIES

Li-ion Batteries- chemistry, different formats, operating areas, efficiency, aging. Battery Management System- Configuration, Characteristics. Tesla Model S- 18650 Cell specifications, P85 Battery Pack mechanical structure, Texas Instruments BMS. Supercapacitors Vs batteries. Diamond battery concepts.
UNIT – II THERMAL MANAGEMENT IN BATTERIES
9

UNIT – III BATTERY THERMAL MANAGEMENT CASE STUDIES
9

UNIT – IV THERMAL MANAGEMENT IN FUEL CELLS
9
Fuel Cells- operating principle, hydrogen-air fuel cell system characteristics, other fuel cell technologies, polarization curves, applications. Fuel cell thermal management- basic model, energy balance, governing equations, characteristic curve, sizing, cooling methods, advantages, restrictions.

UNIT – V FUEL CELL THERMAL MANAGEMENT CASE STUDIES
9

OUTCOMES: At the end of the course the students would be able to

1. Discuss the different Li-ion Batteries and Fuel Cell performances.
2. Design a Battery Pack with appropriate PCM.
3. Apply Cooling Models using Simulation
4. Estimate fuel economy.
5. Utilize different Thermal Management System approaches during real world usage.

TEXT BOOKS:

REFERENCES:

CME338 VALUE ENGINEERING

COURSE OBJECTIVES
1. To study the value engineering process and able to identify its functions within the process.
2. To determine the appropriate value engineering methodology for a given project and propose appropriate training to centralized and decentralized modes.
3. To learn various decision-making processes and cost evaluation models and apply them in appropriately in the product development life-cycle.
4. To explore in-depth understanding of various value engineering applications in human resources, manufacturing and marketing.
5. To demonstrate to implement value engineering solutions and propose to perfect them.

UNIT – I VALUE ENGINEERING BASICS
9

UNIT – II VALUE ENGINEERING JOB PLAN AND PROCESS
9
Seven phases of job plan - FAST Diagramming as Value Engineering Tool - Behavioral and organizational aspects of Value Engineering - Ten principles of Value analysis - Benefits of Value Engineering.

UNIT – III VALUE ENGINEERING TECHNIQUES
9
Creativity - Brain storming - Gordon technique - Morphological Analysis - ABC Analysis- Probabilistic approach - Make or Buy decisions – Function cost worth analysis (FCWA) - Function Analysis System technique (FAST) - Break Even Analysis - Life cycle cost(LCC)

UNIT – IV WORKSHEETS AND GUIDELINES
9

UNIT – V VERSATILITY OF VALUE ENGINEERING
9
Value engineering operation in maintenance and repair activities - value engineering in non hardware projects - Initiating a value engineering programme Introduction - training plan - career development for value engineering specialties.

Total :45 Periods
OUTCOMES: At the end of the course the students would be able to
1. Estimate a product cost based on value engineering principles in terms of its values, functions and worthiness.
2. Discuss the product and articulate it in various phases of value engineering
3. Discuss and select appropriate methods, standards and apply them on value engineering project and propose appropriate training
4. Apply querying theory and FAST to prefect a value engineering project implementation.
5. Develop various case studies related to value engineering project implementation.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME339 ADDITIVE MANUFACTURING

COURSE OBJECTIVES:
• To introduce the development of Additive Manufacturing (AM), various business opportunities and applications
• To familiarize various software tools, processes and techniques to create physical objects that satisfy product development / prototyping requirements, using AM.
• To be acquainted with vat polymerization and direct energy deposition processes
• To be familiar with powder bed fusion and material extrusion processes.
• To gain knowledge on applications of binder jetting, material jetting and sheet lamination processes

UNIT I INTRODUCTION
UNIT II DESIGN FOR ADDITIVE MANUFACTURING (DfAM) 6
Concepts and Objectives - AM Unique Capabilities - Part Consolidation – Topology Optimization-
Design rules for Extrusion based AM.

UNIT III VAT POLYMERIZATION AND DIRECTED ENERGY DEPOSITION 6
Photo polymerization: Stereolithography Apparatus (SLA)- Materials -Process – top down and
bottom up approach - Advantages - Limitations - Applications. Digital Light Processing (DLP) -
Directed Energy Deposition: Laser Engineered Net Shaping (LENS)- Process - Material Delivery -

UNIT IV POWDER BED FUSION AND MATERIAL EXTRUSION 6
Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mechanism -
Materials and Application. Selective Laser Melting (SLM), Electron Beam Melting (EBM): Materials
Limitations.

UNIT V OTHER ADDITIVE MANUFACTURING PROCESSES 6
Binder Jetting: Three-Dimensional Printing - Materials - Process - Benefits- Limitations -
Sheet Lamination: Laminated Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or

TOTAL: 30 PERIODS

ADDITIVE MANUFACTURING LABORATORY
Experiments
1. Modelling and converting CAD models into STL file.
3. Design and fabrication of parts by varying part orientation and support structures.
4. Fabrication of parts with material extrusion AM process.
5. Fabrication of parts with vat polymerization AM process.
6. Design and fabrication of topology optimized parts.

TOTAL: 30 PERIODS

Equipment required - lab
1. Extrusion based AM machine
2. Resin based AM machine
3. Mechanical design software
4. Open-source AM software for STL editing, manipulation and slicing.

COURSE OUTCOMES:
At the end of this course students shall be able to:
CO1: Recognize the development of AM technology and how AM technology propagated into
various businesses and developing opportunities.
CO2: Acquire knowledge on process of transforming a concept into the final product in AM
technology.
CO3: Elaborate the vat polymerization and direct energy deposition processes and its applications.
CO4: Acquire knowledge on process and applications of powder bed fusion and material
extrusion.
CO5: Evaluate the advantages, limitations, applications of binder jetting, material jetting and sheet
lamination processes.
TEXT BOOKS:

REFERENCES:

CME340 CAD/CAM

COURSE OBJECTIVES

1. To Introduce and understand the Basic of Design.
2. To study the two dimensional drafting and bill of material creation.
3. To learn three dimensional modelling and its advantages.
4. To study the basic and purpose of assembling modeling.
5. To study the basics of computer aided machining and part programming.

UNIT – I BASICS OF DESIGNS
Understanding of Projections, Scales, units, GD & T; its 14 symbols, Special characteristics & Title Block readings. Revision / ECN status of drawings – Customer Specific requirements – Drawing Grid reading

UNIT – II 2D DRAFTING
Projection views – Orthographic view, Axillary view, Full & Half Section views, Broken Section view, Offset Section view – Title Block creation – BOM Creation – Notes creation – Ballooning of 2D drawing and its features for Inspection reporting

UNIT – III 3D MODELING

UNIT – IV ASSEMBLY MODELING
Basics of Assembly modeling, Purpose of Assembly modeling & its advantages – Top to Down & BottomUp modeling approaches – Analysis of Clearances – Undercuts – Interferences – Stack up analysis – Cumulative effect of Tolerances in after assembly conditions. - motion analysis

UNIT – V CAM

TOTAL : 45 PERIODS
OUTCOMES: At the end of the course the students would be able to

1. Discuss the basics of the design and concepts.
2. Develop the two dimensional drafting and projection views.
3. Discuss the three dimensional modeling, parametric and Non-parametric modeling.
4. Discuss the assembly modeling and top down, bottom up approaches.
5. Develop the computer aided machining and wirting part programming.

TEXT BOOKS:
1. Computer Aided Design & Manufacturing - Jacob Moses & Ruchi Agarwal
2. CAD / CAM Principles & Application - J. Srinivas

REFERENCES:
1. CAD / CAM - Ibrahim Zaid (Text & Reference Book)
2. CAD / CAM – Chandandeep Grewal
3. CAD CAM & Automation - Farazdak Haideri (Text & Reference Book)
4. Computer Aided Design & Manufacturing – Anup Goel
5. CAD / CAM – PN Rao

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME341 DESIGN FOR X

COURSE OBJECTIVES

1. To introduce the economic process selection principles and general design principles for manufacturability in the development and design of products for various engineering applications. Also, apply design consideration principles of casting in the design of cast products.
2. To learn the design consideration principles of forming in the design of extruded, stamped, and forged products.
3. To learn design consideration principles of machining in the design of turned, drilled, milled, planed, shaped, slotted, and ground products.
4. To learn design consideration principles of welding in the design of welded products.
5. To learn design consideration principles in additive manufacturing.

UNIT – I INTRODUCTION
General design principles for manufacturability- strength and mechanical factors, mechanisms selection, evaluation method, Process capability - Feature tolerances Geometric Tolerances - Assembly limits - Datum features - Tolerance stacks.

UNIT – II FACTORS INFLUENCING FORM DESIGN
Working principle, Material, Manufacture, Design- Possible solutions - Materials choice – Influence of materials on form design - form design of welded members, forgings and castings.
UNIT – III COMPONENT DESIGN - MACHINING CONSIDERATION 9

UNIT – IV COMPONENT DESIGN – CASTING CONSIDERATION 9
Redesign of castings based on Parting line considerations - Minimizing core requirements, machined holes, redesign of cast members to obviate cores. Identification of uneconomical design - Modifying the design - group technology - Computer Applications for DFMA

UNIT – V DESIGN FOR ADDITIVE MANUFACTURING 9
Introduction to AM, DFMA concepts and objectives, AM unique capabilities, exploring design freedoms, Design tools for AM, Part Orientation, Removal of Supports, Hollowing out parts, Inclusion of Undercuts and Other Manufacturing Constraining Features, Interlocking Features, Reduction of Part Count in an Assembly, Identification of markings/ numbers.

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Elaborate the design principles for manufacturability
2. discuss the factors influencing in form design
3. Apply the component design features of various machine.
4. Discuss the design consideration principles of welding in the design of welded products.
5. Discuss the design consideration principles of additive manufacturing.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
CME342

ERGONOMICS IN DESIGN

L T P C
3 0 0 3

COURSE OBJECTIVES

1. To introduce to industrial design based on ergonomics.
2. To consider ergonomics concept in manufacturing.
3. To apply ergonomics in design of controls and display.
4. To apply environmental factors in ergonomics design.
5. To develop aesthetics applicable to manufacturing and product.

UNIT – I INTRODUCTION
An approach to industrial design, Elements of design structure for industrial design in engineering application in modern manufacturing systems- Ergonomics and Industrial Design: Introduction to Ergonomics, Communication system, general approach to the man-machine relationship, Human component of work system, Machine component of work system, Local environment-light, Heat, Sound.

UNIT – II ERGONOMICS AND PRODUCTION
Introduction, Anthropometric data and its applications in ergonomic, working postures, Body Movements, Work Station Design, Chair Design. Visual Effects of Line and Form: The mechanics of seeing, Psychology of seeing, Figure on ground effect, Gestalt’s perceptions - Simplicity, Regularity, Proximity, Wholeness. Optical illusions, Influences of line and form.

UNIT – III DESIGN PRINCIPLES FOR DISPLAY AND CONTROLS
Displays: Design Principles of visual Displays, Classification, Quantitative displays, Qualitative displays, check readings, Situational awareness, Representative displays, Design of pointers, Signal and warning lights, colour coding of displays, Design of multiple displays Controls: Design considerations, Controls with little efforts – Push button, Switches, rotating Knobs. Controls with muscular effort – Hand wheel, Crank, Heavy lever, Pedals. Design of controls in automobiles, Machine Tools.

UNIT – IV ENVIRONMENTAL FACTORS
Colour: Colour and light, Colour and objects, Colour and the eye – after Image, Colour blindness, Colour constancy, Colour terms – Colour circles, Munsel colour notation, reactions to colour and colour combination – colour on engineering equipments, Colour coding, Psychological effects, colour and machine form, colour and style.

UNIT – V AESTHETIC CONCEPTS
Concept of unity, Concept of order with variety, Concept of purpose, Style and environment, Aesthetic expressions - Symmetry, Balance, Contrast, Continuity, Proportion. Style - The components of style, House style, Style in capital good. Introduction to Ergonomic and plant layout software’s, total layout design.

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Appreciate ergonomics need in the industrial design.
2. Apply ergonomics in creation of manufacturing system.
3. Discuss on design of controls and display.
4. Consider environmental factors in ergonomics design.
5. Report on importance of aesthetics to manufacturing system and product.

TEXT BOOKS:
1. Ergonomics in Design: Methods and Techniques (Human Factors and Ergonomics) by Marcelo M. Soares , Francisco Rebelo
2. Ergonomics in Product Design by Sendpoints Publishing Co. Ltd.

REFERENCES:
CME343 NEW PRODUCT DEVELOPMENT

COURSE OBJECTIVES
1. To introduce the fundamental concepts of the new product development
2. To develop material specifications, analysis and process.
3. To Learn the Feasibility Studies & reporting of new product development.
4. To study the New product qualification and Market Survey on similar products of new product development.
5. To learn Reverse Engineering, Cloud points generation, converting cloud data to 3D model.

UNIT – I FUNDAMENTALS OF NPD

UNIT – II MATERIAL SPECIFICATIONS, ANALYSIS & PROCESS
Material specification standards – ISO, DIN, JIS, ASTM, EN, etc. – Awareness on various manufacturing process like Metal castings & Forming, Machining (Conventional, 3 Axis, 4 Axis, 5 Axis,), Fabrications, Welding process. Qualifications of parts mechanical, physical & Chemical properties and their test report preparation and submission. Fundamentals of DFMEA & PFMEA, Fundamentals of FEA, Bend Analysis, Hot Distortion, Metal and Material Flow, Fill and Solidification analysis.

UNIT – III ESSENTIALS OF NPD

UNIT – IV CRITERIONS OF NPD
New product qualification for Dimensions, Mechanical & Physical Properties, Internal Soundness proving through X-Ray, Radiography, Ultrasonic Testing, MPT, etc. Agreement with customer for testing frequencies. Market Survey on similar products, Risk analysis, validating samples with simulation results, Lesson Learned & Horizontal deployment in NPD.
UNIT – V REPORTING & FORWARD-THINKING OF NPD

Detailed study on PPAP with 18 elements reporting, APQP and its 5 Sections, APQP vs PPAP, Importance of SOP (Standard Operating Procedure) – Purpose & documents, deployment in shop floor. Prototyping & RPT - Concepts, Application and its advantages, 3D Printing – resin models, Sand cores for foundries; Reverse Engineering. Cloud points generation, converting cloud data to 3D model – Advantages & Limitation of RE, CE (Concurrent Engineering) – Basics, Application and its advantages in NPD (to reduce development lead time, time to Market, Improve productivity and product cost.)

TOTAL : 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

1. Discuss fundamental concepts and customer specific requirements of the New Product development
2. Discuss the Material specification standards, analysis and fabrication, manufacturing process.
3. Develop Feasibility Studies & reporting of New Product development
4. Analyzing the New product qualification and Market Survey on similar products of new product development
5. Develop Reverse Engineering. Cloud points generation, converting cloud data to 3D model

TEXT BOOKS:
1. Product Development – Sten Jonsson
2. Product Design & Development – Karl T. Ulrich, Maria C. Young, Steven D. Eppinger

REFERENCES:
1. Revolutionizing Product Development – Steven C Wheelwright & Kim B. Clark
2. Change by Design
5. Product Design & Value Engineering – Dr. M.A. Bulsara & Dr. H.R. Thakkar

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME344 PRODUCT LIFE CYCLE MANAGEMENT

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
1. To study about the history, concepts and terminology in PLM
2. To learn the functions and features of PLM/PDM
3. To develop different modules offered in commercial PLM/PDM tools
4. To demonstrate PLM/PDM approaches for industrial applications
5. To use PLM/PDM with legacy data bases, Coax& ERP systems

UNIT – I HISTORY, CONCEPTS AND TERMINOLOGY OF PLM

Introduction to PLM, Need for PLM, opportunities of PLM, Different views of PLM - Engineering Data Management (EDM), Product Data Management (PDM), Collaborative Product Definition Management (cPDM), Collaborative Product Commerce (CPC), Product Lifecycle Management (PLM). PLM/PDM Infrastructure – Network and Communications, Data Management, Heterogeneous data sources and applications
UNIT – II PLM/PDM FUNCTIONS AND FEATURES

UNIT – III DETAILS OF MODULES IN A PDM/PLM SOFTWARE
Case studies based on top few commercial PLM/PDM tools – Teamcenter, Windchill, ENOVIA, Aras PLM, SAP PLM, Arena, Oracle Agile PLM and Autodesk Vault.-Architecture of PLM software- selection criterion of software for particular application - Brand name to be removed.

UNIT – IV ROLE OF PLM IN INDUSTRIES
Case studies on PLM selection and implementation (like auto, aero, electronic) - other possible sectors, PLM visioning, PLM strategy, PLM feasibility study, change management for PLM, financial justification of PLM, barriers to PLM implementation, ten step approach to PLM, benefits of PLM for--business, organisation, users, product or service, process performance- process compliance and process automation.

UNIT – V BASICS ON CUSTOMISATION/INTEGRATION OF PDM/PLM SOFTWARE
PLM Customization, use of EAI technology (Middleware), Integration with legacy data base, CAD, SLM and ERP.

OUTCOMES: At the end of the course the students would be able to
1. Summarize the history, concepts and terminology of PLM
2. Develop the functions and features of PLM/PDM
3. Discuss different modules offered in commercial PLM/PDM tools.
4. Interpret the implement PLM/PDM approaches for industrial applications.
5. Integrate PLM/PDM with legacy data bases, CAx& ERP systems.

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
COURSE OBJECTIVES:
1. To understand the concepts of measurement technology.
2. To learn the various sensors used to measure various physical parameters.
3. To learn the fundamentals of signal conditioning, data acquisition and communication systems used in mechatronics system development.
4. To learn about the optical, pressure and temperature sensor.
5. To understand the signal conditioning and DAQ systems.

UNIT I INTRODUCTION 9

UNIT II MOTION, PROXIMITY AND RANGING SENSORS 9

UNIT III FORCE, MAGNETIC AND HEADING SENSORS 8

UNIT IV OPTICAL, PRESSURE AND TEMPERATURE SENSORS 10

UNIT V SIGNAL CONDITIONING AND DAQ SYSTEMS 9

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO1: Recognize with various calibration techniques and signal types for sensors.
CO2: Describe the working principle and characteristics of force, magnetic, heading, pressure and temperature, smart and other sensors and transducers.
CO3: Apply the various sensors and transducers in various applications
CO4: Select the appropriate sensor for different applications.
CO5: Acquire the signals from different sensors using Data acquisition systems.

TEXT BOOKS:

REFERENCES

![Mapping of COs with POs and PSOs](image)

COURSE OBJECTIVES:
1. To familiarize a relay and power semiconductor devices
2. To get a knowledge on drive characteristics
3. To obtain the knowledge on DC motors and drives.
4. To obtain the knowledge on AC motors and drives.
5. To obtain the knowledge on Stepper and Servo motor.

UNIT – I RELAY AND POWER SEMI-CONDUCTOR DEVICES 9
Study of Switching Devices – Relay and Types, Switching characteristics -BJT, SCR, TRIAC, GTO, MOSFET, IGBT and IGCT-: SCR, MOSFET and IGBT - Triggering and commutation circuit - Introduction to Driver and snubber circuits

UNIT – II DRIVE CHARACTERISTICS 9

UNIT – III DC MOTORS AND DRIVES 9
DC Servomotor - Types of PMDC & BLDC motors - principle of operation- emf and torque equations - characteristics and control – Drives- H bridge - Single and Three Phases – 4 quadrant operation – Applications

UNIT – IV AC MOTORS AND DRIVES 9

UNIT – V STEPPER AND SERVO MOTOR 9

TOTAL: 45 PERIODS
COURSE OUTCOMES
At the end of the course, the student able to:

CO 1: Recognize the principles and working of relays, drives and motors.
CO 2: Explain the working and characteristics of various drives and motors.
CO 3: Apply the solid state switching circuits to operate various types of Motors and Drivers.
CO 4: Interpret the performance of Motors and Drives.
CO 5: Suggest the Motors and Drivers for given applications.

<table>
<thead>
<tr>
<th>COs/POs&PSOs</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO/PO & PSO Average</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

1 – Slight, 2 – Moderate, 3 – Substantial

TEXT BOOKS:

REFERENCES
COURSE OBJECTIVES:
1. To familiarize the architecture and fundamental units of microcontroller.
2. To know the microcontroller programming methodology and to acquire the interfacing skills and data exchange methods using various communication protocols.
3. To design the interface circuit and programming of I/O devices, sensors and actuators.
4. To understand ARM processor architecture and its functions to meet out the computational and interface needs of growing mechatronic systems.
5. To acquaint the knowledge of real time embedded operating system for advanced system developments.

UNIT I INTRODUCTION TO MICROCONTROLLER

UNIT II PROGRAMMING AND COMMUNICATION

UNIT III PERIPHERAL INTERFACING
6 I/O Programming – Interfacing of Memory, Key Board and Displays – Alphanumeric and Graphic, RTC, interfacing of ADC and DAC, Sensors - Relays - Solenoid Valve and Heater - Stepper Motors, DC Motors - PWM Programming – Closed Loop Control Programming of Servomotor – Traffic Light

UNIT IV ARM PROCESSOR

UNIT V SINGLE BOARD COMPUTERS AND PROGRAMMING

EMBEDDED SYSTEMS LAB

LIST OF EXPERIMENTS
1. Assembly Language Programming and Simulation of 8051.
2. Alphanumeric and Graphic LCD Interfacing using 8051 Microcontroller.
3. Input switches and keyboard interfacing of 8051.
4. Sensor Interfacing with ADC to 8051 and DAC & RTC Interfacing with 8051.
5. Timer, Counter and Interrupt Program Application for 8051.
6. Step Motor (Unipolar & Bipolar Motor) and PWM Servo Motor Control to Interfacing with 8051.
7. UART Serial and Parallel Port Programming of 8051.
8. I2C, SPI and CAN Programming of 8051.
9. Interfacing and Programming of Bluetooth and Wi-Fi with 8051
15. IOT application using SBC.

(any 7 experiments) TOTAL:30 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO 1: Know the various functional units of microcontroller, processors and system-on-chip based on the features and specifications.
CO 2: Recognize the role of each functional units in microcontroller, processors and system-on-chip based on the features and specifications.
CO 3: Interface the sensors, actuators and other I/O's with microcontroller, processors and system on chip based interfacing
CO 4: Design the circuit and write the programming microcontroller, processors and system on chip
CO 5: Develop the applications using Embedded system.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>COs/POs & PSOs</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 1 2 3</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>3 2 1 1 2 2</td>
<td>1 3 1 3</td>
</tr>
<tr>
<td>CO2</td>
<td>3 2 1 1 2 2</td>
<td>1 3 1 3</td>
</tr>
<tr>
<td>CO3</td>
<td>3 2 1 1 2 2</td>
<td>1 3 1 3</td>
</tr>
<tr>
<td>CO4</td>
<td>3 2 1 1 2 2</td>
<td>1 3 1 3</td>
</tr>
<tr>
<td>CO5</td>
<td>3 2 1 1 2 2</td>
<td>1 3 1 3</td>
</tr>
<tr>
<td>CO/PO & PSO Average</td>
<td>3 2 1 1 2 2</td>
<td>1 3 1 3</td>
</tr>
</tbody>
</table>

1 – Slight, 2 – Moderate, 3 – Substantial
COURSE OBJECTIVES:
1. To learn about basics of robots and their classifications
2. To understand the robot kinematics in various planar mechanisms
3. To learn about the concepts in robot dynamics
4. To understand the concepts in trajectory planning and programming
5. To know about the various applications of robots

UNIT – I BASICS OF ROBOTICS

UNIT – II ROBOT KINEMATICS
Robot kinematics: Introduction- Matrix representation- rigid motion & homogeneous transformation- D-H, forward & inverse kinematics of 2DOF and 3 DOF planar and spatial mechanisms

UNIT – III ROBOT DYNAMICS
Introduction - Manipulator dynamics – Lagrange - Euler formulation- Newton - Euler formulation

UNIT – IV TRAJECTORY, PATH PLANNING AND PROGRAMMING
Trajectory Planning- Joint space and Cartesian space technique, Introduction to robot control, Robot programming and Languages- Introduction to ROS

UNIT – V ROBOT AND ROBOT APPLICATIONS

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon completion of this course, the students can able to
CO1: State the basic concepts and terminologies of robots
CO2: Know the Procedures for Forward and Inverse Kinematics, Dynamics for Various Robots
CO3: Derive the Forward and Inverse Kinematics, Dynamics for Various Robots
CO4: Apply the various programming techniques in industrial applications
CO5: Analyze the use of various types of robots in different applications

Mapping of COs with POs and PSOs

<table>
<thead>
<tr>
<th>COs/POs&P</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOs</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO/PO & PSO Average</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1.4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 – Slight, 2 – Moderate, 3 – Substantial

TEXT BOOKS:
REFERENCES:

CMR338 SMART MOBILITY AND INTELLIGENT VEHICLES L T P C
3 0 0 3

COURSE OBJECTIVES:
The objectives of the course are:
1. To introduce students to the various technologies and systems used to implement smart mobility and intelligent vehicles.
2. To learn Basics of Radar Technology and Systems, Ultrasonic Sonar Systems, LIDAR Sensor Technology and Systems and other sensors for automobile vision system.
3. To learn Basic Control System Theory applied to Autonomous Automobiles.
4. To produce overall impact of automating like various driving functions, connecting the automobile to sources of information that assist with a task.
5. To allow the automobile to make autonomous intelligent decisions concerning future actions of the vehicle that potentially impact the safety of the occupants through connected car & autonomous vehicle technology.

UNIT – I INTRODUCTION TO AUTOMATED, CONNECTED, AND INTELLIGENT VEHICLES
Concept of Automotive Electronics, Electronics Overview, History & Evolution, Infotainment, Body, Chassis, and Powertrain Electronics, Introduction to Automated, Connected, and Intelligent Vehicles. Case studies: Automated, Connected, and Intelligent Vehicles

UNIT – II SENSOR TECHNOLOGY FOR SMART MOBILITY

UNIT – III CONNECTED AUTONOMOUS VEHICLE
Basic Control System Theory applied to Automobiles, Overview of the Operation of ECUs, Basic Cyber-Physical System Theory and Autonomous Vehicles, Role of Surroundings Sensing Systems and Autonomy, Role of Wireless Data Networks and Autonomy

UNIT – IV VEHICLE WIRELESS TECHNOLOGY & NETWORKING
UNIT V CONNECTED CAR & AUTONOMOUS VEHICLE TECHNOLOGY

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:

- CO1: Recognize the concept of cyber-physical control systems and their application to collision avoidance and autonomous vehicles
- CO2: Select the concept of remote sensing and the types of sensor technology needed to implement remote sensing
- CO3: Familiar with the concept of fully autonomous vehicles
- CO4: Apply the basic concepts of wireless communications and wireless data networks
- CO5: Analyze the concept of the connected vehicle and its role in automated vehicles

<table>
<thead>
<tr>
<th>COs/POs & PSOs</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO/PO & PSO</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Average</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1 – Slight, 2 – Moderate, 3 – Substantial

TEXT BOOKS
1. “Intelligent Transportation Systems and Connected and Automated Vehicles”, 2016, Transportation Research Board

REFERENCES
CME345 HAPTICS AND IMMERSIVE TECHNOLOGIES L T P C
 3 0 0 3

COURSE OBJECTIVES
1. To learn various immersive technologies of VR, AR and MR.
2. To learn software related to immersive technologies.
3. To learn the concepts of developing AR applications.
4. To learn the concepts of developing VR and unreal engine.
5. To study the haptic perception and extended reality.

UNIT – I INTRODUCTION TO IMMERSIVE TECHNOLOGIES 9
Introduction on Virtual reality – Augmented reality – Mixed reality – Extended reality – VR
Devices – AR Devices – Applications

UNIT – II SOFTWARE TOOLS 9
Intro to Unity – Unity editor workspace – Intro to C# and visual studio - Programming in Unity –
Intro to Unreal Engine – UE4 Editor workspace – Intro to Blueprint programming –
Programming in Ue4

UNIT – III BUILDING AR APPLICATION WITH UNITY 9
AR SDKs for unity and unreal engine – Working with SDKs for unity – Developing AR
application in unity - Building AR application

UNIT – IV BUILDING VR APPLICATION WITH UNREAL ENGINE 9
VR SDKs for unity and unreal engine – Developing VR application in Ue4 – Building VR
application

UNIT – V HAPTIC PERCEPTION AND EXTENDED REALITY 9
Extended Reality - Introduction to Haptics – Devices and possibilities – Custom Device
development – Device Integration

TOTAL – 45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Apply detailed knowledge about immersive technology
2. Gaining the knowledge of different types of Tools and Devices
3. Acquiring the knowledge about Unity and Unreal Engine
4. Explain the developing application in immersive technologies
5. Discuss about haptics in immersive technologies

TEXT BOOKS:
1. Immersive Multimodal Interactive Presence, by Angelika Peer (Editor), Christos
2. XR Haptics, Implementation & Design Guidelines, by Eric Vezzoli , Chris Ullrich ,
 Gijs den Butter , Rafal Pijewski, March 13, 2022

REFERENCES:
1. Practical Augmented Reality, by Steve Aukstakalnis, Addison-Wesley
 Professional; 1st edition (8 September 2016)
2. Augmented Reality - Theory, Design and Development, by Chetankumar G
 Shetty.
 edition (15 October 2018).
5. Immersive Analytics A Clear and Concise Reference, by Gerardus Blokdyk,
 5STARCooks (5 September 2018).
COURSE OBJECTIVES:
1. To understand the basics of drone concepts
2. To learn and understand the fundaments of design, fabrication and programming of drone
3. To impart the knowledge of an flying and operation of drone
4. To know about the various applications of drone
5. To understand the safety risks and guidelines of fly safely

UNIT – I INTRODUCTION TO DRONE TECHNOLOGY 9
Drone Concept - Vocabulary Terminology- History of drone - Types of current generation of drones based on their method of propulsion- Drone technology impact on the businesses- Drone business through entrepreneurship- Opportunities/applications for entrepreneurship and employability

UNIT – II DRONE DESIGN, FABRICATION AND PROGRAMMING 9
Classifications of the UAV -Overview of the main drone parts- Technical characteristics of the parts -Function of the component parts -Assembling a drone- The energy sources- Level of autonomy- Drones configurations -The methods of programming drone- Download program - Install program on computer- Running Programs- Multi rotor stabilization- Flight modes -Wi-Fi connection.

UNIT – III DRONE FLYING AND OPERATION 9
Concept of operation for drone -Flight modes- Operate a small drone in a controlled environment- Drone controls Flight operations –management tool –Sensors-Onboard storage capacity -Removable storage devices- Linked mobile devices and applications

UNIT – IV DRONE COMMERCIAL APPLICATIONS 9
Choosing a drone based on the application -Drones in the insurance sector- Drones in delivering mail, parcels and other cargo- Drones in agriculture- Drones in inspection of transmission lines and power distribution -Drones in filming and panoramic picturing

UNIT – V FUTURE DRONES AND SAFETY 9
The safety risks- Guidelines to fly safely -Specific aviation regulation and standardization- Drone license- Miniaturization of drones- Increasing autonomy of drones -The use of drones in swarms

TOTAL: 45 PERIODS
COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO1: Know about various types of drone technology, drone fabrication and programming.
CO2: Execute the suitable operating procedures for functioning a drone
CO3: Select appropriate sensors and actuators for Drones
CO4: Develop a drone mechanism for specific applications
CO5: Create the programs for various drones

CO-PO MAPPING:

<table>
<thead>
<tr>
<th>COs/POs & PSOs</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>CO1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO/PO & PSO Average</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1 – Slight, 2 – Moderate, 3 – Substantial

TEXT BOOKS

REFERENCES

CME346 DIGITAL MANUFACTURING AND IoT
L T P C
2 0 2 3

COURSE OBJECTIVES
1. To study the various aspects of digital manufacturing.
2. To inculcate the importance of DM in Product Lifecycle Management and Supply chain Management.
3. To formulate of smart manufacturing systems in the digital work environment.
4. To interpret IoT to support the digital manufacturing.
5. To elaborate the significance of digital twin.

UNIT – I INTRODUCTION
6

UNIT – II DIGITAL LIFE CYCLE & SUPPLY CHAIN MANAGEMENT
6
UNIT – III SMART FACTORY 6
Smart Factory – Levels of Smart Factories – Benefits – Technologies used in Smart Factory – Smart Factory in IoT – Key Principles of a Smart Factory – Creating a Smart Factory – Smart Factories and Cybersecurity

UNIT – IV INDUSTRY 4.0 6

UNIT – V STUDY OF DIGITAL TWIN 6

TOTAL : 30 PERIODS

DIGITAL MANUFACTURING AND IoT LABORATORY
Experiments
1. Measure the Distance Using Ultrasonic Sensor and Make Led Blink Using Arduino
2. Detect the Vibration of an Object Using Arduino
3. Sense a Finger When it is Placed on Board Using Arduino
4. Temperature Notification Using Arduino
5. Switch Light On and Off Based on the Input of User Using Raspberry Pi
6. Connect with the Available Wi-Fi Using Arduino

TOTAL : 30 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Impart knowledge to use various elements in the digital manufacturing.
2. Differentiate the concepts involved in digital product development life cycle process and supply chain management in digital environment.
3. Select the proper procedure of validating practical work through digital validation in Factories.
4. Implementation the concepts of IoT and its role in digital manufacturing.
5. Analyse and optimize various practical manufacturing process through digital twin.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
CME347 LEAN MANUFACTURING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

1. To introduce the basics of 6 SIGMA
2. To learning about the lean manufacturing tools.
3. To study about the deeper understanding methodologies of Lean manufacturing.
4. To study the lean concepts and its elements.
5. To learn implementation and challenges of lean manufacturing.

UNIT – I BASICS OF 6 SIGMA
Introduction to 6 Sigma, basic tools of six sigma like problem solving approach, standard deviation, normal distribution, various sigma levels with some examples, value for the enterprise, Variation, and sources of variation, Mean and moving the mean, Various quality costs, cost of poor quality.

UNIT – II INTRODUCTION TO LEAN MANUFACTURING TOOLS

UNIT – III DEEPER UNDERSTANDING METHODOLOGIES
What is a process, Why Process management, Keys to process management, Difference between process management and 6 Sigma, Introduction to Deming cycle, PDCA, DMAIC and continuous improvement, DMEDI for creation process, DMAIC Vs DMEDI with examples, Introduction to Toyota Production System, Six Sigma and Production System integration.

UNIT – IV LEAN ELEMENTS
Introduction to Lean Concepts like In-Built Quality, Concept of Right Part at the Right Time, Lead Time reduction, Optimum utilization of Capital, Optimum utilization of People. Understanding the Zero-defect concept and Metrics, Focus on Human Resources, Quality, Delivery, Cost. Building Zero defect capabilities, Cultural and Organizational aspects

UNIT – V IMPLEMENTATION AND CHALLENGES
Implementing Checks and Balances in the process, Robust Information Systems, Dashboard, follow up and robust corrective and preventive mechanism. Concept of Audits, and continuous improvement from gap analysis, risk assessments etc.

OUTCOMES: At the end of the course the students would be able to
1. Discuss the basics of 6 SIGMA
2. Elaborate the lean manufacturing tools.
3. Illustrate about the deeper understanding methodologies of Lean manufacturing.
4. Discuss lean concepts and its elements.
5. Describe the implementation and challenges of lean manufacturing.

TEXT BOOKS:
2. Lean Manufacturing: Principles to Practice by Akhilesh N. Singh, Bibliophile South Asia
3. The Toyota Way: 14 Management Principles
REFERENCES:
2. International Society of Six Sigma Professionals: https://isssp.org/about-us/
4. Older / Previous editions of AIAG manuals on APQP, FMEA and PPAP. These are great sources of information on Quality Planning and has basics of Project Management and required skills.
5. Quality Management for Organizations Using Lean Six Sigma Techniques - Erick C Jones

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)

CME348 MODERN ROBOTICS

COURSE OBJECTIVES
1. To introduce definition, history of robotics and robot anatomy.
2. To learn the simulation of robot kinematics
3. To study the grasping and manipulation of robots.
4. To study about mobile robot and manipulation.
5. To study the applications of industrial, service, domestic robots.

UNIT – I INTRODUCTION
Robot: Definition, History of Robotics, Robot Anatomy, Co-ordinate systems, types and classification, Configuration space and degrees of freedom of rigid bodies and robots, Configuration space topology and representation; configuration and velocity constraints; task space and workspace, Rigid-body motions, rotation matrices, angular velocities, and exponential coordinates of rotation, Homogeneous transformation matrices.

UNIT – II SIMULATION OF ROBOT KINEMATICS
Robot kinematics, Forward and inverse kinematics (two three four degrees of freedom), Forward and inverse kinematics of velocity, Homogeneous transformation matrices, translation and rotation matrices Dennavit and Hartenberg (D-H) transformation, Dynamics of Open Chains, Trajectory Generation, motion planning, robot control: First- and second-order linear error dynamics, stability of a feedback control system.

UNIT – III GRASPING AND MANIPULATION OF ROBOTS
Kinematics of contact, contact types (rolling, sliding, and breaking), graphical methods for representing kinematic constraints in the plane, and form-closure grasping, Coulomb friction, friction cones, graphical methods for representing forces and torques in the plane, End effectors, grippers, types of gripper, gripper force analysis, and examples of manipulation and grasping.

UNIT – IV MOBILE ROBOTS
Mobile robot, Wheeled Mobile Robots: Kinematic models of omnidirectional and non-holonomic wheeled mobile robots, Controllability, motion planning, feedback control of non-holonomic wheeled mobile robots; odometry for wheeled mobile robots; and mobile manipulation. Reference Trajectory generation, feed forward control.
UNIT – V APPLICATIONS OF ROBOTS
Application of robotic: industrial robots, Service robots, domestic and house hold robots, Medical robots, military robots, agricultural robots, space robots, Aerial robotics Role of robots in inspection, assembly, material handling, underwater, space and healthcare

TOTAL :30 PERIODS

MODERN ROBOTICS LABORATORY
Experiments
1. 3D modeling and motion simulation of rotational joint assembly
2. 3D modeling and motion simulation of prismatic joint assembly
3. 3D modeling and motion simulation of Cartesian robot
4. 3D modeling and motion simulation of articulated robot
5. 3D modeling and motion simulation of spherical robot
6. 3D modeling and motion simulation of cylindrical robot

TOTAL :30 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Discuss the definition, history of robotics and robot anatomy.
2. Develop the simulation of robot kinematics
3. Describe the grasping and manipulation of robots.
4. Explain about mobile robot and manipulation.
5. Discuss the applications of industrial, service, domestic robots.

TEXT BOOKS:

REFERENCES:
5. Modern Robotics Hardcover by Lauren Barrett (Editor), Murphy & Moore Publishing (1 March 2022), ISBN-10 : 1639873732

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES

1. To introduce the concept of environmental design and industrial ecology.
2. To impart knowledge about air pollution and its effects on the environment.
3. To enlighten the students with knowledge about noise and its effects on the environment.
4. To enlighten the students with knowledge about water pollution and its effects on the environment.
5. To introduce the concept of green co-rating and its need.

UNIT – I DESIGN FOR ENVIRONMENT AND LIFE CYCLE ASSESSMENT

UNIT – II AIR POLLUTION SAMPLING AND MEASUREMENT

UNIT – III NOISE POLLUTION AND CONTROL

Frequency and Sound Levels, Units of Noise based power radio, contours of Loudness. Effect of human, Environment and properties, Natural and Anthrogenic Noise Sources, Measuring Instruments for frequency and Noise levels, Masking of sound, Types, Kinetics, Selection of different reactors used for waste treatment, Treatment of noise at source, Path and Reception, Sources of noise, Effects of noise-Occupational Health hazards, thermal Comforts, Heat Island Effects, Radiation Effects.

UNIT – IV WATER DEMAND AND WATER QUALITY

Factors affecting consumption, Variation, Contaminants in water, Nitrates, Fluorides, Detergents, taste and odour, Radio activity in water, Criteria, for different impurities in water for portable and non-portable use, Point and non-point Source of pollution, Major pollutants of Water, Water Quality Requirement for different uses, Global water crisis issues.

UNIT – V GREEN CO-RATING

OUTCOMES: At the end of the course the students would be able to

1. Explain the environmental design and selection of eco-friendly materials.
2. Analyse manufacturing processes towards minimization or prevention of air pollution.
3. Analyse manufacturing processes towards minimization or prevention of noise pollution.
4. Analyse manufacturing processes towards minimization or prevention of water pollution.
5. Evaluate green co-rating and its benefits.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME350 ENVIRONMENT SUSTAINABILITY AND IMPACT ASSESSMENT

COURSE OBJECTIVES

1. To make the students to understand the concepts of Environmental Sustainability & Impact Assessment
2. To familiarize the students in environmental decision making procedure.
3. Make the students to identify, predict and evaluate the economic, environmental, and social impact of development activities
4. To provide information on the environmental consequences for decision making
5. To promote environmentally sound and sustainable development through the identification of appropriate alternatives and mitigation measures.

UNIT – I ENVIRONMENTAL IMPACT ASSESSMENT

Environmental impact assessment objectives – rationale and historical development of EIA - Conceptual frameworks for EIA Legislative development – European community directive – Hungarian directive.

UNIT – II ENVIRONMENTAL DECISION MAKING

Strategic environmental assessment and sustainability appraisal – Mitigation, monitoring and management of environmental impacts- Socio economic impact assessment.

UNIT – III ENVIRONMENTAL POLICY, PLANNING AND LEGISLATION

Regional spatial planning and policy – Cumulative effects assessment – Planning for climate change, uncertainty and risk.

UNIT – IV LIFE CYCLE ASSESSMENT

Life cycle assessment; Triple bottom line approach; Industrial Ecology. Ecological foot printing, Design for Environment, Future role of LCA, Product stewardship, design, durability and justifiability, measurement techniques and reporting

UNIT – V SUSTAINABLE URBAN ECONOMIC DEVELOPMENT

Spatial economics – Knowledge economy and urban regions.
OUTCOMES: At the end of the course the students would be able to
1. Explain the concepts of Environment Sustainability and trained to make decision related to Environment.
2. Make decision that has an effect on our environment
3. Evaluate the basics of environmental policy, planning and various legislation
 Get valuable information for exploring decisions in each life stage of materials, buildings, services and infrastructure.
4. Explain the Life cycle assessment of Environmental sustainability.
5. Explain sustainable urban economic development.

TEXT BOOKS:

REFERENCES:
2. Robert B Gibson, Sustainability Assessment, Earth Scan publishers, 2005

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME351 ENERGY SAVING MACHINERY AND COMPONENTS

COURSE OBJECTIVES
1. To introduce the various energy saving machineries and components to the students for the purpose of conserving energy.
2. To study the basics and principles of transforms, Pumps and motors.
3. To impart the knowledge about the methods of energy conservation.
4. To introduce the energy efficiency devices and concepts of ENCON.
5. To impart the knowledge about CO2 mitigation.

UNIT – I BASICS OF ELECTRICAL ENERGY USAGE
Basics – Penalty Concept for PF – PF Correction – Demand Side Management (a brief) - energy monitoring, measurement and analysis.

UNIT – II TRANSFORMERS AND MOTORS

UNIT – III FANS, PUMPS AND COMPRESSORS

UNIT – IV STUDY OF ILLUMINATION AND ENERGY EFFICIENT DEVICES

UNIT – V CO₂ MITIGATION AND CASE STUDIES

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Explain the various energy saving machinery and components.
2. Evaluate the various methods of conservation of energy.
3. Evaluate the performance and energy conservation of fans, pumps and compressors.
4. Discuss the various energy efficiency devices.
5. Explain the co2 mitigation and cost factor.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
CME352 GREEN SUPPLY CHAIN MANAGEMENT

COURSE OBJECTIVES
1. To familiarize the various standards and legislation of modern electronic manufacturing.
2. To know the conventional electronic processing and lead-free electronic manufacturing techniques.
3. To recognize the steps involved in assembly process and understand the need of recycle the electronics.
5. To demonstrate the green electronic manufacturing procedure in applications.

