ANNA UNIVERSITY, CHENNAI
NON-AUTONOMOUS AFFILIATED COLLEGES
REGULATIONS 2023
CHOICE BASED CREDIT SYSTEM

B. E. MECHANICAL ENGINEERING

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

I. Effectuating success in careers by exploring with the design, digital and computational analysis of engineering systems, experimentation and testing, smart manufacturing, technical services, and research.

II. Amalgamating effectively with stakeholders to update and improve their core competencies and abilities to ethically compete in the ever-changing multicultural global enterprise.

III. To encourage multi-disciplinary research and development to foster advanced technology, and to nurture innovation and entrepreneurship in order to compete successfully in the global economy.

IV. To globally share and apply technical knowledge to create new opportunities that proactively advances our society through team efforts and to solve various challenging technical, environmental and societal problems.

V. To create world class mechanical engineers capable of practice engineering ethically with a solid vision to become great leaders in academia, industries and society.

PROGRAM OUTCOMES (POs)

<table>
<thead>
<tr>
<th>PO</th>
<th>GRADUATE ATTRIBUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.</td>
</tr>
<tr>
<td>2</td>
<td>Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.</td>
</tr>
<tr>
<td>3</td>
<td>Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.</td>
</tr>
<tr>
<td>4</td>
<td>Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.</td>
</tr>
<tr>
<td>5</td>
<td>Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.</td>
</tr>
<tr>
<td>6</td>
<td>The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities</td>
</tr>
</tbody>
</table>
relevant to the professional engineering practice.

7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

On successful completion of the Mechanical Engineering Degree programme, the Graduates shall exhibit the following:

1. Apply the knowledge gained in Mechanical Engineering for design and development and manufacture of engineering systems.
2. Apply the knowledge acquired to investigate research-oriented problems in mechanical engineering with due consideration for environmental and social impacts.
3. Use the engineering analysis and data management tools for effective management of multidisciplinary projects.

PEO / PO MAPPING:

<table>
<thead>
<tr>
<th>PEOs</th>
<th>PEs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>II.</td>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td>III.</td>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td>IV.</td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>V.</td>
<td></td>
<td>(5)</td>
</tr>
</tbody>
</table>

Attested

Centre for Academic Courses
Aruna University, Chennai-600 025
ANNA UNIVERSITY, CHENNAI
NON-AUTONOMOUS AFFILIATED COLLEGES
REGULATIONS 2023
B.E. MECHANICAL ENGINEERING (PART-TIME)
I - VIII SEMESTERS CURRICULUM AND SYLLABUS

SEMESTER I

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>PTMA3151</td>
<td>Matrices and Calculus</td>
<td>BSC</td>
<td>L 3</td>
<td>T 1</td>
<td>P 0</td>
</tr>
<tr>
<td>2.</td>
<td>PTPH3151</td>
<td>Engineering Physics</td>
<td>BSC</td>
<td>L 3</td>
<td>T 0</td>
<td>P 0</td>
</tr>
<tr>
<td>3.</td>
<td>PTCY3151</td>
<td>Engineering Chemistry</td>
<td>BSC</td>
<td>L 3</td>
<td>T 0</td>
<td>P 0</td>
</tr>
<tr>
<td>4.</td>
<td>PTBE3251</td>
<td>Basic Electrical and Electronics</td>
<td>ESC</td>
<td>L 3</td>
<td>T 0</td>
<td>P 0</td>
</tr>
<tr>
<td>5.</td>
<td>PTGE3151</td>
<td>Problem Solving and Python</td>
<td>ESC</td>
<td>L 3</td>
<td>T 0</td>
<td>P 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>PTMA3251</td>
<td>Statistics and Numerical Methods</td>
<td>BSC</td>
<td>L 3</td>
<td>T 1</td>
<td>P 0</td>
</tr>
<tr>
<td>2.</td>
<td>PTPH3251</td>
<td>Materials Science</td>
<td>BSC</td>
<td>L 3</td>
<td>T 0</td>
<td>P 0</td>
</tr>
<tr>
<td>3.</td>
<td>PTME3393</td>
<td>Manufacturing Processes</td>
<td>PCC</td>
<td>L 3</td>
<td>T 0</td>
<td>P 0</td>
</tr>
<tr>
<td>4.</td>
<td>PTME3351</td>
<td>Engineering Mechanics</td>
<td>ESC</td>
<td>L 3</td>
<td>T 0</td>
<td>P 0</td>
</tr>
<tr>
<td>5.</td>
<td>PTCE3391</td>
<td>Fluid Mechanics and Machinery</td>
<td>ESC</td>
<td>L 3</td>
<td>T 1</td>
<td>P 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>

SEMESTER III

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>PTME3491</td>
<td>Theory of Machines</td>
<td>PCC</td>
<td>L 3</td>
<td>T 0</td>
<td>P 0</td>
</tr>
<tr>
<td>2.</td>
<td>PTME3391</td>
<td>Engineering Thermodynamics</td>
<td>PCC</td>
<td>L 3</td>
<td>T 0</td>
<td>P 0</td>
</tr>
<tr>
<td>3.</td>
<td>PTME3392</td>
<td>Engineering Materials and Metallurgy</td>
<td>PCC</td>
<td>L 3</td>
<td>T 0</td>
<td>P 0</td>
</tr>
<tr>
<td>4.</td>
<td>PTCE3491</td>
<td>Strength of Materials</td>
<td>PCC</td>
<td>L 3</td>
<td>T 0</td>
<td>P 0</td>
</tr>
<tr>
<td>5.</td>
<td>PTME3493</td>
<td>Manufacturing Technology</td>
<td>PCC</td>
<td>L 3</td>
<td>T 0</td>
<td>P 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>
SEMESTER IV

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>PTME3492</td>
<td>Hydraulics and Pneumatics</td>
<td>PCC</td>
<td>3 0 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>PTME3591</td>
<td>Design of Machine Elements</td>
<td>PCC</td>
<td>4 0 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PTME3401</td>
<td>Micro and Precision Engineering</td>
<td>PCC</td>
<td>3 0 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PTME3451</td>
<td>Thermal Engineering</td>
<td>PCC</td>
<td>4 0 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>PTME3461</td>
<td>Thermal Engineering Laboratory</td>
<td>PCC</td>
<td>0 0 4 0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>14 0 4</td>
<td>18</td>
<td>16</td>
</tr>
</tbody>
</table>

SEMESTER V

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>PTGE3451</td>
<td>Environmental Sciences and Sustainability</td>
<td>BSC</td>
<td>2 0 0 0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>PTCME389</td>
<td>Design of Transmission System</td>
<td>PCC</td>
<td>3 0 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PTME3592</td>
<td>Metrology and Measurements</td>
<td>PCC</td>
<td>3 0 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PTCME365</td>
<td>Renewable Energy Technologies</td>
<td>PCC</td>
<td>3 0 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>PTCME347</td>
<td>Lean Manufacturing</td>
<td>PCC</td>
<td>3 0 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>13 0 0</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

SEMESTER VI

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>PTCME396</td>
<td>Process Planning and Cost Estimation</td>
<td>PCC</td>
<td>3 0 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>PTME3792</td>
<td>Computer Integrated Manufacturing</td>
<td>PCC</td>
<td>3 0 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PTME3691</td>
<td>Heat and Mass Transfer</td>
<td>PCC</td>
<td>3 1 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Professional Elective I</td>
<td>PEC</td>
<td>3 0 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>PTME3681</td>
<td>CAD/CAM Laboratory</td>
<td>PCC</td>
<td>0 0 4 0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>12 1 4</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>
SEMESTER VII

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATE GORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>PTGE3751</td>
<td>Principles of Management</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>PTCME384</td>
<td>Power Plant Engineering</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>PTME3791</td>
<td>Mechatronics and IoT</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Professional Elective II</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>PTME3781</td>
<td>Mechatronics and IoT Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

SEMESTER VIII

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATE GORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>PTGE3792</td>
<td>Industrial Management</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>PTGE3791</td>
<td>Human Values And Ethics</td>
<td>HSMC</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Professional Elective - III</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>PTME3811</td>
<td>Project Work</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE:

\[
16+17+15+16+14+15+14+11 = 118
\]
PROFESSIONAL ELECTIVE I

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATE</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT Periods</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>PTCME331</td>
<td>Automotive Materials, Components, Design and Testing</td>
<td>PEC</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>PTCME393</td>
<td>Advanced Vehicle Engineering</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>PTCME399</td>
<td>Operational Research</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>PTME3001</td>
<td>Sensors and Actuators for Automation</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>PTCME349</td>
<td>Green Manufacturing Design and Practices</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>PTCME356</td>
<td>Rotating Machinery Design</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>PTCME339</td>
<td>Additive Manufacturing</td>
<td>PEC</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>PTCME395</td>
<td>Casting and Welding Processes</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVE II

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATE</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT Periods</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>PTCME335</td>
<td>CAE and CFD Approach in Future Mobility</td>
<td>PEC</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>PTCME336</td>
<td>Hybrid and Electric Vehicle Technology</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>PTCME357</td>
<td>Thermal and Fired Equipment design</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>PTCME355</td>
<td>Material Handling and solid processing Equipment</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>PTCME363</td>
<td>Energy Efficient Buildings</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>PTME3001</td>
<td>Measurements and Controls</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>PTCME381</td>
<td>Design Concepts in Engineering</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td>PTME3002</td>
<td>Artificial Intelligence and Machine Learning</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
PROFESSIONAL ELECTIVE III

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>PTCME342</td>
<td>Ergonomics in Design</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>PTCME343</td>
<td>New Product Development</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PTMR3691</td>
<td>Robotics</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PTCME350</td>
<td>Environment Sustainability and Impact Assessment</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>PTCME353</td>
<td>Design of Pressure Vessels</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>PTCME354</td>
<td>Failure Analysis and NDT Techniques</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>PTCME358</td>
<td>Industrial Layout Design and Safety</td>
<td>PEC</td>
<td>2 0 2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>PTCME337</td>
<td>Thermal Management of Batteries and fuel cells</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

UNIT - I MATRICES

UNIT - II DIFFERENTIAL CALCULUS

UNIT - III FUNCTIONS OF SEVERAL VARIABLES

UNIT - IV INTEGRAL CALCULUS
Definite and Indefinite integrals - Substitution rule - Techniques of Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals - Applications: Hydrostatic force and pressure, moments and centres of mass.

UNIT - V MULTIPLE INTEGRALS

TOTAL: 60 PERIODS

COURSE OUTCOMES:
At the end of the course the students will be able to
- Use the matrix algebra methods for solving practical problems.
- Apply differential calculus tools in solving various application problems.
- Able to use differential calculus ideas on several variable functions.
- Apply different methods of integration in solving practical problems.
- Apply multiple integral ideas in solving areas, volumes and other practical problems.
TEXT BOOKS:
3. James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015. [For Units II & IV - Sections 1.1, 2.2, 2.3, 2.5, 2.7 (Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1 (Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

REFERENCES:

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

- To make the students effectively to achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of oscillations, optics and lasers.
- Equipping the students to be successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS

UNIT II ELECTROMAGNETIC WAVES

The Maxwell’s equations - wave equation; Plane electromagnetic waves in vacuum, Conditions on the wave field - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - polarization - Producing electromagnetic waves - Energy and momentum in EM waves: Intensity, waves from localized sources, momentum and radiation pressure - Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

UNIT III OSCILLATIONS, OPTICS AND LASERS

UNIT IV BASIC QUANTUM MECHANICS

Photons and light waves - Electrons and matter waves –Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization –Free particle - particle in a infinite potential well: 1D, 2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

UNIT V APPLIED QUANTUM MECHANICS

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch’s theorem for particles in a periodic potential –Basics of Kronig-Penney model and origin of energy bands.

TOTAL : 45 PERIODS

COURSE OUTCOMES

After completion of this course, the students should be able to

- Understand the importance of mechanics.
- Express their knowledge in electromagnetic waves.
- Demonstrate a strong foundational knowledge in oscillations, optics and lasers.
- Understand the importance of quantum physics.
- Comprehend and apply quantum mechanical principles towards the formation of energy bands.
TEXT BOOKS:
2. E.M.Purcell and D.J.Morin, Electricity and Magnetism, Cambridge Univ.Press, 2013.

REFERENCES:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO’s</th>
<th>PO’s</th>
<th>PSO’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVG</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1-Low, 2-Medium, 3-High,”-“-no correlation

Note: the average value of this course to be used for program articulation matrix.
COURSE OBJECTIVES:
- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage devices.

UNIT I WATER AND ITS TREATMENT 9

UNIT II NANO CHEMISTRY 9
Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials: Definition, properties and uses of – nanoparticle, nanocluster, nanorod, nanowire and nanotube. Preparation of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electrospinning. Applications of nanomaterials in medicine, agriculture, energy, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES 9
Phase rule: Introduction, definition of terms with examples. One component system - water system; Reduced phase rule; Construction of a simple eutectic phase diagram - Thermal analysis; Two component system: lead-silver system - Pattinson process. Composites: Introduction: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix composites and Polymer matrix composites. Hybrid composites - definition and examples.

UNIT IV FUELS AND COMBUSTION 9

UNIT V ENERGY SOURCES AND STORAGE DEVICES 9
Stability of nucleus: mass defect (problems), binding energy; Nuclear energy: light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy: Geothermal energy; Batteries: Types of batteries, Primary battery - dry cell, Secondary battery - lead acid battery and lithium-ion-battery; Electric vehicles – working principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell; Supercapacitors: Storage principle, types and examples.