UNIT – I INTRODUCTION TO GREEN ELECTRONICS 9
Environmental concerns of the modern society - Overview of electronics industry and their relevant regulations in China, European Union and other key countries - global and regional strategy and policy on green electronics industry. Restriction of Hazardous substances (RoHS) - Waste Electrical and electronic equipment (WEEE - Energy using Product (EuP) and Registration - Evaluation, Authorization and Restriction of Chemical substances (REACH).

UNIT – II GREEN ELECTRONICS MATERIALS AND PRODUCTS 9

UNIT – III GREEN ELECTRONICS ASSEMBLY AND RECYCLING 9
Various processes in assembling electronics components - the life-cycle environmental impacts of the materials used in the processes - substrate interconnects. Components and process equipments - Technology and management on e-waste recycle system construction, global collaboration, and product disassembles technology.

UNIT – IV PRODUCT DESIGN AND SUSTAINABLE ECO-DESIGN 9
Stages of product development process in green design: Materials- Manufacturing - Packaging and use - End of Life and disposal - Design for recycling - Life Cycle Assessment (LCA), and Eco-design tools - Environmental management systems, and International standards - Eco-design in electronics industry.

UNIT – V CASE STUDIES 9

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
2. Explain the conventional electronic processing and lead free electronic manufacturing techniques.
3. Realize the assembly process and the need of recycle of electronics.
5. Validate the green electronic manufacturing procedures in applications.

TEXT BOOKS:
1. Green Supply Chain Management, by CharisiosAchillas , Dionysis D. Bochtis,
REFERENCES:

CME353 DESIGN OF PRESSURE VESSELS

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

COURSE OBJECTIVES
1. To introduce the Mathematical knowledge to design pressure vessels and piping
2. To learn the ability to carry of stress analysis in pressure vessels and piping
3. To study the design of vessels and theory of reinforcement.
4. To study buckling and fracture analysis in vessels.
5. To learn piping layout and flow diagram.

UNIT – I INTRODUCTION
Methods for determining stresses – Terminology and Ligament Efficiency – Applications

UNIT – II STRESSES IN PRESSURE VESSELS

UNIT – III DESIGN OF VESSELS
Design of Tall cylindrical self-supporting process columns – Supports for short vertical vessels – Stress concentration at a variable Thickness transition section in a cylindrical vessel, about a circular hole, elliptical openings. Theory of Reinforcement – Pressure Vessel Design.

UNIT – IV BUCKLING AND FRACTURE ANALYSIS IN VESSELS
Buckling phenomenon – Elastic Buckling of circular ring and cylinders under external pressure –collapse of thick walled cylinders or tubes under external pressure – Effect of supports on Elastic Buckling of Cylinders – Buckling under combined External pressure and axial loading.

UNIT – V PIPING
OUTCOMES: At the end of the course the students would be able to

1. Explain Methods for determining stresses Terminology and Ligament Efficiency, Applications
2. Analyse stress in pressure vessels
3. Design and analysis of pressure vessels.
4. Analysis of buckling and fracture analysis in vessels
5. Design and analysis piping layout and piping.

TEXT BOOKS:

2. Theory And Design Of Pressure Vessels (Pb 2001) by HARVEY J.F. | 1 January 2001

REFERENCES:

5. Theory and design of Pressure Vessels (Pb 2001) by HARVEY J.F. | 1 January 2001

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME354 FAILURE ANALYSIS AND NDT TECHNIQUES

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

1. To introduce need and scope of failure analysis and fundamental sources of failures.
2. To learn about non-destructive testing and basic principles of visual inspection.
3. To study about magnetic testing and principles, techniques.
4. To learn the principle of radiography testing and its inspection techniques and methods.
5. To study the acoustics testing principle and technique and instrumentation.
UNIT – I

INTRODUCTION

UNIT – II

VISUAL INSPECTION

UNIT – III

MAGNETIC TESTING

UNIT – IV

RADIOGRAPHY TESTING

UNIT – V

ACOUSTIC TESTING

NON DESTRUCTIVE TESTING LABORATORY
Experiments
1. Conducting experiment using liquid penetrant testing
2. Conducting experiment using magnetic particle testing
3. Conducting experiment using ultrasonic testing
4. Conducting experiment using electromagnetic testing
5. Conducting experiment using acoustiastic emission testing

OUTCOMES: At the end of the course the students would be able to
1. Discuss the need and scope of failure analysis and fundamental sources of failures.
2. Describe about non-destructive testing and basic principles of visual inspection.
3. Explain about magnetic testing and principles, techniques.
4. Explain the principle of radiography testing and its inspection techniques and methods.
5. Describe the acoustiastic testing principle and technique and instrumentation.

TEXT BOOKS:

REFERENCES:
1. ASM Metals Handbook,Non-Destructive Evaluation and Quality Control, American Society of
CME355 MATERIAL HANDLING AND SOLID PROCESSING EQUIPMENT

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

COURSE OBJECTIVES

1. To provide knowledge on materials handling equipment.
2. To provide knowledge on Industrial Vehicles
3. To provide knowledge on conveyor equipment.
4. To provide knowledge on Auxiliary Equipment and Hoisting Equipment.
5. To provide knowledge on Bulk Handling Equipment and Systems

UNIT – I INTRODUCTION TO MATERIALS HANDLING
Basic principles & objectives in material handling and its benefits - Classification of material handling equipment - selection of material handling equipments - guidelines for effective utilisation of material handling equipments - unit load concept

UNIT – II INDUSTRIAL VEHICLES

UNIT – III CONVEYORS
Classification of conveyors - Definition - Description - General Characteristics - types and uses of belt Conveyors - Roller conveyors - Haulage Conveyors - Screw Conveyors - Bucket Conveyors - Chain Conveyors - Cable Conveyors - Pneumatic and Hydraulic conveyors - Computer controlled conveyor system.

UNIT – IV AUXILIARY EQUIPMENT AND HOISTING EQUIPMENT
Hoppers - Gates - Feeders - Chutes-positioners - Ball Table - Weighing and Control Equipment - Pallet loaders and unloaders - applications and advancements. - Hoisting Equipment - parts of hoisting equipment - Description and uses of hoists - Description and uses of ropes - description and purpose of crane hooks - Elevators - Cranes - Derricks - and its types
UNIT V BULK HANDLING EQUIPMENT AND SYSTEMS

Storage of bulk solids - bulk handling equipment - Robotic handling - Materials handling at the workplace - Robots and their classification - Major components of a robot - classification of Robotic manipulators - Robotic handling applications

OUTCOMES: At the end of the course the students would be able to
1. Discuss the basic concepts of material handling equipment.
2. Explain the basic working principles of various industrial Vehicles.
3. Develop the basic working principles of various conveyors.
4. Elaborate the basic working principles of various Auxiliary Equipment and Hoisting Equipment.
5. Explain the basic working principles of various Bulk Handling Equipment and Systems.

TEXT BOOKS:

REFERENCES:
2. 8005:1976, Classification of Unit Loads, Bureau of Indian Standards.
4. Theodore H., Allegre Sr., Material Handling Principles and Practice, CBS Publishers and Distributors

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME356 ROTATING MACHINERY DESIGN

COURSE OBJECTIVES

1. To familiarize the course member with various operations of gas turbines and other driven rotating machines.
2. To familiarize students with the common problems associated with the mechanical design and the lifting of the major rotating components of the gas turbine engine.
3. To study the failure criteria of rotating machinery.
4. To learn the design of discs, blades for rotating machinery.
5. To study about blade vibrations Damage Mechanisms.

UNIT I INTRODUCTION

Overview of the different operational regimes for gas turbine applications: base load, peak load, standby and backup operations, alongside their individual operational requirements. Fundamentals of Creep and Fatigue damage mechanisms. Material, design and operational parameters that affect
creep and fatigue. Experimental and test procedures to characterise creep and fatigue damage.

UNIT – II DESIGNING FORCES 9
Loads/forces/stresses in gas turbine engines: loads - rotational inertia, flight, precession of shafts, pressure gradient, torsion, seizure, blade release, engine mountings and bearings-Discussion of major loadings-rotating components and pressure casing components.

UNIT – III FAILURE CRITERIA 9

UNIT – IV BLADE DESIGN 9
Design of discs, blades. Illustration of magnitude stresses in conventional axial flow blades- simple desk-top method -effects of leaning the blade. Design of flanges and bolted structures. Leakages through a flanged joint and failure from fatigue.

UNIT – V BLADE VIBRATIONS AND DAMAGE MECHANISMS 9

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Differentiate the operational regimes and requirements related to different gas turbine applications.
2. Describe and distinguish the design requirements and loads encountered by gas turbine components during normal operation;
3. Analyse, evaluate and assess the loads, stresses, failure criteria and factors of safety used in gas turbine engines
4. Evaluate impact of vibrations on design and operation of gas turbine;
5. Assess the creep and fatigue damage of gas turbine components based on design and operational parameters

TEXT BOOKS:

REFERENCES:
3. Principals of Turbo machines D. G. Shepherd The Macmillan Company 1964
5. Shaft Alignment Handbook (Mechanical Engineering)by John Piotrowski | 2 November 2006

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

1. To introduce the concepts of thermal and fired equipment.
2. To study the basis, design and construction of boilers.
3. To study of typical fuel firing systems in the boiler.
4. To study of materials requirements for pressure parts.
5. To study of various boiler auxiliaries system.

UNIT – I

INTRODUCTION

Principal equipment in Thermal Power Plant, Historical developments of Boiler, Utility, Industrial boilers, Morden trends in boiler design, Basic knowledge of different types of Thermal Fired Equipment, sub critical and super critical boilers - Coal, Oil, Gas, Pulverised fuel cyclone, FBC, CFBC, MSW, and Stoker firing, Boiler efficiency, auxiliary power consumption, Performance data, Performance Correction Curves

UNIT – II

BASIS OF BOILERS AND DESIGN

UNIT – III

FIRING SYSTEM - FUEL AND MILLING

Coal / Oil / Natural Gas in any combination, Lignite, Blast Furnace Gas / Coke Oven Gas / Corex Gas Carbon Monoxide / Tail gas, Asphalt, Black Liquor, Bagasse, Rice Husk, Washery Rejects, Wheat / Rice straw MSW, wind box, Burner, Type of Stokers, Pulverisers - Bowl mill, Tube mill, Direct firing, Indirect firing, Wall firing (Turbulent / Vortex Burners), Tangential firing (Jet Burners), Fire Ball.

UNIT – IV

PRESSURE PARTS AND DESIGN AND MATERIALS

Economiser, Drums, Water Walls, Headers, Links, Super Hater, Super Heaters, Reheaters, Tubes, Spiral Tubes, Surface area, Free Gas Area, Metal temperature, LMTD, Acid Due Point Temperature, Carbon steel, Low alloy steel, Titanium alloy steel

UNIT – V

BOILER AUXILIARIES

Air preheaters (APH) – bi sector APH, Tri sector APH, Cold PA System, Hot PA System, Tubular APH, Steam coil Air preheater, FANS – Axial, Radial, Performance curves, MILLS- Tube, Vertical mills, Air quality Control systems, DustCollection System - Mechanical Precipitator, Electrostatic Precipitator, FGD, SCR, SNCR

OUTCOMES: At the end of the course the students would be able to

1. Explain the concepts of thermal and fired equipment.
2. Discuss the basis, design and construction of boilers.
3. Describe of typical fuel firing systems in the boiler.
4. Discuss the materials requirements for pressure parts.
5. Discuss of various boiler auxiliaries system.

TEXT BOOKS:
1. A Course in Power Plant Engineering; Dhanapat Rai and Sons - Domkundwar
2. Power Plant Engineering by B. Vijaya Ramnath C. Elanchezhian, L. Saravanakumar

REFERENCES:
2. Steam Generators and Waste Heat Boilers: For Process and Plant Engineers (Mechanical Engineering) by V. Ganapathy
3. Steam Generators: Description and Design by Donatello Annaratone
4. An Introduction to Coal and Wood Firing Steam Generators (Power Plants Engineering) by J Paul Guyer
5. Advances in Power Boilers (JSME Series in Thermal and Nuclear Power Generation) by Mamoru Ozawa and Hitoshi Asano | 28 January 2021

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME358 INDUSTRIAL LAYOUT DESIGN AND SAFETY

COURSE OBJECTIVES
The main learning objective of this course is to prepare the students for:
1. To introduce the industrial facility layout design principles, process and material flow analysis and product and equipment analysis.
2. To learn the facilities layout design algorithms and selecting appropriate software.
3. To study the facilities layout problem modelling tools and algorithms for production, warehouse, and material handling.
4. To learn the safety planning and management principles in industries.
5. To learn the various safety management approaches in industries.

UNIT – I INTRODUCTION

UNIT – II FACILITIES LAYOUT DESIGN & ALGORITHMS

UNIT – III FACILITIES LAYOUT PROBLEM MODELS & ALGORITHMS
Warehouse Functions, Warehouse Design and Operation.

UNIT – IV SAFETY PLANNING & MANAGEMENT 6

UNIT – V APPROACHES IN SAFETY MANAGEMENT 6

INDUSTRIAL LAYOUT DESIGN LABORATORY
Experiments
1. Simulation of Manufacturing Shop
2. Simulation of Batch Production System
3. Simulation of Multi Machine Assignment System
4. Simulation of Manufacturing and Material Handling Systems
5. Simulation of a Shop Floor
6. Simulation of Material Handling Systems

TOTAL:30 PERIODS

COURSE OUTCOMES: At the end of the course the students would be able to
1. Explain the industrial facility layout design principles, process and material flow analysis and product and equipment analysis.
2. Discuss the facilities layout design algorithms and selecting appropriate software.
3. Describe the facilities layout problem modeling tools and algorithms for production, warehouse, and material handling.
4. Explain the safety planning and management principles in industries.
5. Illustrate the various safety management approaches in industries.

TEXT BOOKS:

REFERENCES:
6. Industrial Hazard and Safety Handbook: (Revised impressionby Ralph W King and John Magid | 24 September 2013
| CO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 1 | 2 | 2 | 2 | 1 | 3 | 3 | 3 | 2 | 1 | 1 | 3 | 2 | 2 | 2 |
| 2 | 1 | 2 | 2 | 2 | 1 | 3 | 3 | 3 | 2 | 1 | 1 | 3 | 2 | 2 | 2 |
| 3 | 1 | 2 | 2 | 2 | 1 | 3 | 3 | 3 | 2 | 1 | 1 | 3 | 2 | 2 | 2 |
| 4 | 1 | 2 | 2 | 2 | 1 | 3 | 3 | 3 | 2 | 1 | 1 | 3 | 2 | 2 | 2 |
| 5 | 1 | 2 | 2 | 2 | 1 | 3 | 3 | 3 | 2 | 1 | 1 | 3 | 2 | 2 | 2 |

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES

1. To study the Codes and Standards and Need for them in the Industry
2. To know the different sources and the bodies that publish Codes and Standards
3. To familiarize the Government Regulations and its applicability
4. To familiarize with different codes used in Different Industry
5. To familiarize the Codes and Standards used in Process Industry

UNIT – I INTRODUCTION

UNIT – II CODES

UNIT – III STANDARDS

Sources of Codes and Standards. Who publishes Codes and Standards? International Societies and Professional Bodies. Process of Standardisation and Code publishing in Professional Bodies and Companies. Interdisciplinary Codes

UNIT – IV REGULATIONS

UNIT – V DESIGN CODES

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

1. Explain the need for codes and Standards in Industry.
2. Discuss the different codes and standards used in different industry.
3. Discuss the sources of different codes and standards and the societies that publish them and how these are evolved
4. Explain need for Government regulations and Certification authorities and familiar with common regulations in India and International
5. Discuss knowledge of codes and standards used in Process equipment design for Oil and Gas Industry.

TEXT BOOKS:

2. Perrys Chemical Engg Handbook

REFERENCES:

1. ASME
2. API
3. ISO, IBR, OISD
4. AWS
5. ISHRAE
CME360 BIOENERGY CONVERSION TECHNOLOGIES

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

COURSE OBJECTIVES
1. To elucidate on biomass, types, availability, and characteristics
2. To study the bio-methanation process.
3. To impart knowledge on combustion of biofuels
4. To describe on the significance of equivalence ratio on thermochemical conversion of biomass
5. To provide insight to the possibilities of producing liquid fuels from biomass

UNIT – I INTRODUCTION

UNIT – II BIOMETHANATION
Biomethanation process – influencing parameters – typical feed stocks – Biogas plants: types and design, Biogas appliances – burner, luminaries and power generation systems – Industrial effluent based biogas plants.

UNIT – III COMBUSTION
Perfect, complete and incomplete combustion – stoichiometric air requirement for biofuels - equivalence ratio – fixed Bed and fluid Bed combustion

UNIT – IV GASIFICATION, PYROLYSIS AND CARBONISATION

UNIT – V LIQUIFIED BIOFUELS
Straight Vegetable Oil (SVO) as fuel - Biodiesel production from oil seeds, waste oils and algae - Process and chemistry - Biodiesel Vs. Diesel – comparison on emission and performance fronts. Production of alcoholic fuels (methanol and ethanol) from biomass – engine modifications

OUTCOMES: At the end of the course the students would be able to
1. Estimate the surplus biomass availability of any given area.
2. Design a biogas plant for a variety of biofuels.
3. Determine and compare the cost of steam generation from biofuels with that of coal and petroleum fuels.
4. Analyse the influence of process governing parameters in thermochemical conversion of biomass.
5. Synthesize liquid biofuels for power generation from biomass.

TOTAL:45 PERIODS
TEXT BOOKS:

REFERENCES:
1. David Boyles, Bio Energy Technology Thermodynamics and costs, Ellis Hoknood Chichester,1984.
2. Iyer PVR et al, Thermochemical Characterization of Biomass, M N E S
5. Tom B Reed, Biomass Gasification – Principles and Technology, Noyce Data Corporation, 1981

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME361 CARBON FOOTPRINT ESTIMATION AND REDUCTION TECHNIQUES 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3

COURSE OBJECTIVES
1. To introduce climate change and carbon footprint
2. To study the principle of product life cycle and Green House Gas emissions accounting
3. To study the Methodology for Carbon Footprint Calculation
4. To learn emission mitigation and carbon sink
5. To study the case study of carbon footprint.

UNIT – I CLIMATE CHANGE AND CARBON FOOTPRINT

UNIT – II PRODUCT LIFE CYCLE AND GHG EMISSIONS
UNIT – III METHODOLOGICAL ASPECTS OF CARBON FOOTPRINT

UNIT – IV EMISSION MITIGATION AND CARBON SINK

UNIT – V CASE STUDIES
Carbon Footprint Estimation from Building Sector - Urban Carbon Footprint Evaluation - Applications of carbon footprint in urban planning – Mechanical Equipment and Electronic Product Carbon Footprint - Carbon Footprint of Aqua and Agriculture products- GHG Emissions from Municipal Wastewater Treatment and Solid waste management-

OUTCOMES: At the end of the course the students would be able to
1. Explain the climate change and carbon footprint
2. Discuss the principle of product life cycle and Green House Gas emissions accounting
3. Explain the Methodology for Carbon Footprint Calculation
4. Discuss emission mitigation and carbon sink
5. Explain the case study of carbon footprint.

TEXT BOOKS:

REFERENCES:
3. World Resources Institute, Green House Gas Protocol - Product Life Cycle Accounting and Reporting Standard
5. IPCC (2022) –Sixth Assessment Reports – Intergovernmental Panel on Climate Change, United Framework convention on Climate Change.

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
CME362 ENERGY CONSERVATION IN INDUSTRIES L T P C 3 0 0 3

COURSE OBJECTIVES
1. To learn Quantifying the energy demand and energy supply scenario of nation and explaining the need for energy auditing for becoming environmentally benign
2. To Analyzing factors behind energy billing and applying the concept of demand side management for lowering energy costs
3. To learn Computing the stoichiometric air requirement for any given fuel and quantifying the energy losses associated with thermal utilities of industries
4. To Diagnosing the causes for under performance of various electrical utilities and suggesting remedies for improving their efficiency
5. To applying CUSUM and other financial evaluation techniques to estimating the accruable energy savings/monetary benefits for any energy efficiency project

UNIT – I INTRODUCTION
9

UNIT – II ELECTRICAL SUPPLY SYSTEMS
9
Electricity Tariff structures – Typical Billing - Demand Side Management - HT and LT supply - Power Factor – Energy conservation in Transformers – Harmonics

UNIT – III ENERGY CONSERVATION IN MAJOR THERMAL UTILITIES
9

UNIT – IV ENERGY CONSERVATION IN MAJOR ELECTRICAL UTILITIES
9
Energy conservation in: Motors - Pumps – Fans – Blowers - Compressed Air Systems - Refrigeration and Air Conditioning Systems - Illumination systems

UNIT – V ENERGY MONITORING, TARGETING, LABELLING AND ECONOMICS
9

TOTAL :45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Discuss Quantify the energy demand and energy supply scenario of nation and appreciate the need for energy auditing for becoming environmentally benign
2. Analyse factors behind energy billing and apply the concept of demand side management for lowering energy costs
3. Compute the stoichiometric air requirement for any given fuel and quantify the energy losses associated with thermal utilities of industries
4. Diagnose the causes for under performance of various electrical utilities and suggest remedies for improving their efficiency
5. Apply CUSUM and other financial evaluation techniques to estimate the accruable energy savings/monetary benefits for any energy efficiency project

TEXT BOOKS:
REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME363 ENERG Y EFFICIENT BUILDINGS L T P C

OUTCOMES: At the end of the course the students would be able to
1. Familiar with climate responsive building design and basic concepts
2. Explain the basic terminologies related to buildings
3. Discuss the energy efficient air conditioning techniques
4. Evaluate the performance of buildings
5. Gets acquainted with Renewable energy systems in buildings

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME364 ENERGY STORAGE DEVICES

COURSE OBJECTIVES
1. To study the various types of energy storage devices and technologies and their comparison.
2. To learn the techniques of various energy storage devices and their performances.
3. To learn the basics of batteries and hybrid systems for EVs and other mobile applications.
4. To learn about the renewable energy storage systems and management systems.
5. To have an insight into other energy storage devices, hydrogen, and fuel cells.

UNIT – I INTRODUCTION TO ENERGY STORAGE

UNIT – II ENERGY STORAGE SYSTEMS

UNIT – III MOBILE AND HYBRID ENERGY STORAGE SYSTEMS
9 Batteries for electric vehicles - Battery specifications for cars, heart pacemakers, computer standby supplies – V2G and G2V technologies – HESS.
UNIT – IV RENEWABLE ENERGY STORAGE AND ENERGY MANAGEMENT

UNIT – V OTHER ENERGY DEVICES

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Discuss the need and identify the suitable energy storage devices for applications.
2. Explain the working of various energy storage devices and their importance.
3. Explain the basic characteristics of batteries for mobile and hybrid systems.
4. Discuss the storage of renewable energies and management systems.
5. Explain the need for other energy devices and their scope for applications.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
CME365 RENEWABLE ENERGY TECHNOLOGIES L T P C
3 0 0 3

COURSE OBJECTIVES
1. To know the Indian and global energy scenario
2. To learn the various solar energy technologies and its applications.
3. To educate the various wind energy technologies.
4. To explore the various bio-energy technologies.
5. To study the ocean and geothermal technologies.

UNIT – I ENERGY SCENARIO
Indian energy scenario in various sectors – domestic, industrial, commercial, agriculture, transportation and others – Present conventional energy status – Present renewable energy status - Potential of various renewable energy sources-Global energy status-Per capita energy consumption - Future energy plans

UNIT – II SOLAR ENERGY

UNIT – III WIND ENERGY

UNIT – IV BIO-ENERGY

UNIT – V OCEAN AND GEOTHERMAL ENERGY

OUTCOMES: At the end of the course the students would be able to
1. Discuss the Indian and global energy scenario.
2. Describe the various solar energy technologies and its applications.
3. Explain the various wind energy technologies.
4. Explore the various bio-energy technologies.
5. Discuss the ocean and geothermal technologies.

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:

CME366 EQUIPMENT FOR POLLUTION CONTROL

L T P C
3 0 0 3

COURSE OBJECTIVES
1. To study the pollution control regulation and standards, water and wastewater.
2. To study the equipment for various water pollution.
3. To study the equipment for air pollution control.
4. To study the equipment for solid waste processing.
5. To study the pollution monitoring equipment.

UNIT – I POLLUTION CONTROL REGULATIONS AND STANDARDS

UNIT – II EQUIPMENT FOR WATER POLLUTION CONTROL
Operational principles and Design criteria of Flash mixers, Floculators, Clarifiers, Sand Filters, Adsorption Columns, Aerator, Air blowers, Distillation units, Centrifugal and Reciprocating Pumps, Chemical dosing systems, Motors, Pipes, valves and Fittings. - Filed visit to a wastewater treatment plant.

UNIT – III EQUIPMENT FOR AIR POLLUTION CONTROL
Operational principles and Design criteria of Cyclone separators, gravity settlers, Wet Scrubbers, Air strippers, Bag Filters, Electrostatic precipitators, Biofilters - Filed visit to an industry with air pollution control systems.

UNIT – IV EQUIPMENT FOR SOLID WASTE PROCESSING

UNIT – V POLLUTION MONITORING EQUIPMENT
Equipment’s for sampling of water, solids and air- Sample preservation Equipment – incubators – Cold Storage systems- equipment for analysis of water and air samples- Ambient air and flue gas sampling and monitoring equipment.

TOTAL : 45 PERIODS
OUTCOMES: At the end of the course the students would be able to
1. Explain the different types of pollution, their sources and effects.
2. Discuss the pollution control regulations and standards
3. Design equipment for pollution control
4. Discuss different methods of pollution control from various sources in air, water and soil
5. Discuss the Conduct performance assessment of pollution control equipment.

TEXT BOOKS:

REFERENCES:
4. CPCB (2021), “Pollution Control Acts, Rules and Notifications issued thereunder, PCL Series- Central Pollution Control Board, Delhi

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME367 COMPUTATIONAL SOLID MECHANICS

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
1. To study the definition and basics on theory of elasticity
2. To learn finite element method and procedure for static linear elasticity
3. To study the Non Linear and History depend problems
4. To study time dependent and dynamic problems of Small and large strain visco-plasticity
5. To study Structural Elements & Interfaces and contact using penalty method.

UNIT – I BASIC ON THEORY OF ELASTICITY
Definitions- notations and sign conventions for stress and strain, Equations of equilibrium.Strain – displacement relations, Stress – strain relations, Lame’s constant – cubical dilation, Compressibility of material, bulk modulus, Shear modulus, Compatibility equations for stresses and strains, Principal stresses and principal strains, Mohr’s circle, Saint Venant’s principle.

UNIT – II FINITE ELEMENT METHOD FOR STATIC LINEAR ELASTICITY
Derivation and implementation of a basic 2D FE code with triangular constant strain elements. Generalization of finite element procedures for linear elasticity: interpolation and numerical integration in 1D, 2D and 3D. Deriving finite element equations - constructing variational forms; mixed methods. Accuracy and convergence; the Patch test.

UNIT – III NON LINEAR AND HISTORY DEPEND PROBLEMS
Small strain hypo-elastic materials - Small strain visco-plasticity - Large strain elasticity - Large strain visco-plasticity.
UNIT – IV TIME DEPENDENT AND DYNAMIC PROBLEMS
First-order systems - the diffusion equation - Explicit time integration – the Newmark method - Implicit time integration - Modal analysis and modal time integration.

UNIT – V STRUCTURAL ELEMENTS & INTERFACES AND CONTACT
Continuum Beams – Shells – Cohesive Zones - Enforcing constraints using penalty methods and Lagrange Multipliers - Contact elements (in two dimensions)

TOTAL :45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Discuss the definition and basics on theory of elasticity
2. Derive the finite element method for static linear elasticity, solve problems.
3. Discuss the Non Linear and History depend problems, Solve problems.
4. Discuss time dependent and dynamic problems, solve problems.
5. Discuss Structural Elements & Interfaces and contact, solve problems.

TEXT BOOKS:

REFERENCES:
2. The Finite Element Analysis of Shells - Fundamentals (Computational Fluid and Solid Mechanics) by Dominique Chapelle and Klaus-Jurgen Bathe | 27 January 2013
3. Inelastic Analysis of Solids and Structures (Computational Fluid and Solid Mechanics) by M. Kojic and Klaus-Jurgen Bathe | 22 October 2010
4. High-Resolution Methods for Incompressible and Low-Speed Flows (Computational Fluid and Solid Mechanics) by D. Drikakis and W. Rider | 22 October 2010
5. Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer (Computational Fluid and Solid Mechanics) by Ben Q. Li | 22 October 2010

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
CME368
COMPUTATIONAL FLUID DYNAMICS AND HEAT TRANSFER

COURSE OBJECTIVES
1. To study the fluid flow simulation techniques and its mathematical behaviour
2. To learn the Discretise 1D and 2D systems using finite difference and finite volume techniques
3. To Formulate diffusion –convection problems using finite volume method
4. To study the flow field for different types of grids
5. To learn the need for turbulence models and its types

UNIT – I
INTRODUCTION
9
Basics of Computational Fluid Dynamics – Governing equations– Continuity, Momentum and Energy equations – Boundary conditions & Types– Time-averaged equations for Turbulent Flow – Classification and Mathematical behaviour of PDEs on CFD - Elliptic, Parabolic and Hyperbolic equations, comparison between Analytical, Experimental and Numerical techniques, Techniques of Discretisation and Numerical errors

UNIT – II
FINITE DIFFERENCE AND FINITE VOLUME METHODS FOR DIFFUSION
9

UNIT – III
FINITE VOLUME METHOD FOR CONVECTION DIFFUSION
9
Steady one-dimensional convection and diffusion – Central, upwind differencing schemes, properties of discretization schemes, Hybrid, Power-law, QUICK Schemes, Computation of Boundary layer flow, von Neumann stability analysis.

UNIT – IV
FLOW FIELD ANALYSIS
9
Stream function and vorticity, Representation of the pressure gradient term, Staggered grid – Momentum equations, Pressure and Velocity corrections – Pressure Correction equation, SIMPLE algorithm and its variants – PISO Algorithms, Computation of internal and external thermal boundary layer.

UNIT – V
TURBULENCE MODELLING
9
Turbulence model requirement and types, mixing length model. Two equation (k-€) models – High and low Reynolds number models, LES, DNS, Mesh Generation and refinement Techniques-software tools, Stability of solver, Courant Fredrick Levy number, relaxation factor, and grid independence test.

OUTCOMES: At the end of the course the students would be able to
1. Apply the fundamentals of CFD, and develop case specific governing equations.
2. Discuss finite difference and finite volume based analysis for steady and transient diffusion problems.
3. Implement various mathematical schemes under finite volume method for convention diffusion.
4. Solve complex problems in the field of fluid flow and heat transfer with the support of high speed computers.
5. Apply the various discretization methods, solution procedure and the concept of turbulence modelling.

TOTAL:45 PERIODS

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th></th>
<th>PO</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3</td>
<td>CO</td>
<td>PSO</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3 2 1 1</td>
<td>1</td>
<td>1</td>
<td>3 2 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3 2 1 1</td>
<td>1</td>
<td>1</td>
<td>3 2 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3 2 1 1</td>
<td>1</td>
<td>1</td>
<td>3 2 1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3 2 1 1</td>
<td>1</td>
<td>1</td>
<td>3 2 1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3 2 1 1</td>
<td>1</td>
<td>1</td>
<td>3 2 1</td>
<td></td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)

CME369 THEORY ON COMPUTATION AND VISUALIZATION

UNIT – I REVIEW OF MATHEMATICAL THEORY
Sets, Functions, Logical statements, Proofs, Relations, Languages, Principal of Mathematical Induction, Strong Principle, Recursive Definitions, Structural Induction.

UNIT – II REGULAR LANGUAGES AND FINITE AUTOMATA
Regular Expressions, Regular Languages, Application of Finite Automata, Automata with output – Moore machine & Mealy machine, Finite Automata, Memory requirement in a recognizer, Definitions, union-intersection and complement of regular languages, Non Deterministic Finite Automata, Conversion from NFA to FA, ??- Non Deterministic Finite Automata, Conversion of NFA- ? to NFA, Kleene’s Theorem, Minimization of Finite automata, Regular And Non Regular Languages – pumping lemma.

UNIT – III CONTEXT FREE GRAMMAR (CFG) AND PUSHDOWN AUTOMATA
Definitions and Examples, Unions Concatenations And Kleene’s of Context free language, Regular Grammar for Regular Language, Derivations and Ambiguity, Unambiguous CFG and Algebraic Expressions, BacosNaur Form (BNF), Normal Form – CNF. Definitions, Deterministic PDA, Equivalence of CFG and PDA &; Conversion, Pumping lemma for CFL, Intersections and Complements of CFL, Non-CFL.

UNIT – IV VALUE OF VISUALIZATION
Information Visualization, In Readings in Information Visualization, Graphical Excellence, Graphical Integrity, Sources of Graphical Integrity In The Visual Display of Quantitative Information

UNIT – V VISUALIZATION DESIGN
The Power of Representation, Data-Ink and Graphical Redesign, Data-Ink Maximization and Graphical Design, Data Density and Small Multiples

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Discussing the concepts and techniques of discrete mathematics for theoretical computer science.
2. Explain the different formal languages and their relationship.
3. Discussing to classify and construct grammars for different languages and vice-versa.
4. Explaining the Visualization, Graphical and Quantitative Information.
5. Applying the Visualization design and data Ink.

TEXT BOOKS:
1. Introduction to the Theory of Computation by Michael Sipser
2. Automata Theory, Languages, and Computation By John Hopcroft, Rajeev Motowani, and Jeffrey Ullman

REFERENCES:
1. Introduction to Languages and the Theory of Computation, 4th by John Martin, Tata Mc Graw Hill
2. An introduction to automata theory and formal languages By Adesh K. Pandey, Publisher: S.K. Kataria & Sons
3. Introduction to computer theory By Deniel I. Cohen , Joh Wiley & Sons, Inc

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME370 COMPUTATIONAL BIO-MECHANICS L T P C
3 0 0 3

COURSE OBJECTIVES
1. To Introduction of principles and concepts of bio-mechanics.
2. Focuses on the studies of tissues and structure of musculoskeletal system.
3. To study the mechanics of joints and human motion.
4. To explain the computational approaches in biomechanics.
5. To learn the quantification of forces and motion.

UNIT – I INTRODUCTION TO BIOMECHANICS
Perspective of biomechanics, Terminologies, Kinematic and kinetic concepts for analyzing human motion, Kinetic concepts for analyzing human motion, Linear kinetics of human movement, Equilibrium, Angular kinetics of human Movement, Mechanical properties of soft tissues, bones, and muscles

UNIT – II BIOMECHANICS OF TISSUES AND STRUCTURES OF THE MUSCULOSKELETAL SYSTEM
Biomechanics of Bone, Biomechanics of Articular Cartilage, Tendons and Ligaments, Peripheral Nerves and Spinal Nerve Roots, Skeletal Muscle

UNIT – III BIOMECHANICS OF JOINTS AND HUMAN MOTION

UNIT – IV COMPUTATIONAL APPROACHES IN BIOMECHANICS
Finite Element Analysis in Biomechanics, Computational modelling of Vancouver Periprosthetic Fracture in Femur, Scaffolds, artificial hip and knee joints, Aortic Valve.
UNIT – V GAIT ANALYSIS
Exoskeleton design, Ergonomics, Sports mechanics, Performance Analysis, Biomechanical analysis, 3D printing.

OUTCOMES: At the end of the course the students would be able to
1. Discuss the principles of mechanics.
2. Elaborate the tissues and structures of the musculoskeletal system
3. Discuss of joint mechanics and human motion.
4. Create Examples of computational mathematical modelling applied in biomechanics.
5. Describe the analysis of human motion.

TEXT BOOKS:

REFERENCES:
3. Pritam Pain, Sreerup Banerjee, Goutam Kumar Bose, Advances in Computational Approaches in Biomechanics, 2022
4. Kinetics and Dynamics: From Nano- to Bio-Scale: 12 (Challenges and Advances in Computational Chemistry and Physics)by Piotr Paneth and Agnieszka Dybala-Defratyka | 12 August 2010
5. Computational Approaches to Biochemical Reactivity: 19 (Understanding Chemical Reactivity) by Gábor Náray-Szabó and Arieh Warshel | 31 March 2002

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME371 ADVANCED STATISTICS AND DATA ANALYTICS L T P C 3 0 0 3

COURSE OBJECTIVES
1. To introduce the basic concepts of linear regression and multiple regression
2. To introduce exploratory data analysis
3. To study logistic regression models for classification
4. To develop the forecasting techniques for the predictions
5. To introduce the time series analysis for the prediction of future behavior
UNIT – I REGRESSION
Introduction – Linear regression - Correlation analysis - Limitations, errors, and caveats of using regression and correlation analyses - Multiple regression and correlation analysis - Inferences about population parameters – Modeling techniques. - Coefficient of determination, Interpretation of regression coefficients, Categorical variables, heteroscedasticity, Multi-co linearity outliers, Ridge regression.

UNIT – II EXPLORATORY DATA ANALYSIS

UNIT – III LOGISTIC AND MULTINOMIAL REGRESSION
Logistic function, Estimation of probability using Logistic regression, Variance, Wald Test, Hosmer Lemshow Test, Classification Table, Gini Co-efficient.

UNIT – IV FORECASTING AND CAUSAL MODELS
Moving average, Exponential Smoothing, Casual Models.

UNIT – V TIME SERIES ANALYSIS
Auto regression (AR), Moving Average(MA) Models, ARMA, ARIMA models, Multivariate Models

TOTAL 45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Develop how to do regression fit for the given data.
2. Visualize the data through explanatory data analysis
3. classify the given data through logistic regression
4. Analyzing forecasting techniques and causal inferences.
5. Utilize the effective time series analysis to predict/forecast the future behavior of data.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
CME372 CAD AND CAE L T P C
2 0 2 3

COURSE OBJECTIVES
The main learning objective of this course is to prepare the students for:
1. Applying the fundamental concepts of computer graphics and its tools in a generic framework.
2. Creating and manipulating geometric models using curves, surfaces, and solids.
3. Applying concept of 3D modeling, visual realism, and CAD standard practices in engineering design.
4. Developing mathematical models for Boundary Value Problems and their numerical solution.
5. Formulating solution techniques to solve non-linear problems.

UNIT – I FUNDAMENTALS OF COMPUTER GRAPHICS 6
Design process - Computer Aided Design – Computer graphics – co-ordinate systems - 2D and 3D transformations - Graphic primitives (point, line, circle drawing algorithms) - Clipping-viewing transformation. Standards for computer graphics.

UNIT – II GEOMETRIC MODELING 6
Representation of curves - Hermite cubic spline curve, Bezier curve, B-spline curves, Surface Modeling – Surface Entities, Representation of Surface, Bezier Surface, B-Spline Surface and Coons Surface. Solid Modeling - Solid Entities, Solid Representation, Boundary Representation (B-Rep), Sweeps Representation, Constructive Solid Geometry (CSG).

UNIT – III VISUAL REALISM and CAD STANDARDS 6

UNIT – IV FINITE ELEMENT ANALYSIS 6

UNIT – V NON-LINEAR ANALYSIS 6
Introduction to Non-linear problems - some solution techniques - computational procedure - material non-linearity-Plasticity and visco-plasticity, stress stiffening, contact interfaces- problems of gaps and contact - geometric non-linearity - modeling considerations - Free and Mapped meshing - Mesh quality- Error estimate - Introduction to Analysis Software.

Total: 30 periods

CAD & CAE LABORATORY
Experiments
1. Design and animate Piston Cylinder assembly and motion study using CAD software.
2. Design and simulate Connecting rod and crank shaft using CAD software.
3. Design and simulate Two Cylinder Engine assembly using CAD software.
4. Coupled Simulation of structural/thermal analysis.
5. Harmonic, Transient and spectrum analysis of simple systems.
6. Buckling analysis.

Total: 30 periods

OUTCOMES: At the end of the course, the students would be able to:
1. Discuss the fundamental concepts of computer graphics and its tools in a generic framework.
2. Create and manipulate geometric models using curves, surfaces and solids.
3. Discuss concept of 3D modeling, visual realism and standard CAD practices in engineering design.
4. Develop the mathematical models for one dimensional finite element problems and their numerical solutions.
5. Formulate solution techniques to solve non-linear problems.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CRA342 MACHINE LEARNING FOR INTELLIGENT SYSTEMS

COURSE OBJECTIVES
1. To introduce basic machine learning techniques such as regression, classification
2. To learn about introduction of clustering, types and segmentation methods
3. To learn about fuzzy logic, fuzzification and defuzzification
4. To learn about basics of neural networks and neuro fuzzy networks.
5. To learn about Recurrent neural networks and Reinforcement learning.

UNIT – I INTRODUCTION TO MACHINE LEARNING
Philosophy of learning in computers, Overview of different forms of learning, Classifications vs. Regression, Evaluation metrics and loss functions in Classification, Evaluation metrics and loss functions in Regression, Applications of AI in Robotics.

UNIT – II CLUSTERING AND SEGMENTATION METHODS
Introduction to clustering, Types of Clustering, Agglomerative clustering, K-means clustering, Mean Shift clustering, K-means clustering application study, Introduction to recognition, K-nearest neighbor algorithm, KNN Application case study, Principal component analysis (PCA), PCA Application case study in Feature Selection for Robot Guidance.
UNIT – III Fuzzy Logic 9

UNIT – IV Neural Networks 9

UNIT – V RNN and Reinforcement Learning 9
Unfolding Computational Graphs, Recurrent neural networks, Application Case Study of recurrent networks in Robotics, Reinforcement learning, Examples for reinforcement learning, Markov decision process, Major components of RL, Q-learning. Application Case Study of reinforcement learning in Robotics

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Understand basic machine learning techniques such as regression, classification
2. Understand about clustering and segmentation
3. Model a fuzzy logic system with fuzzification and defuzzification
5. Gain knowledge on Reinforcement learning.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAE353 Turbo Machines

COURSE OBJECTIVES
1. To study the energy transfer in rotor and stator parts of the turbo machines.
2. To study the function of various elements of centrifugal fans and blowers.
3. To evaluating the working and performance of centrifugal compressor.
4. To analyzing flow behavior and flow losses in axial flow compressor.
5. To study the types and working of axial and radial flow turbines.
UNIT – I WORKING PRINCIPLES

UNIT – II CENTRIFUGAL FANS AND BLOWERS

UNIT – III CENTRIFUGAL COMPRESSOR
Components - blade types. Velocity triangles - h-s diagram, stage work. Slip factor and Degree of Reaction. Performance characteristics and various losses. Geometry and performance calculation.

UNIT – IV AXIAL FLOW COMPRESSOR

UNIT – V AXIAL AND RADIAL FLOW TURBINES

OUTCOMES: At the end of the course the students would be able to
1. Explain the energy transfer in rotor and stator parts of the turbo machines.
2. Explain the function of various elements of centrifugal fans and blowers
3. Evaluate the working and performance of centrifugal compressor.
4. Analyze flow behavior and flow losses in axial flow compressor.
5. Explain the types and working of axial and radial flow turbines

TOTAL : 45 PERIODS

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
CME381 DESIGN CONCEPTS IN ENGINEERING L T P C

3 0 0 3

COURSE OBJECTIVES
1. To study the various design requirements and get acquainted with the processes involved in product development.
2. To study the design processes to develop a successful product.
3. To learn scientific approaches to provide design solutions.
4. Designing solution through relate the human needs and provide a solution.
5. To study the principles of material selection, costing and manufacturing in design.

UNIT – I DESIGN TERMINOLOGY 9
Definition- various methods and forms of design-importance of product design-static and dynamic products-various design projects-morphology of design-requirements of a good design-concurrent engineering-computer aided engineering- codes and standards-product and process cycles-bench marking.

UNIT – II INTRODUCTION TO DESIGN PROCESSES 9
Basic modules in design process-scientific method and design method-Need identification, importance of problem definition-structured problem, real life problem-information gathering -customer requirements - Quality Function Deployment (QFD)- product design specifications-generation of alternative solutions- Analysis and selection-Detail design and drawings-Prototype, modeling, simulation, testing and evaluation

UNIT – III CREATIVITY IN DESIGN 9
Creativity and problem solving-vertical and lateral thinking-invention-psychological view, mental blocks- Creativity methods-brainstorming, synectics, force fitting methods, mind map, concept map-Theory of innovative problem solving (TRIZ) -conceptual decomposition creating design concepts.

UNIT – IV HUMAN AND SOCIETAL ASPECTS IN PRODUCT DEVELOPMENT 9
Human factors in design, ergonomics, user friendly design -Aesthetics and visual aspects-environmental aspects-marketing aspects-team aspects-legal aspects-presentation aspects

UNIT – V MATERIAL AND PROCESSES IN DESIGN 9
Material selection for performance characteristics of materials-selection for new design substitution for existing design-economics of materials-selection methods-recycling and material selection-types of manufacturing process, process systems- Design for Manufacturability (DFM) - Design for Assembly (DFA).

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Analyze the various design requirements and get acquainted with the processes involved in product development.
2. Apply the design processes to develop a successful product.
3. Apply scientific approaches to provide design solutions.
4. Design solution through relate the human needs and provide a solution.
5. Apply the principles of material selection, costing and manufacturing in design.

TEXT BOOKS:

REFERENCES:
1. To learn the basic concepts of different types of electrical machines and their performance.
2. To study the different methods of starting D.C motors and induction motors
3. To study the conventional and solid-state drives
4. To study the conventional and solid-state speed control of D.C. drives
5. To study the conventional and solid-state speed control of A.C. drives

UNIT – I INTRODUCTION
Basic Elements – Types of Electric Drives – factors influencing the choice of electrical drives—heating and cooling curves – Loading conditions and classes of duty – Selection of power rating for drive motors with regard to thermal overloading and Load variation factors

UNIT – II DRIVE MOTOR CHARACTERISTICS
Mechanical characteristics – Speed-Torque characteristics of various types of load and drive motors– Braking of Electrical motors – DC motors: Shunt, series, and compound - single phase and three phase induction motors.

UNIT – III STARTING METHODS
Types of D.C Motor starters – Typical control circuits for shunt and series motors – Three phases squirrel cage and slip ring induction motors.

UNIT – IV CONVENTIONAL AND SOLID-STATE SPEED CONTROL OF D.C. DRIVES
Speed control of DC series and shunt motors – Armature and field control, Ward-Leonard control system - Using controlled rectifiers and DC choppers –applications.

UNIT – V CONVENTIONAL AND SOLID-STATE SPEED CONTROL OF A.C. DRIVES
Speed control of three phase induction motor – Voltage control, voltage / frequency control, slip power recovery scheme – Using inverters and AC voltage regulators – applications.

OUTCOMES: At the end of the course the students would be able to
1. Discuss the basic concepts of different types of electrical machines and their performance.
2. Explain the different methods of starting D.C motors and induction motors
3. Discuss the conventional and solid-state drives
4. Describe the conventional and solid-state speed control of D.C. drives
5. Explain the conventional and solid-state speed control of A.C. drives
TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME384 POWER PLANT ENGINEERING L T P C
3 0 0 3

COURSE OBJECTIVES
1. To study the coal based thermal power plants.
2. To study the diesel, gas turbine and combined cycle power plants.
3. To learn the basic of nuclear engineering and power plants.
4. To learn the power from renewable energy.
5. To study energy, economic and environmental issues of power plants.

UNIT – I COAL BASED THERMAL POWER PLANTS 9

UNIT – II DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS 9

UNIT – III NUCLEAR POWER PLANTS 9

UNIT – IV POWER FROM RENEWABLE ENERGY 9
Hydro Electric Power Plants – Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.

UNIT – V ENERGY, ECONOMIC AND ENVIRONMENTAL 9
ISSUES OF POWER PLANTS
Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants.

Total 45 periods

OUTCOMES: At the end of the course the students would be able to
1. Explain the layout, construction and working of the components inside a thermal power plant.
2. Explain the layout, construction and working of the components inside a Diesel, Gas and Combined cycle power plants.
3. Explain the layout, construction and working of the components inside nuclear power plants.
4. Explain the layout, construction and working of the components inside Renewable energy power plants.
5. Explain the applications of power plants while extend their knowledge to power plant economics and environmental hazards and estimate the costs of electrical energy production.

TEXT BOOKS:

REFERENCES:
4. Power Plant Engineeringby B. Vijaya Ramnath C. Elanchezhian, L. Saravanakumar | 1 November 2019
5. Power Plant Engineering, As per AICTE: Theory and Practice by Dipak Kumar Mandal, Somnath Chakrabarti, et al. | 1 January 2019

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES
1. To introduce the underlying principles of operations in different Refrigeration & Air conditioning systems and components.
2. To provide knowledge on design aspects of Refrigeration & Air conditioning systems.
3. To study the Vapour absorption and air refrigeration systems.
4. To learn the psychrometric properties and processes.
5. To study the air conditioning systems and load estimation.

UNIT – I INTRODUCTION
Introduction to Refrigeration - Unit of Refrigeration and C.O.P.– Ideal cycles- Refrigerants Desirable properties – Classification - Nomenclature - ODP & GWP.

UNIT – II VAPOUR COMPRESSION REFRIGERATION SYSTEM

UNIT – III OTHER REFRIGERATION SYSTEMS
Working principles of Vapour absorption systems and adsorption cooling systems – Steam jet refrigeration- Ejector refrigeration systems- Thermoelectric refrigeration- Air refrigeration - Magnetic-Vortex and Pulse tube refrigeration systems.

UNIT – IV PSYCHROMETRIC PROPERTIES AND PROCESSES
Properties of moist Air-Gibbs Dalton law, Specific humidity, Dew point temperature, Degree of saturation, Relative humidity, Enthalpy, Humid specific heat, Wet bulb temperature Thermodynamic wet bulb temperature, Psychrometric chart; Psychrometric of air-conditioning processes, mixing of air streams.

UNIT – V AIR CONDITIONING SYSTEMS AND LOAD ESTIMATION
Air conditioning loads: Outside and inside design conditions; Heat transfer through structure, Solar radiation, Electrical appliances, Infiltration and ventilation, internal heat load; Apparatus selection; fresh air load, human comfort & IAQ principles, effective temperature & chart, calculation of summer & winter air conditioning load; Classifications, Layout of plants; Air distribution system; Filters; Air Conditioning Systems with Controls: Temperature, Pressure and Humidity sensors,Actuators & Safety controls.

OUTCOMES: At the end of the course the students would be able to
1. Explain the basic concepts of Refrigeration
2. Explain the Vapor compression Refrigeration systems and to solve problems
3. Discuss the various types of Refrigeration systems
4. Calculate the Psychrometric properties and its use in psychrometric processes
5. Explain the concepts of Air conditioning and to solve problems

TEXT BOOKS:

REFERENCES:
CAU332 DYNAMICS OF GROUND VEHICLES

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
The objective of this course is to make the students to Develop physical and mathematical models to predict the dynamic response of vehicles.

UNIT I CONCEPT OF VIBRATION

UNIT II TYRES

UNIT III VERTICAL DYNAMICS

UNIT IV LONGITUDINAL DYNAMICS AND CONTROL

UNIT V LATERAL DYNAMICS

COURSE OUTCOMES:
TOTAL: 45 PERIODS
Textbook:

Reference:

CO	PO	PSO
1 | 3 | 2.8 | 3
2 | 3 | 2.8 | 3
3 | 3 | 2.8 | 3
4 | 3 | 2.8 | 3
5 | 3 | 2.8 | 3
Avg. | 3 | 2.8 | 3

CME388 INDUSTRIAL SAFETY

COURSE OBJECTIVES
1. To study the fundamental concept and principles of industrial safety.
2. To study the principles of maintenance engineering.
3. To analyzing the wear and its reduction.
4. To study the faults in various tools, equipments and machines.
5. To study the periodic maintenance procedures in preventive maintenance.

UNIT I INDUSTRIAL SAFETY
Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes.

UNIT II MAINTENANCE ENGINEERING
Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of
maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT – III WEAR AND CORROSION AND THEIR PREVENTION

UNIT – IV FAULT TRACING

Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment’s like, i. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler,vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT – V PERIODIC AND PREVENTIVE MAINTENANCE

OUTCOMES: At the end of the course the students would be able to

1. Explain the fundamental concept and principles of industrial safety
2. Apply the principles of maintenance engineering.
3. Analyze the wear and its reduction.
4. Evaluate faults in various tools, equipments and machines
5. Apply periodic maintenance procedures in preventive maintenance.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CME393 ADVANCED VEHICLE ENGINEERING

COURSE OBJECTIVES
1. To introduce the basic concepts of electric vehicle and their characteristics
2. To introduce different types of motors and the selection of motor for vehicle applications.
3. To acquaint the student with different sensors and systems used in autonomous and connected vehicles.
4. To give an overview of networking with sensors and systems.
5. To introduce the modern methods of diagnosing on-board the vehicle troubles.

UNIT – I ELECTRIC VEHICLES 9
EV architectures, advantages and disadvantages, Electrical and mechanical energy storage technologies, battery management. Performance of Electric Vehicles, Tractive effort and Transmission requirement, Vehicle performance, Tractive effort in normal driving.

UNIT – II ELECTRIC VEHICLE MOTORS 9

UNIT – III AUTONOMOUS AND CONNECTED VEHICLES 9

UNIT – IV AUTOMOTIVE NETWORKING 9
Bus Systems – Classification, Applications in the vehicle, Coupling of networks, networked vehicles, Buses - CAN Bus, LIN Bus, MOST Bus, Bluetooth, Flex Ray, Diagnostic Interfaces.

UNIT – V ON-BOARD TESTING 9
Integration of Sensor Data to On-Board Control Systems (OBD), OBD requirements, certification, enforcement, systems, testing, Catalytic converter and Exhaust Gas Recirculation system monitoring, Introduction to Cyber-physical system.

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Acquire an overview of electric vehicles and their importance in automotive.
2. Discuss the characteristics and the selection of traction motor.
3. Comprehend the vehicle-to-vehicle and autonomous technology.
4. Explain the networking of various modules in automotive systems, communication protocols and diagnostics of the sub systems.
5. Be familiar with on-board diagnostics systems.

TEXT BOOKS:
Sons Ltd., 2018

REFERENCES:
1 Dominique Paret, Multiplexed Networks for Embedded Systems, John Wiley & Sons Ltd., 2007.
4 Advanced Vehicle Technology by Heinz Heisler MSc BSc FIMI MIRTE MCIT | 17 July 2002
5 Advanced Motorsport Engineering: Units for Study at Level 3 by Andrew Livesey | 1 September 2011

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)

CME394 ADVANCED INTERNAL COMBUSTION ENGINEERING

COURSE OBJECTIVES
1 To study the working of Gasoline fuel injection systems and SI combustion.
2 To study the working of Diesel fuel injection systems and CI combustion.
3 To identifying the source and measure it; explain the mechanism of emission formation and control methods.
4 To study the Selecting alternative fuel resources and its utilization techniques in IC engines.
5 To study the advanced combustion modes and future power train systems.

UNIT – I SPARK IGNITION ENGINES

UNIT – II COMPRESSION IGNITION ENGINES

UNIT – III EMISSION FORMATION AND CONTROL
UNIT – IV ALTERNATIVE FUELS

UNIT – V ALTERNATE COMBUSTION AND POWER TRAIN SYSTEM

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Explain the working of Gasoline fuel injection systems and SI combustion.
2. Explain the working of Diesel fuel injection systems and CI combustion.
3. Identify the source and measure it; explain the mechanism of emission formation and control methods.
4. Select alternative fuel resources and its utilization techniques in IC engines.
5. Explain advanced combustion modes and future power train systems.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME395 CASTING AND WELDING PROCESSES

COURSE OBJECTIVES
1. To study the ferrous casting metallurgy and its applications.
2. To study the nonferrous casting metallurgy and its applications.
3. To study the ferrous welding metallurgy and its applications.
4. To study the welding metallurgy of alloy steels and nonferrous metals and its applications.
5. To identifying the causes and remedies of various welding defects; applying welding standards and codes.
UNIT – I FERROUS CAST ALLOYS

UNIT – II NON-FERROUS CAST ALLOYS

UNIT – III PHYSICAL METALLURGY OF WELDING

UNIT – IV WELDING OF ALLOY STEELS AND NON-FERROUS METALS
Welding of stainless steels, types of stainless steels, overview of joining ferritic and martensitic types, welding of austenitic stainless steels, Sensitisation, hot cracking, sigma phase and chromium carbide formation, ways of overcoming these difficulties, welding of cast iron. Welding of non-ferrous materials: Joining of aluminium, copper, nickel and titanium alloys, problems encountered and solutions

UNIT – V DEFECTS, WELDABILITY AND STANDARDS
Defects in welded joints: Defects such as arc strike, porosity, undercut, slag entrapment and hot cracking, causes and remedies in each case. Joining of dissimilar materials, weldability and testing of weldments. Introduction to International Standards and Codes

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to

1. Explain the ferrous casting metallurgy and its applications.
2. Explain the non ferrous casting metallurgy and its applications.
3. Explain the ferrous welding metallurgy and its applications.
4. Explain the welding metallurgy of alloy steels and non ferrous metals and its applications.
5. Identify the causes and remedies of various welding defects; apply welding standards and codes.

TEXT BOOKS:

REFERENCES:
CME397 SURFACE ENGINEERING

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

1. To study the fundamentals of surface features and different types of friction associated with metals and non-metals
2. To study the different types of wear mechanism and its standard measurement.
3. To study the different types of corrosion and its preventive measures
4. To study the different types of surface properties and surface modification techniques
5. To study the various types of materials used in the friction and wear applications

UNIT – I SURFACES AND FRICTION

UNIT – II WEAR

Laws of Wear - Types of Wear mechanism – wear debris analysis - Theoretical wear models - Wear of metals and nonmetals – International standards in friction and wear measurements

UNIT – III CORROSION

UNIT – IV SURFACE TREATMENTS

UNIT – V ENGINEERING MATERIALS

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to

1. Describe the fundamentals of surface features and different types of friction associated with metals and non-metals
2. Analyze the different types of wear mechanism and its standard measurement.
3. Analyze the different types of corrosion and its preventive measures
4. Analyze the different types of surface properties and surface modification techniques
5. Analyze the various types of materials used in the friction and wear applications.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)

CME398 PRECISION MANUFACTURING

L T P C
3 0 0 3

COURSE OBJECTIVES
1. To study the need, significance and progress of precision manufacturing and the different levels of manufacturing.
2. To study the principles and working of different methods of precision machining.
3. To study the special construction requirements of precision machine tools.
4. To study the errors involved in precision machine tools and calculate the error budgets for a given situation.
5. To study the Selecting a suitable measurement solution to measure and characterize precision machined features.

UNIT – I PRECISION ENGINEERING
Introduction to Precision Engineering, Need for precision manufacturing, Taniguchi diagram, Four Classes of Achievable Machining Accuracy – Normal, Precision, High-precision, Ultra-precision Processes and Nanotechnology.

UNIT – II PRECISION MACHINING

UNIT – III MACHINE DESIGN FOR PRECISION MANUFACTURING

UNIT – IV MECHANICAL AND THERMAL ERRORS
Sources of error, Principles of measurement, Errors due to machine elements, bearings, spindles, Kinematic design, Structural compliance. Vibration, Thermal errors – background, thermal effects,
Environmental control of precision machinery. Error mapping and error budgets.

UNIT – V MEASUREMENT AND CHARACTERISATION

OUTCOMES: At the end of the course the students would be able to
1. Explain the need, significance and progress of precision manufacturing and the different levels of manufacturing.
2. Explain the principle and working of different methods of precision machining.
3. Explain the special construction requirements of precision machine tools.
4. Explain the errors involved in precision machine tools and calculate the error budgets for a given situation.
5. Select a suitable measurement solution to measure and characterize precision machined features.

TEXT BOOKS:
1. Jain, V.K., Introduction to micromachining, Narosa publishers, 2018

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

CME386 GAS DYNAMICS AND JET PROPULSION

COURSE OBJECTIVES
1. To study the fundamentals of compressible flow concepts and the use of gas tables.
2. To learn the compressible flow behaviour in constant area ducts.
3. To study the development of shock waves and its effects.
4. To study the types of jet engines and their performance parameters.
5. To learn the types of rocket engines and their performance parameters.
UNIT – I
BASIC CONCEPTS AND ISENTROPIC FLOWS
9

UNIT – II
COMPRESSION FLOW THROUGH DUCTS
9
Flows through constant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) – variation of flow properties. Choking. Isothermal flow with friction. Use of Gas tables.

UNIT – III
NORMAL AND OBLIQUE SHOCKS
9

UNIT – IV
JET PROPULSION
9
Theory of jet propulsion – thrust equation – Performance parameters - thrust, power and efficiency. Operation, cycle analysis and performance of ram jet, turbojet, turbofan, turbo prop and pulse jet engines.

UNIT – V
SPACE PROPULSION
9

OUTCOMES: At the end of the course the students would be able to
1. Apply the fundamentals of compressible flow concepts and the use of gas tables.
2. Analyze the compressible flow behaviour in constant area ducts.
3. Analyze the development of shock waves and its effects.
4. Explain the types of jet engines and their performance parameters.
5. Explain the types of rocket engines and their performance parameters.

TEXT BOOKS:

REFERENCES:
CME392 POWER GENERATION EQUIPMENT DESIGN L T P C
3 0 0 3

COURSE OBJECTIVES
1. To introduce the power generation equipments types layouts working cycles.
2. To learn the fuels, combustion and burning methods of combustion system.
3. To study the various boilers and its boilers parts of steam power plant.
4. To study the basics of nuclear fuels and reactor classification.
5. To study of techno economics and operating cost and safety of power plant.

UNIT – I INTRODUCTION 9
Introduction to types, layouts and working cycles - Layouts of diesel-electric, hydro-electric, nuclear, gas turbine, steam, cogeneration, MHD and other power plants - Site selection - Reheat and regenerative steam cycles - Binary vapour cycle - Combined cycle - Topping cycle - Power plant instrumentation and control - air flow, furnace pressure, steam temperature control system - Governing system - Steam turbine.

UNIT – II COMBUSTION SYSTEM 9
Fuels, combustion and burning methods - Fuel classification - Solid, liquid and gaseous - Compositions and heating values - Classification of coal - Combustion process, atmosphere and control - ESP Furnace construction - Stokers - suspension firing - pulverised fuel firing - oil and gas burners and systems - Fuel control - Burner management system - FSSS - Ash handling system.

UNIT – III STEAM POWER PLANT 9
Steam generators - fire tube, water tube, forced circulation, once through, super charged, super critical, Lamont, Loeffler, Schmide, Hortmen and Velox boilers, Fluidised Bed & Circulated Fluidised Bed boilers - Natural, artificial, balanced and steam jet drafts - Simple problems - Functions of super heaters, economisers, air-heaters, deaerators, feed heaters, air ejectors - Feed pumps - Injectors - Feed water control- Condensers – Jet and surface type - Simple problems - Cooling towers.

UNIT – IV NUCLEAR POWER PLANT 9
Nuclear power plant - Basics of nuclear fuels - Fission and chain reaction - Reactor classification - Boiling water, pressurised water, homogeneous, gas cooled breeding and metal cooled

UNIT – V TECHNO ECONOMICS OF POWER PLANT 9
Economics and safety - Actual load curves - Fixed and operating costs - Tariff methods for electrical energy - Peak load and variable load operations - Selection of generation type and general equipment. Introduction to safety aspects in power plants - Environmental impacts - assessment for thermal power plant.

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Discuss the power generation equipments types layouts working cycles.
2. Explain the fuels, combustion and burning methods of combustion system.
3. Discuss the various boilers and its boilers parts of steam power plant.
4. Explain the basics of nuclear fuels and reactor classification.
5. Discuss of techno economics and operating cost and safety of power plant.

TEXT BOOKS:
1. Power Plant Engineering - PK Nag
2. A Textbook of Power Plant Engineering - Rajput

REFERENCES:
1. Basics of Boiler and HRSG Design - Brad Buecker
2. Steam Plant Operation-Everett B. Woodruff,Herbert B. Lammers,Thomas F. Lammers
MANDATORY COURSES I

MX3081 INTRODUCTION TO WOMEN AND GENDER STUDIES L T P C 3 0 0 0

COURSE OUTLINE

UNIT I CONCEPTS
Sex vs. Gender, masculinity, femininity, socialization, patriarchy, public/private, essentialism, binaryism, power, hegemony, hierarchy, stereotype, gender roles, gender relation, deconstruction, resistance, sexual division of labour.

UNIT II FEMINIST THEORY
Liberal, Marxist, Socialist, Radical, Psychoanalytic, postmodernist, ecofeminist.

UNIT III WOMEN'S MOVEMENTS: GLOBAL, NATIONAL AND LOCAL
Rise of Feminism in Europe and America.
Women’s Movement in India.

UNIT IV GENDER AND LANGUAGE
Linguistic Forms and Gender.
Gender and narratives.

UNIT V GENDER AND REPRESENTATION
Advertising and popular visual media.
Gender and Representation in Alternative Media.
Gender and social media.

TOTAL : 45 PERIODS

MX3082 ELEMENTS OF LITERATURE L T P C 3 0 0 0

OBJECTIVE:

- To make the students aware about the finer sensibilities of human existence through an art form. The students will learn to appreciate different forms of literature as suitable modes of expressing human experience.

1. COURSE CONTENTS
 Introduction to Elements of Literature

1. Relevance of literature
 a) Enhances Reading, thinking, discussing and writing skills.
b) Develops finer sensibility for better human relationship.

c) Increases understanding of the problem of humanity without bias.

d) Providing space to reconcile and get a cathartic effect.

2. **Elements of fiction**
 a) Fiction, fact and literary truth.
 b) Fictional modes and patterns.
 c) Plot character and perspective.

3. **Elements of poetry**
 a) Emotions and imaginations.
 b) Figurative language.
 c) (Simile, metaphor, conceit, symbol, pun and irony).
 d) Personification and animation.
 e) Rhetoric and trend.

4. **Elements of drama**
 a) Drama as representational art.
 b) Content mode and elements.
 c) Theatrical performance.
 d) Drama as narration, mediation and persuasion.
 e) Features of tragedy, comedy and satire.

2. **READINGS:**

3. **ASSESSMENT:**
 5.1 HA:
 5.2 Quizzes-HA:
 5.3 Periodical Examination: one
 5.4 Project/Lab: one (under the guidance of the teachers the students will take a volume of poetry, fiction or drama and write a term paper to show their understanding of it in a given context; sociological, psychological, historical, autobiographical etc.)
 5.5 Final Exam:

 TOTAL : 45 PERIODS

OUTCOME OF THE COURSE:
- Students will be able to understand the relevance of literature in human life and appreciate its aspects in developing finer sensibilities.
In this course on film appreciation, the students will be introduced broadly to the development of film as an art and entertainment form. It will also discuss the language of cinema as it evolved over a century. The students will be taught as to how to read a film and appreciate the various nuances of a film as a text. The students will be guided to study film joyfully.

Theme - A: The Component of Films
- A-1: The material and equipment
- A-2: The story, screenplay and script
- A-3: The actors, crew members, and the director
- A-4: The process of film making… structure of a film

Theme - B: Evolution of Film Language
- B-1: Film language, form, movement etc.
- B-2: Early cinema… silent film (Particularly French)
- B-3: The emergence of feature films: Birth of a Nation
- B-4: Talkies

Theme - C: Film Theories and Criticism/Appreciation
- C-1: Realist theory; Auteurists
- C-2: Psychoanalytic, Ideological, Feminists
- C-3: How to read films?
- C-4: Film Criticism / Appreciation

Theme – D: Development of Films
- D-1: Representative Soviet films
- D-2: Representative Japanese films
- D-3: Representative Italian films
- D-4: Representative Hollywood film and the studio system

Theme - E: Indian Films
- E-1: The early era
- E-2: The important films made by the directors
- E-3: The regional films
- E-4: The documentaries in India

READING:
A Reader containing important articles on films will be prepared and given to the students. The students must read them and present in the class and have discussion on these.

COURSE OBJECTIVE
- To impart knowledge on concepts related to disaster, disaster risk reduction, disaster management
- To acquaint with the skills for planning and organizing disaster response

UNIT I
HAZRADS, VULNERABILITY AND DISASTER RISKS
Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Types of Disasters: Natural, Human induced, Climate change induced –Earthquake, Landslide, Flood, Drought, Fire etc – Technological disasters- Structural collapse, Industrial accidents, oil spills -Causes, Impacts
including social, economic, political, environmental, health, psychosocial, etc.
- Disaster vulnerability profile of India and Tamil Nadu - Global trends in disasters: urban disasters, pandemics, Complex emergencies, - - Inter relations between Disasters and Sustainable development Goals

UNIT II DISASTER RISK REDUCTION (DRR) 9
Sendai Framework for Disaster Risk Reduction, Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community Based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions / Urban Local Bodies (PRIs/ULBs), States, Centre, and other stakeholders- Early Warning System – Advisories from Appropriate Agencies.- Relevance of indigenous Knowledge, appropriate technology and Local resources.

UNIT III DISASTER MANAGEMENT 9
Components of Disaster Management – Preparedness of rescue and relief, mitigation, rehabilitation and reconstruction- Disaster Risk Management and post disaster management – Compensation and Insurance- Disaster Management Act (2005) and Policy - Other related policies, plans, programmers and legislation - Institutional Processes and Framework at State and Central Level- (NDMA –SDMA-DDMA-NRDF- Civic Volunteers)

UNIT IV TOOLS AND TECHNOLOGY FOR DISASTER MANAGEMENT 9

UNIT V DISASTER MANAGEMENT: CASE STUDIES 9
Discussion on selected case studies to analyse the potential impacts and actions in the contest of disasters-Landslide Hazard Zonation: Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.- Field work-Mock drill -

TOTAL : 45 PERIODS

TEXT BOOKS:
1 Taimpo (2016), Disaster Management and Preparedness, CRC Publications

REFERENCES

COURSE OUTCOME:
CO1: To impart knowledge on the concepts of Disaster, Vulnerability and Disaster Risk reduction (DRR)
CO2: To enhance understanding on Hazards, Vulnerability and Disaster Risk Assessment prevention and risk reduction
CO3: To develop disaster response skills by adopting relevant tools and technology
CO4: Enhance awareness of institutional processes for Disaster response in the country and
CO5: Develop rudimentary ability to respond to their surroundings with potential Disaster response in areas where they live, with due sensitivity

CO’s – PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s 1</th>
<th>PO’s 2</th>
<th>PO’s 3</th>
<th>PO’s 4</th>
<th>PO’s 5</th>
<th>PO’s 6</th>
<th>PO’s 7</th>
<th>PO’s 8</th>
<th>PO’s 9</th>
<th>PO’s 10</th>
<th>PO’s 11</th>
<th>PO’s 12</th>
<th>PSO’s 1</th>
<th>PSO’s 2</th>
<th>PSO’s 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVG</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

MANDATORY COURSES II

MX3085 WELL-BEING WITH TRADITIONAL PRACTICES-YOGA, AYURVEDA AND SIDDHA

COURSE OBJECTIVES:
- To enjoy life happily with fun filled new style activities that help to maintain health also
- To adapt a few lifestyle changes that will prevent many health disorders
- To be cool and handbill every emotion very smoothly in every walk of life
- To learn to eat cost effective but healthy foods that are rich in essential nutrients
- To develop immunity naturally that will improve resistance against many health disorders

UNIT I HEALTH AND ITS IMPORTANCE

Health: Definition - Importance of maintaining health - More importance on prevention than treatment
Ten types of health one has to maintain - Physical health - Mental health - Social health - Financial health - Emotional health - Spiritual health - Intellectual health - Relationship health - Environmental health - Occupational/Professional heath.

Causes of the above diseases / disorders - Importance of prevention of illness - Takes care of health - Improves quality of life - Reduces absenteeism - Increase satisfaction - Saves time

Simple lifestyle modifications to maintain health - Healthy Eating habits (Balanced diet according to age) Physical Activities (Stretching exercise, aerobics, resisting exercise) - Maintaining BMI-Importance and actions to be taken

UNIT II DIET

Role of diet in maintaining health - energy one needs to keep active throughout the day - nutrients one needs for growth and repair - helps one to stay strong and healthy - helps to prevent diet-related illness, such as some cancers - keeps active and - helps one to maintain a healthy weight - helps to reduce risk of developing lifestyle disorders like diabetes – arthritis –
hypertension – PCOD – infertility – ADHD – sleeplessness -helps to reduce the risk of heart diseases - keeps the teeth and bones strong.

Food additives and their merits & demerits - Effects of food additives - Types of food additives - Food additives and processed foods - Food additives and their reactions

Definition of BMI and maintaining it with diet
Importance - Consequences of not maintaining BMI - different steps to maintain optimal BM

Common cooking mistakes
Different cooking methods, merits and demerits of each method

UNIT III ROLE OF AYURVEDA & SIDDHA SYSTEMS IN MAINTAINING HEALTH 4+4
AYUSH systems and their role in maintaining health - preventive aspect of AYUSH - AYUSH as a soft therapy.

Secrets of traditional healthy living - Traditional Diet and Nutrition - Regimen of Personal and Social Hygiene - Daily routine (Dinacharya) - Seasonal regimens (Ritucharya) - basic sanitation and healthy living environment - Sadvritta (good conduct) - for conducive social life.

Principles of Siddha & Ayurveda systems - Macrocosm and Microcosm theory - Panchekarana Theory / (Five Element Theory) 96 fundamental Principles - Uyir Thathukkal (Tri-Dosha Theory) - Udal Thathukkal

Prevention of illness with our traditional system of medicine
Primary Prevention - To decrease the number of new cases of a disorder or illness - Health promotion/education, and - Specific protective measures - Secondary Prevention - To lower the rate of established cases of a disorder or illness in the population (prevalence) - Tertiary Prevention - To decrease the amount of disability associated with an existing disorder.

UNIT IV MENTAL WELLNESS 3+4
Emotional health - Definition and types - Three key elements: the subjective experience - the physiological response - the behavioral response - Importance of maintaining emotional health - Role of emotions in daily life -Short term and long term effects of emotional disturbances - Leading a healthy life with emotions - Practices for emotional health - Recognize how thoughts influence emotions - Cultivate positive thoughts - Practice self-compassion - Expressing a full range of emotions.

Sleep - Sleep and its importance for mental wellness - Sleep and digestion.
Immunity - Types and importance - Ways to develop immunity

UNIT V YOGA 2+12
Definition and importance of yoga - Types of yoga - How to Choose the Right Kind for individuals according to their age - The Eight Limbs of Yoga - Simple yogasanas for cure and prevention of health disorders - What yoga can bring to our life.

TOTAL : 45 PERIODS
TEXT BOOKS:
1. Nutrition and Dietetics - Ashley Martin, Published by White Word Publications, New York, NY 10001, USA
2. Yoga for Beginners_ 35 Simple Yoga Poses to Calm Your Mind and Strengthen Your Body, by Cory Martin, Copyright © 2015 by Althea Press, Berkeley, California

REFERENCES:
2. The Mindful Self-Compassion Workbook, Kristin Neff, Ph.D Christopher Germer, Ph.D, Published by The Guilford Press A Division of Guilford Publications, Inc.370 Seventh Avenue, Suite 1200, New York, NY 10001

1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799645/
2. Simple lifestyle modifications to maintain health https://www.niddk.nih.gov/health-information/diet-nutrition/changing-habits-better-health#:~:text=Make%20your%20new%20healthy%20habit,t%20have%20time%20to%20cook.
3. Read more: https://www.legit.ng/1163909-classes-food-examples-functions.html
7. BMI https://www.hsph.harvard.edu/nutritionsource/healthy-weight/
https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations
8. Yoga https://www.healthifyme.com/blog/types-of-yoga/
https://yogamedicine.com/guide-types-yoga-styles/
Ayurveda: https://vikaspedia.in/health/ayush/ayurveda-1/concept-of-healthy-living-in-ayurveda
10. CAM: https://www.hindawi.com/journals/ecam/2013/376327/
11. Preventive herbs: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847409/

COURSE OUTCOMES:
After completing the course, the students will be able to:
- Learn the importance of different components of health
- Gain confidence to lead a healthy life
- Learn new techniques to prevent lifestyle health disorders
- Understand the importance of diet and workouts in maintaining health

MX3086 HISTORY OF SCIENCE AND TECHNOLOGY IN INDIA L T P C 3 0 0 0

UNIT-I CONCEPTS AND PERSPECTIVES
Meaning of History
Objectivity, Determinism, Relativism, Causation, Generalization in History; Moral judgment in history
Extent of subjectivity, contrast with physical sciences, interpretation and speculation, causation versus evidence, concept of historical inevitability, Historical Positivism.

Science and Technology-Meaning, Scope and Importance, Interaction of science, technology & society, Sources of history on science and technology in India.

UNIT-II HISTORIOGRAPHY OF SCIENCE AND TECHNOLOGY IN INDIA
Introduction to the works of D.D. Kosambi, Dharmapal, Debiprasad Chattopadhyay, Rehman, S. Irfan Habib, Deepak Kumar, Dhruv Raina, and others.

UNIT-III SCIENCE AND TECHNOLOGY IN ANCIENT INDIA
Technology in pre-historic period
Beginning of agriculture and its impact on technology
Science and Technology during Vedic and Later Vedic times
Science and technology from 1st century AD to C-1200.

UNIT-IV SCIENCE AND TECHNOLOGY IN MEDIEVAL INDIA
Legacy of technology in Medieval India, Interactions with Arabs
Development in medical knowledge, interaction between Unani and Ayurveda and alchemy
Astronomy and Mathematics: interaction with Arabic Sciences
Science and Technology on the eve of British conquest

UNIT-V SCIENCE AND TECHNOLOGY IN COLONIAL INDIA
Science and the Empire
Indian response to Western Science
Growth of techno-scientific institutions

UNIT-VI SCIENCE AND TECHNOLOGY IN A POST-INDEPENDENT INDIA
Science, Technology and Development discourse
Shaping of the Science and Technology Policy
Developments in the field of Science and Technology
Science and technology in globalizing India
Social implications of new technologies like the Information Technology and Biotechnology

TOTAL : 45 PERIODS

MX3087 POLITICAL AND ECONOMIC THOUGHT FOR A HUMANE SOCIETY

Pre-Requisite: None. (Desirable: Universal Human Values 1, Universal Human Values 2)

OBJECTIVES:

- This course will begin with a short overview of human needs and desires and how different political-economic systems try to fulfill them. In the process, we will end with a critique of different systems and their implementations in the past, with possible future directions.

COURSE TOPICS:

Considerations for humane society, holistic thought, human being’s desires, harmony in self, harmony in relationships, society, and nature, societal systems. (9 lectures, 1 hour each)

(Refs: A Nagaraj, M K Gandhi, JC Kumarappa)

Capitalism – Free markets, demand-supply, perfect competition, laissez-faire, monopolies, imperialism. Liberal democracy. (5 lectures)

(Refs: Adam smith, J S Mill)

Fascism and totalitarianism. World war I and II. Cold war. (2 lectures)
Communism – Mode of production, theory of labour, surplus value, class struggle, dialectical materialism, historical materialism, Russian and Chinese models.

(Refs: Marx, Lenin, Mao, M N Roy) (5 lectures)

Welfare state. Relation with human desires. Empowered human beings, satisfaction. (3 lectures)

Gandhian thought. Swaraj, Decentralized economy & polity, Community. Control over one’s lives. Relationship with nature. (6 lectures)

(Refs: M K Gandhi, Schumacher, Kumarappa)

Essential elements of Indian civilization. (3 lectures)

(Refs: Pt Sundarlal, R C Mazumdar, Dharampal)

Technology as driver of society, Role of education in shaping of society. Future directions. (4 lectures) (Refs: Nandkishore Acharya, David Dixon, Levis Mumford)

Conclusion (2 lectures)

Total lectures: 39

Preferred Textbooks: See Reference Books

Reference Books: Authors mentioned along with topics above. Detailed reading list will be provided.

GRADING:

<table>
<thead>
<tr>
<th>Component</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid sems</td>
<td>30</td>
</tr>
<tr>
<td>End sem</td>
<td>20</td>
</tr>
<tr>
<td>Home Assign</td>
<td>10</td>
</tr>
<tr>
<td>Term paper</td>
<td>40</td>
</tr>
</tbody>
</table>

TOTAL : 45 PERIODS

OUTCOME:

- The students will get an understanding of how societies are shaped by philosophy, political and economic system, how they relate to fulfilling human goals & desires with some case studies of how different attempts have been made in the past and how they have fared.

MX3088 STATE, NATION BUILDING AND POLITICS IN INDIA

OBJECTIVE:

The objective of the course is to provide an understanding of the state, how it works through its main organs, primacy of politics and political process, the concept of sovereignty and its changing contours in a globalized world. In the light of this, an attempt will be made to acquaint the students with the main development and legacies of national movement and constitutional development in India, reasons for adopting a Parliamentary-federal system, the broad philosophy of the Constitution of India and the changing nature of Indian Political System. Challenges/ problems and
issues concerning national integration and nation-building will also be discussed in the contemporary context with the aim of developing a future vision for a better India.

TOPICS:
Understanding the need and role of State and politics.

Development of Nation-State, sovereignty, sovereignty in a globalized world.

Organs of State – Executive, Legislature, Judiciary. Separation of powers, forms of government-unitary-federal, Presidential-Parliamentary,
The idea of India.

1857 and the national awakening.

1885 Indian National Congress and development of national movement – its legacies. Constitution making and the Constitution of India.
Goals, objective and philosophy.
Why a federal system?
National integration and nation-building.

Challenges of nation-building – State against democracy (Kothari)
New social movements.
The changing nature of Indian Political System, the future scenario. What can we do?

TOTAL : 45 PERIODS

OUTCOME OF THE COURSE:
It is expected that this course will make students aware of the theoretical aspect of the state, its organs, its operationalization aspect, the background and philosophy behind the founding of the present political system, broad streams and challenges of national integration and nation-building in India. It will equip the students with the real understanding of our political system/ process in correct perspective and make them sit up and think for devising ways for better participation in the system with a view to making the governance and delivery system better for the common man who is often left unheard and unattended in our democratic setup besides generating a lot of dissatisfaction and difficulties for the system.

SUGGESTED READING:

To Understand the Introduction and basic Terminologies safety.
To enable the students to learn about the Important Statutory Regulations and standards.
To enable students to Conduct and participate the various Safety activities in the Industry.
To have knowledge about Workplace Exposures and Hazards.
To assess the various Hazards and consequences through various Risk Assessment Techniques.

UNIT I SAFETY TERMINOLOGIES
Hazard-Types of Hazard- Risk-Hierarchy of Hazards Control Measures-Lead indicators- lag Indicators-Flammability- Toxicity Time-weighted Average (TWA) - Threshold LimitValue (TLV) - Short Term Exposure Limit (STEL)- Immediately dangerous to life or health (IDLH)- acute and chronic Effects- Routes of Chemical Entry-Personnel Protective Equipment- Health and Safety Policy-Material Safety Data Sheet MSDS

UNIT II STANDARDS AND REGULATIONS

UNIT III SAFETY ACTIVITIES

UNIT IV WORKPLACE HEALTH AND SAFETY
Noise hazard- Particulate matter- musculoskeletal disorder improper sitting poster and lifting Ergonomics RULE & REBA- Unsafe act & Unsafe Condition- Electrical Hazards- Crane Safety- Toxic gas Release

UNIT V HAZARD IDENTIFICATION TECHNIQUES
Job Safety Analysis-Preliminary Hazard Analysis-Failure mode and Effects Analysis- Hazard and Operability- Fault Tree Analysis- Event Tree Analysis Qualitative and Quantitative Risk Assessment- Checklist Analysis- Root cause analysis- What-If Analysis- and Hazard Identification and Risk Assessment

Course outcomes on completion of this course the student will be able:
- Understand the basic concept of safety.
- Obtain knowledge of Statutory Regulations and standards.
- Know about the safety Activities of the Working Place.
- Analyze on the impact of Occupational Exposures and their Remedies.
- Obtain knowledge of Risk Assessment Techniques.

TEXTBOOKS
2. L. M. Deshmukh Industrial Safety Management: Hazard Identification and Risk Control McGraw-Hill Education

REFERENCES
5. Society of Safety Engineers, USA

ONLINE RESOURCES

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understand the basic concept of safety.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Obtain knowledge of Statutory Regulations and standards.</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Know about the safety Activities of the Working Place.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyze on the impact of Occupational Exposures and their Remedies</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Obtain knowledge of Risk Assessment Techniques.</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Industrial safety 3 3 3 2 1 3 2 2 3 2 1 3 3 3 3
OPEN ELECTIVE I AND II

OCS351 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FUNDAMENTALS L T P C 2 0 2 3

OBJECTIVES:
The main objectives of this course are to:
1. Understand the importance, principles, and search methods of AI
2. Provide knowledge on predicate logic and Prolog.
3. Introduce machine learning fundamentals
4. Study of supervised learning algorithms.
5. Study about unsupervised learning algorithms.

UNIT I INTELLIGENT AGENT AND UNINFORMED SEARCH 6

UNIT II PROBLEM SOLVING WITH SEARCH TECHNIQUES 6
Informed Search - Greedy Best First - A* algorithm - Adversarial Game and Search - Game theory - Optimal decisions in game - Min Max Search algorithm - Alpha-beta pruning - Constraint Satisfaction Problems (CSP) - Examples - Map Coloring - Job Scheduling - Backtracking Search for CSP

UNIT III LEARNING 6
Machine Learning: Definitions – Classification - Regression - approaches of machine learning models - Types of learning - Probability - Basics - Linear Algebra – Hypothesis space and inductive bias, Evaluation. Training and test sets, cross validation, Concept of over fitting, under fitting, Bias and Variance - Regression: Linear Regression - Logistic Regression

UNIT IV SUPERVISED LEARNING 6

UNIT V UNSUPERVISED LEARNING 6
Unsupervised Learning – Principle Component Analysis - Neural Network: Fixed Weight Competitive Nets - Kohonen Self-Organizing Feature Maps – Clustering: Definition - Types of Clustering – Hierarchical clustering algorithms – k-means algorithm

TOTAL : 30 PERIODS

PRACTICAL EXERCISES: 30 PERIODS
Programs for Problem solving with Search
1. Implement breadth first search
2. Implement depth first search
3. Analysis of breadth first and depth first search in terms of time and space
4. Implement and compare Greedy and A* algorithms.

Supervised learning
5. Implement the non-parametric locally weighted regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs
6. Write a program to demonstrate the working of the decision tree based algorithm.
7. Build an artificial neural network by implementing the back propagation algorithm and test the same using appropriate data sets.
8. Write a program to implement the naïve Bayesian classifier.
Unsupervised learning
9. Implementing neural network using self-organizing maps
10. Implementing k-Means algorithm to cluster a set of data.
11. Implementing hierarchical clustering algorithm.
Note:
- Installation of gnu-prolog, Study of Prolog (gnu-prolog).
- The programs can be implemented in using C++/JAVA/ Python or appropriate tools can be used by designing good user interface
- Data sets can be taken from standard repositories (https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.

OUTCOMES:
CO1: Understand the foundations of AI and the structure of Intelligent Agents
CO2: Use appropriate search algorithms for any AI problem
CO3: Study of learning methods
CO4: Solving problem using Supervised learning
CO5: Solving problem using Unsupervised learning

TOTAL: 60 PERIODS

TEXT BOOKS:
2. S.N.Sivanandam and S.N.Deepa, Principles of soft computing-Wiley India.3 rd ed,

REFERENCES

OCS352 IOT CONCEPTS AND APPLICATIONS L T P C 2 0 2 3

OBJECTIVES:
- To apprise students with basic knowledge of IoT that paves a platform to understand physical and logical design of IoT
- To teach a student how to analyse requirements of various communication models and protocols for cost-effective design of IoT applications on different IoT platforms.
- To introduce the technologies behind Internet of Things(IoT).
- To explain the students how to code for an IoT application using Arduino/Raspberry Pi open platform.
- To apply the concept of Internet of Things in real world scenario.