TOTAL: 45 PERIODS
COURSE OUTCOMES
At the end of the course, the students will be able:

- To infer the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- To apply the knowledge of phase rule and composites for material selection requirements.
- To recommend suitable fuels for engineering processes and applications.
- To recognize different forms of energy resources and apply them for suitable applications in energy sectors.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.8</td>
<td>1.3</td>
<td>1.6</td>
<td>1</td>
<td>-</td>
<td>1.5</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high, "-"- no correlation
COURSE OBJECTIVES:
- To introduce the basics of electric circuits and analysis
- To impart knowledge in the basics of working principles and application of electrical machines
- To introduce analog devices and their characteristics
- To educate on the fundamental concepts of digital electronics
- To introduce the functional elements and working of measuring instruments

UNIT I ELECTRICAL CIRCUITS
DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor – Ohm’s Law - Kirchhoff’s Laws – Independent and Dependent Sources – Simple problems- Nodal Analysis, Mesh analysis with Independent sources only (Steady state)
Introduction to AC Circuits and Parameters: Waveforms, Average value, RMS Value, Instantaneous power, real power, reactive power and apparent power, power factor – Steady state analysis of RLC circuits (Simple problems only)

UNIT II ELECTRICAL MACHINES

UNIT III ANALOG ELECTRONICS

UNIT IV DIGITAL ELECTRONICS
Review of number systems, binary codes, error detection and correction codes, Combinational logic - representation of logic functions-SOP and POS forms, K-map representations - minimization using K maps (Simple Problems only)

UNIT V MEASUREMENTS AND INSTRUMENTATION

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completing this course, the students will be able to
1. Compute the electric circuit parameters for simple problems
2. Explain the working principle and applications of electrical machines
3. Analyze the characteristics of analog electronic devices
4. Explain the basic concepts of digital electronics
5. Explain the operating principles of measuring instruments

TEXT BOOKS:
5. A.K. Sawhney, Puneet Sawhney ‘A Course in Electrical & Electronic Measurements &
REFERENCES:

<table>
<thead>
<tr>
<th>COs/POs&PSOs</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO/PO & PSO</td>
<td>1.8</td>
<td>1</td>
</tr>
<tr>
<td>Average</td>
<td>1.8</td>
<td>1</td>
</tr>
</tbody>
</table>

1 – Slight, 2 – Moderate, 3 – Substantial
COURSE OBJECTIVES:
- To understand the basics of algorithmic problem solving.
- To learn to solve problems using Python conditionals and loops.
- To define Python functions and use function calls to solve problems.
- To use Python data structures - lists, tuples, dictionaries to represent complex data.
- To do input/output with files in Python.

UNIT I COMPUTATIONAL THINKING AND PROBLEM SOLVING 9

UNIT II DATA TYPES, EXPRESSIONS, STATEMENTS 9
Python interpreter and interactive mode, debugging; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT III CONTROL FLOW, FUNCTIONS, STRINGS 9
Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES 9
Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: simple sorting, histogram, Students marks statement, Retail bill preparation.

UNIT V FILES, MODULES, PACKAGES 9
Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file, Voter's age validation, Marks range validation (0-100).

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon completion of the course, students will be able to
CO1: Develop algorithmic solutions to simple computational problems.
CO2: Develop and execute simple Python programs.
CO3: Write simple Python programs using conditionals and looping for solving problems.
CO4: Decompose a Python program into functions.
CO5: Represent compound data using Python lists, tuples, dictionaries etc.
CO6: Read and write data from/to files in Python programs.

TEXT BOOKS:
REFERENCES:
 https://www.python.org/

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AVg.</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high, '-' - no correlation
COURSE OBJECTIVES:
- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT I TESTING OF HYPOTHESIS
Sampling distributions - Tests for single mean, proportion and difference of means (Large and small samples) – Tests for single variance and equality of variances – Chi square test for goodness of fit – Independence of attributes.

UNIT II DESIGN OF EXPERIMENTS
One way and two way classifications - Completely randomized design – Randomized block design – Latin square design - 2^2 factorial design.

UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION
Lagrange’s and Newton’s divided difference interpolations – Newton’s forward and backward difference interpolation – Approximation of derivates using interpolation polynomials – Numerical single and double integrations using Trapezoidal and Simpson’s 1/3 rules.

UNIT V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

COURSE OUTCOMES:
Upon successful completion of the course, students will be able to:
- Apply the concept of testing of hypothesis for small and large samples in real life problems.
- Apply the basic concepts of classifications of design of experiments in the field of agriculture.
- Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.

TOTAL: 60 PERIODS
• Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
• Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
- To make the students to understand the basics of crystallography and its importance in studying materials properties.
- To understand the electrical properties of materials including free electron theory, applications of quantum mechanics and magnetic materials.
- To instil knowledge on physics of semiconductors, determination of charge carriers and device applications
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications
- To inculcate an idea of significance of nano structures, quantum confinement and ensuing nano device applications.

UNIT I CRYSTALLOGRAPHY

UNIT II ELECTRICAL AND MAGNETIC PROPERTIES OF MATERIALS

UNIT III SEMICONDUCTORS AND TRANSPORT PHYSICS

UNIT IV OPTICAL PROPERTIES OF MATERIALS

UNIT V NANOЕLECTRONIC DEVICES

COURSE OUTCOMES:
At the end of the course, the students should be able to
- know basics of crystallography and its importance for varied materials properties
• gain knowledge on the electrical and magnetic properties of materials and their applications
• understand clearly of semiconductor physics and functioning of semiconductor devices
• understand the optical properties of materials and working principles of various optical devices
• appreciate the importance of functional nanoelectronic devices.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO's</th>
<th>PO's</th>
<th>PSO's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3</td>
</tr>
<tr>
<td>1</td>
<td>3 2 1 2 1 1 - - - - - -</td>
<td>- - -</td>
</tr>
<tr>
<td>2</td>
<td>3 2 1 1 2 1 1 - - - - - -</td>
<td>- - -</td>
</tr>
<tr>
<td>3</td>
<td>3 2 2 2 2 1 - - - - - -</td>
<td>- - -</td>
</tr>
<tr>
<td>4</td>
<td>3 2 2 1 2 2 - - - - - -</td>
<td>- - -</td>
</tr>
<tr>
<td>5</td>
<td>3 2 2 1 2 1 - - - - - -</td>
<td>- - -</td>
</tr>
<tr>
<td>AVG</td>
<td>3 2 1.6 1.4 1.8 1.2 1 - - - - -</td>
<td>1 - -</td>
</tr>
</tbody>
</table>

1-Low, 2-Medium, 3-High,"-"-no correlation
Note: the average value of this course to be used for program articulation matrix.
COURSE OBJECTIVES:
1. To illustrate the working principles of various metal casting processes.
2. To learn and apply the working principles of various metal joining processes.
3. To analyse the working principles of bulk deformation of metals.
4. To learn the working principles of sheet metal forming process.
5. To study and practice the working principles of plastics molding.

UNIT – I METAL CASTING PROCESSES

UNIT II METAL JOINING PROCESSES

UNIT III BULK DEFORMATION PROCESSES

UNIT IV SHEET METAL PROCESSES

UNIT V MANUFACTURE OF PLASTIC COMPONENTS

TOTAL : 45 PERIODS

OUTCOMES:
At the end of the course the students would be able to
1. Explain the principle of different metal casting processes.
2. Describe the various metal joining processes.
3. Illustrate the different bulk deformation processes.
4. Apply the various sheet metal forming process.
5. Apply suitable molding technique for manufacturing of plastics components.
TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES:
1. To learn the use of scalar and vector analytical techniques for analysing forces in statically determinate structures.
2. To introduce the equilibrium of rigid bodies, vector methods and free-body diagrams.
3. To study and understand the distributed forces, surface, loading on beam and intensity.
4. To learn the principles of friction, forces and to determine the apply the concepts of frictional forces at the contact surfaces of various engineering systems.
5. To develop basic dynamics concepts – force, momentum, work and energy.

UNIT I STATICS OF PARTICLES 9

UNIT II EQUILIBRIUM OF RIGID BODIES 9

UNIT III DISTRIBUTED FORCES 9
Centroids of lines and areas – symmetrical and unsymmetrical shapes, Determination of Centroids by Integration, Theorems of Pappus-Guldinus, Distributed Loads on Beams, Centre of Gravity of a Three-Dimensional Body, Centroid of a Volume, Composite Bodies, Determination of Centroids of Volumes by Integration. Moments of Inertia of Areas and Mass - Determination of the Moment of Inertia of an Area by Integration, Polar Moment of Inertia, Radius of Gyration of an Area, Parallel-Axis Theorem, Moments of Inertia of Composite Areas, Moments of Inertia of a Mass - Moments of Inertia of Thin Plates, Determination of the Moment of Inertia of a Three-Dimensional Body by Integration.

UNIT IV FRICTION 9
The Laws of Dry Friction, Coefficients of Friction, Angles of Friction, Wedge friction, Wheel Friction, Rolling Resistance, Ladder friction.

UNIT V DYNAMICS OF PARTICLES 9

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the students would be able to
- Illustrate the vector and scalar representation of forces and moments
- Analyse the rigid body in equilibrium
- Evaluate the properties of distributed forces
- Determine the friction and the effects by the laws of friction
• Calculate dynamic forces exerted in rigid body

TEXT BOOKS:

REFERENCES:

| CO | PO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
|----|----|---|---|---|---|---|---|---|---|---|----|----|---|---|---|
| 1 | | 3 | 2 | 2 | 1 | 2 | | | | | | | 2 | 3 | 1 | 1 |
| 2 | | 3 | 2 | 2 | 1 | 2 | | | | | | | 2 | 3 | 1 | 1 |
| 3 | | 3 | 2 | 3 | 1 | 2 | | | | | | | 2 | 3 | 1 | 2 |
| 4 | | 3 | 2 | 3 | 1 | 2 | | | | | | | 2 | 3 | 1 | 2 |
| 5 | | 3 | 2 | 3 | 1 | 2 | | | | | | | 2 | 3 | 1 | 2 |

Low (1); Medium (2); High (3)
COURSE OBJECTIVES:
1. To introduce the students about properties of the fluids, behaviour of fluids under static conditions.
2. To impart basic knowledge of the dynamics of fluids and boundary layer concept.
3. To expose to the applications of the conservation laws to a) flow measurements b) flow through pipes (both laminar and turbulent) and c) forces on pipe bends.
4. To exposure to the significance of boundary layer theory and its thicknesses.
5. To expose the students to basic principles of working of hydraulic machineries and to design Pelton wheel, Francis and Kaplan turbine, centrifugal and reciprocating pumps.

UNIT I FLUID PROPERTIES AND FLOW CHARACTERISTICS 10+3
Properties of fluids – Fluid statics - Pressure Measurements - Buoyancy and floatation - Flow characteristics - Eulerian and Lagrangian approach - Concept of control volume and system - Reynold’s transportation theorem - Continuity equation, energy equation and momentum equation - Applications.

UNIT II FLOW THROUGH PIPES AND BOUNDARY LAYER 9+3
Reynold’s Experiment - Laminar flow through circular conduits - Darcy Weisbach equation - friction factor - Moody diagram - Major and minor losses - Hydraulic and energy gradient lines - Pipes in series and parallel - Boundary layer concepts - Types of boundary layer thickness.

UNIT III DIMENSIONAL ANALYSIS AND MODEL STUDIES 8+3
Fundamental dimensions - Dimensional homogeneity - Rayleigh’s method and Buckingham Pi theorem - Dimensionless parameters - Similitude and model studies - Distorted and undistorted models.

UNIT IV TURBINES 9+3

UNIT V PUMPS 9+3
Classification of pumps - Centrifugal pumps - Working principle - Heads and efficiencies - Velocity triangles - Work done by the impeller - Performance curves - Reciprocating pump working principle - Indicator diagram and it’s variations - Work saved by fitting air vessels - Rotary pumps.

TOTAL: 60 PERIODS

OUTCOMES:
On completion of the course, the student is expected to be able to
1. Understand the properties and behaviour in static conditions. Also, to understand the conservation laws applicable to fluids and its application through fluid kinematics and dynamics
2. Estimate losses in pipelines for both laminar and turbulent conditions and analysis of pipes connected in series and parallel. Also, to understand the concept of boundary layer and its thickness on the flat solid surface.
3. Formulate the relationship among the parameters involved in the given fluid phenomenon and to predict the performances of prototype by model studies
4. Explain the working principles of various turbines and design the various types of turbines.
5. Explain the working principles of centrifugal, reciprocating and rotary pumps and design the centrifugal and reciprocating pumps.

Attested

DIRECTOR
Centre for Academic Courses
Anna University, Chennai-600 025
TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES:

1. To study the basic components of mechanisms, analyzing the assembly with respect to the displacement, velocity, and acceleration at any point in a link of a mechanism and design cam mechanisms for specified output motions.
2. To study the basic concepts of toothed gearing and kinematics of gear trains.
3. To study the basic concepts of toothed gearing and kinematics of gear trains.
4. To study the basic concepts of toothed gearing and kinematics of gear trains.
5. To study the basic concepts of toothed gearing and kinematics of gear trains.

UNIT – I KINEMATICS OF MECHANISMS

UNIT – II GEARS AND GEAR TRAINS

UNIT – III FRICTION IN MACHINE ELEMENTS
Surface contacts – Sliding and Rolling friction – Friction drives – Friction in screw threads – Bearings and lubrication – Friction clutches – Belt and rope drives – Friction aspects in brakes– Friction in vehicle propulsion and braking.

UNIT – IV FORCE ANALYSIS

UNIT – V BALANCING AND VIBRATION

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

1. Discuss the basics of mechanism.
2. Solve problems on gears and gear trains.
3. Examine friction in machine elements.
4. Calculate static and dynamic forces of mechanisms.
5. Calculate the balancing masses and their locations of reciprocating and rotating masses. Computing the frequency of free vibration, forced vibration and damping coefficient.
TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES:
1. Impart knowledge on the basics and application of zeroth and first law of thermodynamics.
2. Impart knowledge on the second law of thermodynamics in analysing the performance of thermal devices.
3. Impart knowledge on availability and applications of second law of thermodynamics.
4. Teach the various properties of steam through steam tables and Mollier chart.
5. Impart knowledge on the macroscopic properties of ideal and real gases.

UNIT I BASICS, ZEROTH AND FIRST LAW

UNIT II SECOND LAW AND ENTROPY

UNIT III AVAILABILITY AND APPLICATIONS OF II LAW
Ideal gases undergoing different processes - principle of increase in entropy. Applications of II Law. High- and low-grade energy. Availability and Irreversibility for open and closed system processes - I and II law Efficiency

UNIT IV PROPERTIES OF PURE SUBSTANCES
Steam - formation and its thermodynamic properties - p-v, p-T, T-v, T-s, h-s diagrams. PVT surface. Determination of dryness fraction. Calculation of work done and heat transfer in non-flow and flow processes using Steam Table and Mollier Chart.