UNIT I INTRODUCTION TO INTERNET OF THINGS 5

UNIT II COMPONENTS IN INTERNET OF THINGS 5
Functional Blocks of an IoT Ecosystem – Sensors, Actuators, and Smart Objects – Control Units - Communication modules (Bluetooth, Zigbee,Wifi, GPS, GSM Modules)

UNIT III PROTOCOLS AND TECHNOLOGIES BEHIND IOT 6
UNIT IV OPEN PLATFORMS AND PROGRAMMING

UNIT V IOT APPLICATIONS
Business models for the internet of things, Smart city, Smart mobility and transport, Industrial IoT, Smart health, Environment monitoring and surveillance – Home Automation – Smart Agriculture

PRACTICAL EXERCISES: 30 PERIODS
1. Introduction to Arduino platform and programming
2. Interfacing Arduino to Zigbee module
3. Interfacing Arduino to GSM module
4. Interfacing Arduino to Bluetooth Module
5 Introduction to Raspberry PI platform and python programming
6. Interfacing sensors to Raspberry PI
7. Communicate between Arduino and Raspberry PI using any wireless medium
8. Setup a cloud platform to log the data
9. Log Data using Raspberry PI and upload to the cloud platform
10. Design an IOT based system

OUTCOMES:
CO 1: Explain the concept of IoT.
CO 2: Understand the communication models and various protocols for IoT.
CO 3: Design portable IoT using Arduino/Raspberry PI /open platform
CO 4: Apply data analytics and use cloud offerings related to IoT.
CO 5: Analyze applications of IoT in real time scenario.

TOTAL: 60 PERIODS

TEXTBOOKS

REFERENCES
1. Perry Lea, “Internet of things for architects”, Packt, 2018

OCS353 DATA SCIENCE FUNDAMENTALS
COURSE OBJECTIVES:
● Familiarize students with the data science process.
● Understand the data manipulation functions in Numpy and Pandas.
● Explore different types of machine learning approaches.
- Understand and practice visualization techniques using tools.
- Learn to handle large volumes of data with case studies.

UNIT I
INTRODUCTION
6
Data Science: Benefits and uses – facets of data - Data Science Process: Overview – Defining research goals – Retrieving data – data preparation - Exploratory Data analysis – build the model – presenting findings and building applications - Data Mining - Data Warehousing – Basic statistical descriptions of Data

UNIT II
DATA MANIPULATION
9

UNIT III
MACHINE LEARNING
5
The modeling process - Types of machine learning - Supervised learning - Unsupervised learning - Semi-supervised learning- Classification, regression - Clustering – Outliers and Outlier Analysis

UNIT IV
DATA VISUALIZATION
5

UNIT V
HANDLING LARGE DATA
5
Problems - techniques for handling large volumes of data - programming tips for dealing with large data sets- Case studies: Predicting malicious URLs, Building a recommender system - Tools and techniques needed - Research question - Data preparation - Model building – Presentation and automation.

| 30 PERIODS |

PRACTICAL EXERCISES:
30 PERIODS

LAB EXERCISES
1. Download, install and explore the features of Python for data analytics.
2. Working with Numpy arrays
3. Working with Pandas data frames
4. Basic plots using Matplotlib
5. Statistical and Probability measures
 a) Frequency distributions
 b) Mean, Mode, Standard Deviation
 c) Variability
 d) Normal curves
 e) Correlation and scatter plots
 f) Correlation coefficient
 g) Regression

6. Use the standard benchmark data set for performing the following:
 a) Univariate Analysis: Frequency, Mean, Median, Mode, Variance, Standard Deviation, Skewness and Kurtosis.
 b) Bivariate Analysis: Linear and logistic regression modelling.
7. Apply supervised learning algorithms and unsupervised learning algorithms on any data set.
8. Apply and explore various plotting functions on any data set.

Note: Example data sets like: UCI, Iris, Pima Indians Diabetes etc.
COURSE OUTCOMES:
At the end of this course, the students will be able to:

- **CO1**: Gain knowledge on data science process.
- **CO2**: Perform data manipulation functions using Numpy and Pandas.
- **CO3**: Understand different types of machine learning approaches.
- **CO4**: Perform data visualization using tools.
- **CO5**: Handle large volumes of data in practical scenarios.

TOTAL: 60 PERIODS

TEXT BOOKS

REFERENCES

CCS333 AUGMENTED REALITY /VIRTUAL REALITY

OBJECTIVES:
- To impart the fundamental aspects and principles of AR/VR technologies.
- To know the internals of the hardware and software components involved in the development of AR/VR enabled applications.
- To learn about the graphical processing units and their architectures.
- To gain knowledge about AR/VR application development.
- To know the technologies involved in the development of AR/VR based applications.

UNIT I INTRODUCTION

UNIT II VR MODELING

UNIT III VR PROGRAMMING
VR Programming – Toolkits and Scene Graphs – World ToolKit – Java 3D – Comparison of World ToolKit and Java 3D

UNIT IV APPLICATIONS

UNIT V AUGMENTED REALITY
Introduction to Augmented Reality-Computer vision for AR-Interaction-Modelling and Annotation-Navigation-Wearable devices

30 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

1. Study of tools like Unity, Maya, 3DS MAX, AR toolkit, Vuforia and Blender.
2. Use the primitive objects and apply various projection types by handling camera.
3. Download objects from asset store and apply various lighting and shading effects.
4. Model three dimensional objects using various modelling techniques and apply textures over them.
5. Create three dimensional realistic scenes and develop simple virtual reality enabled mobile applications which have limited interactivity.
6. Add audio and text special effects to the developed application.
7. Develop VR enabled applications using motion trackers and sensors incorporating full haptic interactivity.
8. Develop AR enabled applications with interactivity like E learning environment, Virtual walkthroughs and visualization of historic places.
10. Develop simple MR enabled gaming applications.

TOTAL: 60 PERIODS

OUTCOMES:
On completion of the course, the students will be able to:
CO1: Understand the basic concepts of AR and VR
CO2: Understand the tools and technologies related to AR/VR
CO3: Know the working principle of AR/VR related Sensor devices
CO4: Design of various models using modeling techniques
CO5: Develop AR/VR applications in different domains

TEXTBOOKS:
1. Charles Palmer, John Williamson, “Virtual Reality Blueprints: Create compelling VR experiences for mobile”, Packt Publisher, 2018
COURSE DESCRIPTION:
Students aspiring to take up competitive exams of which the English language is a vital component will find this course useful. Designed for students in the higher semesters, the course will help students to familiarise themselves with those aspects of English that are tested in these examinations.

Objectives:
- To train the students in the language components essential to face competitive examinations both at the national (UPSC, Banking, Railway, Defence) and the international level (GRE, TOEFL, IELTS).
- To enhance an awareness of the specific patterns in language testing and the respective skills to tackle verbal reasoning and verbal ability tests.
- To inculcate effective practices in language-learning in order to improve accuracy in usage of grammar and coherence in writing.
- To improve students' confidence to express their ideas and opinions in formal contexts
- To create awareness of accuracy and precision in communication

UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V

TOTAL: 45 PERIODS
At the end of the course, learners will be able

- Expand their vocabulary and gain practical techniques to read and comprehend a wide range of texts with the emphasis required
- Identify errors with precision and write with clarity and coherence
- Understand the importance of task fulfilment and the usage of task-appropriate vocabulary
- Communicate effectively in group discussions, presentations and interviews
- Write topic based essays with precision and accuracy

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high, "-" no correlation

Note: The average value of this course to be used for program articulation matrix.

Teaching Methods:
Instructional methods will involve discussions, taking mock tests on various question papers – Objective, multiple-choice and descriptive. Peer evaluation, self-check on improvement and peer feedback - Practice sessions on speaking assessments, interview and discussion – Using multimedia.

Evaluative Pattern:
Internal Tests – 50%
End Semester Exam - 50%

TEXTBOOKS:

REFERENCES:

Websites
http://civilservicementor.com/, http://www.educationobserver.com
http://www.cambridgeenglish.org/in/

OMG352 NGOS AND SUSTAINABLE DEVELOPMENT

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- to understand the importance of sustainable development
- to acquire a reasonable knowledge on the legal frameworks pertaining to pollution control and environmental management
- to comprehend the role of NGOs in attaining sustainable development
UNIT I ENVIRONMENTAL CONCERNS
Introduction to sustainable development goals, Global responsibility of environmental concern, Importance of environmental preservation, Environmental threats, Pollution and its types, Effects of Pollution, Pollution control, Treatment of wastes

UNIT II ROLE OF NGOS
Role of NGO's in national development, NGO's and participatory management, Challenges and limitations of NGO's, Community Development programmes, Role of NGO's in Community Development programmes, Participation of NGO's in environment management, Corporate Social responsibility, NGO's and corporate social responsibility

UNIT III SUSTAINABLE DEVELOPMENT
Issues and Challenges of Sustainable Development, Bioenergy, Sustainable Livelihoods and Rural Poor in Sustainable Development, Protecting ecosystem services for sustainable development, Non-renewable sources of energy and its effect, Renewable sources of energy for sustainability, Nuclear resources and Legal Regulation of Hazardous Substances, Sustainable Development: Programme and Policies, Sustainability assessment and Indicators

UNIT IV NGO'S FOR SUSTAINABILITY
Civil Society Initiatives in Environment Management, Civil Society Initiatives for Sustainable Development, Global Initiatives in Protecting Global Environment, World Summit on Sustainable Development (Johannesburg Summit 2002), Ecological economics, Environmental sustainability, Social inclusion, Health for all, education for all, Food security and Water security, NGOs and Sustainable Development strategies

UNIT V LEGAL FRAMEWORKS
Need for a Legal framework and its enforcement, Legal measures to control pollution, Environmental Legislations in India, Mechanism to implement Environmental Laws in India, Legal Protection of Forests Act 1927, Legal Protection of Wild Life, Role of NGO's in implementing environmental laws, Challenges in the implementation of environmental legislation

TOTAL 45 : PERIODS

OUTCOMES
Upon completion of this course, the student will:
CO1 Have a thorough grounding on the issues and challenges being faced in attaining sustainable development
CO2 Have a knowledge on the role of NGOs towards sustainable development
CO 3 Present strategies for NGOs in attaining sustainable development
CO 4 recognize the importance of providing energy, food security and health equity to all members of the society without damaging the environment
CO 5 understand the environmental legislations

REFERENCE BOOKS
OMG353 DEMOCRACY AND GOOD GOVERNANCE

UNIT-I
Structure and Process of Governance: Indian Model of Democracy, Parliament, Party Politics and Electoral Behaviour, Federalism, the Supreme Court and Judicial Activism, Units of Local Governance

UNIT-II
Regulatory Institutions – SEBI, TRAI, Competition Commission of India,

UNIT-III
Lobbying Institutions: Chambers of Commerce and Industries, Trade Unions, Farmers Associations, etc.

UNIT- IV
Contemporary Political Economy of Development in India: Policy Debates over Models of Development in India, Recent trends of Liberalisation of Indian Economy in different sectors, E-governance

UNIT-V
Dynamics of Civil Society: New Social Movements, Role of NGO’s, Understanding the political significance of Media and Popular Culture.

REFERENCES:
4. Saima Saeed: Screening the Public Sphere: Media and Democracy in India,2013

TOTAL 45 : PERIODS

OME353 RENEWABLE ENERGY TECHNOLOGIES

COURSE OBJECTIVES
1. To know the Indian and global energy scenario
2. To learn the various solar energy technologies and its applications.
3. To educate the various wind energy technologies.
4. To explore the various bio-energy technologies.
5. To study the ocean and geothermal technologies.

UNIT – I ENERGY SCENARIO
Indian energy scenario in various sectors – domestic, industrial, commercial, agriculture, transportation and others – Present conventional energy status – Present renewable energy status-Potential of various renewable energy sources-Global energy status-Per capita energy consumption - Future energy plans

UNIT – II SOLAR ENERGY

UNIT – III WIND ENERGY

UNIT – IV BIO-ENERGY

UNIT – V OCEAN AND GEOTHERMAL ENERGY

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students would be able to
• Discuss the Indian and global energy scenario.
• Describe the various solar energy technologies and its applications.
• Explain the various wind energy technologies.
• Explore the various bio-energy technologies.
• Discuss the ocean and geothermal technologies.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
The course aims to
- Introduce tools & techniques of design thinking for innovative product development
- Illustrate customer-centric product innovation using on simple use cases
- Demonstrate development of Minimum usable Prototypes
- Outline principles of solution concepts & their evaluation
- Describe system thinking principles as applied to complex systems

UNIT I DESIGN THINKING PRINCIPLES 9
Exploring Human-centered Design - Understanding the Innovation process, discovering areas of opportunity, Interviewing & empathy-building techniques, Mitigate validation risk with FIR [Forge Innovation rubric] - Case studies

UNIT II ENDUSER-CENTRIC INNOVATION 9
Importance of customer-centric innovation - Problem Validation and Customer Discovery - Understanding problem significance and problem incidence - Customer Validation. Target user, User persona & user stories. Activity: Customer development process - Customer interviews and field visit

UNIT III APPLIED DESIGN THINKING TOOLS 9
Concept of Minimum Usable Prototype [MUP] - MUP challenge brief - Designing & Crafting the value proposition - Designing and Testing Value Proposition; Design a compelling value proposition; Process, tools and techniques of Value Proposition Design

UNIT IV CONCEPT GENERATION 9
Solution Exploration, Concepts Generation and MUP design- Conceptualize the solution concept; explore, iterate and learn; build the right prototype; Assess capability, usability and feasibility. Systematic concept generation; evaluation of technology alternatives and the solution concepts

UNIT V SYSTEM THINKING 9
System Thinking, Understanding Systems, Examples and Understandings, Complex Systems

COURSE OUTCOMES
At the end of the course, learners will be able to:
- Define & test various hypotheses to mitigate the inherent risks in product innovations.
- Design the solution concept based on the proposed value by exploring alternate solutions to achieve value-price fit.
- Develop skills in empathizing, critical thinking, analyzing, storytelling & pitching
- Apply system thinking in a real-world scenario

TEXT BOOKS
1. Steve Blank, (2013), The four steps to epiphany: Successful strategies for products that win, Wiley.
3. Proposition Design: How to Create Products and Services Customers Want, Wiley
REFERENCES
1. https://www.ideou.com/pages/design-thinking#process
4. https://blog.forgeforward.in/evaluating-product-innovations-e8178e58b86e
6. https://blog.forgeforward.in/starpup-failure-is-like-true-lie-7812cdfe9b85

MF3003 REVERSE ENGINEERING LT P C
3 0 0 3

COURSE OBJECTIVES:
- The main learning objective of this course is to prepare students for:
- Applying the fundamental concepts and principles of reverse engineering in product design and development.
- Applying the concept and principles material characteristics, part durability and life limitation in reverse engineering of product design and development.
- Applying the concept and principles of material identification and process verification in reverse engineering of product design and development.
- Analysing the various legal aspect and applications of reverse engineering in product design and development.
- Understand about 3D scanning hardware & software operations and procedure to generate 3D model

UNIT I INTRODUCTION & GEOMETRIC FORM 9 Hours

UNIT II MATERIAL CHARACTERISTICS AND PROCESS IDENTIFICATION 9 Hours

UNIT III DATA PROCESSING 9 Hours

UNIT IV 3D SCANNING AND MODELLING 9 Hours

UNIT V INDUSTRIAL APPLICATIONS 9 Hours

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
- Apply the fundamental concepts and principles of reverse engineering in product design and
Apply the concept and principles material characteristics, part durability and life limitation in reverse engineering of product design and development.

Apply the concept and principles of material identification and process verification in reverse engineering of product design and development.

Apply the concept and principles of data processing, part performance and system compatibility in reverse engineering of product design and development.

Analyze the various legal aspect

Applications of reverse engineering in product design and development.

TEXT BOOKS:

REFERENCES:

OPR351 SUSTAINABLE MANUFACTURING

COURSE OBJECTIVES:

- To be acquainted with sustainability in manufacturing and its evaluation.
- To provide knowledge in environment and social sustainability.
- To provide the student with the knowledge of strategy to achieve sustainability.
- To familiarize with trends in sustainable operations.
- To create awareness in current sustainable practices in manufacturing industry.

UNIT – I ECONOMIC SUSTAINABILITY

UNIT – II SOCIAL AND ENVIRONMENTAL SUSTAINABILITY

Social sustainability – Introduction-Work management -Human rights - Societal commitment - Customers -Business practices -Modelling and assessing social sustainability. Environmental issues pertaining to the manufacturing sector: Pollution - Use of resources -Pressure to reduce costs - Environmental management: Processes that minimize negative environmental impacts - environmental legislation and energy costs - need to reduce the carbon footprint of manufacturing Operations-Modelling and assessing environmental sustainability

UNIT – III SUSTAINABILITY PRACTICES

Sustainability awareness - Measuring Industry Awareness-Drivers and barriers -Availability of sustainability indicators -Analysis of sustainability practicing -Modeling and assessment of sustainable practicing -Sustainability awareness -Sustainability drivers and barriers - Availability of
sustainability indicators - Designing questionnaires - Optimizing Sustainability Indexes - Elements - Cost and time model.

UNIT – IV MANUFACTURING STRATEGY FOR SUSTAINABILITY

Concepts of competitive strategy and manufacturing strategies and development of a strategic improvement programme - Manufacturing strategy in business success strategy formation and formulation - Structured strategy formulation - Sustainable manufacturing system design options - Approaches to strategy formulation - Realization of new strategies/system designs.

UNIT – V TRENDS IN SUSTAINABLE OPERATIONS

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

CO1: Discuss the importance of economic sustainability.

CO2: Describe the importance of sustainable practices.

CO3: Identify drivers and barriers for the given conditions.

CO4: Formulate strategy in sustainable manufacturing.

CO5: Plan for sustainable operation of industry with environmental, cost consciousness.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>C/Os/Pos & PSOs</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO/PO & PSO Average</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1 – Slight, 2 – Moderate, 3 – Substantial
COURSE OBJECTIVES:
The objective of this course is to prepare the students to know about the general aspects of Electric and Hybrid Vehicles (EHV), including architectures, modelling, sizing, and sub system design and hybrid vehicle control.

UNIT I DESIGN CONSIDERATIONS FOR ELECTRIC VEHICLES

UNIT II ENERGY SOURCES

UNIT III MOTORS AND DRIVES
Types of Motors- DC motors- AC motors, PMSM motors, BLDC motors, Switched reluctance motors working principle, construction and characteristics.

UNIT IV POWER CONVERTERS AND CONTROLLERS
Solid state Switching elements and characteristics – BJT, MOSFET, IGBT, SCR and TRIAC - Power Converters – rectifiers, inverters and converters - Motor Drives - DC, AC motor, PMSM motors, BLDC motors, Switched reluctance motors – four quadrant operations –operating modes

UNIT V HYBRID AND ELECTRIC VEHICLES
Main components and working principles of a hybrid and electric vehicles, Different configurations of hybrid and electric vehicles. Power Split devices for Hybrid Vehicles - Operation modes - Control Strategies for Hybrid Vehicle - Economy of hybrid Vehicles - Case study on specification of electric and hybrid vehicles.

COURSE OUTCOMES:
At the end of this course, the student will be able to
1. Understand the operation and architecture of electric and hybrid vehicles
2. Identify various energy source options like battery and fuel cell
3. Select suitable electric motor for applications in hybrid and electric vehicles.
4. Explain the role of power electronics in hybrid and electric vehicles
5. Analyze the energy and design requirement for hybrid and electric vehicles.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

OAS352 SPACE ENGINEERING

OBJECTIVES:
- Use the standard atmosphere tables and equations.
- Find lift and drag coefficient data from NACA plots.
- Apply the concept of static stability to flight vehicles.
- Describe the concepts of stress, strain, Young’s modulus, Poisson’s ratio, yield strength.
- Demonstrate a basic knowledge of dynamics relevant to orbital mechanics.

UNIT I STANDARD ATMOSPHERE
History of aviation – standard atmosphere - pressure, temperature and density altitude.

UNIT II AERODYNAMICS
Aerodynamic forces – Lift generation Viscosity and its implications - Shear stress in a velocity profile - Lagrangian and Eulerian flow field - Concept of a streamline – Aircraft terminology and geometry - Aircraft types - Lift and drag coefficients using NACA data.

UNIT III PERFORMANCE AND PROPULSION
Viscous and pressure drag - flow separation - aerodynamic drag - thrust calculations -thrust/power available and thrust/power required.

UNIT IV AIRCRAFT STABILITY AND STRUCTURAL THEORY

UNIT V SPACE APPLICATIONS
History of space research - spacecraft trajectories and basic orbital manoeuvres - six orbital elements - Kepler’s laws of orbits - Newtons law of gravitation.

TOTAL: 45 PERIODS

OUTCOMES:
- Illustrate the history of aviation & developments over the years
- Ability to identify the types & classifications of components and control systems
- Explain the basic concepts of flight & Physical properties of Atmosphere
- Identify the types of fuselage and constructions.
- Distinguish the types of Engines and explain the principles of Rocket

TEXT BOOKS:
UNIT 1 INTRODUCTION

UNIT 2 FUNCTIONS OF MANAGEMENT

UNIT 3 ORGANIZATIONAL BEHAVIOUR

UNIT 4 GROUPDYNAMICS

UNIT 5 MODERN CONCEPTS
Management by Objectives (MBO) - Management by Exception (MBE), Strategic Management - Planning for Future direction - SWOT Analysis - Evolving development strategies, information technology in management Decisions support system- Management Games Business Process Re-engineering (BPR) - Enterprises Resource Planning (ERP) - Supply Chain Management (SCM) - Activity Based Management (AM) - Global Perspective - Principles and Steps Advantages and disadvantage

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Understand the basic concepts of industrial management
CO2: Identify the group conflicts and its causes.
CO3: Perform swot analysis
CO4: Analyze the learning curves
CO5: Understand the placement and performance appraisal
REFERENCES:

CO’s – PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.2</td>
<td>2.3</td>
</tr>
</tbody>
</table>

OIE354 QUALITY ENGINEERING
L T P C
3 0 0 3

COURSE OBJECTIVES
- Developing a clear knowledge in the basics of various quality concepts.
- Facilitating the students in understanding the application of control charts and its techniques.
- Developing the special control procedures for service and process-oriented industries.
- Analyzing and understanding the process capability study.
- Developing the acceptance sampling procedures for incoming raw material.

UNIT I INTRODUCTION

UNIT II CONTROLCHARTS
Chance and assignable causes of process variation, statistical basis of the control chart, control charts for variables- X, R and S charts, attribute control charts - p, np, c and u- Construction and application.

UNIT III SPECIAL CONTROL PROCEDURES
Warning and modified control limits, control chart for individual measurements, multi-vari chart, X-chart with a linear trend, chart for moving averages and ranges, cumulative-sum and exponentially weighted moving average control charts.

UNIT IV STATISTICALPROCESSCONTROL
Process stability, process capability analysis using a Histogram or probability plots and control chart. Gauge capability studies, setting specification limits.

UNIT V ACCEPTANCESAMPLING
The acceptance sampling fundamental, OC curve, sampling plans for attributes, simple, double, multiple and sequential, sampling plans for variables, MIL-STD-105D and MIL-STD-414E & IS2500 standards.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Students will be able to:
CO1: Control the quality of processes using control charts for variables in manufacturing industries.
CO2: Control the occurrence of defective product and the defects in manufacturing companies.
CO3: Control the occurrence of defects in services.
CO4: Analyzing and understanding the process capability study.
CO5: Developing the acceptance sampling procedures for incoming raw material.

CO’s – PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVg.</td>
<td>2.6</td>
<td>2.7</td>
<td>2.7</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2.7</td>
<td>1</td>
<td>2.7</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OSF351 FIRE SAFETY ENGINEERING

COURSE OBJECTIVES
1: To enable the students to acquire knowledge of Fire and Safety Studies
2: To learn about the effect of fire on materials used for construction, the method of test for non-combustibility & fire resistance
3: To learn about fire area, fire stopped areas and different types of fire-resistant doors
4: To learn about the method of fire protection of structural members and their repair due to fire damage.
5: To develop safety professionals for both technical and management through systematic and quality-based study programmes

UNIT I INHERENT SAFETY CONCEPTS
Compartment fire-factors controlling fire severity, ventilation controlled and fuel controlled fires; Spread of fire in rooms, within building and between buildings. Effect of temperature on the properties of structural materials- concrete, steel, masonry and wood; Behavior of non-structural materials on fire- plastics, glass, textile fibres and other house hold materials.

UNIT II PLANT LOCATIONS
Compartment temperature-time response at pre-flashover and post flashover periods; Equivalence of fire severity of compartment fire and furnace fire; Fire resistance test on structural elements-standard heating condition, Indian standard test method, performance criteria.

UNIT III WORKING CONDITIONS
Fire separation between building- principle of calculation of safe distance. Design principles of fire resistant walls and ceilings; Fire resistant screens- solid screens and water curtains; Local barriers; Fire stopped areas-in roof, in fire areas and in connecting structures; Fire doors- Low combustible, Non-combustible and Spark-proof doors; method of suspension of fire doors; Air-tight sealing of doors;

UNIT IV FIRE SEVERITY AND REPAIR TECHNIQUES
Fabricated fire proof boards-calcium silicate, Gypsum, Vermiculite, and Perlite boards; Fire protection of structural elements - Wooden, Steel and RCC.. Reparability of fire damaged structures- Assessment of damage to concrete, steel, masonry and timber structures, Repair techniques- repair methods to reinforced concrete Columns, beams and slabs, Repair to steel structural members, Repair to masonry structures.
UNIT V WORKING AT HEIGHTS

TOTAL : 45 PERIODS

COURSE OUTCOMES
On completion of the course the student will be able to
CO1: Understand the effect of fire on materials used for construction
CO2: Understand the method of test for non-combustibility and fire resistance; and will be able to select different structural elements and their dimensions for a particular fire resistance rating of a building.
CO3: To understand the design concept of fire walls, fire screens, local barriers and fire doors and able to select them appropriately to prevent fire spread.
CO4: To decide the method of fire protection to RCC, steel, and wooden structural elements and their repair methods if damaged due to fire.
CO5: Describe the safety techniques and improve the analytical and intelligence to take the right decision at right time.

TEXT BOOKS

REFERENCES:

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>AVg.</td>
<td>1.3</td>
<td>-</td>
</tr>
</tbody>
</table>

OAE352 FUNDAMENTALS OF AERONAUTICAL ENGINEERING

OBJECTIVES:
• To acquire the knowledge on the Historical evaluation of Airplanes
To learn the different component systems and functions
To know the concepts of basic properties and principles behind the flight
To learn the basics of different structures & construction
To learn the various types of power plants used in aircrafts

UNIT I HISTORY OF FLIGHT
Balloon flight-ornithopter-Early Airplanes by Wright Brothers, biplanes and monoplanes,
Developments in aerodynamics, materials, structures and propulsion over the years.

UNIT II AIRCRAFT CONFIGURATIONS AND ITS CONTROLS
Different types of flight vehicles, classifications-Components of an airplane and their functions-
Conventional control, powered control- Basic instruments for flying-Typical systems for control
actuation.

UNIT III BASICS OF AERODYNAMICS
Physical Properties and structures of the Atmosphere, Temperature, pressure and altitude
relationships, Newton's Law of Motions applied to Aeronautics-Evolution of lift, drag and moment.
Aerofoils, Mach number, Maneuvers.

UNIT IV BASICS OF AIRCRAFT STRUCTURES
General types of construction, Monocoque, semi-monocoque and geodesic constructions, typical
wing and fuselage structure. Metallic and non-metallic materials. Use of Aluminium alloy, titanium,
stainless steel and composite materials. Stresses and strains-Hooke’s law- stress-strain diagrams-
estastic constants-Factor of Safety.

UNIT V BASICS OF PROPULSION
Basic ideas about piston, turboprop and jet engines – use of propeller and jets for thrust
production- Comparative merits, Principle of operation of rocket, types of rocket and typical
applications, Exploration into space.

TOTAL : 45 PERIODS

OUTCOMES:
• Illustrate the history of aircraft & developments over the years
• Ability to identify the types & classifications of components and control systems
• Explain the basic concepts of flight & Physical properties of Atmosphere
• Identify the types of fuselage and constructions.
• Distinguish the types of Engines and explain the principles of Rocket

TEXT BOOKS
 Wiley, NJ, 2021

REFERENCES

OML351 INTRODUCTION TO NON-DESTRUCTIVE TESTING L T P C
3 0 0 3

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
• Understanding the basic importance of NDT in quality assurance.
• Imbibing the basic principles of various NDT techniques, its applications, limitations, codes and standards.
• Equipping themselves to locate a flaw in various materials, products.
• Applying apply the testing methods for inspecting materials in accordance with industry specifications and standards.
• Acquiring the knowledge on the selection of the suitable NDT technique for a given application.

UNIT I INTRODUCTION TO NDT & VISUAL TESTING

Concepts of Non-destructive testing-relative merits and limitations-NDT Versus mechanical testing, Fundamentals of Visual Testing – vision, lighting, material attributes, environmental factors, visual perception, direct and indirect methods – mirrors, magnifiers, boroscopes and fibroscopes – light sources and special lighting.

UNIT II LIQUID PENETRANT & MAGNETIC PARTICLE TESTING

Liquid Penetrant Inspection: principle, applications, advantages and limitations, dyes, developers and cleaners, Methods & Interpretation.
Magnetic Particle Inspection: Principles, applications, magnetization methods, magnetic particles, Testing Procedure, demagnetization, advantages and limitations, – Interpretation and evaluation of test indications.

UNIT III EDDY CURRENT TESTING & THERMOGRAPHY

UNIT IV ULTRASONIC TESTING & AET

UNIT V RADIOGRAPHY TESTING

Sources-X-rays and Gamma rays and their characteristics-absorption, scattering. Filters and screens, Imaging modalities-film radiography and digital radiography (Computed, Direct, Real Time, CT scan). Problems in shadow formation, exposure factors, inverse square law, exposure charts, Penetrameters, safety in radiography.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completion of this course, the students will be able to
1. Realize the importance of NDT in various engineering fields.
2. Have a basic knowledge of surface NDE techniques which enables to carry out various inspection in accordance with the established procedures.
3. Calibrate the instrument and inspect for in-service damage in the components by means of Eddy current testing as well as Thermography testing.
4. Differentiate various techniques of UT and AET and select appropriate NDT methods for better evaluation.
5. Interpret the results of Radiography testing and also have the ability to analyse the influence of various parameters on the testing.

TEXT BOOKS:
COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
1. Selecting sensors to develop mechatronics systems.
2. Explaining the architecture and timing diagram of microprocessor, and also interpret and
develop programs.
3. Designing appropriate interfacing circuits to connect I/O devices with microprocessor.
4. Applying PLC as a controller in mechatronics system.
5. Designing and develop the apt mechatronics system for an application.

UNIT – I INTRODUCTION AND SENSORS
Introduction to Mechatronics – Systems – Need for Mechatronics – Emerging areas of
Mechatronics – Classification of Mechatronics. Sensors and Transducers: Static and Dynamic
Characteristics of Sensor, Potentiometers – LVDT – Capacitance Sensors – Strain Gauges –

UNIT – II 8085 MICROPROCESSOR
Introduction – Pin Configuration - Architecture of 8085 – Addressing Modes – Instruction set,
Timing diagram of 8085.

UNIT – III PROGRAMMABLE PERIPHERAL INTERFACE
Introduction – Architecture of 8255, Keyboard Interfacing, LED display – Interfacing, ADC and
DAC Interface, Temperature Control – Stepper Motor Control – Traffic Control Interface.

UNIT – IV PROGRAMMABLE LOGIC CONTROLLER
Introduction – Architecture – Input / Output Processing – Programming with Timers, Counters
and Internal relays – Data Handling – Selection of PLC.
UNIT – V ACTUATORS AND MECHATRONICS SYSTEM DESIGN

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

CO1: Select sensors to develop mechatronics systems.
CO2: Explain the architecture and timing diagram of microprocessor, and also interpret and develop programs.
CO3: Design appropriate interfacing circuits to connect I/O devices with microprocessor.
CO4: Apply PLC as a controller in mechatronics system.
CO5: Design and develop the apt mechatronics system for an application.

<table>
<thead>
<tr>
<th>COs/POs & PSOs</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO/PO & PSO</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Average</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1 – Slight, 2 – Moderate, 3 – Substantial

TEXT BOOKS:

REFERENCES:

ORA351 FOUNDATION OF ROBOTICS

L T P C
3 0 0 3
COURSE OBJECTIVES:

1. To study the kinematics, drive systems and programming of robots.
2. To study the basics of robot laws and transmission systems.
3. To familiarize students with the concepts and techniques of robot manipulator, its kinematics.
4. To familiarize students with the various Programming and Machine Vision application in robots.
5. To build confidence among students to evaluate, choose and incorporate robots in engineering systems.

UNIT – I FUNDAMENTALS OF ROBOT

UNIT – II ROBOT KINEMATICS

Forward kinematics, inverse kinematics and the difference: forward kinematics and inverse Kinematics of Manipulators with two, three degrees of freedom (in 2 dimensional), four degrees of freedom (in 3 dimensional) – derivations and problems. Homogeneous transformation matrices, translation and rotation matrices.

UNIT – III ROBOT DRIVE SYSTEMS AND END EFFECTORS

UNIT – IV SENSORS IN ROBOTICS

Force sensors, touch and tactile sensors, proximity sensors, non-contact sensors, safety considerations in robotic cell, proximity sensors, fail safe hazard sensor systems, and compliance mechanism. Machine vision system - camera, frame grabber, sensing and digitizing image data – signal conversion, image storage, lighting techniques, image processing and analysis – data reduction, segmentation, feature extraction, object recognition, other algorithms, applications – Inspection, identification, visual serving and navigation.

UNIT – V PROGRAMMING AND APPLICATIONS OF ROBOT

Teach pendant programming, lead through programming, robot programming languages – VAL programming – Motion Commands, Sensors commands, End-Effector Commands, and simple programs - Role of robots in inspection, assembly, material handling, underwater, space and medical fields.

TOTAL : 45 PERIODS

COURSE OUTCOMES

At the end of the course, students will be able to:

CO1: Interpret the features of robots and technology involved in the control.
CO2: Apply the basic engineering knowledge and laws for the design of robotics.
CO3: Explain the basic concepts like various configurations, classification and parts of end effectors compare various end effectors and grippers and tools and sensors used in robots.
CO4: Explain the concept of kinematics, degeneracy, dexterity and trajectory planning.
CO5: Demonstrate the image processing and image analysis techniques by machine vision system.

| Mapping of COs with POs and PSOs |
|------------------------------|----------------|----------------|
| COs/POs| COs/POs&| POs| PSOs |

TOTAL : 45 PERIODS
TEXT BOOKS:

REFERENCES:

OGI351 REMOTE SENSING CONCEPTS L T P C 3 0 0 3

OBJECTIVES:
- To introduce the concepts of remote sensing processes and its components.
- To expose the various remote sensing platforms and sensors and to introduce the elements of data interpretation

UNIT I REMOTE SENSING AND ELECTROMAGNETIC RADIATION 9

UNIT II EMR INTERACTION WITH ATMOSPHERE AND EARTH MATERIAL 9

UNIT III ORBITS AND PLATFORMS 9
Motions of planets and satellites – Newton’s law of gravitation - Gravitational field and potential - Escape velocity - Kepler’s law of planetary motion - Orbit elements and types – Orbital perturbations and maneuvers – Types of remote sensing platforms - Ground based, Airborne platforms and Space borne platforms – Classification of satellites – Sun synchronous and Geosynchronous satellites – Lagrange Orbit.

UNIT IV SENSING TECHNIQUES 9

UNIT V DATA PRODUCTS AND INTERPRETATION
Photographic and digital products – Types, levels and open source satellite data products – selection and procurement of data– Visual interpretation: basic elements and interpretation keys - Digital interpretation – Concepts of Image rectification, Image enhancement and Image classification

TOTAL:45 PERIODS

COURSE OUTCOMES:
On completion of the course, the student is expected to
CO 1 Understand the concepts and laws related to remote sensing
CO 2 Understand the interaction of electromagnetic radiation with atmosphere and earth material
CO 3 Acquire knowledge about satellite orbits and different types of satellites
CO 4 Understand the different types of remote sensors
CO 5 Gain knowledge about the concepts of interpretation of satellite imagery

TEXTBOOKS:

REFERENCES:

CO-PO MAPPING

<table>
<thead>
<tr>
<th>PO</th>
<th>Graduate Attribute</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Engineering Knowledge</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO2</td>
<td>Problem Analysis</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO3</td>
<td>Design/Development of Solutions</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO4</td>
<td>Conduct Investigations of Complex Problems</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO6</td>
<td>The Engineer and Society</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and Sustainability</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and Team Work</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO11</td>
<td>Project Management and Finance</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long Learning</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PSO1</td>
<td>Knowledge of Geoinformatics discipline</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PSO2</td>
<td>Critical analysis of Geoinformatics Engineering problems and innovations</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
OBJECTIVES:
- To introduce the students the principles of agricultural crop production and the production practices of crops in modern ways.
- To delineate the role of agricultural engineers in relation to various crop production practices.

UNIT I INTRODUCTION
Benefits of urban agriculture- economic benefits, environmental benefits, social and cultural benefits, educational, skill-building and job training benefits, health, nutrition and food accessibility benefits.

UNIT II VERTICAL FARMING

UNIT III SOIL LESS CULTIVATION
Hydroponics, aeroponics, aquaponics: merits and limitations, costs and Challenges, backyard gardens- tactical gardens- street landscaping- forest gardening, greenhouses, urban beekeeping

UNIT IV MODERN CONCEPTS
Growth of plants in vertical pipes in terraces and inside buildings, micro irrigation concepts suitable for roof top gardening, rain hose system, Green house, polyhouse and shade net system of crop production on roof tops

UNIT V WASTE MANAGEMENT
Concept, scope and maintenance of waste management- recycle of organic waste, garden wastes- solid waste management-scope, microbiology of waste, other ingredients like insecticide, pesticides and fungicides residues, waste utilization.

TOTAL: 45 PERIODS

COURSE OUTCOMES
1. Demonstrate the principles behind crop production and various parameters that influences the crop growth on roof tops
2. Explain different methods of crop production on roof tops
3. Explain nutrient and pest management for crop production on roof tops
4. Illustrate crop water requirement and irrigation water management on roof tops
5. Explain the concept of waste management on roof tops

TEXT BOOKS:
REFERENCES:

CO-PO MAPPING

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>Overall correlation of COs with POs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Engineering Knowledge</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO2</td>
<td>Problem Analysis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO3</td>
<td>Design/ Development of Solutions</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>PO4</td>
<td>Conduct Investigations of Complex Problems</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO6</td>
<td>The Engineer and Society</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and sustainability</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and team work:</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO11</td>
<td>Project management and finance</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long learning:</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>PSO1</td>
<td>To make expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PSO2</td>
<td>To enhance students ability to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies.</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PSO3</td>
<td>To inculcate entrepreneurial skills through strong Industry-Institution linkage.</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

OEN351 DRINKING WATER SUPPLY AND TREATMENT

OBJECTIVE:
- To equip the students with the principles and design of water treatment units and distribution system.

UNIT I SOURCES OF WATER
Public water supply system – Planning, Objectives, Design period, Population forecasting; Water demand – Sources of water and their characteristics, Surface and Groundwater – Impounding

UNIT II CONVEYANCE FROM THE SOURCE

UNIT III WATER TREATMENT

Objectives – Unit operations and processes – Principles, functions, and design of water treatment plant units, aerators of flash mixers, Coagulation and flocculation — sand filters - Disinfection - Construction, Operation and Maintenance aspects.

UNIT IV ADVANCED WATER TREATMENT

UNIT V WATER DISTRIBUTION AND SUPPLY

TOTAL: 45 PERIODS

OUTCOMES

CO1: An understanding of water quality criteria and standards, and their relation to public health

CO2: The ability to design the water conveyance system

CO3: The knowledge in various unit operations and processes in water treatment

CO4: An ability to understand the various systems for advanced water treatment

CO5: An insight into the structure of drinking water distribution system

TEXT BOOKS:

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2 2</td>
</tr>
</tbody>
</table>
OEE352 ELECTRIC VEHICLE TECHNOLOGY L T P C
3 0 0 3
COURSE OBJECTIVES
- To provide knowledge about electric machines and special machine
- To understand the basics of power converters
- To know the concepts of controlling DC and AC drive systems
- To understand the architecture and power train components.
- To impart knowledge on vehicle control for standard drive cycles of hybrid electrical vehicles (HEVs)

UNIT I ROTATING POWER CONVERTERS 9

UNIT II STATIC POWER CONVERTERS 9
Working and Characteristics of Power Diodes, MOSFET and IGBT. Working of uncontrolled rectifiers, controlled rectifiers (Single phase and Three phase), DC choppers, single and three phase inverters, Multilevel inverters and Matrix Converters.

UNIT III CONTROL OF DC AND AC MOTOR DRIVES 9
Speed control for constant torque, constant HP operation of all electric motors - DC/DC chopper based four quadrant operation of DC motor drives, inverter based V/f Operation (motoring and braking) of induction motor drives, Transformation theory, vector control operation of Induction motor and PMSM, Brushless DC motor drives, Switched reluctance motor (SRM) drives

UNIT IV HYBRID ELECTRIC VEHICLE ARCHITECTURE AND POWER TRAIN COMPONENTS 9

UNIT V MECHANICS OF HYBRID ELECTRIC VEHICLES AND CONTROL OF VEHICLES 9
Fundamentals of vehicle mechanics - tractive force, power and energy requirements for standard drive cycles of HEV's - motor torque and power rating and battery capacity. HEV supervisory control - Selection of modes - power spilt mode - parallel mode - engine brake mode - regeneration mode - series parallel mode

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: Able to understand the principles of conventional and special electrical machines.
CO2: Acquired the concepts of power devices and power converters
CO3: Able to understand the control for DC and AC drive systems.
CO4: Learned the electric vehicle architecture and power train components.
CO5: Acquired the knowledge of mechanics of electric vehicles and control of electric vehicles.

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

REFERENCES:

OEI353 INTRODUCTION TO PLC PROGRAMMING

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
1. Understand basic PLC terminologies digital principles, PLC architecture and operation.
2. Familiarize different programming language of PLC.
3. Develop PLC logic for simple applications using ladder logic.
4. Understand the hardware and software behind PLC and SCADA.
5. Exposures about communication architecture of PLC/SCADA.

UNIT I INTRODUCTION TO PLC

Introduction to PLC: Microprocessor, I/O Ports, Isolation, Filters, Drivers, Microcontrollers/DSP, PLC/DDC- PLC Construction: What is a PLC, PLC Memories, PLC I/O, PLC Special I/O, PLC Types.

UNIT II PLC INSTRUCTIONS

PLC Basic Instructions: PLC Ladder Language- Function block Programming- Ladder/Function Block functions- PLC Basic Instructions, Basic Examples (Start Stop Rung, Entry/Reset Rung)- Configuration of Sensors, Switches, Solid State Relays-Interlock examples- Timers, Counters, Examples.

UNIT III PLC PROGRAMMING

Different types of PLC program, Basic Ladder logic, logic functions, PLC module addressing, registers basics, basic relay instructions, Latching Relays, arithmetic functions, comparison functions, data handling, data move functions, timer-counter instructions, input-output instructions, sequencer instructions.

UNIT IV COMMUNICATION OF PLC AND SCADA
Communication Protocol – Modbus, HART, Profibus- Communication facilities SCADA: - Hardware and software, Remote terminal units, Master Station and Communication architectures

UNIT V CASE STUDIES
Stepper Motor Control- Elevator Control-CNC Machine Control- conveyor control-Interlocking Problems

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc) 5
1. Market survey of the recent PLCs and comparison of their features.
2. Summarize the PLC standards
3. Familiarization of any one programming language (Ladder diagram/ Sequential Function Chart/ Function Block Diagram/ Equivalent open source software)
4. Market survey of Communication Network Used for PLC/SCADA.

COURSE OUTCOMES:
CO1 Know the basic requirement of a PLC input/output devices and architecture. (L1)
CO2 Ability to apply Basics Instruction Sets used for ladder Logic and Function Block Programming.(L2)
CO3 Ability to design PLC Programmes by Applying Timer/Counter and Arithmetic and Logic Instructions Studied for Ladder Logic and Function Block.(L3)
CO4 Able to develop a PLC logic for a specific application on real world problem. (L5)
CO5 Ability to Understand the Concepts of Communication used for PLC/SCADA.(L1)

TEXT BOOKS:
1. Frank Petruzzula, Programmable Logic Controllers, Tata Mc-Graw Hill Edition
2. John W. Webb, Ronald A. Reis, Programmable Logic Controllers Principles and Applications, PHI publication

REFERENCES:
2. J. R. Hackworth and F. D. Hackworth, Programmable Logic Controllers Principles and Applications, Pearson publication

List of Open Source Software/ Learning website:
1. https://nptel.ac.in/courses/108105063

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th>PO</th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2.9</td>
<td>2.25</td>
<td>2.6</td>
<td>1.6</td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT I INTRODUCTION 8
General definition and size effects–important nano structured materials and nano particles-
importance of nano materials- Size effect on thermal, electrical, electronic, mechanical, optical and
magnetic properties of nanomaterials- surface area - band gap energy and applications.
Photochemistry and Electrochemistry of nanomaterials – Ionic properties of nanomaterials- Nano
catalysis.

UNIT II SYNTHESIS OF NANOMATERIALS 8
Bottom up and Top-down approach for obtaining nano materials - Precipitation methods – sol gel
technique – high energy ball milling, CVD and PVD methods, gas phase condensation, magnetron
sputtering and laser deposition methods – laser ablation, sputtering.

UNIT III NANO COMPOSITES 10
Definition- importance of nanocomposites- nano composite materials-classification of composites-
metal/metal oxides, metal-polymer- thermoplastic based, thermoset based and elastomer based-
influence of size, shape and role of interface in composites applications.

UNIT IV NANO STRUCTURES AND CHARACTERIZATION TECHNIQUES 10
Classifications of nanomaterials - Zero dimensional, one-dimensional and two-dimensional
nanostructures- Kinetics in nanostructured materials- multilayer thin films and superlattice-
clusters of metals, semiconductors and nanocomposites. Spectroscopic techniques, Diffraction
methods, thermal analysis method, BET analysis method.

UNIT V APPLICATIONS OF NANO MATERIALS 9
Overview of nanomaterials properties and their applications, nano painting, nano coating,
nanomaterials for renewable energy, Molecular Electronics and Nanoelectronics – Nanobots-
Biological Applications. Emerging technologies for environmental applications- Practice of
nanoparticles for environmental remediation and water treatment.

TOTAL : 45 PERIODS

OUTCOMES:
CO1 Understand the basic properties such as structural, physical, chemical properties of
nanomaterials and their applications.
CO2 Able to acquire knowledge about the different types of nano material synthesis
CO3 Describes about the shape, size,structure of composite nano materials and their
interference
CO4 Understand the different characterization techniques for nanomaterials
CO5 Develop a deeper knowledge in the application of nanomaterials in different fields.

TEXT BOOKS
1. Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmom, Burkhard Raguse, “Nano
2. G. Cao, “Nanostructures & Nanomaterials: Synthesis, Properties & Applications” Imperial
College Press, 2004
Taylor and Francis group 2012.

REFERENCES
1. R.H.J.Hannink & A.J.Hill, Nanostructure Control, Wood Head Publishing Ltd., Cambridge,
2006.

<table>
<thead>
<tr>
<th>COURSE ARTICULATION MATRIX</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Outcomes</td>
<td>Statement</td>
</tr>
<tr>
<td>CO1</td>
<td>understand the basic properties such as structural, physical, chemical properties of nanomaterials and their applications</td>
</tr>
<tr>
<td>CO2</td>
<td>acquire knowledge about the different types of nano material synthesis</td>
</tr>
<tr>
<td>CO3</td>
<td>describes about the shape, size, structure of composite nano materials and their interference</td>
</tr>
<tr>
<td>CO4</td>
<td>understand the different characterization techniques for nanomaterials</td>
</tr>
<tr>
<td>CO5</td>
<td>develop a deeper knowledge in the application of nanomaterials in different fields</td>
</tr>
<tr>
<td>Overall CO</td>
<td>3</td>
</tr>
</tbody>
</table>

OCH352 FUNCTIONAL MATERIALS L T P C
3 0 0 3

OBJECTIVE:
- The course emphasis on the molecular safe assembly and materials for polymer electronics

UNIT I INTRODUCTION

UNIT II MOLECULAR SELF ASSEMBLY
UNIT III BIO-INSPIRED MATERIALS

UNIT IV SMART OR INTELLIGENT MATERIALS
Criteria for Smartness, Significance of Smart Materials, Representative Examples like Smart Gels and Polymers, Electro/Magneto Rheological Fluids, Smart Electroceramics, Technical Limitations and Challenges, Functional Nanocomposites, Polymer-carbon nanotube composites.

UNIT V MATERIALS FOR POLYMER ELECTRONICS
Polymers for Electronics, Organic Light Emitting Diodes, Working Principle of OLEDs, Illustrated Examples, Organic Field-Effect Transistors Operating Principle, Design Considerations, Polymer FETs vs Inorganic FETs, Liquid Crystal Displays, Engineering Aspects of Flat Panel Displays, Intelligent Polymers for Data Storage, Polymer-based Data Storage-Principle, Magnetic Vs. Polymer-based Data Storage.

TOTAL: 45 PERIODS

OUTCOME:
- Students will be able to differentiate among various functional properties and select appropriate material for certain functional applications, analyze the nature and potential of functional material.

TEXT BOOK:

REFERENCE:

OJECTIVE:
- To help students acquire a sound knowledge on diversities of foods, food habits and patterns in India with focus on traditional foods.

UNIT I HISTORICAL AND CULTURAL PERSPECTIVES
Food production and accessibility - subsistence foraging, horticulture, agriculture and pastoralization, origin of agriculture, earliest crops grown. Food as source of physical sustenance, food as religious and cultural symbols; importance of food in understanding human culture - variability, diversity, from basic ingredients to food preparation; impact of customs and traditions on food habits, heterogeneity within cultures (social groups) and specific social contexts - festive occasions, specific religious festivals, mourning etc. Kosher, Halal foods; foods for religious and other fasts.

UNIT II TRADITIONAL METHODS OF FOOD PROCESSING

UNIT III TRADITIONAL FOOD PATTERNS
Typical breakfast, meal and snack foods of different regions of India. Regional foods that have gone Pan Indian / Global. Popular regional foods; Traditional fermented foods, pickles and preserves, beverages, snacks, desserts and sweets, street foods; IPR issues in traditional foods

UNIT IV COMMERCIAL PRODUCTION OF TRADITIONAL FOODS
Commercial production of traditional breads, snacks, ready-to-eat foods and instant mixes, frozen foods – types marketed, turnover; role of SHGs, SMES industries, national and multinational companies; commercial production and packaging of traditional beverages such as tender coconut water, neera, lassi, buttermilk, dahi. Commercial production of intermediate foods – ginger and garlic pastes, tamarind pastes, masalas (spice mixes), idli and dosa batters.

UNIT V HEALTH ASPECTS OF TRADITIONAL FOODS
Comparison of traditional foods with typical fast foods / junk foods – cost, food safety, nutrient composition, bioactive components; energy and environmental costs of traditional foods; traditional foods used for specific ailments / illnesses.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1 To understand the historical and traditional perspective of foods and food habits
CO2 To understand the wide diversity and common features of traditional Indian foods and meal patterns.

TEXT BOOKS:

OFD353 INTRODUCTION TO FOOD PROCESSING

OBJECTIVE:
- The course aims to introduce the students to the area of Food Processing. This is necessary for effective understanding of a detailed study of food processing and technology subjects. This course will enable students to appreciate the importance of food processing with respect to the producer, manufacturer and consumer.

UNIT I PROCESSING OF FOOD AND ITS IMPORTANCE
Source of food - plant, animal and microbial origin; different foods and groups of foods as raw materials for processing – cereals, pulses, grains, vegetables and fruits, milk and animal foods, sea weeds, algae, oil seeds & fats, sugars, tea, coffee, cocoa, spices and condiments, additives; need and significance of processing these foods.

UNIT II METHODS OF FOOD HANDLING AND STORAGE
Nature of harvested crop, plant and animal; storage of raw materials and products using low temperature, refrigerated gas storage of foods, gas packed refrigerated foods, sub atmospheric storage, Gas atmospheric storage of meat, grains, seeds and flour, roots and tubers; freezing of raw and processed foods.

UNIT III LARGE-SCALE FOOD PROCESSING
Milling of grains and pulses; edible oil extraction; Pasteurisation of milk and yoghurt; canning and bottling of foods; drying – Traditional and modern methods of drying, Dehydration of fruits, vegetables, milk, animal products etc; preservation by use of acid, sugar and salt; Pickling and curing with microorganisms, use of salt, and microbial fermentation; frying, baking, extrusion cooking, snack foods.

UNIT IV FOOD WASTES IN VARIOUS PROCESSES
Waste disposal—solid and liquid waste; rodent and insect control; use of pesticides; ETP; selecting and installing necessary equipment.

UNIT V FOOD HYGIENE
Food related hazards – Biological hazards – physical hazards – microbiological considerations in foods. Food adulteration – definition, common food adulterants, contamination with toxic metals, pesticides and insecticides; Safety in food procurement, storage handling and preparation; Relationship of microbes to sanitation, Public health hazards due to contaminated water and food; Personnel hygiene; Training & Education for safe methods of handling and processing food; sterilization and disinfection of manufacturing plant; use of sanitizers, detergents, heat, chemicals, Cleaning of equipment and premises.

COURSE OUTCOMES:
On completion of the course the students are expected to
CO1 Be aware of the different methods applied to processing foods.
CO2 Be able to understand the significance of food processing and the role of food and beverage industries in the supply of foods.

TEXT BOOKS/REFERENCES:

OPY352 IPR FOR PHARMA INDUSTRY

COURSE OBJECTIVES:
- To provide the basic fundamental knowledge of different forms of Intellectual Property Rights in national and international level.
- To provide the significance of the Intellectual Property Rights about the patents, copyrights, industrial design, plant and geographical indications.
- This paper is to study significance of the amended patent act on pharma industry.

UNIT I INTRODUCTION- INTELLECTUAL PROPERTY RIGHTS
Introduction, Types of Intellectual Property Rights - patents, plant varieties protection, geographical indicators, copyright, trademark, trade secrets.

UNIT II PATENTS
Patents-Objective, Introduction, Requirement for patenting- Novelty, Inventive step (Non-obviousness) and industrial application (utility), Non-patentable inventions, rights of patent owner, assignment of patent rights, patent specification (provisional and complete), parts of complete specification, claims, procedure for obtaining patents, compulsory license.

UNIT III PLANT VARIETY-TRADITIONAL KNOWLEDGE –GEOGRAPHICAL INDICATIONS
Plant variety- Justification, criteria for protection of plant variety and protection in India. Traditional knowledge- Concept of traditional knowledge, protection of traditional knowledge under Intellectual Property frame works in national level and Traditional knowledge digital library (TKDL). Geographical Indications – Justification for protection, National and International position.

UNIT IV ENFORCEMENT AND PRACTICAL ASPECTS OF IPR

UNIT V INTERNATIONAL BACKGROUND OF INTELLECTUAL PROPERTY

TOTAL:45 PERIODS

TEXT BOOKS:

REFERENCES:
2. Basic Principles of patent law – Basics principles and acquisition of IPR. Ramakrishna T. CIPRA, NLSIU, Bangalore, 2005

COURSE OUTCOMES
The student will be able to
C1 Understand and differentiate the categories of intellectual property rights.
C2 Describe about patents and procedure for obtaining patents.
C3 Distinguish plant variety, traditional knowledge and geographical indications under IPR.
C4 Provide the information about the different enforcements and practical aspects involved in protection of IPR.
C5 Provide different organizations role and responsibilities in the protection of IPR in the international level.
C6 Understand the interrelationships between different Intellectual Property Rights on International Society

<table>
<thead>
<tr>
<th>CO – PO MAPPING</th>
<th>IPR FOR PHARMA INDUSTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>PO2</td>
</tr>
<tr>
<td>C1</td>
<td>3</td>
</tr>
<tr>
<td>C2</td>
<td>3</td>
</tr>
<tr>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td></td>
</tr>
</tbody>
</table>

OTT351
BASICS OF TEXTILE FINISHING
L T P C
3 0 0 3
OBJECTIVE:
• To enable the students to understand the basics and different types of finishes required for textile materials and machines used for finishing.

UNIT I RESIN FINISHING 9

UNIT II FLAME PROOF & WATERPROOF 9
Concept of Flame proof & flame retardancy. Flame retardant finishes for cotton, Concept of waterproof and water repellent Finishes, Durable & Semi durable and Temporary finishes, Concept of Antimicrobial finish.

UNIT III SOIL RELEASE AND ANTISTATIC FINISHES 9

UNIT IV MECHANICAL FINISHES 9

UNIT V STIFFENING AND SOFTENING 9
Concept of stiffening and softening of textile materials. Mechanism in the weight reduction of PET. .Concept of Micro encapsulation techniques in finishing process, Nano finish, Plasma Treatment and Bio finishing.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to Understand the
CO: 2 Concept of Flame proof & flame retardancy, waterproof and water repellent, Antimicrobial finishes.
CO: 3 Concept of Soil Release, Anti Pilling, UV Protection and Antistatic finishes.
CO: 4 Concept of Mechanical finishing.
CO: 5 Basics of Micro encapsulation techniques, Nano finish, Plasma Treatment.

TEXT BOOKS:

REFERENCES:
1. Microencapsulation in finishing, Review of progress of Colouration, SDC, 2001 62

OTT352 INDUSTRIAL ENGINEERING FOR GARMENT INDUSTRY 3 0 0 3

OBJECTIVES:
• To enable the students to learn about basics of industrial engineering and different tools of industrial engineering and its application in apparel industry
Scope of industrial engineering in apparel Industry, role of industrial engineers.

Productivity: Definition - Productivity, Productivity measures. Reduction of work content due to the product and process, Reduction of ineffective time due to the management, due to the worker. Causes for low productivity in apparel industry and measures for improvement.

UNIT II WORK STUDY

Definition, Purpose, Basic procedure and techniques of work-study.

Work environment – Lighting, Ventilation, Climatic condition on productivity. Temperature control, humidity control, noise control measures. Safety and ergonomics on work station and work environment

Material Handling – Objectives. Classification and characteristics of material handling equipments, Specialized material handling equipments.

UNIT III METHOD STUDY

Definition, Objectives, Procedure, Process charts and symbols. Various charts – Charts indicating process sequence: Outline process chart, flow process chart (man type, material type and equipment type); Charts using time scale – multiple activity chart. Diagrams indicating movement – flow diagram, string diagram, cycle graph, chrono cycle graph, travel chart

MOTION STUDY: Principle of motion economy, Two handed process chart, micro motion analysis – therbligs, SIMO chart.

UNIT IV WORK MEASUREMENT

Definition, purpose, procedure, equipments, techniques. Time study - Definition, basics of time study- equipments. Time study forms, Stop watch procedure. Predetermined motion time standards (PMTS). Time Study rating, calculation of standard time, Performance rating – relaxation and other allowances. Calculation of SAM for different garments, GSD.

UNIT V WORK STUDY APPLICATION

Application of work study techniques in cutting, stitching and packing in garment industry. Workaids in sewing, Pitch diagram, Line balancing, Capacity planning, scientific method of training.

TOTAL: 45 PERIODS

OUTCOMES:

Upon the completion of the course the student shall be able to understand

- CO1: Fundamental concepts of industrial Engineering and productivity
- CO2: Method study
- CO3: Motion analysis
- CO4: Work measurement and SAM
- CO5: Ergonomics and its application to garment industry

TEXTBOOKS:

REFERENCES

Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Fundamental concepts of industrial Engineering and productivity</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>Method study</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>Motion analysis</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>Work measurement and SAM</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>Ergonomics and its application to garment industry</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>1.2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1.2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2.4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

OTT353 **BASICS OF TEXTILE MANUFACTURE** **L T P C** **3 0 0 3**

OBJECTIVES:
To enable the students to learn about the basics of fibre forming, yarn production, fabric formation, coloration of fabrics and garment manufacturing

UNIT I NATURAL FIBRES **9**
Introduction: Definition of staple fibre, filament; Classification of natural and man-made fibres, essential and desirable properties of fibres. Production and cultivation of Natural Fibers: Cultivation of cotton, production of silk (sericulture), wool and jute – physical and chemical structure of these fibres.

UNIT II REGENERATED AND SYNTHETIC FIBRES **9**
Production sequence of regenerated and modified cellulosic fibres: viscose rayon, Acetate Rayon, high wet modulus and high tenacity fibres; synthetic fibres – chemical structure, fibre forming polymers, production principles.

UNIT III BASICS OF SPINNING **9**
Spinning – principle of yarn formation, sequence of machines for yarn production with short staple fibres and blends, principles of opening and cleaning machines; yarn numbering - calculations

UNIT IV BASICS OF WEAVING **9**
Woven fabric – warp, weft, weaving, path of warp; looms – classification, handloom and its parts, powerloom, automatic looms, shuttleless looms, special type of looms; preparatory machines for weaving process and their objectives; basic weaving mechanism - primary, secondary and auxiliary mechanisms.

UNIT V BASICS OF KNITTING AND NONWOVEN **9**

OUTCOMES:

TOTAL : 45 PERIODS
On completion of this course, the students shall have the basic knowledge on
CO1: Classification of fibres and production of natural fibres
CO2: Regenerated and synthetic fibres
CO3: Yarn spinning
CO4: Weaving
CO5: Knitting and nonwoven

TEXT BOOKS

REFERENCES:
OBJECTIVE:
The course is aimed to
Gain knowledge about petroleum refining process and production of petrochemical products.

UNIT I ORIGIN, FORMATION AND REFINING OF CRUDE OIL

UNIT II CRACKING
Cracking, Thermal Cracking, Vis-breaking, Catalytic Cracking (FCC), Hydro Cracking, Coking and Air Blowing of Bitumen

UNIT III REFORMING AND HYDROTREATING

UNIT IV INTRODUCTION TO PETROCHEMICALS
Petrochemicals - Cracking of Naphtha and Feed stock gas for the production of Ethylene, Propylene, Isobutylene and Butadiene. Production of Acetylene from Methane, and Extraction of Aromatics.

UNIT V PRODUCTION OF PETROCHEMICALS
Production of Petrochemicals like Dimethyl Terephthalate(DMT), Ethylene Glycol, Synthetic glycerine, Linear Alkyl Benzene (LAB), Acrylonitrile, Methyl Methacrylate (MMA), Vinyl Acetate Monomer, Phthalic Anhydride, Maleic Anhydride, Phenol, Acetone, Methanol, Formaldehyde, Acetaldehyde, Pentaerythritol and production of Carbon Black.

OUTCOMES:
On the completion of the course students are expected to
CO1: Understand the classification, composition and testing methods of crude petroleum and its products. Learn the mechanism of refining process.
CO2: Understand the insights of primary treatment processes to produce the precursors.
CO3: Study the secondary treatment processes cracking, vis-breaking and coking to produce more petroleum products.
CO4: Appreciate the need of treatment techniques for the removal of sulphur and other impurities from petroleum products.
CO5: Understand the societal impact of petrochemicals and learn their manufacturing processes.
CO6: Learn the importance of optimization of process parameters for the high yield of petroleum products.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
At the end of the course, the student is expected to
- understand and analyse the energy data of industries
- carry out energy accounting and balancing
- conduct energy audit and suggest methodologies for energy savings and
- utilise the available resources in optimal ways

UNIT I INTRODUCTION

UNIT II ELECTRICAL SYSTEMS

UNIT III THERMAL SYSTEMS

UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES
Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems –Cooling Towers – D.G. sets

UNIT V ECONOMICS
Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course, the students can able to analyze the energy data of industries.
CO1: Remember the knowledge for Basic combustion and furnace design and selection of thermal and mechanical energy equipment.
CO2: Study the Importance of Stoichiometry relations, Theoretical air required for complete combustion.
CO3: Skills on combustion thermodynamics and kinetics.
CO4: Apply calculation and design tube still heaters.
CO5: Studied different heat treatment furnace.
CO6: Practical and theoretical knowledge burner design.

TEXT BOOKS:

REFERENCES:
OPT351 BASICS OF PLASTICS PROCESSING

COURSE OBJECTIVES

- Understand the fundamentals of plastics processing, such as the relationships between material structural properties and required processing parameters, and so on
- To gain practical knowledge on the polymer selection and its processing
- Understanding the major plastic material processing techniques (Extrusion, Injection molding, Compression and Transfer molding, Blow molding, Thermoforming and casting)
- To understand suitable additives for plastics compounding
- To Propose troubleshooting mechanisms for defects found in plastics products manufactured by various processing techniques

UNIT I INTRODUCTION TO PLASTICS PROCESSING

UNIT II EXTRUSION

UNIT III INJECTION MOLDING

Injection molding – Principles and processing outline, machinery, accessories and functions, specifications, process variables, mould cycle. Types of clamping: hydraulic and toggle mechanisms. Start-up and shut down procedures-Cylinder nozzles- Press capacity projected area -Shot weight Basic theoretical concepts and their relationship to processing - Interaction of moulding process aspect effects in quoted variables. Basic mould types. Reciprocating vs. plunger type injection moulding. Thermoplastic vs. thermosetting injection moulding. Injection moulding vs. other plastic processing techniques. State-of-the art injection moulding techniques - Introduction to trouble shooting

UNIT IV COMPRESSION AND TRANSFER MOLDING

Compression moulding – Basic principles of compression and transfer moulding-Meaning of terms-Bulk factor and flow properties, moulding materials, process variables and process cycle, Inter relation between flow properties-Curing time-Mould temperature and Pressure requirements. Preforms and preheating- Techniques of preheating. Machines used-Types of compression mould- positive, semi-positive and flash. Common moulding faults and their correction- Finishing of mouldings. Transfer moulding: working principle, equipment, Press capacity-Integral moulds and auxiliary ram moulds, moulding cycle, moulding tolerances, pot transfer, plunger transfer and screw transfer moulding techniques, advantages over compression moulding

UNIT V BLOW MOLDING, THERMOFORMING AND CASTING

COURSE OUTCOMES

- Ability to find out the correlation between various processing techniques with product properties.
- Understand the major plastics processing techniques used in moulding (injection, blow, compression, and transfer), extrusion, thermoforming, and casting.
- Acquire knowledge on additives for plastic compounding and methods employed for the same
- Familiarize with the machinery and ancillary equipment associated with various plastic processing techniques.
- Select an appropriate processing technique for the production of a plastic product

REFERENCES:

OEC351 SIGNALS AND SYSTEMS L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the basic properties of signal & systems
- To know the methods of characterization of LTI systems in time domain
- To analyze continuous time signals and system in the Fourier and Laplace domain
- To analyze discrete time signals and system in the Fourier and Z transform domain

UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS

Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and Sinusoids_Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals -Classification of systems- CT systems and DT systems- – Linear & Nonlinear, Time-variant& Time-invariant, Causal & Non-causal, Stable & Unstable.

UNIT II ANALYSIS OF CONTINUOUS TIME SIGNALS

Fourier series for periodic signals - Fourier Transform – properties- Laplace Transforms and Properties

UNIT III LINEAR TIME INVARIANT CONTINUOUS TIME SYSTEMS

UNIT IV ANALYSIS OF DISCRETE TIME SIGNALS

Baseband signal Sampling–Fourier Transform of discrete time signals (DTFT)– Properties of DTFT - Z Transform & Properties
UNIT V LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS 9
Impulse response–Difference equations-Convolution sum- Discrete Fourier Transform and Z Transform
Analysis of Recursive & Non-Recursive systems-DT systems connected in series and parallel.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course, the student will be able to:
CO1: Determine if a given system is linear/causal/stable
CO2: Determine the frequency components present in a deterministic signal
CO3: Characterize continuous LTI systems in the time domain and frequency domain
CO4: Characterize discrete LTI systems in the time domain and frequency domain
CO5: Compute the output of an LTI system in the time and frequency domains

TEXT BOOKS:

REFERENCES:

OEC352 FUNDAMENTALS OF ELECTRONIC DEVICES AND CIRCUITS L T P C
3 0 0 3

COURSE OBJECTIVES :
- To give a comprehensive exposure to all types of devices and circuits constructed with discrete components. This helps to develop a strong basis for building linear and digital integrated circuits
- To analyze the frequency response of small signal amplifiers
- To design and analyze single stage and multistage amplifier circuits
- To study about feedback amplifiers and oscillators principles
- To understand the analysis and design of multi vibrators

UNIT I SEMICONDUCTOR DEVICES 9
PN junction diode, Zener diode, BJT, MOSFET, UJT –structure, operation and V-I characteristics, Rectifiers – Half Wave and Full Wave Rectifier, Zener as regulator

UNIT II AMPLIFIERS 9
Load line, operating point, biasing methods for BJT and MOSFET, BJT small signal model – Analysis of CE, CB, CC amplifiers - Gain and frequency response – Analysis of CS and Source follower – Gain and frequency response- High frequency analysis.

UNIT III MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER 9
Cascode amplifier, Differential amplifier – Common mode and Difference mode analysis – Tuned amplifiers – Gain and frequency response – Neutralization methods.

UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS 9

UNIT V POWER AMPLIFIERS AND DC/DC CONVERTERS 9
Power amplifiers- class A-Class B-Class AB-Class C-Temperature Effect- Class AB Power amplifier using MOSFET -DC/DC convertors – Buck, Boost, Buck-Boost analysis and design.

COURSE OUTCOMES:
At the end of the course the students will be able to
CO1: Explain the structure and working operation of basic electronic devices.
CO2: Design and analyze amplifiers.
CO3: Analyze frequency response of BJT and MOSFET amplifiers
CO4: Design and analyze feedback amplifiers and oscillator principles.
CO5: Design and analyze power amplifiers and supply circuits

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

CBM348 FOUNDATION SKILLS IN INTEGRATED PRODUCT DEVELOPMENT L T P C
3 0 0 3

OBJECTIVES:
- To understand the global trends and development methodologies of various types of products and services
- To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
• To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them into design specification
• To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
• To develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer

UNIT I BASICS OF PRODUCT DEVELOPMENT

UNIT II REQUIREMENTS AND SYSTEM DESIGN

UNIT III DESIGN AND TESTING

UNIT IV SUSTENANCE ENGINEERING AND END-OF-LIFE (EOL) SUPPORT

UNIT V BUSINESS DYNAMICS – ENGINEERING SERVICES INDUSTRY

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
• Define, formulate, and analyze a problem
• Solve specific problems independently or as part of a team
• Gain knowledge of the Innovation & Product Development process in the Business Context
• Work independently as well as in teams
• Manage a project from start to finish

TEXT BOOKS:
1. Book specially prepared by NASSCOM as per the MoU.

REFERENCES:

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CBM333 ASSISTIVE TECHNOLOGY

OBJECTIVES:
The student should be made to:
- To know the hardware requirement various assistive devices
- To understand the prosthetic and orthotic devices
- To know the developments in assistive technology

UNIT I CARDIAC ASSIST DEVICES
Cardiac functions and parameters, principle of External counter pulsation techniques, intra aortic balloon pump, Auxillary ventricle and schematic for temporary bypass of left ventricle, prosthetic heart valves, cardiac pacemaker.

UNIT II HEMODIALYSERS
Physiology of kidney, Artificial kidney, Dialysis action, hemodialyser unit, membrane dialysis, portable dialyser monitoring and functional parameters.

UNIT III HEARING AIDS
Anatomy of ear, Common tests – audiograms, air conduction, bone conduction, masking techniques, SISI, Hearing aids – principles, drawbacks in the conventional unit, DSP based hearing aids.

UNIT IV PROSTHETIC AND ORTHODIC DEVICES
Hand and arm replacement – different types of models, externally powered limb prosthesis, feedback in orthotic system, functional electrical stimulation, sensory assist devices.

UNIT V RECENT TRENDS
Transcutaneous electrical nerve stimulator, bio-feedback, assistive devices in drug delivery

TOTAL:45 PERIODS

OUTCOMES:
On successful completion of this course, the student will be able to
CO1: Interpret the various mechanical techniques that will help in assisting the heart functions.
CO2: Describe the underlying principles of hemodialyzer machine.
CO3: Indicate the methodologies to assess the hearing loss.
CO4: Evaluate the types of assistive devices for mobilization.
CO5: Explain about TENS and biofeedback system.
TEXT BOOKS:

REFERENCES:
4. Cardiac Assist Devices, Daniel Goldstein (Editor), Mehmet Oz (Editor), Wiley-Blackwell April 2000 ISBN: 978-0-879-93449-1

| CO's | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
|------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| 1 | 3 | 1 | 1 | 1 | 1 | | | | | | | | | | |
| 2 | 3 | 1 | 1 | 1 | 1 | | | | | | | | | | |
| 3 | 3 | 1 | 1 | 1 | 1 | | | | | | | | | | |
| 4 | 3 | 1 | 1 | 1 | 1 | | | | | | | | | | |
| 5 | 3 | 1 | 1 | 1 | 1 | | | | | | | | | | |
| AVg. | | | | | | | | | | | | | | | |

OMA352 OPERATIONS RESEARCH

OBJECTIVES:
This course will help the students to
- Determine the optimum solution for Linear programming problems.
- Study the Transportation and assignment models and various techniques to solve them.
- Acquire the knowledge of optimality, formulation and computation of integer programming problems.
- Acquire the knowledge of optimality, formulation and computation of dynamic programming problems.
- Determine the optimum solution for non-linear programming problems.

UNIT I LINEAR PROGRAMMING

UNIT II TRANSPORTATION AND ASSIGNMENT PROBLEMS

UNIT III INTEGER PROGRAMMING
UNIT IV DYNAMIC PROGRAMMING PROBLEMS 9

UNIT V NON-LINEAR PROGRAMMING PROBLEMS 9

TOTAL:45 PERIODS

OUTCOMES:
At the end of the course, students will be able to

- Could develop a fundamental understanding of linear programming models, able to develop a linear programming model from problem description, apply the simplex method for solving linear programming problems.
- Analyze the concept of developing, formulating, modeling and solving transportation and assignment problems.
- Solve the integer programming problems using various methods.
- Conceptualize the principle of optimality and sub-optimization, formulation and computational procedure of dynamic programming.
- Determine the optimum solution for non-linear programming problems.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th></th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

OMA353 ALGEBRA AND NUMBER THEORY LTPC 3 0 0 3

OBJECTIVES:
• To introduce the basic notions of groups, rings, fields which will then be used to solve related problems.
• To examine the key questions in the Theory of Numbers.
• To give an integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.

UNIT I GROUPS AND RINGS
Groups: Definition - Properties - Homomorphism - Isomorphism - Cyclic groups - Cosets - Lagrange's theorem.
Rings: Definition - Sub rings - Integral domain - Field - Integer modulo n - Ring homomorphism.

UNIT II FINITE FIELDS AND POLYNOMIALS
Rings - Polynomial rings - Irreducible polynomials over finite fields - Factorization of polynomials over finite fields.

UNIT III DIVISIBILITY THEORY AND CANONICAL DECOMPOSITIONS
Division algorithm- Base-b representations – Number patterns – Prime and composite numbers – GCD – Euclidean algorithm – Fundamental theorem of arithmetic – LCM.

UNIT IV DIOPHANTINE EQUATIONS AND CONGRUENCES
Linear Diophantine equations – Congruence’s – Linear Congruence’s - Applications : Divisibility tests - Modular exponentiation - Chinese remainder theorem – 2x2 linear systems.

UNIT V CLASSICAL THEOREMS AND MULTIPLICATIVE FUNCTIONS
Wilson’s theorem – Fermat’s Little theorem – Euler’s theorem – Euler’s Phi functions – Tau and Sigma functions.

TOTAL: 45 PERIODS

OUTCOMES :
• Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.
• Demonstrate accurate and efficient use of advanced algebraic techniques.
• The students should be able to demonstrate their mastery by solving non-trivial problems related to the concepts, and by proving simple theorems about the, statements proven by the text.

TEXT BOOKS :

REFERENCES :
COURSE OBJECTIVES:

- To test the consistency and solve system of linear equations.
- To find the basis and dimension of vector space.
- To obtain the matrix of linear transformation and its eigenvalues and eigenvectors.
- To find orthonormal basis of inner product space and find least square approximation.
- To find eigenvalues of a matrix using numerical techniques and perform matrix decomposition.

UNIT I MATRICES AND SYSTEM OF LINEAR EQUATIONS

UNIT II VECTOR SPACES
Vector spaces over Real and Complex fields - Subspace – Linear space - Linear independence and dependence - Basis and dimension.

UNIT III LINEAR TRANSFORMATION
Linear transformation - Rank space and null space - Rank and nullity - Dimension theorem– Matrix representation of linear transformation - Eigenvalues and eigenvectors of linear transformation – Diagonalization.

UNIT IV INNER PRODUCT SPACES
Inner product and norms - Properties - Orthogonal, Orthonormal vectors - Gram Schmidt orthonormalization process - Least square approximation.

UNIT V EIGEN VALUE PROBLEMS AND MATRIX DECOMPOSITION

COURSE OUTCOMES:
After the completion of the course the student will be able to
1. Test the consistency and solve system of linear equations.
2. Find the basis and dimension of vector space.
3. Obtain the matrix of linear transformation and its eigenvalues and eigenvectors.
4. Find orthonormal basis of inner product space and find least square approximation.
5. Find eigenvalues of a matrix using numerical techniques and perform matrix decomposition.

TEXT BOOKS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS O1</th>
<th>PS O2</th>
<th>PS O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO01</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO02</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO03</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO04</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO05</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.8</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

OBT352 BASICS OF MICROBIAL TECHNOLOGY L T P C 3 0 0 3

COURSE OBJECTIVE:
- Enable the Non-biological student’s to understand about the basics of life science and their pro and cons for living organisms.

UNIT I BASICS OF MICROBES AND ITS TYPES 9
Introduction to microbes, existence of microbes, inventions of great scientist and history, types of microorganisms – Bacteria, Virus, Fungi.

UNIT II MICROBIAL TECHNIQUES 9
Sterilization – types – physical and chemical sterilization, Decontamination, Preservation methods, fermentation and growth of microbes, Diagnostic methods.

UNIT III PATHOGENIC MICROBES 9
Infectious Disease – Awareness, Causative agent, Prevention and control – Cholera, Dengu, Malaria, Diarrhea, Tuberculosis, Typhoid, Covid, HIV.

UNIT IV BENEFICIAL MICROBES 9
Applications of microbes – Clinical microbiology, agricultural microbiology, Food Microbiology, Environmental Microbiology, Animal Microbiology, Marine Microbiology.

UNIT V PRODUCTS FROM MICROBES 9
Fermented products – Fermented Beverages, Curd, Cheese, Mushroom, Agricultural products – Biopesticide, Biofertilizers, Vermi compost, Pharmaceutical products - Antibiotics, Vaccines

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of the course the students will be able to
1. Microbes and their types
2. Cultivation of microbes
3. Pathogens and control measures for safety
4. Microbes in different industry for economy.
TEXT BOOKS

OBT353 BASICS OF BIOMOLECULES

OBJECTIVES:
- The objective is to offer basic concepts of biochemistry to students with diverse background in life sciences including but not limited to the structure and function of various biomolecules and their metabolism.

UNIT I CARBOHYDRATES
Introduction to carbohydrate, classification, properties of monosaccharide, structural aspects of monosaccharides. Introduction to disaccharide (lactose, maltose, sucrose) and polysaccharide (Heparin, starch, and glycogen) biological function of carbohydrate.

UNIT II LIPID AND FATTY ACIDS
Introduction to lipid, occurrence, properties, classification of lipid. Importance of phospholipids, sphingolipid and glycerolipid. Biological function of lipid. Fatty acid, Introduction, Nomenclature and classification of fatty acid Essential and non essential fatty acids.

UNIT III AMINO ACIDS AND PROTEIN.

UNIT IV NUCLEIC ACIDS
Introduction to nucleic acid, Difference between nucleotide and nucleoside, composition of DNA & RNA. Structure of Nitrogen bases in DNA and RNA along with the nomenclature- DNA double helix (Watson and crick) model, types of DNA, RNA.

UNIT V VITAMINS AND HORMONES

OUTCOMES:
- Students will learn about various kinds of biomolecules and their physiological role.
- Students will gain knowledge about various metabolic disorders and will help them to know the importance of various biomolecules in terms of disease correlation.

TOTAL: 45 PERIODS
TEXT BOOKS

REFERENCES

OBT354 FUNDAMENTALS OF CELL AND MOLECULAR BIOLOGY

OBJECTIVES:
- To provide knowledge on the fundamentals of cell biology.
- To understand the signalling mechanisms.
- Understand basic principles of molecular biology at intracellular level to regulate growth, division and development.

UNIT I INTRODUCTION TO CELL
Cell, cell wall and Extracellular Matrix (ECM), composition, cellular dimensions, Evolution, Organisation, differentiation of prokaryotic and Eukaryotic cells, Virus, bacteria, cyanobacteria, mycoplasma and prions.

UNIT II CELL ORGANELLES
Molecular organisation, biogenesis and function Mitochondria, endoplasmic reticulam, golgi apparatus, plastids, chloroplast, leucoplast, centrosome, lysosome, ribosome, peroxisome, Nucleus and nucleolus. Endo membrane system, concept of compartmentalisation.

UNIT III BIO-MEMBRANE TRANSPORT

UNIT IV CELL CYCLE
Cell cycle- Cell division by mitosis and meosis, Comparison of meosis and mitosis, regulation of cell cycle, cell lysis, Cytokinesis, Cell signaling, Cell communication, Cell adhesion and Cell junction, cell cycle checkpoints.

UNIT V CENTRAL DOGMA

TOTAL: 45 PERIODS
OUTCOMES:
- Understanding of cell at structural and functional level.
- Understand the central dogma of life and its significance.
- Comprehend the basic mechanisms of cell division.

TEXTBOOKS:

REFERENCES:

OCE353 LEAN CONCEPTS, TOOLS AND PRACTICES L T P C
3 0 0 3

OBJECTIVE:
- To impart knowledge about the basics of lean principles, tools and techniques, and implementation in the construction industry.

UNIT I INTRODUCTION
Introduction and overview of the construction project management - Review of Project Management & Productivity Measurement Systems - Productivity in Construction - Daily Progress Report-The state of the industry with respect to its management practices -construction project phases - The problems with current construction management techniques.

UNIT II LEAN MANAGEMENT
Introduction to lean management - Toyota’s management principle-Evolution of lean in construction industry - Production theories in construction –Lean construction value - Value in construction - Target value design - Lean project delivery system- Forms of waste in construction industry - Waste Elimination.

UNIT III CORE CONCEPTS IN LEAN

UNIT IV LEAN TOOLS AND TECHNIQUES

UNIT V LEAN IMPLEMENTATION IN CONSTRUCTION INDUSTRY
Lean construction implementation- Enabling lean through information technology - Lean in design - Design Structure - BIM (Building Information Modelling) - IPD (Integrated Project Delivery) – Sustainability through lean construction approach.
OUTCOMES:
On completion of this course, the student is expected to be able to

CO1 Explains the contemporary management techniques and the issues in present scenario.
CO2 Apply the basics of lean management principles and their evolution from manufacturing industry to construction industry.
CO3 Develops a better understanding of core concepts of lean construction tools and techniques and their importance in achieving better productivity.
CO4 Apply lean techniques to achieve sustainability in construction projects.
CO5 Apply lean construction techniques in design and modeling.

REFERENCES:

OPEN ELECTIVE IV
OHS352 PROJECT REPORT WRITING L T P C

COURSE OBJECTIVES
The Course will enable Learners to,
- Understand the essentials of project writing.
- Perceive the difference between general writing and technical writing
- Assimilate the fundamental features of report writing.
- Understand the essential differences that exist between general and technical writing.
- Learn the structure of a technical and project report.

UNIT I

UNIT II

UNIT III
Structure of the Project Report: (Part 1) Framing a Title – Content – Acknowledgement – Funding Details - Abstract – Introduction – Aim of the Study – Background – Writing the research question - Need of the Study/Project Significance, Relevance – Determining the feasibility – Theoretical Framework.
UNIT IV

UNIT V

TOTAL: 45 PERIODS

OUTCOMES
By the end of the course, learners will be able to
- Write effective project reports.
- Use statistical tools with confidence.
- Explain the purpose and intension of the proposed project coherently and with clarity.
- Create writing texts to suit achieve the intended purpose.
- Master the art of writing winning proposals and projects.

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.4</td>
<td>2.4</td>
</tr>
</tbody>
</table>

- 1-low, 2-medium, 3-high, “-”- no correlation
- **Note:** The average value of this course to be used for program articulation matrix.

REFERENCES:

OMA355 ADVANCED NUMERICAL METHODS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

UNIT I ALGEBRAIC EQUATIONS AND EIGENVALUE PROBLEM

UNIT II INTERPOLATION
Central difference: Stirling and Bessel's interpolation formulae ; Piecewise spline interpolation: Piecewise linear, piecewise quadratic and cubic spline ; Least square approximation for continuous data (upto 3rd degree).

UNIT III NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

UNIT IV FINITE DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS 9
Laplace and Poisson’s equations in a rectangular region: Five point finite difference schemes - Leibmann’s iterative methods - Dirichlet’s and Neumann conditions – Laplace equation in polar coordinates: Finite difference schemes.

UNIT V FINITE DIFFERENCE METHOD FOR TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS 9

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th></th>
<th>PO 01</th>
<th>PO 02</th>
<th>PO 03</th>
<th>PO 04</th>
<th>PO 05</th>
<th>PO 06</th>
<th>PO 07</th>
<th>PO 08</th>
<th>PO 09</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PS 01</th>
<th>PS 02</th>
<th>PS 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

OMA356 RANDOM PROCESSES LT P C
3 0 0 3

OBJECTIVES:
- To introduce the basic concepts of probability, one and two dimensional random variables with applications to engineering which can describe real-life phenomenon.
- To understand the basic concepts of random processes which are widely used in communication networks.
- To acquaint with specialized random processes which are apt for modelling the real-time scenario.
- To understand the concept of correlation and spectral densities.
- To understand the significance of linear systems with random inputs.

UNIT I RANDOM VARIABLES 9

UNIT II RANDOM PROCESSES

UNIT III SPECIAL RANDOM PROCESSES

UNIT IV CORRELATION AND SPECTRAL DENSITIES

UNIT V LINEAR SYSTEMS WITH RANDOM INPUTS
Linear time invariant system – System transfer function – Linear systems with random inputs – Auto correlation and cross correlation functions of input and output.

TOTAL: 45 PERIODS

OUTCOMES
Upon successful completion of the course, students should be able to:
• Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.
• Apply the concept random processes in engineering disciplines.
• Understand and apply the concept of correlation and spectral densities.
• Get an exposure of various distribution functions and help in acquiring skills in handling situations involving more than one variable.
• Analyze the response of random inputs to linear time invariant systems.

TEXT BOOKS

REFERENCES

<table>
<thead>
<tr>
<th>CO1</th>
<th>PO01</th>
<th>PO02</th>
<th>PO03</th>
<th>PO04</th>
<th>PO05</th>
<th>PO06</th>
<th>PO07</th>
<th>PO08</th>
<th>PO09</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
OBJECTIVES:
- To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems in communication engineering.
- To understand the concept of queueing models and apply in engineering.
- To provide the required mathematical support in real-life problems and develop probabilistic models which can be used in several areas of science and engineering.
- To study the system reliability and hazard function for series and parallel systems.
- To implement Markovian Techniques for availability and maintainability which opens up new avenues for research.

UNIT I RANDOM PROCESSES 9

UNIT II MARKOVIAN QUEUEING MODELS 9
Markovian queues – Birth and death processes – Single and multiple server queueing models – Little’s formula - Queues with finite waiting rooms.

UNIT III ADVANCED QUEUEING MODELS 9
M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E\(k\)/1 as special cases – Series queues – Open Jackson networks.

UNIT IV SYSTEM RELIABILITY 9

UNIT V MAINTAINABILITY AND AVAILABILITY 9
Maintainability and Availability functions – Frequency of failures – Two Unit parallel system with repair – k out of m systems.