UNIT V GAS MIXTURES AND THERMODYNAMIC RELATIONS

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students would be able to
1. Apply the zeroth and first law of thermodynamics by formulating temperature scales and calculating the property changes in closed and open engineering systems.
2. Apply the second law of thermodynamics in analysing the performance of thermal devices through energy and entropy calculations.
3. Apply the second law of thermodynamics in evaluating the various properties of steam through steam tables and Mollier chart.
4. Apply the properties of pure substance in computing the macroscopic properties of ideal and real gases using gas laws and appropriate thermodynamic relations.
5. Apply the properties of gas mixtures in calculating the properties of gas mixtures and applying various thermodynamic relations to calculate property changes.
TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) Medium (2); High (3)
COURSE OBJECTIVES:
1. To learn the constructing the phase diagram and using of iron-iron carbide phase diagram for microstructure formation.
2. To learn selecting and applying various heat treatment processes and its microstructure formation.
3. To illustrate the different types of ferrous and non-ferrous alloys and their uses in engineering field.
4. To illustrate the different polymer, ceramics and composites and their uses in engineering field.
5. To learn the various testing procedures and failure mechanism in engineering field.

UNIT I CONSTITUTION OF ALLOYS AND PHASE DIAGRAMS 9

UNIT II HEAT TREATMENT 9

UNIT III FERROUS AND NON-FERROUS METALS 9

UNIT IV NON-METALLIC MATERIALS 9

UNIT V MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS 9

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course the students would be able to
2. Explain isothermal transformation, continuous cooling diagrams and different heat treatment processes.
3. Clarify the effect of alloying elements on ferrous and non-ferrous metals.
4. Summarize the properties and applications of non-metallic materials.
5. Explain the testing of mechanical properties.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th></th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES:
- To understand the concepts of stress, strain, principal stresses and principal planes.
- To study the concept of shearing force and bending moment due to external loads in determinate beams and their effect on stresses.
- To determine stresses and deformation in circular shafts and helical spring due to torsion.
- To compute slopes and deflections in determinate beams by various methods.
- To study the stresses and deformations induced in thin and thick shells.

UNIT I STRESS, STRAIN AND DEFORMATION OF SOLIDS 9
Rigid bodies and deformable solids – Tension, Compression and Shear Stresses - Deformation of simple and compound bars – Thermal stresses – Elastic constants - Volumetric strains – Stresses on inclined planes – Principal stresses and principal planes – Mohr’s circle of stress.

UNIT II TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM 9

UNIT III TORSION 9
Theory of Torsion – Stresses and Deformations in Solid and Hollow Circular Shafts – Combined bending moment and torsion of shafts - Power transmitted to shaft – Shaft in series and parallel – Closed and Open Coiled helical springs – springs in series and parallel.

UNIT IV DEFLECTION OF BEAMS 9

UNIT V THIN CYLINDERS, SPHERES AND THICK CYLINDERS 9
Stresses in thin cylindrical shell due to internal pressure - circumferential and longitudinal stresses - Deformation in thin cylinders – Spherical shells subjected to internal pressure – Deformation in spherical shells – Thick cylinders - Lame’s theory.

OUTCOMES:
At the end of the course the students would be able to
1. Understand the concepts of stress and strain in simple and compound bars, the importance of principal stresses and principal planes.
2. Understand the load transferring mechanism in beams and stress distribution due to shearing force and bending moment.
3. Apply basic equation of torsion in designing of shafts and helical springs.
4. Calculate slope and deflection in beams using different methods.
5. Analyze thin and thick shells for applied pressures.

TEXT BOOK
REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES:
1. To study the concepts and basic mechanics of metal cutting and the factors affecting machinability.
2. To learn working of basic and advanced turning machines.
3. To teach the basics of machine tools with reciprocating and rotating motions and abrasive finishing processes.
4. To study the basic concepts of CNC of machine tools and constructional features of CNC.
5. To learn the basics of CNC programming concepts to develop the part programme for Machine centre and turning centre.

UNIT – I MECHANICS OF METAL CUTTING
Mechanics of chip formation, forces in machining, Types of chip, cutting tools – single point cutting tool nomenclature, orthogonal and oblique metal cutting, thermal aspects, cutting tool materials, tool wear, tool life, surface finish, cutting fluids and Machinability.

UNIT – II TURNING MACHINES
Centre lathe, constructional features, specification, operations – taper turning methods, thread cutting methods, special attachments, surface roughness in turning, machining time and power estimation. Special lathes - Capstan and turret lathes - tool layout – automatic lathes: semi-automatic – single spindle: Swiss type, automatic screw type – multi spindle

UNIT – III RECIPROCATING MACHINE TOOLS

UNIT – IV CNC MACHINES
Computer Numerical Control (CNC) machine tools, constructional details, special features – Drives, Recirculating ball screws, tool changers; CNC Control systems – Open/closed, point-to-point/continuous - Turning and machining centres – Work holding methods in Turning and machining centres, Coolant systems, Safety features.

UNIT – V PROGRAMMING OF CNC MACHINE TOOLS
Coordinates, axis and motion, Absolute vs Incremental, Interpolators, Polar coordinates, Program planning, G and M codes, Manual part programming for CNC machining centers and Turning centers – Fixed cycles, Loops and subroutines, Setting up a CNC machine for machining.

TOTAL 45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Apply the mechanism of metal removal process and to identify the factors involved in improving machinability.
2. Describe the constructional and operational features of centre lathe and other special purpose lathes.
3. Describe the constructional and operational features of reciprocating machine tools.
4. Apply the constructional features and working principles of CNC machine tools.
5. Demonstrate the Program CNC machine tools through planning, writing codes and setting up CNC machine tools to manufacture a given component.
TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES:

1. To provide the knowledge on the working principles of fluid power systems.
2. To study the fluids and components used in modern industrial fluid power system.
3. To develop the design, construction and operation of fluid power circuits.
4. To learn the working principles of pneumatic power system and its components.
5. To provide the knowledge of trouble shooting methods in fluid power systems.

UNIT I FLUID POWER PRINCIPLES AND HYDRAULIC PUMPS 9

UNIT – II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9

UNIT – III HYDRAULIC CIRCUITS AND SYSTEMS 9
Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double-Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits, –Servo and Proportional valves – Applications- Mechanical, hydraulic servo systems.

UNIT – IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9

UNIT – V TROUBLE SHOOTING AND APPLICATIONS 9
Installation, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic systems, Conditioning of hydraulic fluids Design of hydraulic circuits for Drilling, Planning, Shaping, Surface grinding, Press and Forklift applications- mobile hydraulics; Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low-cost Automation – Hydraulic and Pneumatic power packs, IOT in Hydraulics and pneumatics
Note: (Use of standard Design Data Book is permitted in the University examination)

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

1. Apply the working principles of fluid power systems and hydraulic pumps.
2. Apply the working principles of hydraulic actuators and control components.
3. Design and develop hydraulic circuits and systems.
4. Apply the working principles of pneumatic circuits and power system and its components.
5. Identify various troubles shooting methods in fluid power systems.
TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES

1. To learn the various steps involved in the Design Process.
2. To Learn designing shafts and couplings for various applications.
3. To Learn the design of temporary and permanent Joints.
4. To Learn designing helical, leaf springs, flywheels, connecting rods and crank shafts for various applications.
5. To Learn designing and select sliding and rolling contact bearings, seals and gaskets.

(Use of PSG Design Data book is permitted)

UNIT – I FUNDAMENTAL CONCEPTS IN DESIGN 12

UNIT – II DESIGN OF SHAFTS AND COUPLINGS 12

Shafts and Axles - Design of solid and hollow shafts based on strength, rigidity and critical speed – Keys and splines – Rigid and flexible couplings.

UNIT – III DESIGN OF TEMPORARY AND PERMANENT JOINTS 12

Threaded fasteners - Bolted joints including eccentric loading, Knuckle joints, Cotter joints – Welded joints- Butt, Fillet and parallel transverse fillet welds – welded joints subjected to bending, torsional and eccentric loads, riveted joints for structures - theory of bonded joints.

UNIT – IV DESIGN OF ENERGY STORING ELEMENTS AND ENGINE COMPONENTS 12

Types of springs, design of helical and concentric springs–surge in springs, Design of laminated springs - rubber springs - Flywheels considering stresses in rims and arms for engines and punching machines-- Solid and Rimmed flywheels- connecting rods and crank shafts

UNIT – V DESIGN OF BEARINGS AND MISCELLANEOUS ELEMENTS 12

Sliding contact and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number, Raimondi & Boyd graphs, -- Selection of Rolling Contact bearings –Design of Seals and Gaskets.

OUTCOMES: At the end of the course the students would be able to

1. Explain the design machine members subjected to static and variable loads.
2. Apply the concepts design to shafts, key and couplings.
3. Apply the concepts of design to bolted, Knuckle, Cotter, riveted and welded joints.
4. Apply the concept of design helical, leaf springs, flywheels, connecting rods and crank shafts.
5. Apply the concepts of design and select sliding and rolling contact bearings, seals and gaskets.

TOTAL: 60 PERIODS

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES:
At the end of this course the student should be able to
- Learn about the precision machine tools
- Learn about the macro and micro components.
- Understand handling and operating of the precision machine tools.
- Learn to work with miniature models of existing machine tools/robots and other instruments.
- Learn metrology for micro system

UNIT I INTRODUCTION TO MICROSYSTEMS 9
Design, and material selection, micro-actuators: hydraulic, pneumatic, electrostatic/ magnetic etc. for medical to general purpose applications. Micro-sensors based on Thermal, mechanical, electrical properties; micro-sensors for measurement of pressure, flow, temperature, inertia, force, acceleration, torque, vibration, and monitoring of manufacturing systems.

UNIT II FABRICATION PROCESSES FOR MICRO-SYSTEMS: 9

UNIT III INTRODUCTION TO PRECISION ENGINEERING 9
Machine tools, holding and handling devices, positioning fixtures for fabrication/ assembly of microsystems. Precision drives: inch worm motors, ultrasonic motors, stick- slip mechanism and other piezo-based devices.

UNIT IV PRECISION MACHINING PROCESSES 9
Precision machining processes for macro components - Diamond turning, fixed and free abrasive processes, finishing processes.

UNIT V METROLOGY FOR MICRO SYSTEMS 9
Metrology for micro systems - Surface integrity and its characterization.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
Upon the completion of this course the students will be able to
- Select suitable precision machine tools and operate
- Apply the macro and micro components for fabrication of micro systems.
- Apply suitable machining process
- Able to work with miniature models of existing machine tools/robots and other instruments.
- Apply metrology for micro system

TEXT BOOKS:
REFERENCES:
4. Murthy, R.L. —Precision Engineering in Manufacturingl, New Age International, New Delhi, 2005

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
1. To learn the concepts and laws of thermodynamics to predict the operation of thermodynamic cycles and performance of Internal Combustion (IC) engines and Gas Turbines.
2. To analyzing the performance of steam nozzle, calculate critical pressure ratio
3. To Evaluating the performance of steam turbines through velocity triangles, understand the need for governing and compounding of turbines
4. To analyzing the working of IC engines and various auxiliary systems present in IC engines
5. To evaluating the various performance parameters of IC engines

UNIT I THERMODYNAMIC CYCLES 12

UNIT II STEAM NOZZLES AND INJECTOR 12
Types and Shapes of nozzles, Flow of steam through nozzles, Critical pressure ratio, Variation of mass flow rate with pressure ratio. Effect of friction. Metastable flow.

UNIT III STEAM AND GAS TURBINES 12

UNIT IV INTERNAL COMBUSTION ENGINES – FEATURES AND COMBUSTION 12

UNIT V INTERNAL COMBUSTION ENGINE PERFORMANCE AND AUXILIARY SYSTEMS 12

TOTAL : 60 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Apply thermodynamic concepts to different air standard cycles and solve problems.
2. To solve problems in steam nozzle and calculate critical pressure ratio.
3. Explain the flow in steam turbines, draw velocity diagrams, flow in Gas turbines and solve problems.
4. Explain the functioning and features of IC engine, components and auxiliaries.
5. Calculate the various performance parameters of IC engines

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES
1. To study the valve and port timing diagram and performance characteristics of IC engines
2. To study the Performance of refrigeration cycle / components
3. To study the Performance and Energy Balance Test on a Steam Generator.

PART I IC ENGINES LABORATORY
List of Experiments
2. Actual p-v diagrams of IC engines.
3. Performance Test on four – stroke Diesel Engine.
5. Morse Test on Multi-Cylinder Petrol Engine.
6. Retardation Test on a Diesel Engine.
7. Determination of p-θ diagram and heat release characteristics of an IC engine.
8. Determination of Flash Point and Fire Point of various fuels / lubricants.
9. Performance test on a two stage Reciprocating Air compressor
10. Determination of COP of a Refrigeration system

PART II STEAM LABORATORY
List of Experiments:
1. Study of Steam Generators and Turbines.

TOTAL: 60 PERIODS

OUTCOMES:
At the end of the course the students would be able to
1. Conduct tests to evaluate performance characteristics of IC engines
2. Conduct tests to evaluate the performance of refrigeration cycle
3. Conduct tests to evaluate Performance and Energy Balance on a Steam Generator.

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
OBJECTIVES:

- To introduce the basic concepts of environment, ecosystems and biodiversity and emphasize on the biodiversity of India and its conservation.
- To impart knowledge on the causes, effects and control or prevention measures of environmental pollution and natural disasters.
- To facilitate the understanding of global and Indian scenario of renewable and nonrenewable resources, causes of their degradation and measures to preserve them.
- To familiarize the concept of sustainable development goals and appreciate the interdependence of economic and social aspects of sustainability, recognize and analyze climate changes, concept of carbon credit and the challenges of environmental management.
- To inculcate and embrace sustainability practices and develop a broader understanding on green materials, energy cycles and analyze the role of sustainable urbanization.

UNIT I ENVIRONMENT AND BIODIVERSITY

UNIT II ENVIRONMENTAL POLLUTION

UNIT III RENEWABLE SOURCES OF ENERGY
Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of: Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

UNIT IV SUSTAINABILITY AND MANAGEMENT
Development, GDP, Sustainability concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global, Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

UNIT V SUSTAINABILITY PRACTICES

TOTAL : 30 PERIODS
OUTCOMES:
- To recognize and understand the functions of environment, ecosystems and biodiversity and their conservation.
- To identify the causes, effects of environmental pollution and natural disasters and contribute to the preventive measures in the society.
- To identify and apply the understanding of renewable and non-renewable resources and contribute to the sustainable measures to preserve them for future generations.
- To recognize the different goals of sustainable development and apply them for suitable technological advancement and societal development.
- To demonstrate the knowledge of sustainability practices and identify green materials, energy cycles and the role of sustainable urbanization.

TEXT BOOKS:
5. Bradley, A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.

REFERENCES:

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Avg. | 2.8 |

1-low, 2-medium, 3-high, "-" no correlation
COURSE OBJECTIVES

1. To gain knowledge on the principles and procedure for the design of Mechanical power Transmission components.
2. To understand the standard procedure available for Design of Transmission of Mechanical elements spur gears and parallel axis helical gears.
3. To learn the design bevel, worm and cross helical gears of Transmission system.
4. To learn the concepts of design multi and variable speed gear box for machine tool applications.
5. To learn the concepts of design to cams, brakes and clutches
 (Use of P S G Design Data Book permitted)

UNIT – I DESIGN OF FLEXIBLE ELEMENTS 9
Design of Flat belts and pulleys - Selection of V belts and pulleys – Selection of hoisting wire ropes and pulleys – Design of Transmission chains and Sprockets.

UNIT – II SPUR GEARS AND PARALLEL AXIS HELICAL GEARS 9
Speed ratios and number of teeth-Force analysis -Tooth stresses - Dynamic effects – Fatigue strength - Factor of safety - Gear materials – Design of straight tooth spur & helical gears based on strength and wear considerations – Pressure angle in the normal and transverse plane-Equivalent number of teeth-forces for helical gears.

UNIT – III BEVEL, WORM AND CROSS HELICAL GEARS 9

UNIT – IV GEAR BOXES 9
Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box - Speed reducer unit. – Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications.

UNIT – V CAMS, CLUTCHES AND BRAKES 9
Cam Design: Types-pressure angle and under cutting base circle determination-forces and surface stresses. Design of plate clutches –axial clutches-cone clutches-internal expanding rim clutches-Electromagnetic clutches. Band and Block brakes - external shoe brakes – Internal expanding shoe brake.

OUTCOMES: At the end of the course the students would be able to
1. Apply the concepts of design to belts, chains and rope drives.
2. Apply the concepts of design to spur, helical gears.
3. Apply the concepts of design to worm and bevel gears.
4. Apply the concepts of design to gear boxes.
5. Apply the concepts of design to cams, brakes and clutches

TEXT BOOKS:
REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES
1. To learn basic concepts of the metrology and importance of measurements.
2. To teach measurement of linear and angular dimensions assembly and transmission elements.
3. To study the tolerance analysis in manufacturing.
4. To develop the fundamentals of GD & T and surface metrology.
5. To provide the knowledge of the advanced measurements for quality control in manufacturing industries.

UNIT – I BASICS OF METROLOGY
9

UNIT – II MEASUREMENT OF LINEAR, ANGULAR DIMENSIONS, ASSEMBLY AND 9 TRANSMISSION ELEMENTS

UNIT – III TOLERANCE ANALYSIS
9
Tolerancing– Interchangeability, Selective assembly, Tolerance representation, Terminology, Limits and Fits, Problems (using tables IS919); Design of Limit gauges, Problems. Tolerance analysis in manufacturing, Process capability, tolerance stackup, tolerance charting.

UNIT – IV METROLOGY OF SURFACES
9
Fundamentals of GD & T- Conventional vs Geometric tolerance, Datums, Inspection of geometric deviations like straightness, flatness, roundness deviations; Simple problems – Measurement of Surface finish – Functionality of surfaces, Parameters, Comparative, Stylus based and Optical Measurement techniques, Filters, Introduction to 3D surface metrology- Parameters.

UNIT – V ADVANCES IN METROLOGY
9

TOTAL: 45 PERIODS
OUTCOMES: At the end of the course the students would be able to
1. Discuss the concepts of measurements to apply in various metrological instruments.
2. Apply the principle and applications of linear and angular measuring instruments, assembly and transmission elements.
3. Apply the tolerance symbols and tolerance analysis for industrial applications.
4. Apply the principles and methods of form and surface metrology.
5. Apply the advances in measurements for quality control in manufacturing Industries.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>C</th>
<th>O</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES

1. To know the Indian and global energy scenario.
2. To learn the various solar energy technologies and its applications.
3. To educate the various wind energy technologies.
4. To explore the various bio-energy technologies.
5. To study the ocean and geothermal technologies.

UNIT – I ENERGY SCENARIO

Indian energy scenario in various sectors – domestic, industrial, commercial, agriculture, transportation and others – Present conventional energy status – Present renewable energy status - Potential of various renewable energy sources - Global energy status - Per capita energy consumption - Future energy plans

UNIT – II SOLAR ENERGY

UNIT – III WIND ENERGY

UNIT – IV BIO-ENERGY

UNIT – V OCEAN AND GEOTHERMAL ENERGY

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

1. Discuss the Indian and global energy scenario.
2. Describe the various solar energy technologies and its applications.
3. Explain the various wind energy technologies.
4. Explore the various bio-energy technologies.
5. Discuss the ocean and geothermal technologies.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES
1. To introduce the basics of 6 SIGMA
2. To learning about the lean manufacturing tools.
3. To study about the deeper understanding methodologies of Lean manufacturing.
4. To study the lean concepts and its elements.
5. To learn implementation and challenges of lean manufacturing.

UNIT – I BASICS OF 6 SIGMA
Introduction to 6 Sigma, basic tools of six sigma like problem solving approach, standard deviation, normal distribution, various sigma levels with some examples, value for the enterprise, Variation, and sources of variation, Mean and moving the mean, Various quality costs, cost of poor quality.

UNIT – II INTRODUCTION TO LEAN MANUFACTURING TOOLS

UNIT – III DEEPER UNDERSTANDING METHODOLOGIES
What is a process, Why Process management, Keys to process management, Difference between process management and 6 Sigma, Introduction to Deming cycle, PDCA, DMAIC and continuous improvement, DMEDI for creation process, DMAIC Vs DMEDI with examples, Introduction to Toyota Production System, Six Sigma and Production System integration.

UNIT – IV LEAN ELEMENTS
Introduction to Lean Concepts like In-Built Quality, Concept of Right Part at the Right Time, Lead Time reduction, Optimum utilization of Capital, Optimum utilization of People. Understanding the Zero-defect concept and Metrics, Focus on Human Resources, Quality, Delivery, Cost. Building Zero defect capabilities, Cultural and Organizational aspects

UNIT – V IMPLEMENTATION AND CHALLENGES
Implementing Checks and Balances in the process, Robust Information Systems, Dashboard, follow up and robust corrective and preventive mechanism. Concept of Audits, and continuous improvement from gap analysis, risk assessments etc.

TOTAL :45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Discuss the basics of 6 SIGMA
2. Elaborate the lean manufacturing tools.
3. Illustrate about the deeper understanding methodologies of Lean manufacturing.
4. Discuss lean concepts and its elements.
5. Describe the implementation and challenges of lean manufacturing.

TEXT BOOKS:
2. Lean Manufacturing: Principles to Practice by Akhilesh N. Singh, Bibliophile SouthAsia
3. The Toyota Way: 14 Management Principles
REFERENCES:
2. International Society of Six Sigma Professionals: https://isssp.org/about-us/
4. Older / Previous editions of AIAG manuals on APQP, FMEA and PPAP. These are great sources of information on Quality Planning and has basics of Project Management and required skills.
5. Quality Management for Organizations Using Lean Six Sigma Techniques - Erick C Jones

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES

1. To introduce the process planning concepts to make cost estimation for various products after process planning.
2. To learn the various Process Planning Activities.
3. To provide the knowledge of importance of costing and estimation.
4. To provide the knowledge of estimation of production costing.
5. To learn the knowledge of various Machining time calculations.

UNIT – I
INTRODUCTION TO PROCESS PLANNING

Introduction- methods of process planning-Drawing Interpretation-Material evaluation – steps in process selection-. Production equipment and tooling selection.

UNIT – II
PROCESS PLANNING ACTIVITIES

Process parameters calculation for various production processes-Selection jigs and fixture selection of quality assurance methods - Set of documents for process planning-Economics of process planning- case studies.

UNIT – III
INTRODUCTION TO COST ESTIMATION

UNIT – IV
PRODUCTION COST ESTIMATION

UNIT – V
MACHINING TIME CALCULATION

Estimation of Machining Time - Importance of Machine Time Calculation- Calculation of Machining Time for Different Lathe Operations, Drilling and Boring - Machining Time Calculation for Milling, Shaping and Planning -Machining Time Calculation for Grinding.

OUTCOMES: At the end of the course the students would be able to
1. Discuss select the process, equipment and tools for various industrial products.
2. Explain the prepare process planning activity chart.
3. Explain the concept of cost estimation.
4. Compute the job order cost for different type of shop floor.
5. Calculate the machining time for various machining operations.

TEXT BOOKS:

REFERENCES:
<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES

1. To provide the overview of evolution of automation, CIM and its principles.
2. To learn the various Automation tools, include various material handling system.
3. To train students to apply group technology and FMS.
4. To familiarize the computer aided process planning in manufacturing.
5. To introduce to basics of data transaction, information integration and control of CIM.

UNIT – I INTRODUCTION

<table>
<thead>
<tr>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
</table>

UNIT – II AUTOMATED MANUFACTURING SYSTEMS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
</table>

UNIT – III GROUP TECHNOLOGY AND FMS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
</table>

UNIT – IV PROCESS PLANNING

<table>
<thead>
<tr>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
</table>

UNIT – V PROCESS CONTROL AND DATA ANALYSIS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
</table>

TOTAL :45 PERIODS
OUTCOMES: At the end of the course the students would be able to
1. Discuss the basics of computer aided engineering.
2. Choose appropriate automotive tools and material handling systems.
3. Discuss the overview of group technology, FMS and automation identification methods.
4. Design using computer aided process planning for manufacturing of various components.
5. Acquire knowledge in computer process control techniques.

TEXT BOOKS:
2. CIM: Computer Integrated Manufacturing: Computer Steered Industry Book by August-Wilhelm Scheer

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
PTME3691 HEAT AND MASS TRANSFER L T P C
3 1 0 4

COURSE OBJECTIVES
1 To Learn the principal mechanism of heat transfer under steady state and transient conditions.
2 To learn the fundamental concept and principles in convective heat transfer.
3 To learn the theory of phase change heat transfer and design of heat exchangers.
4 To study the fundamental concept and principles in radiation heat transfer.
5 To develop the basic concept and diffusion, convective di mass transfer.

UNIT – I CONDUCTION

UNIT – II CONVECTION

UNIT – III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

UNIT – IV RADIATION

UNIT – V MASS TRANSFER

TOTAL: 60 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Apply heat conduction equations to different surface configurations under steady state and transient conditions and solve problems.
2. Apply free and forced convective heat transfer correlations to internal and external flows through/over various surface configurations and solve problems.
3. Explain the phenomena of boiling and condensation, apply LMTD and NTU methods of thermal analysis to different types of heat exchanger configurations and solve problems.
4. Explain basic laws for Radiation and apply these principles to radiative heat transfer between different types of surfaces to solve problems.
5. Apply diffusive and convective mass transfer equations and correlations to solve problems for different applications.

TEXT BOOKS:
REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES
1. To gain practical experience in handling 2D drafting and 3D modelling software systems.
2. Designing 3 Dimensional geometric model of parts, sub-assemblies, assemblies and exporting it to drawing.
3. Programming G & M Code programming and simulate the CNC program and Generating part programming data through CAM software.

3D GEOMETRIC MODELLING
1. CAD Introduction
 Sketch:
 Solid modeling: Extrude, Revolve, Sweep, Variational sweep and Loft.
 Surface modeling: Extrude, Sweep, Trim, Mesh of curves and Free form.
 Feature manipulation: Copy, Edit, Pattern, Suppress, History operations.
 Assembly: Constraints, Exploded Views, Interference check
 Drafting: Layouts, Standard & Sectional Views, Detailing & Plotting

2. Creation of 3D assembly model of following machine elements using 3D Modelling software
 1. Flange Coupling
 2. Plummer Block
 3. Screw Jack
 4. Lathe Tailstock
 5. Universal Joint
 6. Machine Vice
 7. Stuffing box
 8. Crosshead
 9. Safety Valves
 10. Non-return valves
 11. Connecting rod
 12. Piston
 13. Crankshaft

* Students may also be trained in manual drawing of some of the above components (specify the number – progressive arrangement of 3D)

MANUAL PART PROGRAMMING
1. CNC Machining Centre
 i) Linear Cutting.
 ii) Circular cutting.
 iii) Cutter Radius Compensation.
 iv) Canned Cycle Operations.

2. CNC Turning Centre
 i) Straight, Taper and Radial Turning.
 ii) Thread Cutting.
 iii) Rough and Finish Turning Cycle.
 iv) Drilling and Tapping Cycle.

3. COMPUTER AIDED PART PROGRAMMING
 i) Generate CL Data and Post process data using CAM packages for Machining and Turning Centre.
 ii) Application of CAPP in Machining and Turning

TOTAL: 60 PERIODS
OUTCOMES: At the end of the course the students would be able to
1. Design experience in handling 2D drafting and 3D modelling software systems
2. Design 3 Dimensional geometric model of parts, sub-assemblies, assemblies and export it to drawing
3. Demonstrate manual part programming and simulate the CNC program and Generate part programming using G and M code through CAM software.

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
PTGE3751 PRINCIPLES OF MANAGEMENT L T P C 3 0 0 3

COURSE OBJECTIVES:
- Sketch the Evolution of Management.
- Extract the functions and principles of management.
- Learn the application of the principles in an organization.
- Study the various HR related activities.
- Analyze the position of self and company goals towards business.