OUTCOMES
Upon successful completion of the course, students should be able to:
- Enable the students to apply the concept of random processes in engineering disciplines.
- Students acquire skills in analyzing various queueing models.
- Students can understand and characterize phenomenon which evolve with respect to time in a probabilistic manner.
- Students can analyze reliability of the systems for various probability distributions.
- Students can be able to formulate problems using the maintainability and availability analyses by using theoretical approach.

TEXT BOOKS

REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>PO</th>
<th>PS</th>
<th>PS</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>1.4</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

OMG354 PRODUCTION AND OPERATIONS MANAGEMENT FOR ENTREPRENEURS
L T P C
3 0 0 3

OBJECTIVES:
- To know the basic concept and function of Production and Operation Management for entrepreneurship.
- To understand the Production process and planning.
- To understand the Production and Operations Management Control for business owners.

UNIT I INTRODUCTION TO PRODUCTION AND OPERATIONS MANAGEMENT 9
Functions of Production Management - Relationship between production and other functions – Production management and operations management, Characteristics of modern production and operation management, organisation of production function, recent trends in production /operations management - production as an organisational function, decision making in production Operations research

UNIT II PRODUCTION & OPERATION SYSTEMS 9
Production Systems- principles – Models - CAD and CAM- Automation in Production - Functions and significance- Capacity and Facility Planning: Importance of capacity planning- Capacity measurement – Capacity Requirement Planning (CRP) process for manufacturing and service industry

UNIT III PRODUCTION & OPERATIONS PLANNING 9
Facility Planning – Location of facilities – Location flexibility – Facility design process and techniques – Location break even analysis-Production Process Planning: Characteristic of production process systems – Steps for production process- Production Planning Control Functions – Planning phase- Action phase- Control phase - Aggregate production planning

UNIT IV PRODUCTION & OPERATIONS MANAGEMENT PROCESS 9

UNIT V CONTROLLING PRODUCTION & OPERATIONS MANAGEMENT 9
Material requirement planning (MRP)- Concept- Process and control - Inventory control systems and techniques – JIT and Lean manufacturing - Network techniques - Quality Management: Preventive Vs

COURSE OUTCOMES
Upon completion of this course the learners will be able:
CO1: To understand the basics and functions of Production and Operation Management for business owners.
CO2: To learn about the Production & Operation Systems.
CO4: To known about the Production & Operations Management Processes in organisations.
CO5: To comprehend the techniques of controlling, Production and Operations in industries.

REFERENCES

OCE354 BASICS OF INTEGRATED WATER RESOURCES MANAGEMENT L T P C
3 0 0 3

OBJECTIVES
• To introduce the interdisciplinary approach of water management.
• To develop knowledge base and capacity building on IWRM.

UNIT I OVERVIEW OF IWRM

UNIT II WATER USE SECTORS: IMPACTS AND SOLUTION
Water users: People, Agriculture, ecosystem and others - Impacts of the water use sectors on water resources - Securing water for people, food production, ecosystems and other uses - IWRM relevance in water resources management.

UNIT III WATER ECONOMICS
Economic characteristics of water good and services – Economic instruments – Private sector involvement in water resources management - PPP experiences through case studies.

UNIT IV RECENT TREANDS IN WATER MANAGEMENT
River basin management - Ecosystem Regeneration – 5 Rs - WASH - Sustainable livelihood - Water management in the context of climate change.

UNIT V IMPLEMENTATION OF IWRM
Barriers to implementing IWRM - Policy and legal framework - Bureaucratic reforms and inclusive development - Institutional Transformation - Capacity building - Case studies on conceptual framework of IWRM.

TOTAL: 45 PERIODS
OUTCOMES
On completion of the course, the student will be able to apply appropriate management techniques towards managing the water resources.

CO1 Describe the context and principles of IWRM; Compare the conventional and integrated ways of water management.

CO2 Discuss on the different water uses; how it is impacted and ways to tackle these impacts.

CO3 Explain the economic aspects of water and choose the best economic option among the alternatives; illustrate the pros and cons of PPP through case studies.

CO4 Illustrate the recent trends in water management.

CO5 Understand the implementation hitches and the institutional frameworks.

TEXT BOOKS

REFERENCES
2. IWRM Guidelines at River Basin Level (UNESCO, 2008).

OMG355 MULTIVARIATE DATA ANALYSIS L T P C
3 0 0 3

OBJECTIVE:
• To know various multivariate data analysis techniques for business research.

UNIT I INTRODUCTION
Uni-variate, Bi-variate and Multi-variate techniques – Classification of multivariate techniques – Guidelines for multivariate analysis and interpretation.

UNIT II PREPARING FOR MULTIVARIATE ANALYSIS
Conceptualization of research model with variables, collection of data — Approaches for dealing with missing data — Testing the assumptions of multivariate analysis.

UNIT III MULTIPLE LINEAR REGRESSION ANALYSIS, FACTOR ANALYSIS
Multiple Linear Regression Analysis – Inferences from the estimated regression function – Validation of the model. - Approaches to factor analysis – interpretation of results.

UNIT IV LATENT VARIABLE TECHNIQUES
Confirmatory Factor Analysis, Structural equation modelling, Mediation models, Moderation models, Longitudinal studies.

UNIT V ADVANCED MULTIVARIATE TECHNIQUES
Multiple Discriminant Analysis, Logistic Regression, Cluster Analysis, Conjoint Analysis, multidimensional scaling.

TOTAL: 45 PERIODS

OUTCOMES:
• Demonstrate a sophisticated understanding of the concepts and methods; know the exact scopes and possible limitations of each method; and show capability of using multivariate techniques to provide constructive guidance in decision making.
• Use advanced techniques to conduct thorough and insightful analysis, and interpret the results correctly with detailed and useful information.
• Show substantial understanding of the real problems; conduct deep analysis using correct methods; and draw reasonable conclusions with sufficient explanation and elaboration.
• Write an insightful and well-organized report for a real-world case study, including thoughtful and convincing details.
• Make better business decisions by using advanced techniques in data analytics.

REFERENCES:
OBJECTIVES:
The course aims to

- Outline Fundamental concepts in UI & UX
- Introduce the principles of Design and Building an mobile app
- Illustrate the use of CAD in product design
- Outline the choice and use of prototyping tools
- Understanding design of electronic circuits and fabrication of electronic devices

UNIT I UI/UX
9

UNIT II APP DEVELOPMENT
9
SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup - Reading and writing data to cloud - Embedding ML models to Apps - Deploying application.

UNIT III INDUSTRIAL DESIGN
9
Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing

UNIT IV MECHANICAL RAPID PROTOTYPING
9
Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping; 3D Printing - Laser Cutting and engraving - RD Works - Additive manufacturing

UNIT V ELECTRONIC RAPID PROTOTYPING
9
Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA

TOTAL: 45 PERIODS

COURSE OUTCOMES
At the end of the course, learners will be able to:

- Create quick UI/UX prototypes for customer needs
- Develop web application to test product traction / product feature
- Develop 3D models for prototyping various product ideas
- Built prototypes using Tools and Techniques in a quick iterative methodology

TEXT BOOKS
REFERENCES

MF3010 MICRO AND PRECISION ENGINEERING LT P C 3 0 0 3

COURSE OBJECTIVES:
At the end of this course the student should be able to
- Learn about the precision machine tools
- Learn about the macro and micro components.
- Understand handling and operating of the precision machine tools.
- Learn to work with miniature models of existing machine tools/robots and other instruments.
- Learn metrology for micro system

UNIT I INTRODUCTION TO MICROSYSTEMS
Design, and material selection, micro-actuators: hydraulic, pneumatic, electrostatic/ magnetic etc. for medical to general purpose applications. Micro-sensors based on Thermal, mechanical, electrical properties; micro-sensors for measurement of pressure, flow, temperature, inertia, force, acceleration, torque, vibration, and monitoring of manufacturing systems.

UNIT II FABRICATION PROCESSES FOR MICRO-SYSTEMS
Additive, subtractive, forming process, microsystems-Micro-pumps, micro-turbines, micro engines, micro-robot, and miniature biomedical devices

UNIT III INTRODUCTION TO PRECISION ENGINEERING
Machine tools, holding and handling devices, positioning fixtures for fabrication/ assembly of microsystems. Precision drives: inch worm motors, ultrasonic motors, stick- slip mechanism and other piezo-based devices.

UNIT IV PRECISION MACHINING PROCESSES
Precision machining processes for macro components - Diamond turning, fixed and free abrasive processes, finishing processes.

UNIT V METROLOGY FOR MICRO SYSTEMS
Metrology for micro systems - Surface integrity and its characterization.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon the completion of this course the students will be able to
- Select suitable precision machine tools and operate
- Apply the macro and micro components for fabrication of micro systems.
- Apply suitable machining process
- Able to work with miniature models of existing machine tools/robots and other instruments.
- Apply metrology for micro system
OMF354 COST MANAGEMENT OF ENGINEERING PROJECTS

COURSE OBJECTIVES:

- Summarize the costing concepts and their role in decision making
- Infer the project management concepts and their various aspects in selection
- Interpret costing concepts with project execution
- Develop knowledge of costing techniques in service sector and various budgetary control techniques
- Illustrate with quantitative techniques in cost management

UNIT – I INTRODUCTION TO COSTING CONCEPTS
Objectives of a Costing System; Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost; Creation of a Database for operational control.

UNIT – II INTRODUCTION TO PROJECT MANAGEMENT
Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities, Detailed Engineering activities, Pre project execution main clearances and documents, Project team: Role of each member, Importance Project site: Data required with significance, Project contracts

UNIT – III PROJECT EXECUTION AND COSTING CONCEPTS
Project execution Project cost control, Bar charts and Network diagram, Project commissioning: mechanical and process, Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis, Various decision-making problems, Pricing strategies: Pareto Analysis, Target costing, Life Cycle Costing

UNIT – IV COSTING OF SERVICE SECTOR AND BUDGETERY CONTROL

UNIT – V QUANTITATIVE TECHNIQUES FOR COST MANAGEMENT
Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Learning Curve Theory.

COURSE OUTCOMES

TOTAL: 45 PERIODS
Upon successful completion of the course, students should be able to:

CO1: Understand the costing concepts and their role in decision making.
CO2: Understand the project management concepts and their various aspects in selection.
CO3: Interpret costing concepts with project execution.
CO4: Gain knowledge of costing techniques in service sector and various budgetary control techniques.
CO5: Become familiar with quantitative techniques in cost management.

TEXT BOOKS:

REFERENCES:

AU3002 BATTERIES AND MANAGEMENT SYSTEM L T P C
3 0 0 3

COURSE OBJECTIVES:
The objective of this course is to make the students to understand the working and characteristics of different types of batteries and their management.

UNIT I ADVANCED BATTERIES
Li-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging. Characteristics-SOC,DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. NCR18650B specifications.

UNIT II BATTERY PACK
Battery Pack- design, sizing, calculations, flow chart, real and simulation Model.Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging.

UNIT III BATTERY MODELLING
Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models- Introduction. Battery Modelling software/simulation frameworks

UNIT IV BATTERY STATE ESTIMATION

UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS
9
Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex Ray-CANedge1 package.ARBIN Battery Tester. BMS Development with Modeling software and Model-Based Design.

TOTAL =45 PERIODS

COURSE OUTCOMES:
At the end of this course, students will be able to
1. Acquire knowledge of different Li-ion Batteries performance.
2. Design a Battery Pack and make related calculations.
3. Demonstrate a Battery Model or Simulation.
5. Approach different BMS architectures during real world usage.

TEXT BOOKS

REFERENCE BOOKS
1. Developing Battery Management Systems with Simulink and Model-Based Design-whitepaper
2. Panasonic NCR18650B- DataSheet
3. bq76PL536A-Q1- IC DataSheet
4. CC2662R-Q1- IC DataSheet

AU3008 SENSORS AND ACTUATORS L T P C
3 0 0 3

COURSE OBJECTIVES:
- The objective of this course is to make the students to list common types of sensor and actuators used in automotive vehicles.

UNIT I INTRODUCTION TO MEASUREMENTS AND SENSORS 9

UNIT II VARIABLE RESISTANCE AND INDUCTANCE SENSORS 9
Principle of operation- Construction details- Characteristics and applications of resistive potentiometer- Strain gauges- Resistive thermometers- Thermistors- Piezoresistive sensors Inductive potentiometer- Variable reluctance transducers- EI pick up and LVDT

UNIT III VARIABLE AND OTHER SPECIAL SENSORS 9
Variable air gap type, variable area type and variable permittivity type- capacitor microphone Piezoelectric, Magnetostrictive, Hall Effect, semiconductor sensor- digital transducers-Humidity Sensor. Rain sensor, climatic condition sensor, solar, light sensor, antiglar sensor.

UNIT IV AUTOMOTIVE ACTUATORS 9
Electromechanical actuators- Fluid-mechanical actuators- Electrical machines- Direct-current machines- Three-phase machines- Single-phase alternating-current Machines - Duty-type ratings for
electrical machines. Working principles, construction and location of actuators viz. Solenoid, relay, stepper motor etc.

UNIT V AUTOMATIC TEMPERATURE CONTROL ACTUATORS
Different types of actuators used in automatic temperature control - Fixed and variable displacement temperature control - Semi Automatic- Controller design for Fixed and variable displacement type air conditioning system.

COURSE OUTCOMES:
At the end of the course, the student will be able to
1. List common types of sensor and actuators used in vehicles.
2. Design measuring equipment’s for the measurement of pressure force, temperature and flow.
3. Generate new ideas in designing the sensors and actuators for automotive application.
4. Understand the operation of sensors, actuators and electronic control.
5. Design temperature control actuators for vehicles.

TEXT BOOKS:

REFERENCES:

OAS353 SPACE VEHICLES

OBJECTIVES:
- To interpret the missile space stations, space vs earth environment.
- To explain the life support systems, mission logistics and planning.
- To deploy the skills effectively in the understanding of space vehicle configuration design.
- To explain Engine system and support of space vehicle.
- To interpret nose cone configuration of space vehicle.

UNIT I FUNDAMENTAL ASPECTS
Energy and Efficiencies of power plants for space vehicles – Typical Performance Values – Mission design – Structural design aspects during launch - role of launch environment on launch vehicle integrity.

UNIT II SELECTION OF ROCKET PROPULSION SYSTEMS
Ascent flight mechanics – Launch vehicle selection process – Criteria for Selection for different missions – selection of subsystems – types of staging – Interfaces – selection and criteria for stages and their role in launch vehicle configuration design.
UNIT III ENGINE SYSTEMS, CONTROLS, AND INTEGRATION 9

UNIT IV THRUST VECTOR CONTROL 9
TVC Mechanisms with a Single Nozzle – TVC with Multiple Thrust Chambers or Nozzles – Testing – Integration with Vehicle – SITVC method – other jet control methods - exhaust plume problems in space environment

UNIT V NOSE CONE CONFIGURATION 9
Aerodynamic aspects on the selection of nose shape of a launch vehicle - design factors in the finalization of nose configuration with respect to payload - nose cone thermal protection system - separation of fairings - payload injection mechanism

OUTCOMES:
On successful completion of this course, the student will be able to
- Explain exotic space propulsion concepts, such as nuclear, solar sail, and antimatter.
- Apply knowledge in selecting the appropriate rocket propulsion systems.
- Interpret the air-breathing propulsion suitable for initial stages and fly-back boosters.
- Analyze aerodynamics aspect, including boost-phase lift and drag, hypersonic, and re-entry.
- Adapt from aircraft engineers moving into launch vehicle, spacecraft, and hypersonic vehicle design.

TOTAL: 45 PERIODS
UNIT IV PROJECT MANAGEMENT 9
Network Analysis, Programme Evaluation and Review Technique (PERT), Critical Path Method (CPM), identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing (simple problems).

UNIT V STRATEGIC MANAGEMENT AND CONTEMPORARY STRATEGIC ISSUES 9

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, Students will be able to

CO1: Plan an organizational structure for a given context in the organization to carryout production operations through Work-study.

CO2: Survey the markets, customers and competition better and price the given products appropriatey

CO3: Ensure quality for a given product or service.

CO4: Plan, schedule and control projects through PERT and CPM.

CO5: Evaluate strategy for a business or service organisation.

TEXTBOOKS:

REFERENCES:

CO's - PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
</tr>
</tbody>
</table>

OIM353 PRODUCTION PLANNING AND CONTROL L T P C

COURSE OBJECTIVES:
- To understand the concept of production planning and control act work study,
- To apply the concept of product planning,
- To analyze the production scheduling,
- To apply the Inventory Control concepts.
• To prepare the manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

UNIT I INTRODUCTION
Objectives and benefits of planning and control-Functions of production control-Types of production-job- batch and continuous-Product development and design-Marketing aspect - Functional aspects-Operational aspect-Durability and dependability aspect aesthetic aspect. Profit consideration-Standardization, Simplification & specialization- Break even analysis-Economics of a new design.

UNIT II WORK STUDY
Method study, basic procedure-Selection-Recording of process - Critical analysis, Development - Implementation - Micro motion and memo motion study – work measurement - Techniques of work measurement - Time study - Production study - Work sampling - Synthesis from standard data - Predetermined motion time standards.

UNIT III PRODUCT PLANNING AND PROCESS PLANNING
Product planning-Extending the original product information-Value analysis-Problems in lack of product planning-Process planning and routing-Pre requisite information needed for process planning-Steps in process planning-Quantity determination in batch production-Machine capacity, balancing-Analysis of process capabilities in a multi product system.

UNIT IV PRODUCTION SCHEDULING

UNIT V INVENTORY CONTROL AND RECENT TRENDS IN PPC
Inventory control-Purpose of holding stock-Effect of demand on inventories-Ordering procedures. Two bin system - Ordering cycle system-Determination of Economic order quantity and economic lot size-ABC analysis - Recorder procedure-Introduction to computer integrated production planning systems-elements of JUST IN TIME SYSTEMS-Fundamentals of MRP II and ERP.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course,
CO1:The students can able to prepare production planning and control act work study,
CO2:The students can able to prepare product planning,
CO3:The students can able to prepare production scheduling,
CO4:The students can able to prepare Inventory Control.
CO5:They can plan manufacturing requirements manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

TEXT BOOKS:

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 3</td>
<td>3 1</td>
</tr>
<tr>
<td>2</td>
<td>3 2</td>
<td>3 2</td>
</tr>
<tr>
<td>3</td>
<td>2 3</td>
<td>3 2</td>
</tr>
<tr>
<td>4</td>
<td>2 2</td>
<td>3 3</td>
</tr>
<tr>
<td>5</td>
<td>3 3</td>
<td>2 3</td>
</tr>
<tr>
<td>Avg.</td>
<td>3 2.6</td>
<td>2 3</td>
</tr>
</tbody>
</table>

OIE353 OPERATIONS MANAGEMENT L T P C
3 0 0 3

COURSE OBJECTIVE:
- Recognize and appreciate the concept of Production and Operations Management in creating and enhancing a firm’s competitive advantages.
- Describe the concept and contribution of various constituents of Production and Operations Management (both manufacturing and service).
- Relate the interdependence of the operations function with the other key functional areas of a firm.
- Teach analytical skills and problem-solving tools to the analysis of the operations problems.
- Apply scheduling and Lean Concepts for improving System Performance.

UNIT I INTRODUCTION TO OPERATIONS MANAGEMENT
Operations Management – Nature, Importance, historical development, transformation processes, differences between services and goods, a system perspective, functions, challenges, current priorities, recent trends; Operations Strategy – Strategic fit, framework; Supply Chain Management

UNIT II FORECASTING, CAPACITY AND FACILITY DESIGN

UNIT III DESIGN OF PRODUCT, PROCESS AND WORK SYSTEMS

UNIT IV MATERIALS MANAGEMENT
UNIT V SCHEDULING AND PROJECT MANAGEMENT
Project Management – Scheduling Techniques, PERT, CPM; Scheduling - work centers – nature, importance; Priority rules and techniques, shopfloor control; Flow shop scheduling – Johnson’s Algorithm – Gantt charts; personnel scheduling in services.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: The students will appreciate the role of Production and Operations management in enabling and enhancing a firm’s competitive advantages in the dynamic business environment.
CO2: The students will obtain sufficient knowledge and skills to forecast demand for Production and Service Systems.
CO3: The students will able to Formulate and Assess Aggregate Planning strategies and Material Requirement Plan.
CO4: The students will be able to develop analytical skills to calculate capacity requirements and developing capacity alternatives.
CO5: The students will be able to apply scheduling and Lean Concepts for improving System Performance.

TEXT BOOKS

REFERENCES

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

OSF352 INDUSTRIAL HYGEINE L T P C
3 0 0 3

COURSE OBJECTIVES:
1. Demonstrate an understanding of how occupational hygiene standards are set and used in work health and safety.
2. Compare and contrast the roles of environmental and biological monitoring in work health and safety.
3. Outline strategies for identifying, assessing and controlling risks associated with airborne gases, vapours and particulates.
4. Discuss how personal protective equipment can be used to reduce risks associated with workplace exposures.
5. Provide high-level advice on managing and controlling noise and noise-related hazards

UNIT I INTRODUCTION AND SCOPE

UNIT II MONITORING FOR SAFETY, HEALTH & ENVIRONMENT
Occupational Health and Environment Safety Management System, ILO and EPA Standards Industrial Hygiene: Definition of Industrial Hygiene, Industrial Hygiene: Control Methods, Substitution, Changing the process, Local Exhaust Ventilation, Isolation, Wet method, Personal hygiene, housekeeping and maintenance, waste disposal, special control measures.

UNIT III OCCUPATIONAL HEALTH AND ENVIRONMENTAL SAFETY EDUCATION

UNIT IV OCCUPATIONAL SAFETY, HEALTH AND ENVIRONMENT MANAGEMENT

UNIT V INDUSTRIAL HAZARDS

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Students able to
CO1: Explain and apply human factors engineering concepts in both evaluation of existing systems and design of new systems
CO2: Specify designs that avoid occupation related injuries
CO3: Define and apply the principles of work design, motion economy, and work environment design.
CO4: Identify the basic human sensory, cognitive, and physical capabilities and limitations with respect to human-machine system performance.
CO5: Acknowledge the impact of workplace design and environment on productivity

TEXT BOOKS:

REFERENCES:
2. Frank P Lees - Loss of prevention in Process Industries, Vol. 1 and 2,

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVg.</td>
<td>2</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OSF353 CHEMICAL PROCESS SAFETY

L T P C
3 0 0 3

COURSE OBJECTIVES

- Teach the principles of safety applicable to the design, and operation of chemical process plants.
- Ensure that potential hazards are identified and mitigation measures are in place to prevent unwanted release of energy.
- Learn about the hazardous chemicals into locations that could expose employees and others to serious harm.
- Focuses on preventing incidents and accidents during large scale manufacturing of chemicals and pharmaceuticals.
- Ensure that the general design of the plant is capable of complying with the dose limits in force and with the radioactive releases.

UNIT I SAFETY IN THE STORAGE AND HANDLING OF CHEMICALS AND GASES 9

Types of storage-general considerations for storage layouts- atmospheric venting, pressure and temperature relief - relief valve sizing calculations - storage and handling of hazardous chemicals and industrial gases, safe disposal methods, reaction with other chemicals, hazards during transportation - pipeline transport - safety in chemical laboratories.

UNIT II CHEMICAL REACTION HAZARDS 9

Hazardous inorganic and organic reactions and processes, Reactivity as a process hazard, Detonations, Deflagrations, and Runaways, Assessment and Testing strategies, Self-heating hazards of solids, Explosive potential of chemicals, Structural groups and instability of chemicals, Thermochemical screening.

UNIT III SAFETY IN THE DESIGN OF CHEMICAL PROCESS PLANTS 9

Design principles -Process design development -types of designs, feasibility survey, preliminary design, Flow diagrams, piping and instrumentation diagram, batch versus continuous operation, factors in equipment scale up and design, equipment specifications - reliability and safety in designing - inherent safety - engineered safety - safety during startup and shutdown - non destructive testing methods - pressure and leak testing - emergency safety devices - scrubbers and flares- new concepts in safety design and operation- Pressure vessel testing standards- Inspection techniques for boilers and reaction vessels.

UNIT IV SAFETY IN THE OPERATION OF CHEMICAL PROCESS PLANTS 9

Properties of chemicals - Material Safety Data Sheets - the various properties and formats used - methods available for property determination. Operational activities and hazards -standards operating procedures -
safe operation of pumps, compressors, heaters, column, reactors, pressure vessels, storage vessels, piping systems - effects of pressure, temperature, Flow rate and humidity on operations - corrosion and control measures- condition monitoring - control valves - safety valves - pressure reducing valves, drains, bypass valves, inert gases. Chemical splashes, eye irrigation and automatic showers.

UNIT V SAFETY AND ANALYSIS
Safety vs reliability- quantification of basic events, system safety quantification, Human error analysis, Accident investigation and analysis, OSHAS 18001 and OSHMS.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Students able to
CO1 Differentiate between inherent safety and engineered safety and recognize the importance of safety in the design of chemical process plants.
CO2 Develop thorough knowledge about safety in the operation of chemical plants.
CO3 Apply the principles of safety in the storage and handling of gases.
CO4 Identify the conditions that lead to reaction hazards and adopt measures to prevent them.
CO5 Develop thorough knowledge about

TEXT BOOK

REFERENCES:

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

OML352 ELECTRICAL, ELECTRONIC AND MAGNETIC MATERIALS 3 0 0 3

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
- Understanding the importance of various materials used in electrical, electronics and magnetic applications.
- Acquiring knowledge on the properties of electrical, electronics and magnetic materials.
- Gaining knowledge on the selection of suitable materials for the given application.
- Knowing the fundamental concepts in Semiconducting materials.
- Getting equipped with the materials used in optical and optoelectronic applications.
Dielectric as Electric Field Medium, leakage currents, dielectric loss, dielectric strength, breakdown voltage, breakdown in solid dielectrics, flashover, liquid dielectrics, electric conductivity in solid, liquid and gaseous dielectrics, Ferromagnetic materials, properties of ferromagnetic materials in static fields, spontaneous, polarization, curie point, anti-ferromagnetic materials, piezoelectric materials, pyroelectric materials.

UNIT II MAGNETIC MATERIALS
Classification of magnetic materials, spontaneous magnetization in ferromagnetic materials, magnetic Anisotropy, Magnetostriction, diamagnetism, magnetically soft and hard materials, special purpose materials, feebly magnetic materials, Ferrites, cast and cermet permanent magnets, ageing of magnets. Factors effecting permeability and Hysteresis

UNIT III SEMICONDUCTOR MATERIALS
Properties of semiconductors, Silicon wafers, integration techniques, Large and very large scale Integration techniques. Concept of superconductivity; theories and examples for high temperature superconductivity; discussion on specific superconducting materials; comments on fabrication and engineering applications.

UNIT IV MATERIALS FOR ELECTRICAL APPLICATIONS
Materials used for Resistors, rheostats, heaters, transmission line structures, stranded conductors, bimetals fuses, soft and hard solders, electric contact materials, electric carbon materials, thermocouple materials. Solid, Liquid and Gaseous insulating materials, Effect of moisture on insulation.

UNIT V OPTICAL AND OPTOELECTRONIC MATERIALS

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completion of this course, the students will be able to
- Understand various types of dielectric materials, their properties in various conditions.
- Evaluate magnetic materials and their behavior.
- Evaluate semiconductor materials and technologies.
- Select suitable materials for electrical engineering applications.
- Identify right material for optical and optoelectronic applications.

TEXT BOOKS:

REFERENCE BOOKS:
OML353 NANOMATERIALS AND APPLICATIONS L T P C

3 0 0 3

COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
1. Understanding the evolution of nanomaterials in the scientific era and make them to understand different types of nanomaterials for the future engineering applications
2. Gaining knowledge on dimensionality effects on different properties of nanomaterials
3. Getting acquainted with the different processing techniques employed for fabricating nanomaterials
4. Having knowledge on the different characterisation techniques employed to characterise the nanomaterials
5. Acquiring knowledge on different applications of nanomaterials in different disciplines of engineering.

UNIT I NANOMATERIALS
Introduction, Classification: 0D, 1D, 2D, 3D nanomaterials and nano-composites, their mechanical, electrical, optical, magnetic properties; Nanomaterials versus bulk materials.

UNIT II THERMODYNAMICS & KINETICS OF NANOSTRUCTURED MATERIALS
Size and interface/interphase effects, interfacial thermodynamics, phase diagrams, diffusivity, grain growth, and thermal stability of nanomaterials.

UNIT III PROCESSING
Bottom-up and top-down approaches for the synthesis of nanomaterials, mechanical alloying, chemical routes, severe plastic deformation, and electrical wire explosion technique.

UNIT IV STRUCTURAL CHARACTERISTICS
Principles of emerging nanoscale X-ray techniques such as small angle X-ray scattering and X-ray absorption fine structure (XAFS), electron and neutron diffraction techniques and their application to nanomaterials; SPM, Nanoindentation, Grain size, phase formation, texture, stress analysis

UNIT V APPLICATIONS
Applications of nanoparticles, quantum dots, nanotubes, nanowires, nanocoatings; applications in electronic, electrical and medical industries

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completion of this course, the students will be able to
1. Evaluate nanomaterials and understand the different types of nanomaterials
2. Recognise the effects of dimensionality of materials on the properties
3. Process different nanomaterials and use them in engineering applications
4. Use appropriate techniques for characterising nanomaterials
5. Identify and use different nanomaterials for applications in different engineering fields.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO1</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>2.8</td>
<td>1.6</td>
<td>1.7</td>
<td>2.2</td>
<td>2</td>
<td>1</td>
<td>1.2</td>
<td>1</td>
<td>1.8</td>
<td>2</td>
<td>2</td>
<td>1.3</td>
<td>1</td>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>

OMR353 Sensors

COURSE OBJECTIVES:
1. To learn the various types of sensors, transducers, sensor output signal types, calibration techniques, formulation of system equation and its characteristics.
2. To understand basic working principle, construction, Application and characteristics of displacement, speed and ranging sensors.
3. To understand and analyze the working principle, construction, application and characteristics of force, magnetic and heading sensors.
4. To learn and analyze the working principle, construction, application and characteristics of optical, pressure, temperature and other sensors.
5. To familiarize students with different signal conditioning circuits design and data acquisition system.

UNIT I SENSOR CLASSIFICATION, CHARACTERISTICS AND SIGNAL TYPES 9

UNIT II DISPLACEMENT, PROXIMITY AND RANGING SENSORS 9
UNIT III
FORCE, MAGNETIC AND HEADING SENSORS

UNIT IV
OPTICAL, PRESSURE, TEMPERATURE AND OTHER SENSORS

UNIT V
SIGNAL CONDITIONING

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:

CO1: Understand various sensor effects, sensor characteristics, signal types, calibration methods and obtain transfer function and empirical relation of sensors. They can also analyze the sensor response.

CO2: Analyze and select suitable sensor for displacement, proximity and range measurement.

CO3: Analyze and select suitable sensor for force, magnetic field, speed, position and direction measurement.

CO4: Analyze and Select suitable sensor for light detection, pressure and temperature measurement and also familiar with other miniaturized smart sensors.

CO5: Select and design suitable signal conditioning circuit with proper compensation and linearizing element based on sensor output signal.

Mapping of COs with POs and PSOs

<table>
<thead>
<tr>
<th>COs/POs & PSOs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO/PO & PSO Average</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1 – Slight, 2 – Moderate, 3 – Substantial

TEXT BOOKS

REFERENCES:

COURSE OBJECTIVES

1. To introduce mobile robotic technology and its types in detail.
2. To learn the kinematics of wheeled and legged robot.
3. To familiarize the intelligence into the mobile robots using various sensors.
4. To acquaint the localization strategies and mapping technique for mobile robot.
5. To aware the collaborative mobile robotics in task planning, navigation and intelligence.

UNIT – I INTRODUCTION TO MOBILE ROBOTICS

UNIT – II KINEMATICS

UNIT – III PERCEPTION

UNIT – IV LOCALIZATION

UNIT – V PLANNING, NAVIGATION AND COLLABORATIVE ROBOTS

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

CO1: Evaluate the appropriate mobile robots for the desired application.
CO2: Create the kinematics for given wheeled and legged robot.
CO3: Analyse the sensors for the intelligence of mobile robotics.
CO4: Create the localization strategies and mapping technique for mobile robot.
CO5: Create the collaborative mobile robotics for planning, navigation and intelligence for desired applications.

TEXT BOOKS

REFERENCES:

MV3501 MARINE PROPULSION

COORESE OBJECTIVES:

1. To impart knowledge on basics of propulsion system and ship dynamic movements
2. To educate them on basic layout and propulsion equipment’s
3. To impart basic knowledge on performance of the ship
4. To impart basic knowledge on Ship propeller and its types
5. To impart knowledge on ship rudder and its types

UNIT I BASICS SHIP PROPULSION SYSTEM AND EQUIPMENTS

1. law of floatation - Basics principle of propulsion- Earlier methods of propulsion- ship propulsion machinery- boiler, Marine steam engine, diesel engine, ship power transmission system, ship dynamic structure, Marine propulsion equipment - shaft tunnel, Intermediate shaft and bearing, stern tube, stern tube sealing etc. degree of freedom, Modern propelling methods- water jet propulsion, screw propulsion.

UNIT II SHIPS MOVEMENTS AND SHIP STABILIZATION

1. Thrust augmented devices, Ship hull, modern ship propulsion design, bow thruster – Advantages, various methods to stabilize the ship- passive and active stabilizer, fin stabilizer, bilge keel - stabilizing and securing ship in port- effect of tides on ship – effect of river water and sea water sailing vessel, Load line and load line of marking- draught markings.

UNIT III SHIPS SPEED AND ITS PERFORMANCE

1. Ship propulsion factors, factors affecting ships speed, various velocities of ship, hull drag, effects of fouling on ships hull, ship wake, relation between powers, Fuel consumption of ship, cavitations - effects of cavitation’s, ship turning radius.

UNIT IV BASICS OF PROPELLER

UNIT V BASICS OF RUDDER

1. Rudder dimension, Area of rudder and its design, Rudder arrangements, Rudder fittings- Rudder pintle - Rudder types- Balanced rudder, semi balanced rudder, Spade rudder, merits and demerits of various types of rudders, Propeller and rudder interaction, Rudder stopper, movement of rudders, Basic construction of Rudder

COURSE OUTCOMES:

Upon successful completion of the course, students should be able to:

CO1: Explain the basics of propulsion system and ship dynamic movements
CO2: Familiarize with various components assisting ship stabilization.
CO3: Demonstrate the performance of the ship.
CO4: Classify the Propeller and its types, Materials etc.
CO5: Categories the Rudder and its types, design criteria of rudder.

TEXT BOOKS:
1. GP. Ghose, “Basic Ship propulsion”, 2015

REFERENCES:

MAPPING OF COS AND POS:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
<td>PO2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>5/5=1</td>
<td>2/2=1</td>
</tr>
</tbody>
</table>

OMV351 MARINE MERCHANT VESSELS

OBJECTIVES:
At the end of the course, students are expected to acquire
1. Knowledge on basics of Hydrostatics
2. Familiarization on types of merchant ships
3. Knowledge on Shipbuilding Materials
4. Knowledge on marine propeller and rudder
5. Awareness on governing bodies in shipping industry

UNIT I INTRODUCTION TO HYDROSTATICS

UNIT II TYPES OF SHIP
General cargo ship - Refrigerated cargo ships - Container ships - Roll-on Roll-off ships – Oil tankers - Bulk carriers - Liquefied Natural Gas carriers - Liquefied Petroleum Gas carriers - Chemical tankers - Passenger ships

UNIT III SHIPBUILDING MATERIALS
Types of Steels used in Shipbuilding - High tensile steels, Corrosion resistant steels, Steel sandwich panels, Steel castings, Steel forgings - Other shipbuilding materials, Aluminium alloys, Aluminium alloy sandwich panels, Fire protection especially for Aluminium Alloys, Fiber Reinforced Composites

UNIT IV MARINE PROPELLER AND RUDDER
Types of rudder, construction of Rudder-Types of Propeller, Propeller material-Cavitations and its effects on propeller
UNIT V GOVERNING BODIES FOR SHIPPING INDUSTRY
Role of IMO (International Maritime Organization), SOLAS (International Convention for the Safety of Life at Sea), MARPOL (International Convention for the Prevention of Pollution from Ships), MLC (Maritime Labour Convention), STCW 2010 (International Convention on Standards of Training, Certification and Watch keeping for Seafarers), Classification societies Administration authorities

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course, students would
1. Acquire Knowledge on floatation of ships
2. Acquire Knowledge on features of various ships
3. Acquire Knowledge of Shipbuilding Materials
4. Acquire Knowledge to identify the different types of marine propeller and rudder
5. Understand the Roles and responsibilities of governing bodies

TEXT BOOKS:
2. Dr.DA Taylor, “Merchant Ship Naval Architecture” I. Mar EST publications, 2006

REFERENCES:
2. MARPOL Consolidated Edition, Bhandakar Publications, 2018

OMV352 ELEMENTS OF MARINE ENGINEERING L T P C

OBJECTIVES:
At the end of the course, students are expected to
1. Understand the role of Marine machinery systems
2. Be familiar with Marine propulsion machinery system
3. Acquaint with Marine Auxiliary machinery system
4. Have acquired basics of Marine Auxiliary boiler system
5. Be aware of ship propellers and steering system

UNIT I ELEMENTARY KNOWLEDGE ON MARINE MACHINERY SYSTEMS
Marine Engineering Terminologies, Parts of Ship, Introduction to Machinery systems on board ships – Propulsion Machinery system, Electricity Generator system, Steering gear system, Air compressors & Air reservoirs, Fuel oil and Lubricating Oil Purifiers, Marine Boiler systems

UNIT II MARINE PROPULSION MACHINERY SYSTEM
Two stroke Large Marine slow speed Diesel Engine – General Construction, Basic knowledge of Air starting and reversing mechanism, Cylinder lubrication oil system, Main lubricating oil system and cooling water system

UNIT III MARINE AUXILIARY MACHINERY SYSTEM
Four stroke medium speed Diesel engine – General Construction, Inline, V-type arrangement of engine, Difference between slow speed and medium speed engines – advantages, limitations and applications

UNIT IV MARINE BOILER SYSTEM
Types of Boiler – Difference between Water tube boiler and Fire tube boiler, Need for boiler on board ships, Uses of steam, Advantages of using steam as working medium, Boiler mountings and accessories – importance of mountings, need for accessories

UNIT V SHIP PROPELLERS AND STEERING MECHANISM
Importance of Propellor and Steering gear, Types of propellers - Fixed pitch propellers, Controllable pitch propellers, Water jet propellers, Steering gear systems - 2-Ram and 4 Ram steering gear, Electric steering gear

OUTCOMES:
At the end of the course, students should able to,
1. Distinguish the role of various marine machinery systems
2. Relate the components of marine propulsion machinery system
3. Explain the importance of marine auxiliary machinery system
4. Acquire knowledge of marine boiler system
5. Understand the importance of ship propellors and steering system

TEXT BOOKS:

REFERENCES:
1. Alan L.Rowen, “Introduction to Practical Marine Engineering, Volume 1&2, The Institute of Marine Engineers (India), Mumbai, 2006
2. A.S.Tambwekar, “Naval Architecture and Ship Construction”, The Institute of Marine Engineers (India), Mumbai, 2015

CRA332 DRONE TECHNOLOGIES

<table>
<thead>
<tr>
<th>COURSE OBJECTIVES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. To understand the basics of drone concepts</td>
</tr>
<tr>
<td>2. To learn and understand the fundamentals of design, fabrication and programming of drone</td>
</tr>
<tr>
<td>3. To impart the knowledge of an flying and operation of drone</td>
</tr>
<tr>
<td>4. To know about the various applications of drone</td>
</tr>
<tr>
<td>5. To understand the safety risks and guidelines of fly safely</td>
</tr>
</tbody>
</table>

UNIT I INTRODUCTION TO DRONE TECHNOLOGY
Drone Concept - Vocabulary Terminology- History of drone - Types of current generation of drones based on their method of propulsion- Drone technology impact on the businesses-Drone business through entrepreneurship- Opportunities/applications for entrepreneurship and employability

UNIT II DRONE DESIGN, FABRICATION AND PROGRAMMING
Classifications of the UAV -Overview of the main drone parts- Technical characteristics of the
parts - Function of the component parts - Assembling a drone - The energy sources - Level of autonomy - Drones configurations - The methods of programming drone - Download program - Install program on computer - Running Programs - Multi rotor stabilization - Flight modes - Wi-Fi connection.

UNIT III DRONE FLYING AND OPERATION 9
Concept of operation for drone - Flight modes - Operate a small drone in a controlled environment - Drone controls Flight operations - management tool - Sensors - Onboard storage capacity - Removable storage devices - Linked mobile devices and applications

UNIT IV DRONE COMMERCIAL APPLICATIONS 9
Choosing a drone based on the application - Drones in the insurance sector - Drones in delivering mail, parcels and other cargo - Drones in agriculture - Drones in inspection of transmission lines and power distribution - Drones in filming and panoramic picturing

UNIT V FUTURE DRONES AND SAFETY 9
The safety risks - Guidelines to fly safely - Specific aviation regulation and standardization - Drone license - Miniaturization of drones - Increasing autonomy of drones - The use of drones in swarms

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO1: Know about a various type of drone technology, drone fabrication and programming.
CO2: Execute the suitable operating procedures for functioning a drone
CO3: Select appropriate sensors and actuators for Drones
CO4: Develop a drone mechanism for specific applications
CO5: Createthe programs for various drones

CO-PO MAPPING:

<table>
<thead>
<tr>
<th>CO/PO & PSC</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PPs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Average</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1 – Slight, 2 – Moderate, 3 – Substantial

TEXT BOOKS

REFERENCES
OBJECTIVE:
To impart the knowledge on basic components, data preparation and implementation of Geographical Information System.

UNIT I FUNDAMENTALS OF GIS
Introduction to GIS - Basic spatial concepts - Coordinate Systems - GIS and Information Systems - Definitions - History of GIS - Components of a GIS – Hardware, Software, Data, People, Methods – Proprietary and open source Software - Types of data – Spatial, Attribute data- types of attributes – scales/ levels of measurements.

UNIT II SPATIAL DATA MODELS

UNIT III DATA INPUT AND TOPOLOGY

UNIT IV DATA QUALITY AND STANDARDS
Data quality - Basic aspects - completeness, logical consistency, positional accuracy, temporal accuracy, thematic accuracy and lineage – Metadata – GIS Standards –Interoperability - OGC - Spatial Data Infrastructure

UNIT V DATA MANAGEMENT AND OUTPUT
Import/Export – Data Management functions- Raster to Vector and Vector to Raster Conversion - Data Output - Map Compilation – Chart/Graphs – Multimedia – Enterprise Vs. Desktop GIS- distributed GIS.

TOTAL:45 PERIODS

COURSE OUTCOMES:
On completion of the course, the student is expected to

CO1 Have basic idea about the fundamentals of GIS.
CO2 Understand the types of data models.
CO3 Get knowledge about data input and topology
CO4 Gain knowledge on data quality and standards
CO5 Understand data management functions and data output

TEXT BOOKS:

REFERENCE:
<table>
<thead>
<tr>
<th>PO</th>
<th>Graduate Attribute</th>
<th>C</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>Engineering Knowledge</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO2</td>
<td>Problem Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO3</td>
<td>Design/Development of Solutions</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO4</td>
<td>Conduct Investigations of Complex Problems</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PO5</td>
<td>Modern Tool Usage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO6</td>
<td>The Engineer and Society</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and Sustainability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and Team Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO11</td>
<td>Project Management and Finance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSO1</td>
<td>Knowledge of Geoinformatics discipline</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PSO2</td>
<td>Critical analysis of Geoinformatics Engine problems and innovations</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PSO3</td>
<td>Conceptualization and evaluation of Design solutions</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

OAI352 AGRICULTURE ENTREPRENEURSHIP DEVELOPMENT L T P C 3 0 0 3

OBJECTIVES
- To introduce the importance of Agri-business management, its characteristics and principles
- To impart knowledge on the functional areas of Agri-business like Marketing management, Product pricing methods and Market potential assessment.