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS 9

UNIT II PLANNING 9

UNIT III ORGANISING 9

UNIT IV DIRECTING 9

UNIT V CONTROLLING 9
System and process of controlling – Budgetary and non - Budgetary control techniques – Use of computers and IT in Management control – Productivity problems and management – Control and performance – Direct and preventive control – Reporting.

TOTAL : 45 PERIODS

COURSE OUTCOMES:
CO1: Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling.
CO2: Have same basic knowledge on international aspect of management.
CO3: Ability to understand management concept of organizing.
CO4: Ability to understand management concept of directing.
CO5: Ability to understand management concept of controlling.
TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PO’s</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVg.</td>
<td>1.66</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
<td>1</td>
<td>1.25</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES
1. To study the coal based thermal power plants.
2. To study the diesel, gas turbine and combined cycle power plants.
3. To learn the basic of nuclear engineering and power plants.
4. To learn the power from renewable energy
5. To study energy, economic and environmental issues of power plants

UNIT – I COAL BASED THERMAL POWER PLANTS

UNIT – II DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS

UNIT – III NUCLEAR POWER PLANTS

UNIT – IV POWER FROM RENEWABLE ENERGY
Hydro Electric Power Plants – Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, Solar, Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.

UNIT – V ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLANTS
Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants.

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Explain the layout, construction and working of the components inside a thermal power plant.
2. Explain the layout, construction and working of the components inside a Diesel, Gas and Combined cycle power plants.
3. Explain the layout, construction and working of the components inside nuclear power plants.
4. Explain the layout, construction and working of the components inside Renewable energy power plants
5. Explain the applications of power plants while extend their knowledge to power plant economics and environmental hazards and estimate the costs of electrical energy production.

TEXT BOOKS:
REFERENCES:
4. Power Plant Engineering by B. Vijaya Ramnath C. Elanchezhian, L. Saravanakumar | 1 November 2019
5. Power Plant Engineering, As per AICTE: Theory and Practice by Dipak Kumar Mandal, Somnath Chakrabarti, et al. | 1 January 2019

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES

1. To make students get acquainted with the sensors and the actuators, which are commonly used in mechatronics systems.
2. To provide insight into the signal conditioning circuits, and also to develop competency in PLC programming and control.
3. To make students familiarize with the fundamentals of IoT and Embedded systems.
4. To impart knowledge about the Arduino and the Raspberry Pi.
5. To inculcate skills in the design and development of mechatronics and IoT based systems.

UNIT – I SENSORS AND ACTUATORS

UNIT – II SIGNAL CONDITIONING CIRCUITS AND PLC

UNIT – III FUNDAMENTALS OF IoT AND EMBEDDED SYSTEMS

UNIT – IV CONTROLLERS

UNIT – V MECHATRONICS AND IoT CASE STUDIES

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Explain Select suitable sensors and actuators to develop mechatronics systems.
2. Discuss Devise proper signal conditioning circuit for mechatronics systems, and also able to implement PLC as a controller for an automated system.

Attested

DIRECTOR
Centre for Academic Courses
Anna University, Chennai-600 025
3. Elucidate the fundamentals of IoT and Embedded Systems
4. Discuss Control I/O devices through Arduino and Raspberry Pi.
5. Design and develop an apt mechatronics/IoT based system for the given real-time application.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES
1. To study the concept of mechatronics to design, modelling and analysis of basic electrical hydraulic systems.
2. To provide the hands on training in the control of linear and rotary actuators.
3. To study the concepts and fundamentals of IoT, sensors, actuators and IoT boards

MECHATRONICS
LIST OF EXPERIMENTS:
1. Measurement of Linear/Angular of Position, Direction and Speed using Transducers.
3. Speed and Direction control of DC Servomotor, AC Servomotor and Induction motors.
5. Programming and Interfacing of Stepper motor and DC motor using 8051/PLC.
7. Sequencing of Hydraulic and Pneumatic circuits.
9. Electro-pneumatic/hydraulic control using PLC.
10. Vision based image acquisition and processing technique for inspection and classification.

INTERNET OF THINGS
1. Familiarization with concept of IoT and its open source microcontroller/SBC.
2. Write a program to turn ON/OFF motor using microcontroller/SBC through internet.
3. Write a program to interface sensors to display the data on the screen through internet.
4. Interface the sensors with microcontroller/SBC and write a program to turn ON/OFF Solenoid valve through internet when sensor data is detected.
5. To interface sensor with microcontroller/SBC and write a program to turn ON/OFF Linear/Rotary Actuator through IoT when sensor data is detected.
6. To interface Bluetooth/Wifi with microcontroller/SBC and write a program to send sensor data to smart phone using Bluetooth/wifi.

TOTAL : 60 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Demonstrate the functioning of mechatronics systems with various pneumatic, hydraulic and electrical systems.
2. Demonstrate the microcontroller and PLC as controllers in automation systems by executing proper interfacing of I/O devices and programming
3. Demonstrate the sensing and actuation of mechatronics elements using IoT.

<table>
<thead>
<tr>
<th>PO</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES
1. To study the basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.
2. To study the planning; organizing and staffing functions of management in professional organization.
3. To study the leading; controlling and decision making functions of management in professional organization.
4. To learn the organizational theory in professional organization.
5. To learn the principles of productivity and modern concepts in management in professional organization.

UNIT – I INTRODUCTION TO MANAGEMENT
Management: Introduction; Definition and Functions – Approaches to the study of Management – Mintzberg’s Ten Managerial Roles – Principles of Taylor; Fayol; Weber; Parker – Forms of Organization: Sole Proprietorship; Partnership; Company (Private and Public); Cooperative – Public Sector Vs Private Sector Organization – Business Environment: Economic; Social; Political; Legal – Trade Union: Definition; Functions; Merits & Demerits.

UNIT – II FUNCTIONS OF MANAGEMENT - I
Planning: Characteristics; Nature; Importance; Steps; Limitation; Planning Premises; Strategic Planning; Vision & Mission statement in Planning– Organizing: Organizing Theory; Principles; Types; Departmentalization; Centralization and Decentralization; Authority & Responsibility – Staffing: Systems Approach; Recruiting and Selection Process; Human Resource Development (HRD) Concept and Design.

UNIT – III FUNCTIONS OF MANAGEMENT - II
Directing (Leading): Leadership Traits; Style; Morale; Managerial Grids (Blake-Mounton, Reddin) – Communication: Purpose; Model; Barriers – Controlling: Process; Types; Levels; Guidelines; Audit (External, Internal, Merits); Preventive Control – Decision Making: Elements; Characteristics; Nature; Process; Classifications.

UNIT – IV ORGANIZATION THEORY
Organizational Conflict: Positive Aspects; Individual; Role; Interpersonal; Intra Group; Inter Group; Conflict Management – Maslow’s hierarchy of needs theory; Herzberg’s motivation-hygiene theory; McClelland’s three needs motivation theory; Vroom’s valence-expectancy theory – Change Management: Concept of Change; Lewin’s Process of Change Model; Sources of Resistance; Overcoming Resistance; Guidelines to managing Conflict.

UNIT – V PRODUCTIVITY AND MODERN TOPICS
Productivity: Concept; Measurements; Affecting Factors; Methods to Improve – Modern Topics (concept, feature/characteristics, procedure, merits and demerits): Business Process Reengineering (BPR); Benchmarking; SWOT/SWOC Analysis; Total Productive Maintenance; Enterprise Resource Planning (ERP); Management of Information Systems (MIS), Industry 4.0.

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Discuss basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.
2. Discuss the planning; organizing and staffing functions of management in professional organization.
3. Apply the leading; controlling and decision making functions of management in professional organization.
4. Discuss the organizational theory in professional organization.
5. Apply principles of productivity and modern concepts in management in professional organization.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE DESCRIPTION
This course aims to provide a broad understanding about the modern values and ethical principles that have evolved and are enshrined in the Constitution of India with regard to the democratic, secular and scientific aspects. The course is designed for undergraduate students so that they could study, understand and apply these values in their day to day life.

COURSE OBJECTIVES:
➢ To create awareness about values and ethics enshrined in the Constitution of India
➢ To sensitize students about the democratic values to be upheld in the modern society.
➢ To inculcate respect for all people irrespective of their religion or other affiliations.
➢ To instill the scientific temper in the students’ minds and develop their critical thinking.
➢ To promote sense of responsibility and understanding of the duties of citizen.

UNIT I DEMOCRATIC VALUES 6
Reading Text: Excerpts from John Stuart Mills’ On Liberty

UNIT II SECULAR VALUES 6
Understanding Secular values – Interpretation of secularism in Indian context - Disassociation of state from religion – Acceptance of all faiths – Encouraging non-discriminatory practices.
Reading Text: Excerpt from Secularism in India: Concept and Practice by Ram Puniyani

UNIT III SCIENTIFIC VALUES 6
Reading Text: Excerpt from The Scientific Temper by Antony Michaelis

UNIT IV SOCIAL ETHICS 6
Application of ethical reasoning to social problems – Gender bias and issues – Gender violence – Social discrimination – Constitutional protection and policies – Inclusive practices.
Reading Text: Excerpt from 21 Lessons for the 21st Century by Yuval Noah Harari

UNIT V SCIENTIFIC ETHICS 6
Transparency and Fairness in scientific pursuits – Scientific inventions for the betterment of society - Unfair application of scientific inventions – Role and Responsibility of Scientist in the modern society.

TOTAL: 30 PERIODS

COURSE OUTCOMES
Students will be able to
CO1 : Identify the importance of democratic, secular and scientific values in harmonious functioning of social life
CO2 : Practice democratic and scientific values in both their personal and professional life.
CO3 : Find rational solutions to social problems.
CO4: Behave in an ethical manner in society
CO5: Practice critical thinking and the pursuit of truth.

REFERENCES:
4. The Civic Culture: Political Attitudes and Democracy in Five Nations by Gabriel A. Almond and Sidney Verba, Princeton University Press,
5. Research Methodology for Natural Sciences by Soumitro Banerjee, IISc Press, January 2022
COURSE OBJECTIVE:
The objective of this course is to help the students to develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same, and to train the students in preparing project reports and to face reviews and viva voce examination.
The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

COURSE OUTCOME:
At the end of this course, students will be able to
1. Take up any challenging practical problems and find solution by formulating proper methodology.
COURSE OBJECTIVES
1. To study the functional requirements of engine components and suitable materials
2. To learn to design of cylinder and piston components
3. To learn to design of connecting rod and crank shaft
4. To learn to design of flywheel and valve train
5. To study the Engine Testing cycles, Emission measurement technologies

UNIT – I FUNCTIONAL REQUIREMENTS OF ENGINE COMPONENTS AND SUITABLE MATERIALS 6
Functional requirements of engine components – Piston, piston pin, cylinder liner, connecting rod, crank shaft, valves, spring, engine block, cylinder head, and flywheel. Suitable materials for engine components.

UNIT – II DESIGN OF CYLINDER AND PISTON COMPONENTS 6
Design of cylinder, cylinder head, piston, piston rings and piston pin – more details in necessary

UNIT – III DESIGN OF CONNECTING ROD AND CRANK SHAFT 6
Design of connecting rod – Shank design – small end design – big end design – bolts design. Design of overhang crank shaft under bending and twisting – Crank pin design – Crank web design – Shaft design.

UNIT – IV DESIGN OF FLYWHEEL AND VALVE TRAIN 6

UNIT – V ENGINE TESTING 6

TOTAL=30 PERIODS

EXPERIMENTS
1. Design and animate Piston Cylinder assembly and motion study using CAD software.
2. Design and simulate Connecting rod and crank shaft
3. Design flywheel and valve
4. Design and simulate Two Cylinder Engine assembly using CAD software.
5. Conduct the engine performance test using analysis software
6. Conduct the emission test using analysis software

TOTAL = 30 PERIODS

OUTCOMES:
At the end of the course the students would be able to
1. Discuss the requirements of engine components and select suitable materials.
2. Apply the concept of design to cylinder and piston components and solve problems.
3. Apply the concept of design to Connecting rod and crank shaft and solve problems.
4. Apply the concept of design to flywheel and valve train and solve problems.
5. Discuss engine tests cycles, dynamometer and emission measurement technologies and instruments

TEXT BOOKS:
REFERENCES:
3. Manufacturing Automotive Components from Sustainable Natural Fiber Composites (SpringerBriefs in Materials) by Lobna A. Elseify, Mohamad Midani, et al. | 9 August 2021

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

Attested

[Signature]

Director
Centre for Academic Courses
Aza University, Chennai-600 025
COURSE OBJECTIVES
1. To introduce the basic concepts of electric vehicle and their characteristics
2. To introduce different types of motors and the selection of motor for vehicle applications.
3. To acquaint the student with different sensors and systems used in autonomous and connected vehicles.
4. To give an overview of networking with sensors and systems.
5. To introduce the modern methods of diagnosing on-board the vehicle troubles.

UNIT – I ELECTRIC VEHICLES
EV architectures, advantages and disadvantages, Electrical and mechanical energy storage technologies, battery management. Performance of Electric Vehicles, Tractive effort and Transmission requirement, Vehicle performance, Tractive effort in normal driving.

UNIT – II ELECTRIC VEHICLE MOTORS

UNIT – III AUTONOMOUS AND CONNECTED VEHICLES

UNIT – IV AUTOMOTIVE NETWORKING
Bus Systems – Classification, Applications in the vehicle, Coupling of networks, networked vehicles, Buses - CAN Bus, LIN Bus, MOST Bus, Bluetooth, Flex Ray, Diagnostic Interfaces.

UNIT – V ON-BOARD TESTING
Integration of Sensor Data to On-Board Control Systems (OBD), OBD requirements, certification, enforcement, systems, testing, Catalytic converter and Exhaust Gas Recirculation system monitoring, Introduction to Cyber-physical system.

OUTCOMES: At the end of the course the students would be able to
1. Acquire an overview of electric vehicles and their importance in automotive.
2. Discuss the characteristics and the selection of traction motor.
3. Comprehend the vehicle-to-vehicle and autonomous technology.
4. Explain the networking of various modules in automotive systems, communication protocols and diagnostics of the sub systems.
5. Be familiar with on-board diagnostics systems.

TEXT BOOKS:

REFERENCES:
<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
1. To learn Selecting the constraints on the availability of resources and developing a model and rendering an optimal solution for the given circumstances.
2. To study Appraising the challenges in the transportation and production problems and furnishing a rational solution to maximize the benefits.
3. To learn Planning the purchase/ manufacturing policies, managing the spares/ stocks and meeting the customer demands.
4. To Analysing the queue discipline and exploring the avenues for better customer service.
5. To Investigating the nature of the project and offering methodical assistance towards decision making in maintenance.

UNIT – I INTRODUCTION TO OPERATIONS RESEARCH AND LINEAR PROGRAMMING

UNIT – II TRANSPORTATION, ASSIGNMENT AND PRODUCTION SCHEDULING PROBLEMS

UNIT – III INVENTORY CONTROL MODELS & SYSTEMS
Inventory Control: Introduction, Models – Problems in Purchase and Production(Manufacturing) models with and without shortages – Theory on types of inventory control systems: P& Q, ABC, VED, FNS, XYZ, SDE and HML.

UNIT – IV QUEUING THEORY
Queuing Theory: Introduction; Applications; Terminology, Poisson process and exponential distribution – Problems in Single Server and Multi Server Queuing Models –Case study on simulation using Monte Carlo technique.

UNIT – V PROJECT MANAGEMENT AND REPLACEMENT MODELS

OUTCOMES: At the end of the course the students would be able to
1. Discuss the selection of the constraints on the availability of resources, develop a model and render an optimal solution for the given circumstances.
2. Explain the appraise the challenges in the transportation and production problems and furnish a rational solution to maximize the benefits.
3. Explain plan the purchase/ manufacturing policies, manage the spares/ stocks, and meet the customer demands.
4. Analyze the queue discipline and explore the avenues for better customer service.
5. Investigate the nature of the project and offer methodical assistance towards decision making in maintenance.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES
1. The objective of this course is to make the students to list common types of sensor and actuators used in automotive vehicles.

UNIT – I INTRODUCTION TO MEASUREMENTS AND SENSORS

UNIT – II DISPLACEMENT, PROXIMITY AND RANGING SENSORS

UNIT – III VARIABLE RESISTANCE AND INDUTANCE SENSORS
Principle of operation - Construction details - Characteristics and applications of resistive potentiometer - Strain gauges - Resistive thermometers - Thermistors - Piezoresistive sensors - Inductive potentiometer - Variable reluctance transducers - EI pick up and LVDT.

UNIT – IV AUTOMOTIVE ACTUATORS

UNIT – V AUTOMATIC TEMPERATURE CONTROL ACTUATORS
Different types of actuators used in automatic temperature control - Fixed and variable displacement temperature control - Semi Automatic - Controller design for Fixed and variable displacement type air conditioning system.

TOTAL 45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. List common types of sensor and actuators used in vehicles.
2. Design measuring equipment’s for the measurement of pressure force, temperature and flow.
3. Generate new ideas in designing the sensors and actuators for automotive application.
4. Understand the operation of the sensors, actuators and electronic control.
5. Design temperature control actuators for vehicles.

TEXT BOOKS:
REFERENCES:

COURSE OBJECTIVES
1. To introduce the concept of environmental design and industrial ecology.
2. To impart knowledge about air pollution and its effects on the environment.
3. To enlighten the students with knowledge about noise and its effects on the environment.
4. To enlighten the students with knowledge about water pollution and its effects on the environment.
5. To introduce the concept of green co-rating and its need.

UNIT – I DESIGN FOR ENVIRONMENT AND LIFE CYCLE ASSESSMENT

UNIT – II AIR POLLUTION SAMPLING AND MEASUREMENT

UNIT – III NOISE POLLUTION AND CONTROL
Frequency and Sound Levels, Units of Noise based power radio, contours of Loudness. Effect of human, Environment and properties, Natural and Anthropogenic Noise Sources, Measuring Instruments for frequency and Noise levels, Masking of sound, Types, Kinetics, Selection of different reactors used for waste treatment, Treatment of noise at source, Path and Reception, Sources of noise, Effects of noise-Occupational Health hazards, thermal Comforts, Heat Island Effects, Radiation Effects.

UNIT – IV WATER DEMAND AND WATER QUALITY
Factors affecting consumption, Variation, Contaminants in water, Nitrates, Fluorides, Detergents, taste and odour, Radio activity in water, Criteria, for different impurities in water for portable and non-portable use, Point and non-point Source of pollution, Major pollutants of Water, Water Quality Requirement for different uses, Global water crisis issues.

UNIT – V GREEN CO-RATING

OUTCOMES: At the end of the course the students would be able to
1. Explain the environmental design and selection of eco-friendly materials.
2. Analyse manufacturing processes towards minimization or prevention of air pollution.
3. Analyse manufacturing processes towards minimization or prevention of noise pollution.
4. Analyse manufacturing processes towards minimization or prevention of water pollution.
5. Evaluate green co-rating and its benefits.

TEXT BOOKS:
REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES

1. To familiarize the course member with various operations of gas turbines and other driven rotating machines.
2. To familiarize students with the common problems associated with the mechanical design and the lifting of the major rotating components of the gas turbine engine.
3. To study the failure criteria of rotating machinery.
4. To learn the design of discs, blades for rotating machinery.
5. To study about blade vibrations Damage Mechanisms.

UNIT – I INTRODUCTION
Overview of the different operational regimes for gas turbine applications: base load, peak load, standby and backup operations, alongside their individual operational requirements. Fundamentals of Creep and Fatigue damage mechanisms. Material, design and operational parameters that affect creep and fatigue. Experimental and test procedures to characterise creep and fatigue damage.

UNIT – II DESIGNING FORCES
Loads/forces/stresses in gas turbine engines: loads - rotational inertia, flight, precession of shafts, pressure gradient, torsion, seizure, blade release, engine mountings and bearings - Discussion of major loadings - rotating components and pressure casing components.

UNIT – III FAILURE CRITERIA

UNIT – IV BLADE DESIGN
Design of discs, blades. Illustration of magnitude stresses in conventional axial flow blades - simple desk-top method - effects of leaning the blade. Design of flanges and bolted structures. Leakages through a flanged joint and failure from fatigue.

UNIT – V BLADE VIBRATIONS AND DAMAGE MECHANISMS

OUTCOMES: At the end of the course the students would be able to
1. Differentiate the operational regimes and requirements related to different gas turbine applications.
2. Describe and distinguish the design requirements and loads encountered by gas turbine components during normal operation;
3. Analyse, evaluate and assess the loads, stresses, failure criteria and factors of safety used in gas turbine engines
4. Evaluate impact of vibrations on design and operation of gas turbine;
5. Assess the creep and fatigue damage of gas turbine components based on design and operational parameters

TEXT BOOKS:

REFERENCES:
3. Principals of Turbo machines D. G. Shepherd The Macmillan Company 1964
5. Shaft Alignment Handbook (Mechanical Engineering) by John Piotrowski | 2 November 2006

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES:

- To introduce the development of Additive Manufacturing (AM), various business opportunities and applications
- To familiarize various software tools, processes and techniques to create physical objects that satisfy product development / prototyping requirements, using AM.
- To be acquainted with vat polymerization and direct energy deposition processes
- To be familiar with powder bed fusion and material extrusion processes.
- To gain knowledge on applications of binder jetting, material jetting and sheet lamination processes

UNIT I INTRODUCTION

UNIT II DESIGN FOR ADDITIVE MANUFACTURING (DfAM)

UNIT III VAT POLYMERIZATION AND DIRECTED ENERGY DEPOSITION

UNIT IV POWDER BED FUSION AND MATERIAL EXTRUSION

UNIT V OTHER ADDITIVE MANUFACTURING PROCESSES

ADDITIVE MANUFACTURING LABORATORY

Experiments

1. Modelling and converting CAD models into STL file.
3. Design and fabrication of parts by varying part orientation and support structures.
4. Fabrication of parts with material extrusion AM process.
5. Fabrication of parts with vat polymerization AM process.
6. Design and fabrication of topology optimized parts.

TOTAL: 30 PERIODS

Equipment required - lab
1. Extrusion based AM machine
2. Resin based AM machine
3. Mechanical design software
4. Open-source AM software for STL editing, manipulation and slicing.

COURSE OUTCOMES:
At the end of this course students shall be able to:
CO1: Recognize the development of AM technology and how AM technology propagated into various businesses and developing opportunities.
CO2: Acquire knowledge on process of transforming a concept into the final product in AM technology.
CO3: Elaborate the vat polymerization and direct energy deposition processes and its applications.
CO4: Acquire knowledge on process and applications of powder bed fusion and material extrusion.
CO5: Evaluate the advantages, limitations, applications of binder jetting, material jetting and sheet lamination processes.

TEXT BOOKS:

REFERENCES:
COURSE OBJECTIVES

1. To study the ferrous casting metallurgy and its applications.
2. To study the nonferrous casting metallurgy and its applications.
3. To study the ferrous welding metallurgy and its applications.
4. To study the welding metallurgy of alloy steels and nonferrous metals and its applications.
5. To identify the causes and remedies of various welding defects; applying welding standards and codes.

UNIT – I FERROUS CAST ALLOYS

UNIT – II NON-FERROUS CAST ALLOYS

UNIT – III PHYSICAL METALLURGY OF WELDING

UNIT – IV WELDING OF ALLOY STEELS AND NON-FERROUS METALS
Welding of stainless steels, types of stainless steels, overview of joining ferritic and martensitic types, welding of austenitic stainless steels, Sensitisation, hot cracking, sigma phase and chromium carbide formation, ways of overcoming these difficulties, welding of cast iron. Welding of non-ferrous materials: Joining of aluminium, copper, nickel and titanium alloys, problems encountered and solutions

UNIT – V DEFECTS, WELDABILITY AND STANDARDS
Defects in welded joints: Defects such as arc strike, porosity, undercut, slag entrapment and hot cracking, causes and remedies in each case. Joining of dissimilar materials, weldability and testing of weldments. Introduction to International Standards and Codes

OUTCOMES: At the end of the course the students would be able to
1. Explain the ferrous casting metallurgy and its applications.
2. Explain the non ferrous casting metallurgy and its applications.
3. Explain the ferrous welding metallurgy and its applications.
4. Explain the welding metallurgy of alloy steels and non ferrous metals and its applications.
5. Identify the causes and remedies of various welding defects; apply welding standards and codes.

TOTAL: 45 PERIODS
TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES

1. To study the use of computer in mobility software or mobility.
2. To study the concepts computer aided design and rapid prototyping.
3. To introduce the basic concepts of the finite elements methods.
4. To introduce basics and fundamental of the computational fluid dynamics.
5. To introduce Turbulence Modelling and various simulation techniques.

UNIT – I INTRODUCTION TO CAE /CFD 6
Introduction to use of computer in Mobility Product Life Cycle, Software for mobility. Introduction to design process and role of computers in the design process, use of modern computational tools used for design and analysis, Concept of modelling and simulation. CFD as a design and research tool, Applications of CFD in mobility engineering

UNIT – II CAD AND RAPID PROTOTYPING 6

UNIT – III INTRODUCTION TO FEA 6
Basic Concept of Finite Element Method, Ritz and Rayleigh Ritz methods, Method of weighed residuals, Galerkin method. Governing differential equations of one- and two dimensional problems, One Dimensional Second Order Equations – Discretization – Linear and Higher order Elements – Interpolation and shape functions, Derivation of Shape functions and Stiffness matrices and force vectors-Assembly of Matrices - Solution of static problems and case studies in stress analysis of mechanical components using 2D and 3D elements

UNIT – IV INTRODUCTION TO CFD 6
CFD vs. experimentation; continuity, navier-stokes and energy equations; modelling and discretization techniques; basic steps in CFD computation Various simplifications Dimensionless equations and parameters, Incompressible inviscid flows, Source panel method, and Vortex panel method. Conservation form of the equations, shock fitting and shock capturing, Time marching and space marching. 3-D structured and unstructured grid generation, mesh smoothing and sensitivity checks

UNIT – V PROBLEM SOLVING USING CFD 6
Turbulence Modelling, different turbulent modelling scheme. Incompressible Viscous Flows:, Applications to internal flows and boundary layer flows. Eddy viscosity and non-eddy viscosity models; Vehicle Aerodynamic Simulation Wind tunnel and on-road simulation of vehicles; Simulation of Ahmed and Windsor bodies; Vorticity based grid-free simulation technique; simulation in climatic and acoustic wind tunnels; velocity vector and pressure contour simulation

CAE AND CFD LABORATORY
1. Coupled analysis of structural / thermal
2. buckling analysis
3. CFD simulation of flow analysis over a Cylinder Surface 3D
4. CFD simulation of Intermixing of Fluids in a Bent-Pipe 3D

TOTAL :30 PERIODS
5. CFD simulation of flow and heat transfer analysis of Double Pipe Counter Flow Heat Exchanger
6. Design & processing of Engine components by RPT

TOTAL: 30 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. discuss the basic concept of the CAE /CFD
2. Develop the computer aided design and rapid prototyping.
3. Discuss the basic concept of Finite Element methods.
4. Discuss the concepts of computational fluid dynamics
5. Solving the problem and simulation using computational fluid dynamics.

TEXT BOOKS:
1. Computational Fluid Dynamics: A Practical Approach by Jiyuan Tu, Guan Heng Yeoh, Chaoqun Liu
2. Applied Computational Fluid Dynamics by S. C. Gupta

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES

1. To introduce the concept of hybrid and electric drive trains.
2. To elaborate on the types and utilisation of hybrid and electric drive trains.
3. To expose on different types of AC and DC drives for electric vehicles.
4. To learn and utilise different types of energy storage systems
5. To introduce concept of energy management strategies and drive sizing

UNIT – I INTRODUCTION
Basics of vehicle performance, vehicle power source characterization, transmission characteristics, History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.

UNIT – II HYBRID ELECTRIC DRIVE TRAINS
Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis.

UNIT – III CONTROL OF AC & DC DRIVES
Introduction to electric components used in hybrid and electric vehicles, Configuration, and control - DC Motor drives, Induction Motor drives, Permanent Magnet Motor drive, and Switch Reluctance Motor drives, drive system efficiency.

UNIT – IV ENERGY STORAGE

UNIT – V DRIVE SIZING AND ENERGY MANAGEMENT STRATEGIES
Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selection of appropriate energy storage technology, Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification, and comparison of energy management strategies, Implementation issues.