UNIT I ENTREPRENEURIAL ENVIRONMENT IN INDIAN CONTEXT 9
Entrepreneur Development(ED): Concept of entrepreneur and entrepreneurship assessing overall business environment in Indian economy- Entrepreneurial and managerial characteristics-Entrepreneurship development programmers (EDP)-Generation incubation and commercialization of ideas and innovations- Motivation and entrepreneurship development- Globalization and the emerging business entrepreneurial environment.

UNIT II AGRIPRNEURSHIP IN GLOBAL ARENA: LEGAL PERSPECTIVE 9
Importance of agribusiness in Indian economy - International trade-WTO agreements- Provisions related to agreements in agricultural and food commodities - Agreements on Agriculture (AOA)-Domestic supply, market access, export subsidies agreements on sanitary and phyto-sanitary (SPS) measures, Trade related intellectual property rights (TRIPS).

UNIT III ENTREPRENEURSHIP MANAGEMENT: FINANCIAL PERSPECTIVE 9
UNIT IV ENTREPRENEURIAL OPPORTUNITIES: ECONOMIC GROWTH PERSPECTIVE 9

Managing an enterprise: Importance of planning, budgeting, monitoring evaluation and follow-up managing competition. Role of ED in economic development of a country- Overview of Indian social, political system and their implications for decision making by individual entrepreneurs- Economic system and its implication for decision making by individual entrepreneurs.

UNIT V ENTREPRENEURIAL PROMOTION MEASURES AND GOVERNMENT SUPPORT 9

Social responsibility of business. Morals and ethics in enterprise management- SWOT analysis- Government schemes and incentives for promotions of entrepreneurship. Government policy on small and medium enterprises (SMEs)/SSIs/MSME sectors- Venture capital (VC), contract framing (CF) and Joint Venture (JV), public-private partnerships (PPP) - overview of agricultural engineering industry, characteristics of Indian farm machinery industry.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
1. Judge about agricultural finance, banking and cooperation
2. Evaluate basic concepts, principles and functions of financial management
3. Improve the skills on basic banking and insurance schemes available to customers
4. Analyze various financial data for efficient farm management
5. Identify the financial institutions

TEXT BOOKS:

REFERENCES:

CO-PO MAPPING

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>Overall correlation of COs with POs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PO3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PO4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PO6</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO8</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
OEN352 BIODIVERSITY CONSERVATION

OBJECTIVE:
The identification of different aspects of biological diversity and conservation techniques.

UNIT I INTRODUCTION
Concept of Species, Variation; Introduction to Major Plant Groups; Evolutionary relationships between Plant Groups; Nomenclature and History of plant taxonomy; Systems of Classification and their Application; Study of Plant Groups; Study of Identification Characters; Study of important families of Angiosperms; Plant Diversity Application.

UNIT II INTRODUCTION TO ANIMAL DIVERSITY AND TAXONOMY
Principles and Rules of Taxonomy; ICZN Rules, Animal Study Techniques; Concepts of Taxon, Categories, Holotype, Paratype, Topotype etc; Classification of Animal kingdom, Invertebrates, Vertebrates, Evolutionary relationships between Animal Groups.

UNIT III MICROBIAL DIVERSITY
Microbes and Earth History, Magnitude, Occurrence and Distribution. Concept of Species, Criteria for Classification, Outline Classification of Microorganisms (Bacteria, Viruses and Protozoa); Criteria for Classification and Identification of Fungi; Chemical and Biochemical Methods of Microbial Diversity Analysis

UNIT IV MEGA DIVERSITY
Biodiversity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Red List; Factors affecting Diversity, Impact of Exotic Species and Human Disturbance on Diversity, Dispersal, Diversity-Stability Relationship; Socio-economic Issues of Biodiversity; Sustainable Utilization of Bioresources; National Movements and International Convention/Treaties on Biodiversity.

UNIT V CONSERVATIONS OF BIODIVERSITY
In-Situ Conservation- National parks, Wildlife sanctuaries, Biosphere reserves; Ex-situ conservation-Gene bank, Cryopreservation, Tissue culture bank; Long term captive breeding, Botanical gardens,
Animal Translocation, Zoological Gardens; Concept of Keystone Species, Endangered Species, Threatened Species, Rare Species, Extinct Species

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:

OUTCOMES:
Upon successful completion of this course, students will:
CO1: An insight into the structure and function of diversity for ecosystem stability.
CO2: Understand the concept of animal diversity and taxonomy
CO3: Understand socio-economic issues pertaining to biodiversity
CO4: An understanding of biodiversity in community resource management.
CO5: Student can apply fundamental knowledge of biodiversity conservation to solve problems associated with infrastructure development.

CO's- PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1. low, 2-medium, 3-high, '-*- no correlation

Note: The average value of this course to be used for program articulation matrix.

OEE353 INTRODUCTION TO CONTROL SYSTEMS

OBJECTIVES
- To impart knowledge on various representations of systems.
- To familiarize time response analysis of LTI systems and steady state error.
- To analyze the frequency responses and stability of the systems
- To analyze the stability of linear systems in frequency domain and time domain
- To develop linear models mainly state variable model and transfer function model

UNIT I MATHEMATICAL MODELS OF PHYSICAL SYSTEMS
Definition & classification of system – terminology & structure of feedback control theory – Analogous systems - Physical system representation by Differential equations – Block diagram reduction– Signal flow graphs.

UNIT II TIME RESPONSE ANALYSIS & ROOTLOCUSTECHNIQUE
Standard test signals – Steady state error & error constants – Time Response of I and II order system—
Root locus—Rules for sketching root loci.

UNIT III FREQUENCY RESPONSE ANALYSIS
Correlation between Time & Frequency response – Polar plots – Bode Plots – Determination of Transfer Function from Bode plot.

UNIT IV STABILITY CONCEPTS & ANALYSIS

UNIT V STATE VARIABLE ANALYSIS
Concept of state – State Variable & State Model – State models for linear & continuous time systems— Solution of state & output equation—controllability & observability.

OUTCOMES:
Ability to
CO1: Design the basic mathematical model of physical System.
CO2: Analyze the time response analysis and techniques.
CO3: Analyze the transfer function from different plots.
CO4: Apply the stability concept in various criterion.
CO5: Assess the state models for linear and continuous Systems.

TEXTBOOKS:

REFERENCES:
2. Control System Dynamics” by Robert Clark, Cambridge University Press, 1996 USA.

OEW354 INTRODUCTION TO INDUSTRIAL AUTOMATION SYSTEMS

COURSE OBJECTIVES:
1. To educate on design of signal conditioning circuits for various applications.
2. To Introduce signal transmission techniques and their design.
3. Study of components used in data acquisition systems interface techniques
4. To educate on the components used in distributed control systems
5. To introduce the communication buses used in automation industries.
UNIT I INTRODUCTION

UNIT II AUTOMATION COMPONENTS
Sensors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH measurement. Actuators, process control valves, power electronics devices DIAC, TRIAC, power MOSFET and IGBT. Introduction of DC and AC servo drives for motion control.

UNIT III COMPUTER AIDED MEASUREMENT AND CONTROL SYSTEMS
Role of computers in measurement and control, Elements of computer aided measurement and control, man-machine interface, computer aided process control hardware, process related interfaces, Communication and networking, Industrial communication systems, Data transfer techniques, Computer aided process control software, Computer based data acquisition system, Internet of things (IoT) for plant automation.

UNIT IV PROGRAMMABLE LOGIC CONTROLLERS
Programmable controllers, Programmable logic controllers, Analog digital input and output modules, PLC programming, Ladder diagram, Sequential flow chart, PLC Communication and networking, PLC selection, PLC Installation, Advantage of using PLC for Industrial automation, Application of PLC to process control industries.

UNIT V DISTRIBUTED CONTROL SYSTEM
Overview of DCS, DCS software configuration, DCS communication, DCS Supervisory Computer Tasks, DCS integration with PLC and Computers, Features of DCS, Advantages of DCS.

TOTAL: 45 PERIODS

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc) 5

1. Market survey of the recent PLCs and comparison of their features.
2. Summarize the PLC standards
3. Familiarization of any one programming language (Ladder diagram/ Sequential Function Chart/ Function Block Diagram/ Equivalent open source software)

COURSE OUTCOMES:
Students able to

CO1 Design a signal conditioning circuits for various application (L3).
CO2 Acquire a detail knowledge on data acquisition system interface and DCS system (L2).
CO3 Understand the basics and Importance of communication buses in applied automation Engineering (L2).
CO4 Ability to design PLC Programmes by Applying Timer/Counter and Arithmetic and Logic Instructions Studied for Ladder Logic and Function Block. (L3)
CO5 Able to develop a PLC logic for a specific application on real world problem. (L5)

TEXT BOOKS:

REFERENCES:

List of Open Source Software/ Learning website:
1. https://archive.nptel.ac.in/courses/108/105/108105062/
2. https://nptel.ac.in/courses/108105063

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3 2 2</td>
<td>1 1 - 1</td>
</tr>
<tr>
<td>CO2</td>
<td>3 1 1</td>
<td>- 1 - 1</td>
</tr>
<tr>
<td>CO3</td>
<td>3 - 1</td>
<td>- 1 - 1</td>
</tr>
<tr>
<td>CO4</td>
<td>3 3 3</td>
<td>1 1 - 1</td>
</tr>
<tr>
<td>CO5</td>
<td>3 3 3</td>
<td>1 1 - 1</td>
</tr>
<tr>
<td>Avg.</td>
<td>3 2.25</td>
<td>2.6 1 - 1</td>
</tr>
</tbody>
</table>

OCH353 ENERGY TECHNOLOGY

UNIT I INTRODUCTION

Units of energy, conversion factors, general classification of energy, world energy resources and energy consumption, Indian energy resources and energy consumption, energy crisis, energy alternatives, Renewable and non-renewable energy sources and their availability. Prospects of Renewable energy sources.

UNIT II CONVENTIONAL ENERGY

Conventional energy resources, Thermal, hydel and nuclear reactors, thermal, hydel and nuclear power plants, efficiency, merits and demerits of the above power plants, combustion processes, fluidized bed combustion.

UNIT III NON-CONVENTIONAL ENERGY

Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar energy application in India, energy plantations. Wind energy, types of windmills, types of wind rotors, Darrieus rotor and Gravian rotor, wind electric power generation, wind power in India, economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy.

UNIT IV BIOMASS ENERGY

Biomass energy resources, thermo-chemical and biochemical methods of biomass conversion, combustion, gasification, pyrolysis, biogas production, ethanol, fuel cells, alkaline fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, solid polymer electrolyte fuel cell, magneto hydrodynamic power generation, energy storage routes like thermal energy storage, chemical, mechanical storage and electrical storage.

UNIT V ENERGY CONSERVATION
Energy conservation in chemical process plants, energy audit, energy saving in heat exchangers, distillation columns, dryers, ovens and furnaces and boilers, steam economy in chemical plants, energy conservation.

TOTAL: 45 PERIODS

OUTCOMES:
On completion of the course, the students will be able to
CO1: Students will be able to describe the fundamentals and main characteristics of renewable energy sources and their differences compared to fossil fuels.
CO2: Students will excel as professionals in the various fields of energy engineering
CO3: Compare different renewable energy technologies and choose the most appropriate based on local conditions.
CO4: Explain the technological basis for harnessing renewable energy sources.
CO5: Identify and critically evaluate current developments and emerging trends within the field of renewable energy technologies and to develop in-depth technical understanding of energy problems at an advanced level.

TEXT BOOKS:

REFERENCES

Course articulation matrix

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

OVERALL CO 2 2 1 3 3 2 2 1 1 1 1 1 1 3 2 1 3
1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

OBJECTIVE:
• To enable the students to analyze properties of a surfaces and correlate them to structure, chemistry, and physics and surface modification technique.

UNIT I	SURFACE STRUCTURE AND EXPERIMENTAL PROBES	9
Relevance of surface science to Chemical and Electrochemical Engineering, Heterogeneous Catalysis and Nanoscience; Surface structure and reconstructions, absorbate structure, Band and Vibrational structure, Importance of UHV techniques, Electronic probes and molecular beams, Scanning probes and diffraction, Qualitative introduction to electronic and vibrational spectroscopy

UNIT II	 ADSORPTION, DYNAMICS, THERMODYNAMICS AND KINETICS AT SURFACES	9
Interactions at the surface, Physisorption, Chemisorption, Diffusion, dynamics and reactions of atoms/molecules on surfaces, Generic reaction mechanism on surfaces, Adsorption isotherms, Kinetics of adsorption, Use of temperature desorption methods

UNIT III	 LIQUID INTERFACES	9
Structure and Thermodynamics of liquid-solid interface, Self-assembled monolayers, Electrified interfaces, Charge transfer at the liquid-solid interfaces, Photoelectrochemical processes, Gratzel cells

UNIT IV	 HETEROGENEOUS CATALYSIS	9
Characterization of heterogeneous catalytic processes, Microscopic kinetics to catalysis, Overview of important heterogeneous catalytic processes: Haber-Bosch, Fishcher-Tropsch and Automotive catalysis, Role of promoters and poisons, Bimetallic surfaces, surface functionalization and clusters in catalysis, Role of Sabatier principle in catalyst design, Rate oscillations and spatiotemporal pattern formation

UNIT V	 EPITAXIAL GROWTH AND NANO SURFACE-STRUCTURES	9

OUTCOME:
• Upon completion of this course, the students can understand, predict and design surface properties based on surface structure. Students would understand the physics and chemistry behind surface phenomena

TEXT BOOK:

REFERENCE:
OBJECTIVES:
The course aims to
• Acquaint and equip the students with different techniques of measurement of engineering properties.
• Make the students understand the nature of food constituents in the design of processing equipment

UNIT I
Engineering properties of food materials: physical, thermal, aerodynamic, mechanical, optical and electromagnetic properties.

UNIT II
Drying and dehydration: Basic drying theory, heat and mass transfer in drying, drying rate curves, calculation of drying times, dryer efficiencies; classification and selection of dryers; tray, vacuum, osmotic, fluidized bed, pneumatic, rotary, tunnel, trough, bin, belt, microwave, IR, heat pump and freeze dryers; dryers for liquid: Drum or roller dryer, spray dryer and foammatt dryers

UNIT III
Size reduction: Benefits, classification, determination and designation of the fineness of ground material, sieve/screen analysis, principle and mechanisms of comminution of food, Rittinger’s, Kick’s and Bond’s equations, work index, energy utilization; Size reduction equipment: Principal types, crushers (jaw crushers, gyratory, smooth roll), hammer mills and impactors, attrition mills, buhr mill, tumbling mills, tumbling mills, ultra fine grinders, fluid jet pulverizer, colloid mill, cutting machines (slicing, dicing, shredding, pulping)

UNIT IV
Mixing: theory of solids mixing, criteria of mixer effectiveness and mixing indices, rate of mixing, theory of liquid mixing, power requirement for liquids mixing; Mixing equipment: Mixers for low- or medium-viscosity liquids (paddle agitators, impeller agitators, powder-liquid contacting devices, other mixers), mixers for high viscosity liquids and pastes, mixers for dry powders and particulate solids.

UNIT V
Mechanical Separations: Theory, centrifugation, liquid-liquid centrifugation, liquid-solid centrifugation, clarifiers, desludging and decanting machine, Filtration: Theory of filtration, rate of filtration, pressure drop during filtration, applications, constant-rate filtration and constant-pressure filtration, derivation of equation; Filtration equipment; plate and frame filter press, rotary filters, centrifugal filters and air filters, filter aids, Membrane separation: General considerations, materials for membrane construction, ultra-filtration, microfiltration, concentration, polarization, processing variables, membrane fouling, applications of ultra-filtration in food processing, reverse osmosis, mode of operation, and applications; Membrane separation methods, demineralization by electro-dialysis, gel filtration, ion exchange, per-evaporation and osmotic dehydration.

COURSE OUTCOMES:
At the end of the course the students will be able to
CO1 understand the importance of food polymers
CO2 understand the effect of various methods of processing on the structure and texture of food materials
CO3 understand the interaction of food constituents with respect to thermal, electrical properties to develop new technologies for processing and preservation.

TEXT BOOKS:
OBJECTIVES:

- To characterize different types of food hazards, physical, chemical, and biological in the industry and food service establishments.
- To help become skilled in systems for food safety surveillance.
- To be aware of the regulatory and statutory bodies in India and the world.
- To ensure processed food meets global standards.

UNIT I

UNIT II
Food quality: Various Quality attributes of food, Instrumental, chemical and microbial Quality control. Sensory evaluation of food and statistical analysis. Water quality and other utilities.

UNIT III
Critical Quality control point in different stages of production including raw materials and processing materials. Food Quality and Quality control including the HACCP system. Food inspection and Food Law, Risk assessment – microbial risk assessment, dose response and exposure response modelling, risk management, implementation of food surveillance system to monitor food safety, risk communication.

UNIT IV

UNIT V
Codex Alimentarius Commission - Codex India – Role of Codex Contact point, National Codex contact point (NCCP), National Codex Committee of India – ToR, Functions, Shadow Committees etc.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1 Thorough Knowledge of food hazards, physical, chemical and biological in the industry and food service establishments.

CO2 Awareness on regulatory and statutory bodies in India and the world.
OPY353 NUTRACEUTICALS

OBJECTIVES:
- To understand the basic concepts of Nutraceuticals and functional food, their chemical nature and methods of extraction.
- To understand the role of Nutraceuticals and functional food in health and disease.

UNIT I INTRODUCTION AND SIGNIFICANCE
Introduction to Nutraceuticals and functional foods; importance, history, definition, classification, list of functional foods and their benefits, Phytochemicals, zoochemicals and microbes in food, plants, animals and microbes.

UNIT II PHYTOCHEMICALS AS NUTRACEUTICALS
Phytoestrogens in plants; isoflavones; flavonols, polyphenols, tannins, saponins, lignans, lycopene, chitin, carotenoids. Manufacturing practice of selected nutraceuticals such as lycopene, isoflavonoids, glucosamine, phytosterols. Formulation of functional foods containing nutraceuticals - stability, analytical and labelling issues.

UNIT III ASSESSMENT OF ANTIOXIDANT ACTIVITY
In vitro and in vivo methods for the assessment of antioxidant activity, Comparison of different in vitro methods to evaluate the antioxidant, antioxidant mechanism, Prediction of the antioxidant activity of natural phenolics from electrotopological state indices, Optimising phytochemical release by process technology; Variation of Antioxidant Activity during technological treatments, new food grade peptidases from plant sources.

UNIT IV ROLE IN HEALTH AND DISEASE
The health benefit of - Soy protein, Spirulina, Tea, Olive oil, plant sterols, Broccoli, omega3 fatty acid and eicosanoids. Nutraceuticals and Functional foods in Gastrointestinal disorder, Cancer, CVD, Diabetic Mellitus, HIV and Dental disease; Importance and function of probiotic, prebiotic and synbiotic and their applications, Functional foods and immune competence; role and use in obesity and nervous system disorders.

UNIT V SAFETY ISSUES
Health Claims, Adverse effects and toxicity of nutraceuticals, regulations and safety issues International and national.

TOTAL: 45 PERIODS

TEXT BOOKS:
3. WEBB, PP, Dietary Supplements and Functional Foods Blackwell Publishing Ltd (United Kingdom), 2006
REFERENCES:
1. Asian Functional Foods (Nutraceutical Science and Technology) by John Shi (Editor), Fereidoon Shahidi (Editor), Chi-Tang Ho (Editor), CRC Publications, Taylor & Francis, 2007

COURSE OUTCOME - NUTRACEUTICALS

CO 1 Acquire knowledge about the nutraceuticals and functional foods, their classification and benefits.
CO 2 Acquire knowledge of phytochemicals, zoochemicals and microbes in food, plants, animals and microbes
CO 3 Attain the knowledge of the manufacturing practices of selected nutraceutical components and formulation considerations of functional foods.
CO 4 Distinguish the various *in vitro* and *in vivo* assessment of antioxidant activity of compounds from plant sources.
CO 5 Gain information about the health benefits of various functional foods and nutraceuticals in the prevention and treatment of various lifestyle diseases.
CO 6 Attain the knowledge of the regulatory and safety issues of nutraceuticals at national and international level.

<table>
<thead>
<tr>
<th>CO - PO MAPPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUTRACEUTICALS</td>
</tr>
<tr>
<td>COURSE OUTCOME</td>
</tr>
<tr>
<td>CO 1</td>
</tr>
<tr>
<td>CO 2</td>
</tr>
<tr>
<td>CO 3</td>
</tr>
<tr>
<td>CO 4</td>
</tr>
<tr>
<td>CO 5</td>
</tr>
<tr>
<td>CO 6</td>
</tr>
</tbody>
</table>

OTT354 BASICS OF DYEING AND PRINTING L T P C
3 0 0 3

OBJECTIVE:
- To enable the students to learn about the basics of Pretreatment, dyeing, printing and machinery in textile processing.

UNIT I INTRODUCTION
Impurities present in different fibres, Inspection of grey goods and lot preparation. Shearing,

UNIT II PRE TREATMENT
Desizing-Objective of Desizing- types of Desizing- Objective of Scouring- Mechanism of Scouring- Degumming of Silk, Scouring of wool - Bio Scouring. Bleaching -Objective of Bleaching: Bleaching
mechanism of Hydrogen Peroxide, Hypo chlorites. Objective of Mercerizing - Physical and Chemical changes of Mercerizing.

UNIT III DYEING

UNIT IV PRINTING
Definition of printing – Difference between printing and dying- Classification thickeners – Requirements to be good thickener, printing paste Preparation - different styles of printing.

UNIT V MACHINERIES

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to Understand the
CO1: Basics of grey fabric
CO2: Basics of pre treatment
CO3: Concept of Dyeing
CO4: Concept of Printing
CO5: Machinery in processing industry

TEXT BOOKS:

REFERENCES:
2. Dr. N N Mahapatra., “Textile dyeing”, Wood head publishing India, 2018
4. Bleaching & Mercerizing – BTRA Silver Jubilee Monograph series

COURSE ARTICULATION MATRIX:
1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Classification of fibres and production of natural fibres</td>
</tr>
<tr>
<td>CO2</td>
<td>Regenerated and synthetic fibres</td>
</tr>
<tr>
<td>CO3</td>
<td>Yarn spinning</td>
</tr>
<tr>
<td>CO4</td>
<td>Weaving</td>
</tr>
<tr>
<td>CO5</td>
<td>Knitting and</td>
</tr>
</tbody>
</table>
FT 3201 FIBRE SCIENCE L T P C 3 0 0 3

COURSE OBJECTIVES

- To enable the students to learn about the types of fibre and its properties

UNIT I INTRODUCTION TO TEXTILE FIBRES 9
Definition of various forms of textile fibres - staple fibre, filament, bicomponent fibres. Classification of Natural and Man-made fibres, essential and desirable properties of Fibres. Production and cultivation of Natural Fibers: Cotton, Silk, Wool -Physical and chemical structure of the above fibres.

UNIT II REGENERATED FIBRES 9
Production Sequence of Regenerated Cellulosic fibres: Viscose Rayon, Acetate rayon – High wet modulus fibres: Modal and Lyocel ,Tencel

UNIT III SYNTHETIC FIBRES 9
Production Sequence of Synthetic Fibers: polymer-Polyester, Nylon, Acrylic and polypropylene. Mineral fibres: fibre glass ,carbon .Introduction to spin finishes and texturization

UNIT IV SPECIALITY FIBRES 9
Properties and end uses of high tenacity and high modulus fibres, high temperature and flame retardant fibres, Chemical resistant fibres

UNIT V FUNCTIONAL SPECIALITY FIBRES 9
Properties and end uses: Fibres for medical application – Biodegradable fibres based on PLA, Super absorbent fibres elastomeric fibres, ultra-fine fibres, electrospun nano fibres, metallic fibres – Gold and Silver coated.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon completion of this course, the student would be able to

- Understand the process sequence of various fibres
- Understand the properties of various fibres

TEXT BOOKS:

REFERENCES:

OTT355 GARMENT MANUFACTURING TECHNOLOGY L T P C
3 0 0 3

OBJECTIVE:
- To enable the students to understand the basics of pattern making, cutting and sewing.
- To expose the students to various problems & remedies during garment manufacturing

UNIT I PATTERN MAKING, MARKER PLANNING, CUTTING 9
Anthropometry, specification sheet, pattern making – principles, basic pattern set drafting, grading, marker planning, spreading & cutting

UNIT II TYPES OF SEAMS, STITCHES AND FUNCTIONS OF NEEDLES 9
Different types of seams and stitches; single needle lock stitch machine – mechanism and accessories; needle – functions, special needles, needlepoint

UNIT III COMPONENTS AND TRIMS USED IN GARMENT 9
Sewing thread-construction, material, thread size, packages, accessories – labels, linings, interlinings, wadding, lace, braid, elastic, hook and loop fastening, shoulder pads, eyelets and laces, zip fasteners, buttons

UNIT IV GARMENT INSPECTION AND DIMENSIONAL CHANGES 9
Raw material, in process and final inspection; needle cutting; sewability of fabrics; strength properties of apparel; dimensional changes in apparel due to laundering, dry-cleaning, steaming and pressing.

UNIT V GARMENT PRESSING, PACKING AND CARE LABELING 9
Garment pressing – categories and equipment, packing; care 319abelling of apparels

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to Understand
CO1: Pattern making, marker planning, cutting
CO2: Types of seams, stitches and functions of needles
CO3: Components and trims used in garment
CO4: Garment inspection and dimensional changes
CO5: Garment pressing, packing and care 319abelling

TEXT BOOKS:
2. Gerry Cooklin, “Introduction to Clothing Manufacture” Blackwell Science Ltd., 1995. 64

REFERENCES:

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>1.6</td>
<td>1.2</td>
</tr>
</tbody>
</table>

OPE353 INDUSTRIAL SAFETY L T P C
3 0 0 3

OBJECTIVES:
- To educate about the health hazards and the safety measures to be followed in the industrial environment.
- Describe industrial legislations (Factories Acts, Workmen's Compensation and other laws) enacted for the protection of employees health at work settings
- Describe methods of prevention and control of Occupational Health diseases, accidents / emergencies and other hazards

UNIT I INTRODUCTION
Need for developing Environment, Health and Safety systems in work places - Accident Case Studies - Status and relationship of Acts - Regulations and Codes of Practice - Role of trade union safety representatives. International initiatives - Ergonomics and work place.

UNIT II OCCUPATIONAL HEALTH AND HYGIENE

UNIT III WORKPLACE SAFETY AND SAFETY SYSTEMS
UNIT IV HAZARDS AND RISK MANAGEMENT 9

UNIT V ENVIRONMENTAL HEALTH AND SAFETY MANAGEMENT 9

OUTCOMES:
After completion of this course, the student is expected to be able to:
- Describe, with example, the common work-related diseases and accidents in occupational setting
- Name essential members of the Occupational Health team
- What roles can a community health practitioners play in an Occupational setting to ensure the protection, promotion and maintenance of the health of the employee

TOTAL: 45 PERIODS

OPE354 UNIT OPERATIONS IN PETRO CHEMICAL INDUSTRIES L T P C
3 0 0 3

OBJECTIVES:
- To impart to the student basic knowledge on fluid mechanics, mechanical operations, heat transfer operations and mass transfer operations.

UNIT I FLUID MECHANICS CONCEPTS
Fluid definition and classification of fluids, types of fluids, Rheological behaviour of fluids & Newton’s Law of viscosity. Fluid statics-Pascal's law, Hydrostatic equilibrium, Barometric equation and pressure measurement(problems),Basic equations of fluid flow - Continuity equation, Euler's equation and Bernoulli equation; Types of flow - laminar and turbulent; Reynolds experiment; Flow through circular and non-circular conduits - Hagen Poiseuille equation (no derivation). Flow through stagnant fluids – theory of Settling and Sedimentation – Equipment (cyclones, thickeners) Conceptual numericals.

UNIT II FLOW MEASUREMENTS & MECHANICAL OPERATIONS

UNIT III CONDUCTIVE & CONVECTIVE HEAT TRANSFER
Modes of heat transfer; Conduction – steady state heat conduction through unilayer and multilayer walls, cylinders; Insulation, critical thickness of insulation. Convection- Forced and Natural convection, principles of heat transfer co-efficient, log mean temperature difference, individual and overall heat transfer co-efficient, fouling factor; Condensation – film wise and drop wise (no derivation). Heat
transfer equipments – double pipe heat exchanger, shell and tube heat exchanger (with working principle and construction with applications).

UNIT IV BASICS OF MASS TRANSFER

UNIT V MASS TRANSFER OPERATIONS
Basic concepts of Liquid-liquid extraction – equilibrium, stage type extractors (belt extraction and basket extraction). Distillation – Methods of distillation, distillation of binary mixtures using McCabe Thiele method. Drying - drying operations, batch and continuous drying. Conceptual numerical.

COURSE OUTCOMES:
At the end of the course the student will be able to:
- State and describe the nature and properties of the fluids.
- Study the different flow measuring instruments, the principles of various size reductions, conveying equipment’s, sedimentation and mixing tanks.
- Comprehend the laws governing the heat and mass transfer operations to solve the problems.
- Design the heat transfer equipment suitable for specific requirement.

TEXTBOOKS:
2. Fluid Mechanics K L Kumar S Chand & Company Ltd 2008

REFERENCE BOOKS
2. Unit Operations of Chemical Engineering, Vol I &II Chattopadhyaya Khanna Publishers, Delhi-6 1996

OPT352 PLASTIC MATERIALS FOR ENGINEERS L T P C
3 0 0 3

COURSE OBJECTIVES
- Understand the advantages, disadvantages and general classification of plastic materials
- To know the manufacturing, sources, and applications of engineering thermoplastics
- Understand the basics as well as the advanced applications of various plastic materials in the industry
- To understand the preparation methods of thermosetting materials
- Select suitable specialty plastics for different end applications

UNIT I INTRODUCTION TO PLASTIC MATERIALS
Introduction to Plastics – Brief history of plastics, advantages and disadvantages, thermoplastic and thermosetting behavior, amorphous polymers, crystalline polymers and cross-linked structures. General purpose thermoplastics/ Commodity plastics: manufacture, structure, properties and applications of polyethylene (PE), cross-linked PE, chlorinated PE, polypropylene, polyvinyl chloride-compounding, formulation, polypropylene (PP)
UNIT II ENGINEERING THERMOPLASTICS AND APPLICATIONS
Engineering thermoplastics – Aliphatic polyamides: structure, properties, manufacture and applications of Nylon 6, Nylon 66. Polyesters: manufacture, structure, properties and uses of PET, PBT. Manufacture, structure, properties and uses of Polycarbonates, acetal resins, polyimides, PMMA, polyphenylene oxide, thermoplastic polyurethane (PU)

UNIT III THERMOSETTING PLASTICS
Thermosetting Plastics – Manufacture, curing, moulding powder, laminates, properties and uses of phenol formaldehyde resins, urea formaldehyde, melamine formaldehyde, unsaturated polyester resin, epoxy resin, silicone resins, polyurethane resins.

UNIT IV MISCELLANEOUS PLASTICS FOR END APPLICATIONS
Miscellaneous plastics- Manufacture, properties and uses of polystyrene, HIPS, ABS, SAN, poly(tetrafluoroethylene) (PTFE), TFE and copolymers, PVDF, PVA, poly (vinyl acetate), poly (vinyl carbazole), cellulose acetate, PEEK, High energy absorbing polymers, super absorbent polymers- their synthesis, properties and applications

UNIT V PLASTICS MATERIALS FOR BIOMEDICAL APPLICATIONS
Sources, raw materials, methods of manufacturing, properties and applications of bio-based polymers- poly lactic acid (PLA), poly hydroxy alkanoates (PHA), PBAT, bioplastics- bio-PE, bio-PP, bio-PET, polymers for biomedical applications

TOTAL: 45 PERIODS

COURSE OUTCOMES:
- To study the importance, advantages and classification of plastic materials
- Summarize the raw materials, sources, production, properties and applications of various engineering thermoplastics
- To understand the application of polyamides, polyesters and other engineering thermoplastics, thermosetting resins
- Know the manufacture, properties and uses of thermosetting resins based on polyester, epoxy, silicone and PU
- To understand the engineering applications of various polymers in miscellaneous areas and applications of different biopolymers

REFERENCES

OPT353 PROPERTIES AND TESTING OF PLASTICS

COURSE OBJECTIVES
- To understand the relevance of standards and specifications as well as the specimen preparation for polymer testing.
- To study the mechanical properties and testing of polymer materials and their structural property
relationships.

- To understand the thermal properties of polymers and their testing methods.
- To gain knowledge on the electrical and optical properties of polymers and their testing methods.
- To study about the environmental effects and prevent polymer degradation.

UNIT I INTRODUCTION TO CHARACTERIZATION AND TESTING OF POLYMERS

UNIT II MECHANICAL PROPERTIES

Mechanical properties: Tensile, compression, flexural, shear, tear strength, hardness, impact strength, resilience, abrasion resistance, creep and stress relaxation, compression set, dynamic fatigue, ageing properties, Basic concepts of stress and strain, short term tests: Viscoelastic behavior (simple models: Kelvin model for creep and stress relaxation, Maxwell-Voigt model, strain recovery and dynamic response), Effect of structure and composition on mechanical properties, Behavior of reinforced polymers

UNIT III THERMAL RHEOLOGICAL PROPERTIES

Thermal properties: Transition temperatures, specific heat, thermal conductivity, co-efficient of thermal expansion, heat deflection temperature, Vicat softening point, shrinkage, brittleness temperature, thermal stability and flammability. Product testing: Plastic films, sheeting, pipes, laminates, foams, containers, cables and tubes.

UNIT IV ELECTRICAL AND OPTICAL PROPERTIES

Electrical properties: volume and surface resistivity, dielectric strength, dielectric constant and power factor, arc resistance, tracking resistance, dielectric behavior of polymers (dielectric co-efficient, dielectric polarization), dissipation factor and its importance. Optical properties: transparency, refractive index, haze, gloss, clarity, birefringence.

UNIT V ENVIRONMENTAL AND CHEMICAL RESISTANCE

COURSE OUTCOMES

- Understand the relevance of standards and specifications.
- Summarize the various test methods for evaluating the mechanical properties of the polymers.
- To know the thermal, electrical & optical properties of polymers.
- Identify various techniques used for characterizing polymers.
- Distinguish the processability tests used for thermoplastics, thermosets and elastomers.

REFERENCES:

OBJECTIVES:
- Understand the fundamentals of IC technology components and their characteristics.
- Understand combinational logic circuits and design principles.
- Understand sequential logic circuits and clocking strategies.
- Understand Interconnects and Memory Architecture.
- Understand the design of arithmetic building blocks

UNIT I MOS TRANSISTOR PRINCIPLES 9
MOS logic families (NMOS and CMOS), Ideal and Non Ideal IV Characteristics, CMOS devices. MOS(FET) Transistor DC transfer Characteristics ,small signal analysis of MOSFET.

UNIT II COMBINATIONAL LOGIC CIRCUITS 9

UNIT III SEQUENTIAL LOGIC CIRCUITS AND CLOCKING STRATEGIES 9

UNIT IV INTERCONNECT, MEMORY ARCHITECTURE 9
Interconnect Parameters – Capacitance, Resistance, and Inductance, Logic Implementation using Programmable Devices (ROM, PLA, FPGA), Memory Architecture and Building Blocks.

UNIT V DESIGN OF ARITHMETIC BUILDING BLOCKS 9
Arithmetic Building Blocks: Data Paths, Adders-Ripple Carry Adder, Carry-Bypass Adder, Carry Select Adder, Carry-Look Ahead Adder, Multipliers, Barrel Shifter, power and speed tradeoffs.

TOTAL: 45 PERIODS

OUTCOMES:
Upon successful completion of the course the student will be able to
CO1: Understand the working principle and characteristics of MOSFET
CO2: Design Combinational Logic Circuits
CO3: Design Sequential Logic Circuits and Clocking systems
CO4: Understand Memory architecture and interconnects
CO5: Design of arithmetic building blocks.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

CBM370 WEARABLE DEVICES L T P C

OBJECTIVES:
The student should be made to:
- To know the hardware requirement of wearable systems
- To understand the communication and security aspects in the wearable devices
- To know the applications of wearable devices in the field of medicine

UNIT I INTRODUCTION TO WEARABLE SYSTEMS AND SENSORS

UNIT II SIGNAL PROCESSING AND ENERGY HARVESTING FOR WEARABLE DEVICES
Wearability issues - physical shape and placement of sensor, Technical challenges - sensor design, signal acquisition, sampling frequency for reduced energy consumption, Rejection of irrelevant information. Power Requirements- Solar cell, Vibration based, Thermal based, Human body as a heat source for power generation, Hybrid thermoelectric photovoltaic energy harvests, Thermopiles.

UNIT III WIRELESS HEALTH SYSTEMS

UNIT IV SMART TEXTILE

UNIT V APPLICATIONS OF WEARABLE SYSTEMS
Medical Diagnostics, Medical Monitoring-Patients with chronic disease, Hospital patients, Elderly patients, neural recording, Gait analysis, Sports Medicine.

OUTCOMES:
On successful completion of this course, the student will be able to
CO1: Describe the concepts of wearable system.
CO2: Explain the energy harvestings in wearable device.
CO3: Use the concepts of BAN in health care.
CO4: Illustrate the concept of smart textile
CO5: Compare the various wearable devices in healthcare system

TEXT BOOKS

REFERENCES:

CO's - PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

CBM356 MEDICAL INFORMATICS

PREAMBLE:
1. To study the applications of information technology in health care management.
2. This course provides knowledge on resources, devices, and methods required to optimize the acquisition, storage, retrieval, and use of information in health and biomedicine.

UNIT I INTRODUCTION TO MEDICAL INFORMATICS
Introduction - Structure of Medical Informatics - Internet and Medicine - Security issues, Computer based medical information retrieval, Hospital management and information system, Functional capabilities of a computerized HIS, Health Informatics – Medical Informatics, Bioinformatics

UNIT II COMPUTERS IN CLINICAL LABORATORY AND MEDICAL IMAGING
Automated clinical laboratories - Automated methods in hematology, cytology and histology, Intelligent Laboratory Information System - Computer assisted medical imaging - nuclear medicine, ultrasound imaging, computed X-ray tomography, Radiation therapy and planning, Nuclear Magnetic Resonance.

UNIT III COMPUTERISED PATIENT RECORD
Introduction - conventional patient record, Components and functionality of CPR, Development tools, Intranet, CPR in Radiology - Application server provider, Clinical information system, Computerized prescriptions for patients.

UNIT IV COMPUTER ASSISTED MEDICAL DECISION-MAKING
Neuro computers and Artificial Neural Networks application, Expert system - General model of CMD, Computer-assisted decision support system-production rule system cognitive model, semantic networks,
decisions analysis incl clinical medicine-computers in the care of critically ill patients, Computer aids for the handicapped.

UNIT V RECENT TRENDS IN MEDICAL INFORMATICS 9
Virtual reality applications in medicine, Virtual endoscopy, Computer assisted surgery, Surgical simulation, Telemedicine - Tele surgery, Computer assisted patient education and health- Medical education and healthcare information, computer assisted instruction in medicine.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, students will be able to:
1. Explain the structure and functional capabilities of Hospital Information System.
2. Describe the need of computers in medical imaging and automated clinical laboratory.
3. Articulate the functioning of information storage and retrieval in computerized patient record system.
4. Apply the suitable decision support system for automated clinical diagnosis.
5. Discuss the application of virtual reality and telehealth technology in medical industry.

TEXT BOOKS:

REFERENCES:

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s 1</th>
<th>PO’s 2</th>
<th>PO’s 3</th>
<th>PO’s 4</th>
<th>PO’s 5</th>
<th>PO’s 6</th>
<th>PO’s 7</th>
<th>PO’s 8</th>
<th>PO’s 9</th>
<th>PO’s 10</th>
<th>PO’s 11</th>
<th>PO’s 12</th>
<th>PSO’s 1</th>
<th>PSO’s 2</th>
<th>PSO’s 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>AVG.</td>
<td>3.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

OBT355 BIOTECHNOLOGY FOR WASTE MANAGEMENT L T P C 3 0 0 3

UNIT I BIOLOGICAL TREATMENT PROCESS 9

UNIT II WASTE BIOMASS AND ITS VALUE ADDITION 9
Types of waste biomass – Solid waste management - Nature of biomass feedstock – Biobased economy/process – Value addition of waste biomass – Biotransformation of biomass – Biotransformation of marine processing wastes – Direct extraction of biochemicals from biomass – Plant biomass for industrial application

UNIT III BIOCONVERSION OF WASTES TO ENERGY 9
Perspective of biofuels from wastes - Bioethanol production – Biohydrogen Production – dark and photofermentative process - Biobutanol production – Biogas and Biomethane production - Single stage anaerobic digestion, Two stage anaerobic digestion - Biodiesel production - Enzymatic hydrolysis technologies

UNIT IV CHEMICALS AND ENZYME PRODUCTION FROM WASTES 9
Production of lactic acid, succinic acid, citric acid – Biopolymer synthesis – Production of Amylases - Lignocellulolytic enzymes - Pectinolytic enzymes - Proteases – Lipases

UNIT V BIOCOMPOSTING OF ORGANIC WASTES 9
Overview of composting process - Benefits of composting, Role of microorganisms in composting - Factors affecting the composting process - Waste Materials for Composting, Fundamentals of composting process - Composting technologies, Composting systems – Nonreactor Composting, Reactor composting - Compost Quality

COURSE OUTCOMES
After completion of this course, the students should be able
1. To learn the various methods biological treatment
2. To know the details of waste biomass and its value addition
3. To develop the bioconversion processes to convert wastes to energy
4. To synthesize the chemicals and enzyme from wastes
5. To produce the biocompost from wastes
6. To apply the theoretical knowledge for the development of value added products

TEXT BOOKS

REFERENCE BOOKS
Lifestyle diseases – Definition; Risk factors – Eating, smoking, drinking, stress, physical activity, illicit drug use; Obesity, diabetes, cardiovascular diseases, respiratory diseases, cancer; Prevention – Diet and exercise.

UNIT II CANCER
Types - Lung cancer, Mouth cancer, Skin cancer, Cervical cancer, Carcinoma oesophagus; Causes Tobacco usage, Diagnosis – Biomarkers, Treatment

UNIT III CARDIOVASCULAR DISEASES
Coronary atherosclerosis – Coronary artery disease; Causes - Fat and lipids, Alcohol abuse — Diagnosis - Electrocardiograph, echocardiograph, Treatment, Exercise and Cardiac rehabilitation

UNIT IV DIABETES AND OBESITY
Types of Diabetes mellitus; Blood glucose regulation; Complications of diabetes – Paediatric and adolescent obesity – Weight control and BMI

UNIT V RESPIRATORY DISEASES
Chronic lung disease, Asthma, COPD; Causes - Breathing pattern (Nasal vs mouth), Smoking – Diagnosis - Pulmonary function testing

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:

OBT357 BIOTECHNOLOGY IN HEALTH CARE

COURSE OBJECTIVES
The aim of this course is to
1. Create higher standard of knowledge on healthcare system and services
2. Prioritize advanced technologies for the diagnosis and treatment of various diseases

UNIT I PUBLIC HEALTH

UNIT II CLINICAL DISEASES
Communicable diseases: Chickenpox / Shingles, COVID-19, Tuberculosis, Hepatitis B, Hepatitis C, HIV / AIDS, Influenza, Swine flu. Non Communicable diseases: Diabetes mellitus, atherosclerosis, fatty liver, Obesity, Cancer

UNIT III VACCINOLOGY
History of Vaccinology, conventional approaches to vaccine development, live attenuated and killed vaccines, adjuvants, quality control, preservation and monitoring of microorganisms in seed lot systems. Instruments related to monitoring of temperature, sterilization, environment.
UNIT IV OUTPATIENT & IN PATIENT SERVICES
Radiotherapy, Nuclear medicine, surgical units, OT Medical units, G & Obs. units Pediatric, neonatal units, Critical care units, Physical medicine & Rehabilitation, Neurology, Gastroenterology, Endoscopy, Pulmonology, Cardiology.