OUTCOMES: At the end of the course the students would be able to
1. Discuss Characterise and configure hybrid drivetrains requirement for a vehicle
2. Design and apply appropriate hybrid and electric drive trains in a vehicle
3. Design and install suitable AC and DC drives for electric vehicles.
4. Discuss arrive at a suitable energy storage system for a hybrid / electric vehicle
5. Apply energy management strategies to ensure better economy and efficiency

TEXT BOOKS:
REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES
1. To introduce the concepts of thermal and fired equipment.
2. To study the basis, design and construction of boilers.
3. To study of typical fuel firing systems in the boiler.
4. To study of materials requirements for pressure parts.
5. To study of various boiler auxiliaries system.

UNIT – I INTRODUCTION
Principal equipment in Thermal Power Plant, Historical developments of Boiler, Utility, Industrial boilers, Modern trends in boiler design, Basic knowledge of different types of Thermal Fired Equipment, sub critical and super critical boilers - Coal, Oil, Gas, Pulverised fuel cyclone, FBC, CFBC, MSW, and Stoker firing, Boiler efficiency, auxiliary power consumption, Performance data, Performance Correction Curves

UNIT – II BASIS OF BOILERS AND DESIGN

UNIT – III FIRING SYSTEM- FUEL AND MILLING
Coal / Oil / Natural Gas in any combination, Lignite, Blast Furnace Gas / Coke Oven Gas / Corex Gas Carbon Monoxide / Tail gas, Asphalt, Black Liquor, Bagasse, Rice Husk, Washery Rejects, Wheat / Rice straw MSW, wind box, Burner, Type of Stokers, Pulverisers - Bowl mill, Tube mill, Direct firing, Indirect firing, Wall firing (Turbulent / Vortex Burners), Tangential firing (Jet Burners), Fire Ball

UNIT – IV PRESSURE PARTS AND DESIGN AND MATERIALS
Economiser, Drums, Water Walls, Headers, Links, Super Hater, Super Heaters, Reheaters, Tubes, Spiral Tubes, Surface area, Free Gas Area, Metal temperature, LMTD, Acid Due Point Temperature, Carbon steel, Low alloy steel, Titanium alloy steel

UNIT – V BOILER AUXILIARIES
Air preheaters (APH) - bi sector APH, Tri sector APH, Cold PA System, Hot PA System, Tubular APH, Steam coil Air preheater, FANS - Axial, Radial, Performance curves, MILLS- Tube, Vertical mills, Air quality Control systems, DustCollection System - Mechanical Precipitator, Electrostatic Precipitator, FGD, SCR, SNCR

OUTCOMES: At the end of the course the students would be able to
1. Explain the concepts of thermal and fired equipment.
2. Discuss the basis, design and construction of boilers.
3. Describe of typical fuel firing systems in the boiler.
4. Discuss the materials requirements for pressure parts.
5. Discuss of various boiler auxiliaries system.

TEXT BOOKS:
1. A Course in Power Plant Engineering; Dhanapat Rai and Sons - Domkundwar
2. Power Plant Engineering by B. Vijaya Ramnath C. Elanchezhian, L. Saravanakumar
REFERENCES:
2. Steam Generators and Waste Heat Boilers: For Process and Plant Engineers (Mechanical Engineering) by V. Ganapathy
3. Steam Generators: Description and Design by Donatello Annaratone
4. An Introduction to Coal and Wood Firing Steam Generators (Power Plants Engineering) by J Paul Guyer
5. Advances in Power Boilers (JSME Series in Thermal and Nuclear Power Generation)
 by Mamoru Ozawa and Hitoshi Asano | 28 January 2021

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES
1. To provide knowledge on materials handling equipment.
2. To provide knowledge on Industrial Vehicles.
3. To provide knowledge on conveyor equipment.
4. To provide knowledge on Auxiliary Equipment and Hoisting Equipment.
5. To provide knowledge on Bulk Handling Equipment and Systems.

UNIT – I INTRODUCTION TO MATERIALS HANDLING
Basic principles & objectives in material handling and its benefits - Classification of material handling equipment - selection of material handling equipments - guidelines for effective utilisation of material handling equipments - unit load concept

UNIT – II INDUSTRIAL VEHICLES

UNIT – III CONVEYORS
Classification of conveyors - Definition - Description - General Characteristics - types and uses of belt conveyors - Roller conveyors - Haulage Conveyors - Screw Conveyors - Bucket Conveyors - Chain Conveyors - Cable Conveyors - Pneumatic and Hydraulic conveyors - Computer controlled conveyor system.

UNIT – IV AUXILIARY EQUIPMENT AND HOISTING EQUIPMENT
Hoppers - Gates - Feeders - Chutes-positioners - Ball Table - Weighing and Control Equipment - Pallet loaders and unloaders - applications and advancements - Hoisting Equipment - parts of hoisting equipment - Description and uses of hoists - Description and uses of ropes - description and purpose of crane hooks - Elevators - Cranes - Derricks - and its types

UNIT – V BULK HANDLING EQUIPMENT AND SYSTEMS
Storage of bulk solids - bulk handling equipment - Robotic handling - Materials handling at the workplace - Robots and their classification - Major components of a robot - classification of Robotic manipulators - Robotic handling applications

OUTCOMES: At the end of the course the students would be able to
1. Discuss the basic concepts of material handling equipment.
2. Explain the basic working principles of various industrial Vehicles.
3. Develop the basic working principles of various conveyors.
4. Elaborate the basic working principles of various Auxiliary Equipment and Hoisting Equipment.
5. Explain the basic working principles of various Bulk Handling Equipment and Systems.

TEXT BOOKS:

REFERENCES:
2. 8005:1976, Classification of Unit Loads, Bureau of Indian Standards.
4. Theodore H., Allegre Sr., Material Handling Principles and Practice, CBS Publishers and Distributors

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES

1. To learn the climate and buildings, building efficiency rating and standards
2. Developing energy efficiency in building envelopes through alternate methods
3. To study the thermal comfort, passive heating and cooling techniques
4. To apply various energy saving concepts in buildings.
5. To incorporate Renewable energy systems in buildings

UNIT – I INTRODUCTION
Climate and Building, Historical perspective, Aspects of Net Zero building design – Sustainable Site, Water, Energy, Materials and IGBC, LEED, GRIHA, IEQ and ECBC Standards

UNIT – II LANDSCAPE AND BUILDING ENVELOPES
Energy efficient landscape design – Micro climates – various methods – Shading, water bodies – Building envelope: Building materials, Envelope heat loss and heat gain and its evaluation, paints, insulation, Design methods and tools

UNIT – III THERMAL COMFORT, PASSIVE HEATING AND COOLING

UNIT – IV ENERGY CONSERVATION IN BUILDING UTILITIES

UNIT – V RENEWABLE ENERGY IN BUILDINGS
Introduction of Renewable sources in buildings, , Stand-alone PV systems, BIPV, Solar water heating, Solar Air Conditioning in Buildings, Small wind turbines, Poly-generation systems in Buildings

OUTCOMES: At the end of the course the students would be able to
1. Familiar with climate responsive building design and basic concepts
2. Explain the basic terminologies related to buildings
3. Discuss the energy efficient air conditioning techniques
4. Evaluate the performance of buildings
5. Gets acquainted with Renewable energy systems in buildings

TEXT BOOKS:

REFERENCES:

| CO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 2 | 2 | 1 | | | | | | | | | | 1 | 2 | 1 |
| 2 | 2 | 2 | 1 | | | | | | | | | | 1 | 2 | 1 |
| 3 | 2 | 2 | 1 | | | | | | | | | | 1 | 2 | 1 |
| 4 | 2 | 2 | 1 | | | | | | | | | | 1 | 2 | 1 |
| 5 | 2 | 2 | 1 | | | | | | | | | | 1 | 2 | 1 |

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES
1. To Identify measurement parameters and analyze errors of measurements.
2. To Select and apply suitable transducer for a particular measurement.
3. To identify measurement parameters and select the appropriate sensor for it.
4. To Explain the working of various types of control systems of apply for specific applications.
5. To apply the principle of automatic control systems to control various parameter(s).

UNIT – I MEASUREMENTS AND ERROR ANALYSIS 9

UNIT – II INSTRUMENTS 9

UNIT – III PARAMETERS FOR MEASUREMENT 9

UNIT – IV CONTROL SYSTEMS 9

UNIT – V APPLICATION OF CONTROL SYSTEMS 9
Governing of speed, kinetic and process control – pressure, temperature, fluid level, flow-thrust and flight control – photo electric controls – designing of measurement and control systems for different applications

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Identify measurement parameters and analyze errors of measurements.
2. Select and apply suitable transducer for a particular measurement.
3. Identify measurement parameters and select the appropriate sensor for it.
4. Explain the working of various types of control systems of apply for specific applications.
5. Apply the principle of automatic control systems to control various parameter(s).

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES
1. To study the various design requirements and get acquainted with the processes involved in product development.
2. To study the design processes to develop a successful product.
3. To learn scientific approaches to provide design solutions.
4. Designing solution through relate the human needs and provide a solution.
5. To study the principles of material selection, costing and manufacturing in design.

UNIT – I DESIGNS TERMINOLOGY
Definition- various methods and forms of design-importance of product design-static and dynamic products-various design projects-morphology of design-requirements of a good design-concurrent engineering-computer aided engineering-codes and standards-product and process cycles-bench marking.

UNIT – II INTRODUCTION TO DESIGN PROCESSES
Basic modules in design process-scientific method and design method-Need identification, importance of problem definition-structured problem, real life problem-information gathering-customer requirements-Quality Function Deployment (QFD)- product design specifications-generation of alternative solutions-Analysis and selection-Detail design and drawings-Prototype, modeling, simulation, testing and evaluation

UNIT – III CREATIVITY IN DESIGN
Creativity and problem solving-vertical and lateral thinking-invention-psychological view, mental blocks-Creativity methods-brainstorming, synectics, force fitting methods, mind map, concept map-Theory of innovative problem solving (TRIZ) - conceptual decomposition creating design concepts.

UNIT – IV HUMAN AND SOCIETAL ASPECTS IN PRODUCT DEVELOPMENT
Human factors in design, ergonomics, user friendly design-Aesthetics and visual aspects-environmental aspects-marketing aspects-team aspects-legal aspects-presentation aspects

UNIT – V MATERIAL AND PROCESSES IN DESIGN
Material selection for performance characteristics of materials-selection for new design substitution for existing design-economics of materials-selection methods-recycling and material selection-types of manufacturing process, process systems- Design for Manufacturability (DFM) - Design for Assembly (DFA).

OUTCOMES: At the end of the course the students would be able to
1. Analyze the various design requirements and get acquainted with the processes involved in product development.
2. Apply the design processes to develop a successful product.
3. Apply scientific approaches to provide design solutions.
4. Design solution through relate the human needs and provide a solution.
5. Apply the principles of material selection, costing and manufacturing in design.

TEXT BOOKS:
REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES

1. Understand the importance, principles, and search methods of AI
2. Provide knowledge on predicate logic and Prolog.
3. Introduce machine learning fundamentals.
4. Study of supervised learning algorithms.
5. Study about unsupervised learning algorithms.

UNIT – I INTELLIGENT AGENT AND UNINFORMED SEARCH

UNIT – II PROBLEM SOLVING WITH SEARCH TECHNIQUES
Informed Search - Greedy Best First - A* algorithm - Adversarial Game and Search - Game theory - Optimal decisions in game - Min Max Search algorithm - Alpha-beta pruning - Constraint Satisfaction Problems (CSP) - Examples - Map Coloring - Job Scheduling - Backtracking Search for CSP

UNIT – III LEARNING
Machine Learning: Definitions – Classification - Regression - approaches of machine learning models - Types of learning - Probability - Basics - Linear Algebra – Hypothesis space and inductive bias, Evaluation. Training and test sets, cross validation, Concept of over fitting, under fitting, Bias and Variance - Regression: Linear Regression - Logistic Regression

UNIT – IV SUPERVISED LEARNING

UNIT – V UNSUPERVISED LEARNING

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to

1. Understand the foundations of AI and the structure of Intelligent Agents
2. Use appropriate search algorithms for any AI problem
3. Study of learning methods
4. Solving problem using Supervised learning
5. Solving problem using Unsupervised learning

Attested

[Signature]

DIRECTOR
Centre for Academic Courses
Anna University, Chennai 600 025
TEXT BOOKS:
2. S.N.Sivanandam and S.N.Deepa, Principles of soft computing-Wiley India.3 rd ed,

REFERENCES:
COURSE OBJECTIVES
1. To introduce to industrial design based on ergonomics.
2. To consider ergonomics concept in manufacturing
3. To apply ergonomics in design of controls and display.
4. To apply environmental factors in ergonomics design.
5. To develop aesthetics applicable to manufacturing and product

UNIT – I INTRODUCTION
An approach to industrial design, Elements of design structure for industrial design in engineering application in modern manufacturing systems- Ergonomics and Industrial Design: Introduction to Ergonomics, Communication system, general approach to the man-machine relationship, Human component of work system, Machine component of work system, Local environment-light, Heat, Sound.

UNIT – II ERGONOMICS AND PRODUCTION
Introduction, Anthropometric data and its applications in ergonomic, working postures, Body Movements, Work Station Design, Chair Design. Visual Effects of Line and Form: The mechanics of seeing, Psychology of seeing, Figure on ground effect, Gestalt’s perceptions - Simplicity, Regularity, Proximity, Wholeness. Optical illusions, Influences of line and form.

UNIT – III DESIGN PRINCIPLES FOR DISPLAY AND CONTROLS
Displays: Design Principles of visual Displays, Classification, Quantitative displays, Qualitative displays, check readings, Situational awareness, Representative displays, Design of pointers, Signal and warning lights, colour coding of displays, Design of multiple displays Controls: Design considerations, Controls with little efforts – Push button, Switches, rotating Knobs. Controls with muscular effort – Hand wheel, Crank, Heavy lever, Pedals. Design of controls in automobiles, Machine Tools

UNIT – IV ENVIRONMENTAL FACTORS
Colour: Colour and light, Colour and objects, Colour and the eye – after Image, Colour blindness, Colour constancy, Colour terms – Colour circles, Munsel colour notation, reactions to colour and colour combination – colour on engineering equipments, Colour coding, Psychological effects, colour and machine form, colour and style

UNIT – V AESTHETIC CONCEPTS
Concept of unity, Concept of order with variety, Concept of purpose, Style and environment, Aesthetic expressions - Symmetry, Balance, Contrast, Continuity, Proportion. Style - The components of style, House style, Style in capital good. Introduction to Ergonomic and plant layout software’s, total layout design.

OUTCOMES: At the end of the course the students would be able to
1. Appreciate ergonomics need in the industrial design.
2. Apply ergonomics in creation of manufacturing system
3. Discuss on design of controls and display.
4. Consider environmental factors in ergonomics design.
5. Report on importance of aesthetics to manufacturing system and product
TEXT BOOKS:
1. Ergonomics in Design: Methods and Techniques (Human Factors and Ergonomics) by Marcelo M. Soares, Francisco Rebelo
2. Ergonomics in Product Design by Sendpoints Publishing Co. Ltd.

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES
1. To introduce the fundamental concepts of the new product development
2. To develop material specifications, analysis and process.
3. To learn the Feasibility Studies & reporting of new product development.
4. To study the New product qualification and Market Survey on similar products of new product development
5. To learn Reverse Engineering. Cloud points generation, converting cloud data to 3D model

UNIT – I FUNDAMENTALS OF NPD
9

UNIT – II MATERIAL SPECIFICATIONS, ANALYSIS & PROCESS
9
Material specification standards – ISO, DIN, JIS, ASTM, EN, etc. – Awareness on various manufacturing process like Metal castings & Forming, Machining (Conventional, 3 Axis, 4 Axis, 5 Axis,), Fabrications, Welding process. Qualifications of parts mechanical, physical & Chemical properties and their test report preparation and submission. Fundamentals of DFMEA & PFMEA, Fundamentals of FEA, Bend Analysis, Hot Distortion, Metal and Material Flow, Fill and Solidification analysis.

UNIT – III ESSENTIALS OF NPD
9

UNIT – IV CRITERIONS OF NPD
9
New product qualification for Dimensions, Mechanical & Physical Properties, Internal Soundness proving through X-Ray, Radiography, Ultrasonic Testing, MPT, etc. Agreement with customer for testing frequencies. Market Survey on similar products, Risk analysis, validating samples with simulation results, Lesson Learned & Horizontal deployment in NPD.

UNIT – V REPORTING & FORWARD-THINKING OF NPD
9
Detailed study on PPAP with 18 elements reporting, APQP and its 5 Sections, APQP vs PPAP, Importance of SOP (Standard Operating Procedure) – Purpose & documents, deployment in shop floor. Prototyping & RPT - Concepts, Application and its advantages, 3D Printing – resin models, Sand cores for foundries; Reverse Engineering. Cloud points generation, converting cloud data to 3D model – Advantages & Limitation of RE, CE (Concurrent Engineering) – Basics, Application and its advantages in NPD (to reduce development lead time, time to Market, Improve productivity and product cost.)

OUTCOMES: At the end of the course the students would be able to
1. Discuss fundamental concepts and customer specific requirements of the New Product development
2. Discuss the Material specification standards, analysis and fabrication, manufacturing process.
3. Develop Feasibility Studies & reporting of New Product development

TOTAL : 45 PERIODS
4. Analyzing the New product qualification and Market Survey on similar products of new product development
5. Develop Reverse Engineering. Cloud points generation, converting cloud data to 3D model

TEXT BOOKS:
1. Product Development – Sten Jonsson
2. Product Design & Development – Karl T. Ulrich, Maria C. Young, Steven D. Eppinger

REFERENCES:
1. Revolutionizing Product Development – Steven C Wheelwright & Kim B. Clark
2. Change by Design
5. Product Design & Value Engineering – Dr. M.A. Bulsara &Dr. H.R. Thakkar

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES:
1. To learn about basics of robots and their classifications
2. To understand the robot kinematics in various planar mechanisms
3. To learn about the concepts in robot dynamics
4. To understand the concepts in trajectory planning and programming
5. To know about the various applications of robots

UNIT – I BASICS OF ROBOTICS

UNIT – II ROBOT KINMEATICS
Robot kinematics: Introduction- Matrix representation- rigid motion & homogeneous transformation- D-H, forward & inverse kinematics of 2DOF and 3 DOF planar and spatial mechanisms

UNIT – III ROBOT DYNAMICS
Introduction - Manipulator dynamics – Lagrange - Euler formulation- Newton - Euler formulation

UNIT – IV TRAJECTORY, PATH PLANNING AND PROGRAMMING
Trajectory Planning- Joint space and Cartesian space technique, Introduction to robot control, Robot programming and Languages- Introduction to ROS

UNIT – V ROBOT AND ROBOT APPLICATIONS

TOTAL: 45 PERIODS

COURSE OUTCOMES
Upon completion of this course, the students can able to
CO1: State the basic concepts and terminologies of robots
CO2: Know the Procedures for Forward and Inverse Kinematics, Dynamics for Various Robots
CO3: Derive the Forward and Inverse Kinematics, Dynamics for Various Robots
CO4: Apply the various programming techniques in industrial applications
CO5: Analyze the use of various types of robots in different applications

Mapping of COs with POs and PSOs

<table>
<thead>
<tr>
<th>COs/POs&P</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOs</td>
<td>1</td>
<td>2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>2 3 1 2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2 3 1 2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2 3 1 2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2 3 1 2</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2 3 1 3</td>
</tr>
<tr>
<td>CO/PO &</td>
<td>3</td>
<td>2 3 1 2</td>
</tr>
<tr>
<td>PSO Average</td>
<td>3</td>
<td>2 3 1 2</td>
</tr>
</tbody>
</table>

1 – Slight, 2 – Moderate, 3 – Substantial
TEXT BOOKS:

REFERENCES:
COURSE OBJECTIVES
1. To make the students to understand the concepts of Environmental Sustainability & Impact Assessment
2. To familiarize the students in environmental decision making procedure.
3. Make the students to identify, predict and evaluate the economic, environmental, and social impact of development activities
4. To provide information on the environmental consequences for decision making
5. To promote environmentally sound and sustainable development through the identification of appropriate alternatives and mitigation measures.

UNIT – I ENVIRONMENTAL IMPACT ASSESSMENT 9
Environmental impact assessment objectives – rationale and historical development of EIA - Conceptual frameworks for EIA Legislative development – European community directive – Hungarian directive.

UNIT – II ENVIRONMENTAL DECISION MAKING 9
Strategic environmental assessment and sustainability appraisal – Mitigation, monitoring and management of environmental impacts- Socio economic impact assessment.

UNIT – III ENVIRONMENTAL POLICY, PLANNING AND LEGISLATION 9
Regional spatial planning and policy – Cumulative effects assessment – Planning for climate change, uncertainty and risk.

UNIT – IV LIFE CYCLE ASSESSMENT 9
Life cycle assessment; Triple bottom line approach; Industrial Ecology. Ecological foot printing, Design for Environment, Future role of LCA, Product stewardship, design, durability and justifiability, measurement techniques and reporting

UNIT – V SUSTAINABLE URBAN ECONOMIC DEVELOPMENT 9
Spatial economics – Knowledge economy and urban regions.

OUTCOMES: At the end of the course the students would be able to
1. Explain the concepts of Environment Sustainability and trained to make decision related to Environment.
2. Make decision that has an effect on our environment
3. Evaluate the basics of environmental policy, planning and various legislation Get valuable information for exploring decisions in each life stage of materials, buildings, services and infrastructure.
4. Explain the Life cycle assessment of Environmental sustainability.
5. Explain sustainable urban economic development.

TEXT BOOKS:
REFERENCES:
2. Robert B Gibsan, Sustainability Assessment, Earth Scan publishers, 2005

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES
1. To introduce the Mathematical knowledge to design pressure vessels and piping
2. To learn the ability to carry of stress analysis in pressure vessels and piping
3. To study the design of vessels and theory of reinforcement.
4. To study buckling and fracture analysis in vessels.
5. To learn piping layout and flow diagram.

UNIT – I INTRODUCTION
Methods for determining stresses – Terminology and Ligament Efficiency – Applications

UNIT – II STRESSES IN PRESSURE VESSELS

UNIT – III DESIGN OF VESSELS
Design of Tall cylindrical self-supporting process columns – Supports for short vertical vessels – Stress concentration at a variable Thickness transition section in a cylindrical vessel, about a circular hole, elliptical openings. Theory of Reinforcement – Pressure Vessel Design.

UNIT – IV BUCKLING AND FRACTURE ANALYSIS IN VESSELS
Buckling phenomenon – Elastic Buckling of circular ring and cylinders under external pressure – collapse of thick walled cylinders or tubes under external pressure – Effect of supports on Elastic Buckling of Cylinders – Buckling under combined External pressure and axial loading.

UNIT – V PIPING

OUTCOMES: At the end of the course the students would be able to
1. Explain Methods for determining stresses Terminology and Ligament Efficiency, Applications
2. Analyse stress in pressure vessels
3. Design and analysis of pressure vessels.
4. Analysis of buckling and fracture analysis in vessels
5. Design and analysis piping layout and piping.

TEXT BOOKS:
2. Theory And Design Of Pressure Vessels (Pb 2001) by HARVEY J.F. | 1 January 2001

REFERENCES:
5. Theory and design of Pressure Vessels (Pb 2001)by HARVEY J.F. | 1 January 2001
<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)
COURSE OBJECTIVES:
1. To introduce need and scope of failure analysis and fundamental sources of failures.
2. To learn about non-destructive testing and basic principles of visual inspection.
3. To study about magnetic testing and principles, techniques.
4. To learn the principle of radiography testing and its inspection techniques and methods.
5. To study the acoutistic testing principle and technique and instrumentation.

UNIT – I INTRODUCTION

UNIT – II VISUAL INSPECTION

UNIT – III MAGNETIC TESTING

UNIT – IV RADIOGRAPHY TESTING

UNIT – V ACOUTISTIC TESTING

NON DESTRUCTIVE TESTING LABORATORY
Experiments
1. Conducting experiment using liquid penetrant testing
2. Conducting experiment using magnetic particle testing
3. Conducting experiment using ultrasonic testing
4. Conducting experiment using electromagnetic testing
5. Conducting experiment using acoutistic emission testing

Total : 30 Periods
OUTCOMES: At the end of the course the students would be able to
1. Discuss the need and scope of failure analysis and fundamental sources of failures.
2. Describe about non-destructive testing and basic principles of visual inspection.
3. Explain about magnetic testing and principles, techniques.
4. Explain the principle of radiography testing and its inspection techniques and methods.
5. Describe the acoustical testing principle and technique and instrumentation.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>tCO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Low (1) ; Medium (2) ; High (3)

Attested

Director

Centre for Academic Courses
Anna University, Chennai-600 025
COURSE OBJECTIVES
The main learning objective of this course is to prepare the students for:
1. To introduce the industrial facility layout design principles, process and material flow analysis and product and equipment analysis.
2. To learn the facilities layout design algorithms and selecting appropriate software.
3. To study the facilities layout problem modelling tools and algorithms for production, warehouse, and material handling.
4. To learn the safety planning and management principles in industries.
5. To learn the various safety management approaches in industries.

UNIT – I INTRODUCTION

UNIT – II FACILITIES LAYOUT DESIGN & ALGORITHMS

UNIT – III FACILITIES LAYOUT PROBLEM MODELS & ALGORITHMS

UNIT – IV SAFETY PLANNING & MANAGEMENT

UNIT – V APPROACHES IN SAFETY MANAGEMENT

INDUSTRIAL LAYOUT DESIGN LABORATORY
Experiments
1. Simulation of Manufacturing Shop
2. Simulation of Batch Production System
3. Simulation of Multi Machine Assignment System
4. Simulation of Manufacturing and Material Handling Systems
5. Simulation of a Shop Floor
6. Simulation of Material Handling Systems

TOTAL:30 PERIODS
COURSE OUTCOMES: At the end of the course the students would be able to
1. Explain the industrial facility layout design principles, process and material flow analysis and product and equipment analysis.
2. Discuss the facilities layout design algorithms and selecting appropriate software.
3. Describe the facilities layout problem modeling tools and algorithms for production, warehouse, and material handling.
4. Explain the safety planning and management principles in industries.
5. Illustrate the various safety management approaches in industries.

TEXT BOOKS:

REFERENCES:
6. Industrial Hazard and Safety Handbook: (Revised impression by Ralph W King and John Magid | 24 September 2013

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Low (1); Medium (2); High (3)
COURSE OBJECTIVES
1. To study the working principle of Li-ion Batteries and Battery Packs.
2. To learn the thermal management system in Battery modules.
3. To develop the different case studies in Battery Thermal Management System.
4. To learn the working principle of Fuel Cells cooling methods.
5. To learn the inside components of Thermal Management Systems in various famous Electric and Fuel Cell Electric Vehicles.

UNIT – I ADVANCED BATTERIES
Li-ion Batteries- chemistry, different formats, operating areas, efficiency, aging. Battery Management System- Configuration, Characteristics. Tesla Model S- 18650 Cell specifications, P85 Battery Pack mechanical structure, Texas Instruments BMS. Supercapacitors Vs batteries. Diamond battery concepts.

UNIT – II THERMAL MANAGEMENT IN BATTERIES

UNIT – III BATTERY THERMAL MANAGEMENT CASE STUDIES

UNIT – IV THERMAL MANAGEMENT IN FUEL CELLS
Fuel Cells- operating principle, hydrogen-air fuel cell system characteristics, other fuel cell technologies, polarization curves, applications. Fuel cell thermal management- basic model, energy balance, governing equations, characteristic curve, sizing, cooling methods, advantages, restrictions.

UNIT – V FUEL CELL THERMAL MANAGEMENT CASE STUDIES

TOTAL:45 PERIODS

OUTCOMES: At the end of the course the students would be able to
1. Discuss the different Li-ion Batteries and Fuel Cell performances.
2. Design a Battery Pack with appropriate PCM.
3. Apply Cooling Models using Simulation
4. Estimate fuel economy.
5. Utilize different Thermal Management System approaches during real world usage.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>