UNIT V BASICS OF IMAGING MODALITIES

TEXT BOOKS:

REFERENCE BOOKS:
2. Burtis & Ashwood W.B. Tietz Textboo k of Clinical chemistry. Saunders Company

VERTICAL 1: FINTECH AND BLOCK CHAIN
CMG331 FINANCIAL MANAGEMENT L T P C
3 0 0 3

LEARNING OBJECTIVES
1.To acquire the knowledge of the decision areas in finance.
2. To learn the various sources of Finance
3. To describe about capital budgeting and cost of capital.
4. To discuss on how to construct a robust capital structure and dividend policy
5. To develop an understanding of tools on Working Capital Management.

UNIT I INTRODUCTION TO FINANCIAL MANGEMENT
Definition and Scope of Finance Functions - Objectives of Financial Management - Profit Maximization and Wealth Maximization- Time Value of money- Risk and return concepts.

UNIT II SOURCES OF FINANCE
Long term sources of Finance -Equity Shares – Debentures - Preferred Stock – Features – Merits and Demerits. Short term sources - Bank Sources, Trade Credit, Overdrafts, Commercial Papers, Certificate of Deposits, Money market mutual funds etc

UNIT III INVESTMENT DECISIONS
Cost of Capital - Cost of Specific Sources of Capital - Equity - Preferred Stock - Debt - Reserves - Concept and measurement of cost of capital - Weighted Average Cost of Capital.

UNIT IV FINANCING AND DIVIDEND DECISION 9

UNIT V WORKING CAPITAL DECISION 9

TEXT BOOKS

REFERENCES
2. Prasanna Chandra, Financial Management,

CMG332 FUNDAMENTALS OF INVESTMENT L T P C
3 0 0 3

OBJECTIVES:
1. Describe the investment environment in which investment decisions are taken.
2. Explain how to Value bonds and equities
3. Explain the various approaches to value securities
4. Describe how to create efficient portfolios through diversification
5. Discuss the mechanism of investor protection in India.

UNIT I THE INVESTMENT ENVIRONMENT
The investment decision process, Types of Investments – Commodities, Real Estate and Financial Assets, the Indian securities market, the market participants and trading of securities, security market indices, sources of financial information, Concept of return and risk, Impact of Taxes and Inflation on return.

UNIT II FIXED INCOME SECURITIES
Bond features, types of bonds, estimating bond yields, Bond Valuation types of bond risks, default risk and credit rating.

UNIT III APPROACHES TO EQUITY ANALYSIS
Introduction to Fundamental Analysis, Technical Analysis and Efficient Market Hypothesis, dividend capitalisation models, and price-earnings multiple approach to equity valuation.

UNIT IV PORTFOLIO ANALYSIS AND FINANCIAL DERIVATIVES
Portfolio and Diversification, Portfolio Risk and Return; Mutual Funds; Introduction to Financial Derivatives; Financial Derivatives Markets in India

UNIT V INVESTOR PROTECTION
Role of SEBI and stock exchanges in investor protection; Investor grievances and their redressal system, insider trading, investors’ awareness and activism

TOTAL: 45 PERIODS

REFERENCES:

CMG333 BANKING, FINANCIAL SERVICES AND INSURANCE

OBJECTIVES
- Understand the Banking system in India
- Grasp how banks raise their sources and how they deploy it
- Understand the development in banking technology
- Understand the financial services in India
- Understand the insurance Industry in India

UNIT I INTRODUCTION TO INDIAN BANKING SYSTEM
Overview of Banking system – Structure – Functions –Banking system in India - Key Regulations in Indian Banking sector –RBI. Relationship between Banker and Customer - Retail & Wholesale Banking – types of Accounts - Opening and operation of Accounts.

UNIT II MANAGING BANK FUNDS/ PRODUCTS

UNIT III DEVELOPMENT IN BANKING TECHNOLOGY

UNIT IV FINANCIAL SERVICES
UNIT V INSURANCE

REFERENCES:

CMG334 INTRODUCTION TO BLOCKCHAIN AND ITS APPLICATIONS

UNIT I INTRODUCTION TO BLOCKCHAIN
Blockchain: The growth of blockchain technology - Distributed systems - The history of blockchain and Bitcoin - Features of a blockchain - Types of blockchain, Consensus: Consensus mechanism - Types of consensus mechanisms - Consensus in blockchain. Decentralization: Decentralization using blockchain - Methods of decentralization - Routes to decentralization- Blockchain and full ecosystem decentralization - Smart contracts - Decentralized Organizations- Platforms for decentralization.

UNIT II INTRODUCTION TO CRYPTOCURRENCY

UNIT III ETHEREUM
Introduction - The Ethereum network - Components of the Ethereum ecosystem - Transactions and messages - Ether cryptocurrency / tokens (ETC and ETH) - The Ethereum Virtual Machine (EVM), Ethereum Development Environment: Test networks - Setting up a private net - Starting up the private network

UNIT IV WEB3 AND HYPERLEDGE

UNIT V EMERGING TRENDS

REFERENCE
2. Peter Borovykh , Blockchain Application in Finance, Blockchain Driven, 2nd Edition, 2018
UNIT I
CURRENCY EXCHANGE AND PAYMENT

UNIT II
DIGITAL FINANCE AND ALTERNATIVE FINANCE
A Brief History of Financial Innovation, Digitization of Financial Services, Crowd funding, Charity and Equity,. Introduction to the concept of Initial Coin Offering

UNIT III
INSURETECH
InsurTech Introduction , Business model disruption AI/ML in InsurTech IoT and InsurTech ,Risk Modeling ,Fraud Detection Processing claims and Underwriting Innovations in Insurance Services

UNIT IV
PEER TO PEER LENDING
P2P and Marketplace Lending, New Models and New Products in market place lending P2P Infrastructure and technologies, Concept of Crowdfunding Crowdfunding Architecture and Technology ,P2P and Crowdfunding unicorns and business models , SME/MSME Lending: Unique opportunities and Challenges, Solutions and Innovations

UNIT V
REGULATORY ISSUES

TOTAL : 45 PERIODS

REFERENCES:
5. IIBF, Digital Banking, Taxmann Publication, 2016

CMG336
INTRODUCTION TO FINTECH

OBJECTIVES:
1. To learn about history, importance and evolution of Fintech
2. To acquire the knowledge of Fintech in payment industry
3. To acquire the knowledge of Fintech in insurance industry
4. To learn the Fintech developments around the world
5. To know about the future of Fintech

UNIT I INTRODUCTION
Fintech - Definition, History, concept, meaning, architecture, significance, Goals, key areas in Fintech, Importance of Fintech, role of Fintech in economic development, opportunities and challenges in Fintech, Evolution of Fintech in different sectors of the industry - Infrastructure, Banking Industry, Startups and Emerging Markets, recent developments in FinTech, future prospects and potential issues with Fintech.

UNIT II PAYMENT INDUSTRY
FinTech in Payment Industry-Multichannel digital wallets, applications supporting wallets, onboarding and KYC application, FinTech in Lending Industry- Formal lending, Informal lending, P2P lending, POS lending, Online lending, Payday lending, Microfinance, Crowdfunding.

UNIT III INSURANCE INDUSTRY

UNIT IV FINTECH AROUND THE GLOBE

UNIT V FUTURE OF FINTECH
How emerging technologies will change financial services, the future of financial services, banking on innovation through data, why FinTech banks will rule the world, The FinTech Supermarket, Banks partnering with FinTech start-ups, The rise of BankTech, Fintech impact on Retail Banking, A future without money, Ethics in Fintech.

REFERENCES
4. Parag Y Arjunwadkar, FinTech: The Technology Driving Disruption in the financial service industry CRC Press, 2018
6. Pranay Gupta, T. Mandy Tham, Fintech: The New DNA of Financial Services Paperback, 2018

TOTAL:45 PERIODS

VERTICAL 2: ENTREPRENEURSHIP
COURSE OBJECTIVES:
- To develop and strengthen the entrepreneurial quality and motivation of learners.
- To impart the entrepreneurial skills and traits essential to become successful entrepreneurs.
- To apply the principles and theories of entrepreneurship and management in Technology oriented businesses.
- To empower the learners to run a Technology driven business efficiently and effectively.

UNIT I INTRODUCTION TO ENTREPRENEURSHIP
Entrepreneurship - Definition, Need, Scope - Entrepreneurial Skill & Traits - Entrepreneur vs. Intrapreneur; Classification of entrepreneurs, Types of entrepreneurs -Factors affecting entrepreneurial development – Achievement Motivation – Contributions of Entrepreneurship to Economic Development.

UNIT II BUSINESS OWNERSHIP & ENVIRONMENT

UNIT III FUNDAMENTALS OF TECHNOPRENEURSHIP

UNIT IV APPLICATIONS OF TECHNOPRENEURSHIP

UNIT V EMERGING TRENDS IN ENTREPRENEURSHIP

OUTCOMES:
Upon completion of this course, the student should be able to:
CO 1 Learn the basics of Entrepreneurship
CO 2 Understand the business ownership patterns and environment
CO 3 Understand the Job opportunities in Industries relating to Technopreneurship
CO 4 Learn about applications of technopreneurship and successful technopreneurs
CO 5 Acquaint with the recent and emerging trends in entrepreneurship

TEXT BOOKS:

REFERENCES :
4) David Sheff 2002, China Dawn: The Story of a Technology and Business Revolution,
7) Basics of Technoprenuership: Module 1.1-1.2, Frederico Gonzales, President-PESO Inc; M. Barcelon, UP
8) Journal articles pertaining to Entrepreneurship

CMG338 TEAM BUILDING AND LEADERSHIP MANAGEMENT FOR BUSINESS L T P C

3 0 0 3

COURSE OBJECTIVES:
• To develop and strengthen the Leadership qualities and motivation of learners.
• To impart the Leadership skills and traits essential to become successful entrepreneurs.
• To apply the principles and theories of Team Building in managing Technology oriented businesses.
• To empower the learners to build robust teams for running and leading a business efficiently and effectively

NIT I INTRODUCTION TO MANAGING TEAMS
Introduction to Team - Team Dynamics - Team Formation – Stages of Team Development - Enhancing teamwork within a group - Team Coaching - Team Decision Making - Virtual Teams - Self Directed Work Teams (SDWTs) - Multicultural Teams.

UNIT II MANAGING AND DEVELOPING EFFECTIVE TEAMS
Team-based Organisations- Leadership roles in team-based organisations - Offsite training and team development - Experiential Learning - Coaching and Mentoring in team building - Building High-Performance Teams - Building Credibility and Trust - Skills for Developing Others - Team Building at the Top - Leadership in Teamwork Effectiveness.

UNIT III INTRODUCTION TO LEADERSHIP
Introduction to Leadership - Leadership Myths – Characteristics of Leader, Follower and Situation - Leadership Attributes - Personality Traits and Leadership - Intelligence Types and Leadership - Power and Leadership - Delegation and Empowerment.

UNIT IV LEADERSHIP IN ORGANISATIONS

UNIT V LEADERSHIP EFFECTIVENESS

TOTAL: 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the student should be able to:
CO 1 Learn the basics of managing teams for business.
CO 2 Understand developing effective teams for business management.
CO 3 Understand the fundamentals of leadership for running a business.
CO 4 Learn about the importance of leadership for business development.
CO 5 Acquaint with emerging trends in leadership effectiveness for entrepreneurs.”

REFERENCES:

CMG339 CREATIVITY & INNOVATION IN ENTREPRENEURSHIP

COURSE OBJECTIVES
- To develop the creativity skills among the learners
- To impart the knowledge of creative intelligence essential for entrepreneurs
- To know the applications of innovation in entrepreneurship.
- To develop innovative business models for business.

UNIT I CREATIVITY
Creativity: Definition- Forms of Creativity-Essence, Elaborative and Expressive Creativities- Quality of Creativity-Existential, Entrepreneurial and Empowerment Creativities – Creative Environment- Creative Technology- Creative Personality and Motivation.

UNIT II CREATIVE INTELLIGENCE
Creative Intelligence: Convergent thinking ability – Traits Congenial to creativity – Creativity Training-- Criteria for evaluating Creativity-Credible Evaluation- Improving the quality of our creativity – Creative Tools and Techniques - Blocks to creativity- fears and Disabilities- Strategies for Unblocking- Designing Creativity Enabling Environment.

UNIT III INNOVATION

UNIT IV INNOVATION AND ENTREPRENEURSHIP

UNIT V INNOVATIVE BUSINESS MODELS
COURSE OUTCOMES:
Upon completion of this course, the student should be able to:
CO 1 Learn the basics of creativity for developing Entrepreneurship
CO 2 Understand the importance of creative intelligence for business growth
CO 3 Understand the advances through Innovation in Industries
CO 4 Learn about applications of innovation in building successful ventures
CO 5 Acquaint with developing innovative business models to run the business efficiently and effectively

SUGGESTED READINGS:
1. Creativity and Innovation in Entrepreneurship, Kankha, Sultan Chand

CMG340 PRINCIPLES OF MARKETING MANAGEMENT FOR BUSINESS

COURSE OBJECTIVES:
- To provide basic knowledge of concepts, principles, tools and techniques of marketing for entrepreneurs
- To provide an exposure to the students pertaining to the nature and Scope of marketing, which they are expected to possess when they enter the industry as practitioners.
- To give them an understanding of fundamental premise underlying market driven strategies and the basic philosophies and tools of marketing management for business owners.

UNIT I INTRODUCTION TO MARKETING MANAGEMENT

UNIT II MARKETING ENVIRONMENT

UNIT III PRODUCT AND PRICING MANAGEMENT

UNIT IV PROMOTION AND DISTRIBUTUION MANAGEMENT

UNIT V CONTEMPORARY ISSUES IN MARKETING MANAGEMENT 9

COURSE OUTCOMES:
After completion of this course, the students will be able to:
CO1 Have the awareness of marketing management process
CO 2 Understand the marketing environment
CO 3 Acquaint about product and pricing strategies
CO 4 Knowledge of promotion and distribution in marketing management.
CO 5 Comprehend the contemporary marketing scenarios and offer solutions to marketing issues.

REFERENCES:

CMG341 HUMAN RESOURCE MANAGEMENT FOR ENTREPRENEURS L T P C
3 0 0 3

OBJECTIVES:
1) To introduce the basic concepts, structure and functions of human resource management for entrepreneurs.
2) To create an awareness of the roles, functions and functioning of human resource department.
3) To understand the methods and techniques followed by Human Resource Management practitioners.

UNIT I INTRODUCTION TO HRM 9

UNIT II HUMAN RESOURCE PLANNING 9
HR Planning - Definition - Factors- Tools - Methods and Techniques - Job analysis- Job rotation- Job Description - Career Planning - Succession Planning - HRIS - Computer Applications in HR - Recent Trends

UNIT III RECRUITMENT AND SELECTION 9
Sources of recruitment- Internal Vs. External - Domestic Vs. Global Sources -eRecruitment - Selection Process- Selection techniques -eSelection- Interview Types- Employee Engagement.
UNIT IV TRAINING AND EMPLOYEE DEVELOPMENT

UNIT V CONTROLLING HUMAN RESOURCES

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon completion of this course the learners will be able:
CO 1 To understand the Evolution of HRM and Challenges faced by HR Managers
CO 2 To learn about the HR Planning Methods and practices.
CO 3 To acquaint about the Recruitment and Selection Techniques followed in Industries.
CO 4 To known about the methods of Training and Employee Development.
CO 5 To comprehend the techniques of controlling human resources in organisations.

REFERENCES:

CMG342 FINANCING NEW BUSINESS VENTURES

COURSE OBJECTIVES:
- To develop the basics of business venture financing.
- To impart the knowledge essential for entrepreneurs for financing new ventures.
- To acquaint the learners with the sources of debt and equity financing.
- To empower the learners towards fund raising for new ventures effectively.

UNIT I ESSENTIALS OF NEW BUSINESS VENTURE

UNIT II INTRODUCTION TO VENTURE FINANCING

UNIT III SOURCES OF DEBT FINANCING
UNIT IV SOURCES OF EQUITY FINANCING
Own Capital, Unsecured Loan - Government Subsidies, Margin Money - Equity Funding - Private Equity Fund - Schemes of Commercial banks - Angel Funding - Crowdfunding - Venture Capital.

UNIT V METHODS OF FUND RAISING FOR NEW VENTURES

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course, the students should be able to:
CO 1 Learn the basics of starting a new business venture.
CO 2 Understand the basics of venture financing.
CO 3 Understand the sources of debt financing.
CO 4 Understand the sources of equity financing.
CO 5 Acquaint with the methods of fund raising for new business ventures.

REFERENCES:
1) Principles of Corporate Finance by Brealey and Myers et al., 12th ed, McGraw Hill Education (India) Private Limited, 2018

VERTICAL 3: PUBLIC ADMINISTRATION

CMG343 PRINCIPLES OF PUBLIC ADMINISTRATION

UNIT-I
1. Meaning, Nature and Scope of Public Administration
2. Importance of Public Administration
3. Evolution of Public Administration
UNIT-II
1. New Public Administration
2. New Public Management
3. Public and Private Administration

UNIT-III
1. Relationships with Political Science, History and Sociology
2. Classical Approach
3. Scientific Management Approach

UNIT-IV
1. Bureaucratic Approach: Max Weber
2. Human Relations Approach : Elton Mayo
3. Ecological Approach : Riggs

UNIT-V
1. Leadership: Leadership - Styles - Approaches
2. Communication: Communication Types - Process - Barriers

TOTAL: 45 PERIODS

REFERENCES:
5. R. Tyagi, Public Administration, Atma Ram & Sons, New Delhi, 1983.

CMG344 CONSTITUTION OF INDIA L T P C
3 0 0 3

UNIT- I
1. Constitutional Development Since 1909 to 1947
3. Constituent Assembly

UNIT-II
1. Fundamental Rights
2. Fundamental Duties
3. Directive Principles of State Policy

UNIT-III
1. President
2. Parliament
3. Supreme Court

UNIT-IV
1. Governor
2. State Legislature
3. High Court

UNIT-V
CMG345 PUBLIC PERSONNEL ADMINISTRATION

UNIT-I
1. Meaning, Scope and Importance of Personnel Administration
2. Types of Personnel Systems: Bureaucratic, Democratic and Representative systems

UNIT-II
1. Generalist Vs Specialist
2. Civil Servants’ Relationship with Political Executive
3. Integrity in Administration.

UNIT-III
1. Recruitment: Direct Recruitment and Recruitment from Within
2. Training: Kinds of Training
3. Promotion

UNIT-IV
1. All India Services
2. Service Conditions
3. State Public Service Commission

UNIT-V
1. Employer Employee Relations
2. Wage and Salary Administration
3. Allowances and Benefits

REFERENCES:
1. Stahl Glean O: Public Personnel Administration
4. Dwivedi O.P and Jain R.B: India’s Administrative state.
7. Davar R.S. Personnel Management & Industrial Relations
CMG346 ADMINISTRATIVE THEORIES L T P C 3 0 0 3

UNIT I
(9)
Meaning, Scope and significance of Public Administration, Evolution of Public Administration as a discipline and Identity of Public Administration

UNIT II
(9)
Theories of Organization: Scientific Management Theory, Classical Model, Human Relations Theory

UNIT III
(9)
Organization goals and Behaviour, Groups in organization and group dynamics, Organizational Design.

UNIT IV
(9)
Motivation Theories, content, process and contemporary; Theories of Leadership: Traditional and Modern: Process and techniques of decision-making

UNIT V
(9)
Administrative thinkers: Kautilya, Woodrow Willson, C.I. Barnard. Peter Drucker

REFERENCES:
1. Crozior M : The Bureaucratic phenomenon (Chand)
3. Presthus. R : The Organizational Society (MAC)
5. Keith Davis : Organization Theory (MAC)

TOTAL: 45 PERIODS

CMG347 INDIAN ADMINISTRATIVE SYSTEM L T P C 3 0 0 3

UNIT I
(9)
Evolution and Constitutional Context of Indian Administration, Constitutional Authorities: Finance Commission, Union Public Services Commission, Election Commission, Comptroller and Auditor General of India, Attorney General of India

UNIT II
(9)
Role & Functions of the District Collector, Relationship between the District Collector and Superintendent of Police, Role of Block Development Officer in development programmes, Local Government

UNIT III
(9)
Main Features of 73rd Constitutional Amendment Act 1992, Salient Features of 74th Constitutional Amendment Act 1992

UNIT IV
(9)
Coalition politics in India, Integrity and Vigilance in Indian Administration

UNIT V
(9)
REFERENCES:
1. S.R. Maheswari : Indian Administration
2. Khera. S.S : Administration in India
3. Ramesh K. Arora : Indian Public Administration
4. T.N. Chaturvedi : State administration in India
5. Basu, D.D : Introduction to the Constitution of India

CMG348 PUBLIC POLICY ADMINISTRATION L T P C
UNIT-I

UNIT-II
Approaches in Policy Analysis - Institutional Approach – Incremental Approach and System’s Approach – Dror’s Optimal Model

UNIT-III

UNIT-IV
Institutional Framework of Policy making – Role of Bureaucracy – Role of Interest Groups and Role of Political Parties.

UNIT-V
Introduction to the following Public Policies – New Economic Policy – Population Policy – Agriculture policy - Information Technology Policy.

REFERENCES:
4. Pradeep Saxena : Public Policy Administration and Development

VERTICAL 4: BUSINESS DATA ANALYTICS
CMG349 STATISTICS FOR MANAGEMENT L T P C
OBJECTIVE:
- To learn the applications of statistics in business decision making.

UNIT I INTRODUCTION
Basic definitions and rules for probability, Baye’s theorem and random variables, Probability distributions: Binomial, Poisson, Uniform and Normal distributions.

UNIT II SAMPLING DISTRIBUTION AND ESTIMATION
Introduction to sampling distributions, Central limit theorem and applications, sampling techniques, Point and Interval estimates of population parameters.

UNIT III TESTING OF HYPOTHESIS - PARAMETRIC TESTS
Hypothesis testing: one sample and two sample tests for means of large samples (z-test), one sample and two sample tests for means of small samples (t-test), ANOVA one way.

UNIT IV NON-PARAMETRIC TESTS

UNIT V CORRELATION AND REGRESSION

OUTCOMES:
- To facilitate objective solutions in business decision making.
- To understand and solve business problems
- To apply statistical techniques to data sets, and correctly interpret the results.
- To develop skill-set that is in demand in both the research and business environments
- To enable the students to apply the statistical techniques in a work setting.

REFERENCES:

CMG350 DATAMINING FOR BUSINESS INTELLIGENCE L T P C 3 0 0 3

OBJECTIVES:
- To know how to derive meaning form huge volume of data and information.
- To understand how knowledge discovering process is used in business decision making.

UNIT I INTRODUCTION
Data mining, Text mining, Web mining, Data ware house.

UNIT II DATA MINING PROCESS
Datamining process – KDD, CRISP-DM, SEMMA
Prediction performance measures

UNIT III PREDICTION TECHNIQUES
Data visualization, Time series – ARIMA, Winter Holts,

UNIT IV CLASSIFICATION AND CLUSTERING TECHNIQUES
Classification, Association, Clustering.
UNIT V MACHINE LEARNING AND AI 9
Genetic algorithms, Neural network, Fuzzy logic, Ant Colony optimization, Particle Swarm optimization
TOTAL: 45 PERIODS

OUTCOMES:
1. Learn to apply various data mining techniques into various areas of different domains.
2. Be able to interact competently on the topic of data mining for business intelligence.
3. Apply various prediction techniques.
4. Learn about supervised and unsupervised learning technique.
5. Develop and implement machine learning algorithms

REFERENCES:
1. Jaiwei Ham and Micheline Kamber, Data Mining concepts and techniques, Kauffmann Publishers 2006
2. Efraim Turban, Ramesh Sharda, Jay E. Aronson and David King, Business Intelligence, Prentice Hall, 2008.
7. G. K. Gupta, Introduction to Data mining with Case Studies, Prentice hall of India, 2011
9. Elizabeth Vitt, Michael Luckevich Stacia Misner, Business Intelligence, Microsoft, 2011

CMG351 HUMAN RESOURCE ANALYTICS L T P C
3 0 0 3

OBJECTIVES:
- To develop the ability of the learners to define and implement HR metrics that are aligned with the overall business strategy.
- To know the different types of HR metrics and understand their respective impact and application.
- To understand the impact and use of HR metrics and their connection with HR analytics.
- To understand common workforce issues and resolving them using people analytics.

UNIT I INTRODUCTION TO HR ANALYTICS 9
People Analytics - stages of maturity - Human Capital in the Value Chain : impact on business – HR metrics and KPIs.

UNIT II HR ANALYTICS I: RECRUITMENT 9
Recruitment Metrics : Fill-up ratio - Time to hire - Cost per hire - Early turnover - Employee referral hires - Agency hires - Lateral hires - Fulfillment ratio- Quality of hire.

UNIT III HR ANALYTICS - TRAINING AND DEVELOPMENT 9
Training & Development Metrics : Percentage of employees trained- Internally and externally trained -Training hours and cost per employee - ROI.

UNIT IV HR ANALYTICS EMPLOYEE ENGAGEMENT AND CAREER PROGRESSION 9
Employee Engagement Metrics: Talent Retention index - Voluntary and involuntary turnover - grades, performance, and service tenure - Internal hired index Career Progression Metrics: Promotion index - Rotation index - Career path index.

UNIT V - HR ANALYTICS IV: WORKFORCE DIVERSITY AND DEVELOPMENT

Workforce Diversity and Development Metrics: Employees per manager – Workforce age profiling - Workforce service profiling - Churnover index - Workforce diversity index - Gender mix

TOTAL: 45 PERIODS

OUTCOME:
- The learners will be conversant about HR metrics and ready to apply at work settings.
- The learners will be able to resolve HR issues using people analytics.

REFERENCES:

CMG352 MARKETING AND SOCIAL MEDIA WEB ANALYTICS

OBJECTIVE:
To showcase the opportunities that exist today to leverage the power of the web and social media

UNIT I MARKETING ANALYTICS
Marketing Budget and Marketing Performance Measure, Marketing - Geographical Mapping, Data Exploration, Market Basket Analysis

UNIT II COMMUNITY BUILDING AND MANAGEMENT
History and Evolution of Social Media - Understanding Science of Social Media – Goals for using Social Media - Social Media Audience and Influencers - Digital PR - Promoting Social Media Pages - Linking Social Media Accounts - The Viral Impact of Social Media.

UNIT III SOCIAL MEDIA POLICIES AND MEASUREMENTS
Social Media Policies - Etiquette, Privacy - ethical problems posed by emerging social media technologies - The Basics of Tracking Social Media.

UNIT IV WEB ANALYTICS
Data Collection, Overview of Qualitative Analysis, Business Analysis, KPI and Planning, Critical Components of a Successful Web Analytics Strategy, Proposals & Reports, Web Data Analysis.
UNIT V SEARCH ANALYTICS 9
Search engine optimization (SEO), user engagement, user-generated content, web traffic analysis, online security, online ethics, data visualization.

TOTAL: 45 PERIODS

OUTCOME:
- The Learners will understand social media, web and social media analytics and their potential impact.

REFERENCES:
2. Christian Fuchs, Social Media a critical introduction, SAGE Publications Ltd, 2014
5. Ric T. Peterson, Web Analytics Demystified, Celilo Group Media and CafePress 2004

CMG353 OPERATION AND SUPPLY CHAIN ANALYTICS L T P C 3 0 0 3

OBJECTIVE:
To treat the subject in depth by emphasizing on the advanced quantitative models and methods in operations and supply chain management and its practical aspects and the latest developments in the field.

UNIT I INTRODUCTION 9
Descriptive, predictive and prescriptive analytics, Data Driven Supply Chains – Basics, transforming supply chains.

UNIT II WAREHOUSING DECISIONS 9
P-Median Methods - Guided LP Approach, Greedy Drop Heuristics, Dynamic Location Models, Space Determination and Layout Methods.

UNIT III INVENTORY MANAGEMENT 9
Dynamic Lot sizing Methods, Multi-Echelon Inventory models, Aggregate Inventory system and LIMIT, Risk Analysis in Supply Chain, Risk pooling strategies.

UNIT IV TRANSPORTATION NETWORK MODELS 9

UNIT V MCDM MODELS 9
Analytic Hierarchy Process(AHP), Data Envelopment Analysis (DEA), Fuzzy Logic and Techniques, the analytical network process (ANP), TOPSIS.

TOTAL: 45 PERIODS

OUTCOME:
- To enable quantitative solutions in business decision making under conditions of certainty, risk and uncertainty.

REFERENCES:

CMG354 FINANCIAL ANALYTICS L T P C 3 0 0 3

OBJECTIVE:
- This course introduces a core set of modern analytical tools that specifically target finance applications.

UNIT I CORPORATE FINANCE ANALYSIS 9
Basic corporate financial predictive modelling- Project analysis- cash flow analysis- cost of capital, Financial Break even modelling, Capital Budget model-Payback, NPV, IRR.

UNIT II FINANCIAL MARKET ANALYSIS 9
Estimation and prediction of risk and return (bond investment and stock investment) –Time series-examining nature of data, Value at risk, ARMA, ARCH and GARCH.

UNIT III PORTFOLIO ANALYSIS 9
Portfolio Analysis – capital asset pricing model, Sharpe ratio, Option pricing models- binomial model for options, Black Scholes model and Option implied volatility.

UNIT IV TECHNICAL ANALYSIS 9

UNIT V CREDIT RISK ANALYSIS 9
Credit Risk analysis - Data processing, Decision trees, logistic regression and evaluating credit risk model.

TOTAL: 45 PERIODS

OUTCOME
- The learners should be able to perform financial analysis for decision making using excel, Python and R.

REFERENCES:
OBJECTIVE:
- To impart knowledge about sustainable Infrastructure development goals, practices and to understand the concepts of sustainable planning, design, construction, maintenance and decommissioning of infrastructure projects.

UNIT I SUSTAINABLE DEVELOPMENT GOALS

UNIT II SUSTAINABLE INFRASTRUCTURE PLANNING

UNIT III SUSTAINABLE CONSTRUCTION PRACTICES AND TECHNIQUES

UNIT IV SUSTAINABLE CONSTRUCTION MATERIALS

UNIT V SUSTAINABLE MAINTENANCE OF INFRASTRUCTURE PROJECTS

TOTAL: 45 PERIODS
OUTCOME:
On completion of the course, the student is expected to be able to
CO1 Understand the environment sustainability goals at global and Indian scenario.
CO2 Understand risks in development of projects and suggest mitigation measures.
CO3 Apply lean techniques, LBMS and new construction techniques to achieve sustainability in infrastructure construction projects.
CO4 Explain Life Cycle Analysis and life cycle cost of construction materials.
CO5 Explain the new technologies for maintenance of infrastructure projects.

REFERENCES:
5. New Building Materials and Construction World magazine
7. Munier N, "Introduction to Sustainability", Springer2005

CO’s- PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

CES332 SUSTAINABLE AGRICULTURE AND ENVIRONMENTAL MANAGEMENT

OBJECTIVES:
- To educate the students about the issues of sustainability in agroecosystems, introduce the concepts and principles of agroecology as applied to the design and management of sustainable agricultural systems for a changing world.
UNIT I AGROECOLOGY, AGROECOSYSTEM AND SUSTAINABLE AGRICULTURE CONCEPTS

Ecosystem definition - Biotic Vs. abiotic factors in an ecosystem - Ecosystem processes - Ecological services and agriculture - Problems associated with industrial agriculture/food systems - Defining sustainability - Characteristics of sustainable agriculture - Difference between regenerative and sustainable agriculture systems

UNIT II SOIL HEALTH, NUTRIENT AND PEST MANAGEMENT

Soil health definition - Factors to consider (physical, chemical and biological) - Composition of healthy soils - Soil erosion and possible control measures - Techniques to build healthy soil - Management practices for improving soil nutrient - Ecologically sustainable strategies for pest and disease control

UNIT III WATER MANAGEMENT

Soil water storage and availability - Plant yield response to water - Reducing evaporation in agriculture - Earthworks and tanks for rainwater harvesting - Options for improving the productivity of water - Localized irrigation - Irrigation scheduling - Fertigation - Advanced irrigation systems and agricultural practices for sustainable water use

UNIT IV ENERGY AND WASTE MANAGEMENT

Types and sources of agricultural wastes - Composition of agricultural wastes - Sustainable technologies for the management of agricultural wastes - Useful and high value materials produced using different processes from agricultural wastes - Renewable energy for sustainable agriculture

UNIT V EVALUATING SUSTAINABILITY IN AGROECOSYSTEMS

Indicators of sustainability in agriculture - On-farm evaluation of agroecosystem sustainability - Alternative agriculture approaches/ farming techniques for sustainable food production - Goals and components of a community food system - Case studies

TOTAL: 45 PERIODS

OUTCOMES:
On completion of the course, the student is expected to be able to

CO1 Have an in-depth knowledge about the concepts, principles and advantages of sustainable agriculture

CO2 Discuss the sustainable ways in managing soil health, nutrients, pests and diseases

CO3 Suggest the ways to optimize the use of water in agriculture to promote an ecological use of resources

CO4 Develop energy and waste management plans for promoting sustainable agriculture in non-sustainable farming areas

CO5 Assess an ecosystem for its level of sustainability and prescribe ways of converting to a sustainable system through the redesign of a conventional agroecosystem

REFERENCES:
1. Approaches to Sustainable Agriculture – Exploring the Pathways Towards the Future of Farming, Oberc, B.P. & Arroyo Schnell, A., IUCN, Belgium, 2020

CO – PO Mapping - SUSTAINABLE AGRICULTURE PRACTICES

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
OBJECTIVES

- To impart knowledge of biomaterials and their properties
- To learn about fundamentals aspects of biopolymers and their applications
- To learn about bioceramics and biopolymers
- To introduce the students about metals as biomaterials and their usage as implants
- To make the students understand the significance of bionanomaterials and its applications.

UNIT I INTRODUCTION TO BIOMATERIALS

UNIT II BIO POLYMERS

Molecular structure of polymers - Molecular weight - Types of polymerization techniques - Types of polymerization reactions - Physical states of polymers - Common polymeric biomaterials - Polyethylene - Polymethylmethacrylate (PMMA) - Polyactic acid (PLA) - Polylactic acid (PGA) - Polycaprolactone (PCL) - Other biodegradable polymers - Polyurethanes - Reactions polymers for medical purposes - Collagens - Elastins - Cellulose and derivatives - Synthetic polymeric membranes and their biological applications

UNIT III BIO CERAMICS AND BIOCOMPOSITES

General properties - Bio ceramics - Silicate glass - Alumina (Al2O3) - Zirconia (ZrO2) - Carbon - Calcium phosphates (CaP) - Resorbable Ceramics - surface reactive ceramics - Biomedical Composites - Polymer Matrix Composite(PMC) - Ceramic Matrix Composite(CMC) - Metal Matrix Composite (MMC) - glass ceramics - Orthopedic implants - Tissue engineering scaffolds

UNIT IV METALS AS BIOMATERIALS

Biomedical metals-types and properties - stainless steel - Cobalt chromium alloys - Titanium alloys - Tantalum - Nickel titanium alloy (Nitinol) - magnesium-based biodegradable alloys - surface properties of metal implants for osteointegration - medical application - corrosion of metallic implants - biological tolerance of implant metals

UNIT V NANOBIO_MATERIALS

OUTCOMES

- Students will gain familiarity with Biomaterials and they will understand their importance.
- Students will get an overview of different biopolymers and their properties
- Students gain knowledge on some of the important Bioceramics and Biocomposite materials

TOTAL: 45 PERIODS
• Students gain knowledge on metals as biomaterials
• Student gains knowledge on the importance of nanobiomaterials in biomedical applications.

REFERENCES
6. VasifHasirci, NesrinHasirci “Fundamentals of Biomaterials” Springer, 2018

UNIT V SUPERCAPACITORS
Supercapacitor – types of supercapacitors (electrostatic double-layer capacitors, pseudo capacitors and hybrid capacitors) - design of supercapacitor-three and two electrode cell-parameters of supercapacitor- Faradaic and non - Faradaic capacitance – electrode materials (transition metal oxides (MO), mixed metal oxides, conducting polymers (CP), Mxenes, nanocarbons, non-noble metal, chalcogenides, hydroxides and 1D-3D metal-organic frame work (MOF), activated carbon fibres (ACF)- Hydroxides-Based Materials - Polyaniline (PANI), a ternary hybrid composite- conductive polypyrrole hydrogels – Different types of nanocomposites for the SC electrodes (carbon–carbon composites, carbon-MOs composites, carbon-CPs composites and MOs-CPs composites) - Two-Dimensional (2D) Electrode Materials - 2D transition metal carbides, carbonitriles, and nitrides.

OUTCOMES
- Students will acquire knowledge about energy sustainability.
- Students understand the principles of different electrochemical devices.
- Students learn about the working of fuel cells and their application.
- Students will learn about various Photovoltaic applications and the materials used.
- The students gain knowledge on different types of supercapacitors and the performance of various materials.

REFERENCES
5. Materials for Supercapacitor applications; B.Viswanathan. M.Aulice Scibioh

CES335 GREEN TECHNOLOGY L T P C 3 0 0 3

COURSE OBJECTIVE:
- To acquire knowledge on green systems and the environment, energy technology and efficiency, and sustainability.
- To provide green engineering solutions to energy demand, reduced energy footprint.
UNIT I PRINCIPLES OF GREEN CHEMISTRY
Historical Perspectives and Basic Concepts. The twelve Principles of Green Chemistry and green engineering. Green chemistry metrics- atom economy, E factor, reaction mass efficiency, and other green chemistry metrics, application of green metrics analysis to synthetic plans.

UNIT II POLLUTION TYPES
Pollution – types, causes, effects, and abatement. Waste – sources of waste, different types of waste, chemical, physical and biochemical methods of waste minimization and recycling.

UNIT III GREEN REAGENTS AND GREEN SYNTHESIS
Environmentally benign processes- alternate solvents- supercritical solvents, ionic liquids, water as a reaction medium, energy-efficient design of processes- photo, electro and sono chemical methods, microwave-assisted reactions

UNIT IV DESIGNING GREEN PROCESSES
Safe design, process intensification, in process monitoring. Safe product and process design – Design for degradation, Real-time Analysis for pollution prevention, inherently safer chemistry for accident prevention

UNIT V GREEN NANOTECHNOLOGY
Nanomaterials for water treatment, nanotechnology for renewable energy, nanotechnology for environmental remediation and waste management, nanotechnology products as potential substitutes for harmful chemicals, environmental concerns with nanotechnology

COURSE OUTCOMES
CO1: To understand the principles of green engineering and technology
CO2: To learn about pollution using hazardous chemicals and solvents
CO3: To modify processes and products to make them green and safe.
CO4: To design processes and products using green technology
CO5: To understand advanced technology in green synthesis

TEXT BOOKS

REFERENCE
1. Environmental chemistry, Stanley E Manahan, Taylor and Francis, 2017

CES336 ENVIRONMENTAL QUALITY MONITORING AND ANALYSIS

OBJECTIVES:
- to understand and study the complexity of the environment in relation to pollutants generated due to industrial activity.
- To analyze the quality of the environmental parameters and monitor the same for the purpose of environmental risk assessment.

UNIT I ENVIRONMENTAL MONITORING AND STANDARDS

UNIT II MONITORING OF ENVIRONMENTAL PARAMETERS

UNIT III ANALYTICAL METHODS FOR ENVIRONMENTAL MONITORING
Classification of Instrumental Method- Analysis of Organic Pollutants by Spectrophotometric methods - Determination of nitrogen, phosphorus and, chemical oxygen demand (COD) in sewage; Biochemical oxygen demand (BOD)- Sampling techniques for air pollution measurements; analysis of particulates and air pollutants like oxides of nitrogen, oxides of sulfur, carbon monoxide, hydrocarbon; Introduction to advanced instruments for environmental analysis.

UNIT IV ENVIRONMENTAL MONITORING PROGRAMME (EMP) & RISKASSESSMENT

UNIT V AUTOMATED DATA ACQUISITION AND PROCESSING
Data Acquisition for Process Monitoring and Control - The Data Acquisition System - Online Data Acquisition, Monitoring, and Control - Implementation of a Data Management System - Review of Observational Networks - Sensors and transducers- classification of transducers- data acquisition system- types of data acquisition systems- data management and quality control; regulatory overview.

TOTAL: 45 PERIODS

COURSE OUTCOMES
After completion of this course, the students will know

CO1	Basic concepts of environmental standards and monitoring.
CO2	the ambient air quality and water quality standards;
CO3	the various instrumental methods and their principles for environmental monitoring
CO4	The significance of environmental standards in monitoring quality and sustainability of the environment.
CO5	the various ways of raising environmental awareness among the people.
CO6	Know the standard research methods that are used worldwide for monitoring the environment.

TEXTBOOKS
2. Handbook of environmental analysis: chemical pollutants in the air, water, soil, and solid wastes / Pradyot Patnaik, © 1997 by CRC Press, Inc

REFERENCES
1. Environmental monitoring / edited by G. Bruce Wiersma, © 2004 by CRC Press LLC.

COURSE ARTICULATION MATRIX
COURSE OBJECTIVES:

1. To create awareness on the energy scenario of India with respect to world
2. To understand the fundamentals of energy sources, energy efficiency and resulting environmental implications of energy utilisation
3. Familiarisation on the concept of sustainable development and its benefits
4. Recognize the potential of renewable energy sources and its conversion technologies for attaining sustainable development
5. Acquainting with energy policies and energy planning for sustainable development

UNIT I ENERGY SCENARIO
Comparison of energy scenario – India and World (energy sources, generation mix, consumption pattern, T&D losses, energy demand, per capita energy consumption) – energy pricing – Energy security

UNIT II ENERGY AND ENVIRONMENT
Conventional Energy Sources - Emissions from fuels – Air, Water and Land pollution – Environmental standards - measurement and controls

UNIT III SUSTAINABLE DEVELOPMENT

UNIT IV RENEWABLE ENERGY TECHNOLOGY

UNIT V ENERGY PLANNING FOR SUSTAINABLE DEVELOPMENT

TOTAL : 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to
1. Understand the world and Indian energy scenario
2. Analyse energy projects, its impact on environment and suggest control strategies
3. Recognise the need of Sustainable development and its impact on human resource development
4. Apply renewable energy technologies for sustainable development
5. Fathom Energy policies and planning for sustainable development.
REFERENCES:
7. https://www.niti.gov.in/verticals/energy

CES338 ENERGY EFFICIENCY FOR SUSTAINABLE DEVELOPMENT L T P C 3 0 0 3

COURSE OBJECTIVES:
1. To understand the types of energy sources, energy efficiency and environmental implications of energy utilisation
2. To create awareness on energy audit and its impacts
3. To acquaint the techniques adopted for performance evaluation of thermal utilities
4. To familiarise on the procedures adopted for performance evaluation of electrical utilities
5. To learn the concept of sustainable development and the implication of energy usage

UNIT I ENERGY AND ENVIRONMENT 9
Primary energy sources - Coal, Oil, Gas – India Vs World with respect to energy production and consumption, Climate Change, Global Warming, Ozone Depletion, UNFCCC, COP

UNIT II ENERGY AUDITING 9
Need and types of energy audit. Energy management (audit) approach-understanding energy costs, benchmarking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel & energy substitution, energy audit instruments

UNIT III ENERGY EFFICIENCY IN THERMAL UTILITIES 9
Energy conservation avenues in steam generation and utilisation, furnaces, Thermic Fluid Heaters. Insulation and Refractories - Commercial waste heat recovery devices: recuperator, regenerator, heat pipe, heat exchangers (Plate, Shell & Tube), heat pumps, and thermocompression

UNIT IV ENERGY CONSERVATION IN ELECTRICAL UTILITIES 9
Demand side management - Power factor improvement – Energy efficient transformers - Energy conservation avenues in Motors, HVAC, fans, blowers, pumps, air compressors, illumination systems and cooling towers

UNIT V SUSTAINABLE DEVELOPMENT 9

TOTAL:45 PERIODS

COURSE OUTCOMES:
Upon completion of this course, the students will be able to
1. Understand the prevailing energy scenario
2. Familiarise on energy audits and its relevance
3. Apply the concept of energy audit on thermal utilities
4. Employ relevant techniques for energy improvement in electrical utilities
5. Understand Sustainable development and its impact on human resource development

REFERENCES: