DEPARTMENT OF TEXTILE TECHNOLOGY

Vision:

The Vision of the Department of Textile Technology, Anna University is to be recognized as a leader in textile and apparel technology education, research and application of knowledge and skills to benefit the society.

Mission:

The mission of the Department of Textile Technology, Anna University is

- To deliver the highest quality textile and apparel technologists with societal values.
- To carryout cutting-edge research and develop innovative technology for the benefit of society at national and international level.
- To inculcate a sense of highest ethical and professional standards among the students.
1. PROGRAM EDUCATIONAL OBJECTIVES (PEOs):

Master of Textile Technology curriculum is designed to prepare the graduates to

1. Have attitude and knowledge for the successful professional and technical career
2. Design and conduct experiments and interpret the results, Design new process and product for textile industry
3. Manage research and development activities in textile industry and research organizations and
4. Enhance their skills for managing textile manufacturing industry

2. PROGRAM OUTCOMES (POs):

The Textile Technology Post Graduates will have the ability to

1. Apply the knowledge gained through the post graduate programme to effectively teach the students at the undergraduate level
2. Effectively carryout fundamental and applied research
3. Develop new process or product at the textile industry
4. Develop new process or product at the textile research organizations
5. Apply the knowledge of textile technology to effectively manage textile industry
6. Effectively function as individual or as a part of a team to accomplish a stated goal.
7. Understand the professional and ethical responsibility
8. Communicate effectively with a wide range of audience
9. Learn independently and engage in life-long learning
10. Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
3. Mapping of Programme Educational Objective with Programme Outcomes

<table>
<thead>
<tr>
<th>PEO</th>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Mapping of Programme Outcomes with Course Outcomes

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of short staple spinning</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advances in fabric formation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymer and fibre physics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistics in textile engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced textile testing lab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetting and wicking of textile materials</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yarn quality analysis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabric quality analysis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Professional Electives

- Alternative Spinning System
- Process Control and Optimization in Yarn Spinning
- Shuttleless Weaving Technology
- Structural mechanics of yarn
- Theory of Drafting
- Theory of twisting
- Structure and properties of Nonwovens
- Structural mechanics of fabrics
<table>
<thead>
<tr>
<th>Topic</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characterization of Textile Polymers</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Colour Science and its Applications</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Enzyme Technology for Textile Processing</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>High Performance Textiles</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Pollution abatement in Textile industry</td>
<td>✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Coated and laminated textiles</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Sustainability in textile industry</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Medical Textiles</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Protective Clothing</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Textile Reinforced Composites</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Textiles in Civil Construction and Transportation</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Filtration textiles</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Clothing science</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Functional dyes</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
<tr>
<td>Colouration and functional finishes</td>
<td>✔️ ✔️</td>
<td>✔️ ✔️</td>
</tr>
</tbody>
</table>

RESEARCH METHODOLOGY AND IPR COURSES (RMC)

- Research Methodology and IPR

AUDIT COURSES (AC)

- Audit Course I
- Audit Course II

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

- Textile product engineering
- Project Phase I
- Project Phase II
SEMESTER I

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>TX5101</td>
<td>Theory of short staple spinning</td>
<td>PCC</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>TX5102</td>
<td>Advances in fabric formation</td>
<td>PCC</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>TX5103</td>
<td>Polymer and Fibre Physics</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>TX5104</td>
<td>Statistics in Textile Engineering</td>
<td>PCC</td>
<td>3 0 2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective I</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>RM5151</td>
<td>Research Methodology and IPR</td>
<td>RMC</td>
<td>2 0 0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Audit Course – I*</td>
<td>AC</td>
<td>2 0 0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>TX5111</td>
<td>Advanced textile testing Lab</td>
<td>PCC</td>
<td>0 0 6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>21 0 8</td>
<td>29</td>
<td>23</td>
</tr>
</tbody>
</table>

Audit Course is Optional

SEMESTER II

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>TX5201</td>
<td>Wetting and wicking of textile materials</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>TX5202</td>
<td>Yarn quality analysis</td>
<td>PCC</td>
<td>2 0 2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>TX5203</td>
<td>Fabric quality analysis</td>
<td>PCC</td>
<td>2 0 2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Professional Elective II</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective III</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective IV</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Audit Course – II</td>
<td>AC</td>
<td>2 0 0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>TX5211</td>
<td>Textile product engineering</td>
<td>EEC</td>
<td>0 0 8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>18 0 12</td>
<td>28</td>
<td>22</td>
</tr>
</tbody>
</table>

Audit Course is Optional
SEMESTER III

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Professional Elective V</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Professional Elective VI</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Open Elective</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. TX5311 Project Phase I</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>9</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

Total credits: 72

SEMESTER IV

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. TX5411 Project Phase II</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
</tbody>
</table>

Total credits: 72
<table>
<thead>
<tr>
<th>S. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX5001</td>
<td>Alternative Spinning System</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>TX5002</td>
<td>Process Control and Optimization in Yarn Spinning</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>TX5003</td>
<td>Shuttleless Weaving Technology</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>TX5004</td>
<td>Structural mechanics of yarn</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>TX5005</td>
<td>Theory of Drafting</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>TX5006</td>
<td>Theory of twisting</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>TX5007</td>
<td>Structure and properties of Nonwovens</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>TX5008</td>
<td>Structural mechanics of fabrics</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>TX5009</td>
<td>Characterization of Textile Polymers</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>TX5010</td>
<td>Colour Science and its Applications</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>TX5011</td>
<td>Enzyme Technology for Textile Processing</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>TX5012</td>
<td>High Performance Textiles</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>TX5013</td>
<td>Pollution abatement in Textile industry</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>TX5014</td>
<td>Coated and laminated textiles</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>TX5015</td>
<td>Sustainability in textile industry</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>TX5016</td>
<td>Medical Textiles</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>TX5017</td>
<td>Protective Clothing</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>TX5018</td>
<td>Textile Reinforced Composites</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>TX5019</td>
<td>Textiles in Civil Construction and Transportation</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>TX5020</td>
<td>Filtration textiles</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>TX5021</td>
<td>Clothing science</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>TX5022</td>
<td>Functional dyes</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>TX5023</td>
<td>Colouration and functional finishes</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
PROGRAM CORE COURSES (PCC)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>PERIODS PER WEEK</th>
<th>CREDITS</th>
<th>SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LECTURE</td>
<td>TUTORIAL</td>
<td>PRACTICAL</td>
</tr>
<tr>
<td>1.</td>
<td>TX5101</td>
<td>Theory of short staple spinning</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>TX5102</td>
<td>Advances in fabric formation</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>TX5103</td>
<td>Polymer and fibre physics</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>TX5104</td>
<td>Statistics in textile engineering</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>TX5111</td>
<td>Advanced textile testing lab</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>6.</td>
<td>TX5201</td>
<td>Wetting and wicking of textile materials</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>TX5202</td>
<td>Yarn quality analysis</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td>TX5203</td>
<td>Fabric quality analysis</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL CREDITS 27

RESEARCH METHODOLOGY AND IPR COURSES (RMC)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Code No.</th>
<th>Course Title</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>1</td>
<td>RM5151</td>
<td>Research Methodology and IPR</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Credits: 2

OPEN ELECTIVE COURSES [OEC]

(Out of 6 Courses one Course must be selected)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>PERIODS PER WEEK</th>
<th>CREDITS</th>
<th>SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OE5091</td>
<td>Business Data Analytics</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>OE5092</td>
<td>Industrial Safety</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>OE5093</td>
<td>Operations Research</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>OE5094</td>
<td>Cost Management of Engineering Projects</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>OE5095</td>
<td>Composite Materials</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>OE5096</td>
<td>Waste to Energy</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
AUDIT COURSES (AC)

Registration for any of these courses is optional to students.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>PERIODS PER WEEK</th>
<th>CREDITS</th>
<th>SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lectur</td>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>1.</td>
<td>AX5091</td>
<td>English for Research Paper Writing</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>AX5092</td>
<td>Disaster Management</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>AX5093</td>
<td>Sanskrit for Technical Knowledge</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>AX5094</td>
<td>Value Education</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>AX5095</td>
<td>Constitution of India</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>AX5096</td>
<td>Pedagogy Studies</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>AX5097</td>
<td>Stress Management by Yoga</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td>AX5098</td>
<td>Personality Development Through Life Enlightenment Skills</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9.</td>
<td>AX5099</td>
<td>Unnat Bharat Abhiyan</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1/2

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>CODE NO.</th>
<th>COURSE TITLE</th>
<th>PERIODS PER WEEK</th>
<th>CREDITS</th>
<th>SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>1</td>
<td>TX5211</td>
<td>Textile product engineering</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>TX5311</td>
<td>Project Phase I</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>TX5411</td>
<td>Project Phase II</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>Subject Area</th>
<th>Credits per Semester</th>
<th>Credits Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1</td>
<td>PCC</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>PEC</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>OEC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>EEC</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>RMC</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Audit courses (Non Credit)</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Attested

Director
SYLLABI
SEMESTER I
TX5101 THEORY OF SHORT STAPLE YARN SPINNING L T P C
 4 0 0 4

OBJECTIVE
To enable the students to learn the theory of various operations carried out at different stages of yarn spinning, which would be helpful them in understanding the influence of various parameters on quality and productivity of short staple yarn.

UNIT I FIBRE DISPERSION AND CLEANING 12
Necessity of fibre-individualization; fibre opening and cleaning in blow-room machinery; forces acting on the fibre during carding operation; the mechanism of fibre dispersion, fibre transfer, short fibre removal and trash removal; entanglement and disentanglement of fibres; the new approaches to improve fibre-dispersion in carding operation; mechanism of removal of short fibre and trash in comber.

UNIT II FIBRE STRAIGHTENING, NEPS REMOVAL 12
Theory of hook formation; measurement of fibre extent, influence of fibre extent on yarn quality; improvement of fibre-extent by carding, drafting and combing actions; generation of neps, neps removal in carding and combing.

UNIT III ATTENUATION 12
Principle of roller drafting and its application in yarn production; ideal drafting; factors affecting drafting force, fibre dynamics during drafting, drafting irregularities and their causes and remedies; amount of draft and draft distribution on strand irregularity; the function of aprons in roller drafting; limitation of apron-drafting and the scope for improvement; mechanism of wire-point drafting and its application in yarn production; merits and demerits of wire-point drafting; comparison of wire-point drafting with roller drafting.

UNIT IV TWISTING 12
Twisted yarn geometry, forces acting on fibre and yarn during twisting, effect of fibre helix angle on strength, parameters affecting optimum twist level; balloon and spinning triangle formation and their effects on yarn quality and productivity; fundamental requirement to create real twist in a strand, mechanism of twisting principles in ring spinning, separation of twisting and winding actions of yarn; ply twisting, twist balance; modified twisting principles - open end twisting, false twisting, air-jet twisting, air-vortex twisting, up-twisting, two-for-one twisting, hollow-spindle twisting; merits and demerits of modern twisting system.

UNIT V FIBRE BLENDING AND LEVELLING 12
Importance of achieving homogeneous blending in fibre-mix; types of mixing during spinning preparatory process; lateral and longitudinal fibre blending; analysis of fibre blend index values; process parameters of spinning machinery for processing blended material; influence of intermediate product uniformity on yarn uniformity; different methods of levelling adopted during spinning processes.

TOTAL: 60 PERIODS
OUTCOMES:
Upon completion of this course, the student shall have the knowledge on
CO1: Theory of opening and cleaning in spinning preparatory machinery
CO2: Theory of generation of hooks, neps and rectification
CO3: Wire and roller drafting, technology involved, their limitations and scope for improvement
CO4: Theory of twisting in different systems of yarn spinning
CO5: Fibre blending and leveling carried out at different stages of yarn production process

TEXT BOOKS

REFERENCES
7. Shaw J., "Short-staple Ring Spinning", Textile Progress, The Textile Institute, Manchester, 1982
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>CO</th>
<th>Statement</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Theory of opening and cleaning in spinning preparatory machinery</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>Theory of generation of hooks, neps and rectification</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>Wire and roller drafting, technology involved, their limitations and scope for improvement</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>Theory of twisting in different systems of yarn spinning</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>Fibre blending and leveling carried out at different stages of yarn production process</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively
OBJECTIVE
To enable the students to learn about
- Advances in fabric formation and their structural features, characteristics and application

UNIT I WOVEN FABRICS 12

UNIT II KNITTED FABRICS 12
Advances in circular knitting – loop transfer, seam less knitting and sliver knitting techniques; 3-D knitted fabrics – circular and flat weft knit techniques, applications; spacer fabrics – weft and warp knit techniques, applications

UNIT III BRAIDED FABRICS 12
Principle and production of 3-D braided structures - Cartesian braiding, rotary braiding, and hexagonal; advances in track and column braiding - production of tubular and bifurcated structure; applications.

UNIT IV AUXETIC FABRICS 12
Introduction to auxetic materials – polymer, fiber and yarn; auxetic fabric structure; principle and production of woven, weft knit, warp knit and nonwoven auxetic fabrics; 3D auxetic fabrics; braided auxetic fabrics; applications

UNIT V SMART FABRICS 12
Definition and classifications; production and development of smart fibre and yarn; smart fabric structure and preparation - weaving, knitting and braiding technique; applications

TOTAL: 60 PERIODS

OUTCOMES
Upon completion of this course, the student shall be able to understand
CO1: advancement in weaving and 3D weaving techniques
CO2: advanced knit structures and techniques
CO3: advancements in braiding techniques
CO4: auxetic structures and their production methods
CO5: smart fabric and their production methods

TEXT BOOKS

REFERENCES:
4. Yordan Kyosev, Recent Developments in Braiding and Narrow Weaving, Springer, 2018
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Advancement in weaving and 3D weaving techniques</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>Advanced knit structures and techniques</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>Advancements in braiding techniques</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>Auxetic structures and their production methods</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>Smart fabric and their production methods</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVES
To enable the students to learn about
- Fibre forming polymer characteristics and their related models and models describing fibre structure.
- Conducting of experiments to characterize the polymers and fibres

UNIT I
Synthetic fibre forming polymers, definition, terms and fundamental concepts of polymerization; molecular architecture in polymers-configuration and conformation, molecular weight and its influence on fibre formation

UNIT II
Glass transition temperature (Tg), factors affecting Tg, WLF equation; rubber elasticity; melting and crystallization, polymer solutions- solubility parameter and its significance to fibre spinning.

UNIT III
Newton’s law of viscosity, velocity distribution in flow systems Newtonian and non-newtonian fluids; mass transfer operations: Fick’s law of diffusion, solid-liquid extraction and drying operations with application to polymer chips.

UNIT IV
Deformation of elastic solid, viscoelasticity and its measurement, non-linear viscoelasticity, yield behavior of solids and breaking phenomena

UNIT V
Mechanical properties of natural and synthetic fibres; moisture sorption behaviour of natural and synthetic fibres; Thermal, Frictional an optical properties of fibres

TOTAL: 45 PERIODS

OUTCOMES
Upon completion of this course, the student shall

CO1: Be able to understand the synthesis of polymers
CO2: Be able to correlate the properties of polymers
CO3: Be able to understand rheological characteristics
CO4: Know about viscoelastic behavior of polymers
CO5: Be able to correlate the properties of fiber

TEXT BOOKS

REFERENCES

Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Understand the synthesis of polymers</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Correlate the properties of polymers</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Understand rheological characteristics</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Know about viscoelastic behaviour of polymer</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Able to correlate the properties of fibre</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVES
To make the students to learn about the
∙ Probability distributions, sampling and testing of hypothesis
∙ Process control using charts and process capability
∙ Design of experiments for textile applications and
∙ Modeling the probabilistic phenomena

UNIT I PROBABILITY DISTRIBUTION AND ESTIMATIONS 12
Applications of Binomial, Poisson, normal, t, exponential, chi-square, F and Weibull distributions in textile engineering; point estimates and interval estimations of the parameters of the distribution functions

UNIT II HYPOTHESIS TESTING 12
Sampling distribution; significance tests applicable to textile parameters – normal test, t-test, chi-square test and F-test; p-Values; selection of sample size and significance levels with relevance to textile applications; acceptance sampling

UNIT III ANALYSIS OF VARIANCE AND NON-PARAMETRIC TESTS 12
Analysis of variance for different models; non-parametric tests - sign test, rank test, concordance test

UNIT IV PROCESS CONTROL AND CAPABILITY ANALYSIS 12
Control charts for variables and attributes - basis, development, interpretation, sensitizing rules, average run length; process capability analysis

UNIT V DESIGN AND ANALYSIS OF EXPERIMENTS 12
2k full-factorial designs; composite designs; robust designs; development of regression models, regression coefficients; adequacy test; process optimizations.

TOTAL: 60 PERIODS

OUTCOMES
Upon completion of this course, the student shall be able to
CO1: Understand the probability distribution
CO2: Carryout hypothesis testing
CO3: Carryout ANOVA and nonparametric tests
CO4: Construct control charts for understand the process
CO5: Design the experiment, conduct statistical tests and analyse the results to arrive at the conclusion

TEXT BOOKS

REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Understand the probability distribution</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Carryout hypothesis testing</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Carry out ANOVA and nonparametric tests</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Construct control charts for understanding the process</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Design the experiment, conduct statistical tests and analyse the results to arrive at the conclusion</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
COURSE OBJECTIVES:
To impart knowledge and skills required for research and IPR:
- Problem formulation, analysis and solutions.
- Technical paper writing / presentation without violating professional ethics
- Patent drafting and filing patents.

UNIT I RESEARCH PROBLEM FORMULATION
Meaning of research problem- Sources of research problem, criteria characteristics of a good research problem, errors in selecting a research problem, scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, necessary instrumentations

UNIT II LITERATURE REVIEW
Effective literature studies approaches, analysis, plagiarism, and research ethics.

UNIT III TECHNICALWRITING/PRESENTATION
Effective technical writing, how to write report, paper, developing a research proposal, format of research proposal, a presentation and assessment by a review committee.

UNIT IV INTRODUCTION TO INTELLECTUAL PROPERTY RIGHTS (IPR)

UNIT V INTELLECTUAL PROPERTY RIGHTS (IPR)
Traditional knowledge Case Studies, IPR and IITs.

TOTAL: 30 PERIODS

COURSE OUTCOMES:
1. Ability to formulate research problem
2. Ability to carry out research analysis
3. Ability to follow research ethics
4. Ability to understand that today’s world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity
5. Ability to understand about IPR and filing patents in R & D.
<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

REFERENCES:

OBJECTIVES:
To enable the students to learn about
- Characteristics of textile materials and their related models to describe their properties.
- Conducting of experiments to characterize the polymers and fibres.

LIST OF EXPERIMENTS
1. Molecular weight determination using GPC
2. Rheological studies using Brookfield viscometer
3. Determination of MFI
4. Birefringence measurement
5. Creep and Stress relaxation of filament
6. DSC Thermogram analysis of different fibres
7. Thermal stability studies on fibres
8. Analysis - FTIR and NMR graphs
9. Determination of crystallinity by XRD
10. Determination of residual formaldehyde in fabrics
11. Evaluation of Flame retardant finish
12. Evaluation of Water repellant finish
13. Evaluation of conductivity of fabrics
14. Determination of surface tension of liquids
15. Determination of contact angle for porous substrates

TOTAL: 90 PERIODS

OUTCOMES:
Upon the completion of this course the student will be able to

CO1: Understand and analyze the characteristics of textile materials using advanced characterizing techniques
CO2: Analyze the graphs, charts of TGA, FTIR spectrometer and X-ray Diffractometer
CO3: Evaluate fabric finishes and nature of fabrics
CO4: Determine the property of liquids
CO5: Characterize the porous substrates
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Understand and analyze the characteristics of textile materials using advanced techniques</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Analyze the graphs, charts of TGA, FTIR spectrometer and X-ray Diffractometer</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Evaluate fabric finishes and nature of fabrics</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Determine the property of liquids</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Characterize the porous substrate</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVE
To enable the students to learn about the moisture distribution in textiles during dyeing and printing applications.

UNIT I FUNDAMENTALS ON WETTING 9
Surface tension of liquids and theories on its measurements; equilibrium state of a liquid on a solid; solid-liquid interaction in immersion, penetration, adhesion and spreading.

UNIT II CHARACTERIZATION OF WETTING 9
Determination of wetting force and work of adhesion; measurement of contact angle using goniometry and tensiometry; critical assessment of the above techniques.

UNIT III WETTING OF FIBRES AND FABRICS 9
Wettability assessment of fibres and filaments using goniometry and tensiometry; importance of wetting of fabrics and its assessment.

UNIT IV WICKING IN YARNS AND FABRICS 9
Fundamentals of wicking; wicking in yarns and its measurement; wicking in fabrics from an infinite and finite reservoirs; studies on factors affecting wetting and wicking in fibres and fibrous assemblies; mathematical models of wetting and wicking.

UNIT V APPLICATION 9
Areas of wetting and wicking of fibrous materials; role of wetting and wicking on comfort behaviour of textiles; significance of wetting and wicking in medical and hygiene products; usefulness of wetting and wicking in industrial and domestic products.

TOTAL: 45 PERIODS

OUTCOMES
On completion of this course, the students shall have the knowledge on the
CO1: Fundamentals of wetting and wicking
CO2: Characterization of wetting
CO3: Liquid-fibre interaction during of fiber and fabrics
CO4: Surface energy of the fabric
CO5: Application of wetting and wicking

TEXTBOOKS

REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Fundamentals of Wetting and wicking</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Characterization of wetting</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Liquid-fibre interaction during of fiber and fabrics</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Surface energy of the fabric</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Application of wetting and wicking</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVES
To make the students to
- Understand different characteristics of yarns
- Understand testing of yarn
- Analyze the various reports generated during quality evaluation of yarns and
- Interpret the results obtained through these reports for process and quality control.

UNIT I MASS VARIATION OF TEXTILE STRANDS 6
Depiction of mass variation of textile strands in time and frequency domain; interpretation and significance of U% and CV% for textile strands; irregularity index

UNIT II VARIANCE LENGTH CURVE 6
Effect of specimen length and total length on mass variation measurements of textile strands; theory of construction of VL curve; analysis of variance length curves to understand and avoid the introduction of mass variation during the spinning operation

UNIT III SPECTROGRAM 6
Determination of periodic mass variation in the form of spectrogram; determination of theoretical wave length from spectrum; comparison between normal and ideal spectrum; type of faults and their representation in spectrogram; interpretation of superimposed waves in spectrogram

UNIT IV TENSILE PROPERTIES 6
Influence of testing factors on yarn tensile properties; measurement and application of yarn modulus; creep and stress relaxation of yarn; significance of estimating minimum yarn strength

UNIT V YARN DEFECTS 6
Classification and analysis of yarn faults created by mass variation, their causes and remedies; yarn faults in fabrics - causes and remedies

LABORATORY:
Measurement and analysis of
1. U% of sliver, roving and yarn
2. Imperfections and hairiness of yarn
3. Tensile properties
4. Creep and stress relaxation
5. Yarn fatigue
Analysis of
6. Variance-length curve
7. Spectrogram
8. Yarn faults

OUTCOME:
On completion of this course, the students can
- CO1: Understand different methods of depicting mass variation of strand
- CO2: Analyze and interpret VL curve
- CO3: Analyze and interpret spectrogram in finding faulty machine elements
- CO4: Analyze the tensile values of strand
- CO5: Analyze classified faults and other faults present in the yarn and apply knowledge in reducing yarn faults
TEXT BOOKS

REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Understand different methods of depicting mass variation of strand</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Analyze and interpret VL curve</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Analyze and interpret spectrogram in finding faulty machine elements</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyze the tensile values of strand</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Analyze classified faults and other faults present in the yarn and apply knowledge in reducing yarn faults</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVES
To make the students understand
- Nature of fabric failure
- Analyzing low stress mechanical and comfort properties
- Fabric appearance and their properties

UNIT I MECHANICS OF FABRIC FAILURE 6
Mode of fabric failure – tensile, tear, abrasion, slippage, bursting and fatigue; influence of fibre and yarn characteristics, and fabric structure on fabric failure

UNIT II LOW STRESS MECHANICAL PROPERTIES 6
Analysis and interpretation of low stress mechanical properties measured using Kawabata Evaluation System - tensile, compression, bending, shear and buckling deformation; influence of low stress mechanical properties of fabrics on fabric handle, tailorability and sewability

UNIT III COMFORT PROPERTIES 6
Influence of fibre and yarn characteristics, and fabric structure on air permeability, water vapour permeability, resistance to penetration of liquid water, resistance to flow of heat; static electricity measurement and control; influence on comfort properties

UNIT IV FABRIC APPEARANCE AND OTHER PROPERTIES 6
Role of drape, formability, crease recovery, wrinkle recovery, pilling resistance, dimensional stability on fabric appearance; influence of fibre and yarn characteristics, and fabric structure on the above fabric properties

UNIT V PROPERTIES OF TECHNICAL TEXTILES 6
Selection of fibre, yarn and fabric for achieving flame resistance, impact resistance, absorbency, water resistance, filtration efficiency

TOTAL: 30 PERIODS

LABORATORY
1. Analysis of KES data
2. Measurement and analysis of air permeability, filtration efficiency of fabrics
3. Measurement and analysis of tensile and flexural properties of textile materials
4. Measurement and analysis of water vapour permeability and thermal conductivity characteristics

TOTAL: 30 PERIODS

OUTCOMES
Upon completion of this course, the student shall have the knowledge on the
- CO1: Mode of failure of fabrics and influencing parameters
- CO2: Kawabata evaluation system
- CO3: Fabric role on comfort
- CO4: Fabric properties and appearance
- CO5: Technical textile properties

TEXT BOOKS
REFERENCES:

Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Mode of failure of fabrics and influencing parameters</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Kawabata evaluation system</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Fabric role on comfort</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Fabric properties and appearance</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Technical textile properties</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVE:
To enable the students to test and analyze the given product that include identification of fibre, yarn and fabric specifications and method of production of same

LIST OF EXPERIMENTS
Reverse engineering of textile products with an emphasis on testing protocols – Four each for a student

TOTAL: 120 PERIODS

OUTCOMES:
Upon the completion of this course the student will be able to

- CO1: Identify the materials used in the product
- CO2: Carryout confirmative tests to identify specifications of materials used
- CO3: Suggest the production process required to make the product
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Identify the materials used in the product</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>Carryout confirmative tests to identify specifications of materials used</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>Suggest the production process required to make the product</td>
<td>-</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively
OBJECTIVES
To enable the students to learn the
- Theory of yarn formation by rotor, friction, air-jet, air vortex and other spinning systems
- Effect of process parameters used in the spinning system on yarn quality and production

UNIT I ROTOR SPINNING I
Principle of open end spinning; description of the working of the rotor spinning; requirements of the raw materials; preparation of the sliver for rotor spinning; yarn formation and its structure; yarn withdrawal and winding

UNIT II ROTOR SPINNING II
Design of rotor, opening roller, transport tube, navel and their implications on production and yarn quality; developments in rotor spinning machine; production limits; process control; techno economic comparison with ring spinning; structure property relationship

UNIT III FRICTION SPINNING
Principle of yarn formation - DREF-2, DREF-3 spinning systems; developments in friction spinning systems, raw material requirement, theory of yarn formation, effect of process variables on yarn quality, application of these machines for different end products, economics; technological limitations; structure property relationship

UNIT IV AIR-JET AND AIRVORTEX SPINNING
Description of yarn production in air-jet spinning machine; structure and quality of the air-jet spun yarn, raw materials requirement, process variables; theory of yarn formation by Air vortex system, raw material requirement and structure; structure property relationship

UNIT V OTHER SPINNING TECHNOLOGIES
Production of yarn in PLYfil, self-twist, electrostatic, Bobtex spinning systems; working details of production of double-rove yarns, wrap yarns and core spun yarns; raw material requirement in these systems; economics of these methods of yarn production; yarn characteristics and their applications; structure property relationship

OUTCOMES
Upon completion of this course, the student shall be able to understand the
CO1: Theory of yarn formation in open end spinning and production of yarn in rotor spinning system
CO2: Design of important elements of rotor spinning machine
CO3: Theory of yarn formation in friction spinning system and structure of yarn
CO4: Theory of yarn formation in air-jet and Air vortex spinning system and structure of yarns
CO5: Principle of yarn production by other spinning systems and double rove spinning

TEXT BOOKS
REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Theory of yarn formation in open end spinning and production of yarn in rotor spinning system</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Design of important elements of rotor spinning machine</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Theory of yarn formation in friction spinning system and structure of yarn</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Theory of yarn formation in air-jet and Air vortex spinning system and structure of yarn</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Yarn production by other spinning systems and double rove spinning</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVE:
To enable the students to understand and apply process and quality control measures during spinning of yarn to optimize the productivity and quality

UNIT I LEVELLING
Quality measures and control of intermediate products to achieve required yarn count with minimum dispersion; different levelling methods adopted in the pre-spinning machines; assessment and control of auto levelling; importance of fibre-mix homogeneity on yarn quality; types and levels of mixing in the preparatory processes; assessment of fibre-blend variations, effect of blend variation on fabric quality

UNIT II NEP AND HOOK REMOVAL
Causes of nep and hook formation, control measures; measurement of neps and hooks; factors influencing the removal of neps in the carding and combing machines; fibre hook straightening during the preparatory operations, factors

UNIT III WASTE CONTROL
Waste determination and cleaning efficiency; control of waste in blowroom, card and combers; influence of machine and processing parameters on waste removal; controlling the lint content in waste; control of pneumafil waste, hard waste in ring frame; determination of yarn realization; centralized waste collection system

UNIT IV PRODUCTION CONTROL
Balancing of machinery; factors affecting the production limits of the spinning machinery; new concepts in achieving higher production in the spinning machinery; computation of the productivity indices; automation, improving production and labour efficiency

UNIT V HUMIDITY CONTROL AND MACHINERY MAINTENANCE
Effect of humidity, temperature and maintenance of machinery on production and quality of yarn, optimizing ambiance and humidity control; process conditions required for producing polyester, viscose and blended yarns; yarn defects – causes and remedies

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course, the student shall be able to understand the

CO1: Quality control measures in terms of levelling of material
CO2: Control of neps and hooks
CO3: Factors influencing production rate and efficiency of spinning machines
CO4: Balancing of machinery, production and labour efficiency
CO5: Measures to be taken while processing manmade fibres, humidity control

TEXT BOOKS
REFERENCES

Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Quality control measures in terms of levelling of material</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Control of nepes and hooks</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Factors influencing production rate and efficiency of spinning machines</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Balancing of machinery, production and labour efficiency</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Measures to be taken while processing manmade fibres</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVE:
To enable the students to understand different mechanisms of weft insertion, their advantages and limitations

UNIT I INTRODUCTION
Introduction to shuttleless weaving; advantages of shuttleless weaving, comparison with shuttle weaving; features of unconventional weaving; different selvages: tucked-in, leno, fused, stitched, their mechanism of formation, their characteristics and uses; weft accumulator.

UNIT II PROJECTILE WEAVING MACHINE
Basic principle of projectile weaving; feeding of yarn to projectile; sequence of weft insertion; cam driven shedding; dwelling sley beat-up; torsion bar picking; energy utilization during picking.

UNIT III RAPIER WEAVING MACHINE
Classification based on type of rapier; system of weft insertion and number of rapiers; Sequence of weft insertion for Gabler and Dewas systems, their comparison; driving of flexible and rigid rapiers; asynchronized rapier timing; rapier buckling.

UNIT IV AIR-JET AND WATER-JET WEAVING MACHINES
Principle of weft insertion in air-jet weaving, air requirements; path of the yarn on loom; sequence of weft insertion; control of air stream by relay nozzle, confuser profile reed and suction; design of air jet nozzle, air drag force, factors affecting drag force; principle of weft insertion in water-jet weaving machine, path of the yarn on loom, quality of water required, sequence of weft insertion; design of water jet nozzle, merits and demerits of water jet weaving; fabric drying on loom.

UNIT V MULTIPHASE WEAVING
Technological developments – models & features; functional description of multi-linear shed weaving – shed formation, filling insertion, beat-up, let-off, take-up and selvage motion; characteristics of multi-linear shed weaving machine; circular and narrow fabric weaving.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course, the students will be able to know
- CO1: Overview of shuttleless weaving technology
- CO2: Principle, concepts and features of projectile weaving machine
- CO3: Mechanisms of picking in rapier weaving machine
- CO4: Mechanisms of picking and merits and demerits of air jet, water jet
- CO5: Principle of fabric formation in multiphase weaving machine

TEXT BOOKS
REFERENCES:
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Overview of shuttless weaving technology</td>
<td>PO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>Principle, Concepts and features of projectile weaving machine</td>
<td>PO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>mechanisms of picking in rapier weaving machine</td>
<td>PO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>mechanisms of picking and merits and demerits of air jet, water jet</td>
<td>PO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>Principle of fabric formation in multiphase weaving machine</td>
<td>PO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>PO6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively
OBJECTIVE
To enable the students to learn about the structure of ideal and real yarn, migration of fibres in the yarn, breakage mechanism of yarn, mechanics of blended yarns and relationship between structure and property of yarns produced by different spinning systems.

UNIT I YARN GEOMETRY
Elements of yarn geometry; helix geometry of yarn; yarn diameter, twist relationship; ideal packing of fibres in yarn; packing coefficient, estimation of packing density and radial packing density of yarn

UNIT II MIGRATION OF FIBRES IN YARN
Twist contraction and retraction; geometry of folded yarns; migration characteristics in continuous filament and spun yarns; effect of various parameters on migration; measurement of fibre migration in yarn; effect of migration on tensile behavior and hairiness of the yarn

UNIT III YARN MECHANICS
Analysis of breakage of yarn; effect of twist on strength and elongation at break of filament yarn; relationship between elongation at break of filament and yarn; prediction of breakage - continuous filament yarn; model - breakage of spun yarn, effect of twist

UNIT IV BLENDED YARN MECHANICS
Blend irregularity; measurement of blending irregularity, effect on fabric properties; concept of elongation balance; effect of properties of constituent fibres and blend composition on behavior of blended yarns

UNIT V STRUCTURE - PROPERTIES RELATIONSHIP
Structure - property relationship of yarns produced from different spinning systems; effect of fibre properties and geometrical configuration of yarn on properties of ring yarn; comparison of ring and compact spun yarn based on structure

OUTCOMES
On completion of this course, student would understand
CO1: Yarn geometry and packing density
CO2: Migration of fibres in yarn
CO3: Breaking mechanics of yarn
CO4: Mechanics of blended yarn
CO5: Structure and properties relationship of yarn

TOTAL: 45 PERIODS

TEXT BOOKS

REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Yarn geometry and its packing density</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Migration of fibres in yarn</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Breaking mechanics of yarn</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Mechanics of blended yarn</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Structure and properties relationship of yarn</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVE
To enable the students to learn about the theory of drafting process and drafting irregularities

UNIT I DRAFTING
Definition of ideal drafting, model; conditions required to achieve ideal drafting in a roller drafting system; deviations from ideal drafting during actual drafting; definition of drafting wave; condition for drafting wave formation during roller drafting; estimation of the magnitude of the irregularity caused by the occurrence of drafting wave.

UNIT II DRAFTING FORCE
Roller drafting - forces acting on a fibre during drafting at different positions in drafting zone; measurement of drafting force; factors affecting drafting force; methods to avoid drafting wave formation; role of apron in controlling drafting wave formation; limitations of apron in roller drafting system

UNIT III OTHER DRAFTING IRREGULARITIES
Definition of roller slip; conditions for the formation of forward and backward slips in the roller drafting systems; measures to avoid roller slip occurrence, causes for roller nip movement, model; roller speed variation during drafting and their effect on irregularity formation; control of the irregularity formed due to these sources.

UNIT IV COMPARISON
Comparison of roller drafting system with wire point drafting system; application of wire point drafting in card and rotor spinning machine; comparison of roller drafting in drawframe, comber preparatory, comber, speed frame, ring frame and air-jet spinning system

UNIT V COMPACT SPINNING
Spinning triangle – formation, factors affecting dimensions, effect on yarn quality; condensed yam spinning – principle, different methods

OUTCOMES:
On completion of this course, student would understand
CO1: Theory of ideal drafting and formation of drafting wave
CO2: Drafting force its measurement and influence
CO3: Different causes for irregularities in textile strand
CO4: Comparison of wire and roller drafting system and the drafting systems used in different spinning machinery
CO5: Compact spinning, principle and different methods

TOTAL 45 PERIODS

TEXT BOOK:
REFERENCE:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Theory of ideal drafting and formation of drafting wave</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>Drafting force, its measurement and influence</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>Different causes for irregularities in textile strand</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>Comparison of wire and roller drafting system and the drafting systems used in different spinning machinery</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>Compact spinning, principle and different methods</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVE
To enable the students to learn about the principle of twist insertion in different spinning systems

UNIT I FUNDAMENTALS OF TWISTING
Mechanics of imparting strength to a staple-fibre strand by twisting; meaning of twist multiplier and the basis of selection of required twist; principle of false twisting; fundamental requirements to create real twist in the strand.

UNIT II TWISTING IN RING SPINNING
Principle of twist insertion in ring spinning; limitations of ring twisting; mechanics of balloon formed during twisting, yarn tension; influence of twisting on spinning triangle size and the subsequent effect on yarn quality and spinning performance; design features of rings and travelers used for twisting different types of yams.

UNIT III TWISTING IN OPEN-END SPINNING
Principle of twist insertion in open-end spinning; application of this principle in rotor spinning and friction spinning machines; advantages of this method of twisting over ring twisting method; comparison of yarn tension developed during twisting in these two machines.

UNIT IV TWISTING IN AIR-JET AND AIR-VORTEX SPINNING
Principle of twist formation in air-jet, air vortex spinning; the merits and demerits of these methods of twisting; factors influencing twist insertion

UNIT V TWO-FOR-ONE TWISTING
Principle of two-for-one twisting; twisting of yarns in double-rove fed spinning machines; operating principle involved in the twisting of core spun yarns, wrap-spun yarns; self-twist spinning; electrostatic spinning

TOTAL 45 PERIODS

OUTCOMES
Upon completion of this course, the student shall be able to understand
CO1: Fundamentals of twisting
CO2: Theory of twisting at ring frame
CO3: Twisting principle of open end spinning and application in rotor and friction spinning systems
CO4: Twisting in air-jet and air-vortex spinning
CO5: Principle and method of twisting in two for one twisting system and other spinning systems

TEXT BOOKS:
REFERENCE:

4. Lord P.R., Yarn Production: Science, Technology and Economics, The Textile Institute, Manchester, 1999
<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Fundamentals of twisting</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Theory of twisting at ring frame</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Twisting principle of open end spinning and application in rotor and friction spinning systems</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Twisting in air jet and air-vortex spinning</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Principle and method of twisting in two for one twisting system and other spinning systems</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively
OBJECTIVE
To enable the students to learn about the manufacturing of nonwovens and their properties

UNIT I INTRODUCTION
Recapitulation of web preparation by dry and wet method and bonding by mechanical, thermal and chemical methods; brief outline of nonwoven manufacture by spun bonding and melt blown processes

UNIT II WEB QUALITY
Effect of web quality on nonwoven quality; mechanisms of web forming machines and processes to achieve uniformity in web; process control tools used for maintaining web quality

UNIT III NEEDLE PUNCHED NONWOVENS
Design of needles and its effect on needle punched fabric structure and quality; type of fibres and its characteristics which affect fabric quality; horizontal and vertical structure in needle punched fabrics, and their contribution to fabric properties; needle machine parameters that affect fabric structure and properties

UNIT IV HYDRO-ENTANGLED, THERMAL AND CHEMICAL BONDED NONWOVENS
Effect of water jets on fibres, effect of water pressure, number of manifolds and nozzles, and type of web support systems used in spun laced nonwoven production on fabric structure and properties; effect of type of heat transfer method on thermal bonded nonwoven structure and properties; effect of process and material variables on the structure and properties of thermal and chemical bonded nonwovens

UNIT V MELTBLOWN AND SPUN BONDED NONWOVENS
Effect of material and process variables like type of polymer, molecular weight, polymer and air temperature, collector distance, primary and secondary air pressure in melt-blown nonwoven production on fabric structure and quality; factors affecting the structure of spun bonded fabrics and properties

TOTAL: 45 PERIODS

OUTCOMES
Upon completion of the course the student will be able to

CO1: Know overview of nonwovens
CO2: Understand the optimization of process in web preparation
CO3: Process variables in needle punched nonwoven manufacture
CO4: Process control inhydro entangling, thermal and chemical bonding
CO5: Process control inmelt blown and spun bonded fabrics

TEXT BOOKS

REFERENCES

Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Overview of nonwovens</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Understand the optimization of process in web preparation</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Process variables in needle punched nonwoven manufacture</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Process control in hydro entangling, thermal and chemical bonding</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Process control in melt blown and spun bonded fabrics</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVE
To enable the students to learn about geometry of fabric, mechanics of fabric deformation fabrics.

UNIT I GEOMETRY OF CLOTH STRUCTURE 13
Geometry of plain and non-plain weaves; Peirce and Olofsson models; crimp ratio and thread spacing; jamming of threads; crimp interchange, balance of crimp.

UNIT II FABRIC DEFORMATION 9
Fabric deformation under tensile stress; prediction of modulus; tensile properties in bias direction.

UNIT III OTHER FABRIC DEFORMATION 9
Compression, shear, bending and buckling; fabric handle; spirality and skewness formation and control.

UNIT IV KNITTED FABRIC STRUCTURES 9
Geometry of weft and warp knitted structures, influence of friction on knit geometry; load extension of warp knit fabrics; biaxial stress behavior of plain-knit fabrics.

UNIT V NONWOVEN STRUCTURES 5
Structure of felts; mechanical behavior of needle felts; structure of stitch bonded fabrics.

TOTAL: 30 PERIODS

OUTCOMES:
Upon completion of the course, the student will be able to

CO1: Understand the geometry of woven cloth
CO2: Know fabric deformation under tensile stress
CO3: Understand the mechanics of other fabric deformations
CO4: Know the mechanics of knitted fabric structure
CO5: Understand the structure of nonwovens

TEXT BOOKS

REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understand the geometry of woven cloth</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Know fabric deformation under tensile stress</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Understand the mechanics of other fabric deformations</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Know the mechanics of knitted fabric structure</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Understand the structure of nonwovens</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Overall CO

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVE
To enable the students to learn about characterization of polymers used in the production of textile fibres

UNIT I MOLECULAR WEIGHT 9
Polymer solution thermo dynamics; molecular weight and molecular dimensions by end group analysis, osmometry, light scattering, viscometry, gel permeation chromatography, high performance liquid chromatography

UNIT II MOLECULAR STRUCTURE CHARACTERISATION 9
Infrared, NMR, UV–visible, Raman spectroscopy, mass spectroscopy

UNIT III THERMAL PROPERTIES 9
Thermal properties by differential scanning calorimetry, differential thermal analysis, thermogravimetry, thermo-mechanical analyzer, dynamic mechanical and dielectric analysis

UNIT IV MICROSCOPY 9
Optical and electron microscopy; TEM, SEM, AFM, X-ray scattering from polymers, birefringence

UNIT V OTHER PROPERTIES 9
Crystallinity by density measurements, surface area, pore volume measurements by B.E.T. method, porosimetry, surface energy measurements and particle size measurement.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course, the student shall be able to
CO1: Determine the molecular weight using various techniques
CO2: Interpret molecular structure obtained from various analytical instruments
CO3: Determine the thermal properties using various instruments
CO4: Understand microscopy
CO5: Understand the properties of textile polymers

TEXT BOOKS

REFERENCES
<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Determine the molecular weight using various techniques</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Interpret molecular structure obtained from various analytical instruments</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Determine the thermal properties using various instruments</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand microscopy</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Understand the properties of textile polymers</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively
OBJECTIVE:
To enable the students to understand the theory of colour and measurement of colour

UNIT I LIGHT-MATTER INTERACTION
Electromagnetic spectrum – the optical region, interaction of light with matter a) Transparent case – Beer’s Law and Lambert’s Law b) Opaque case – reflection absorption and scattering, the concept of “Radiative Transfer Theory” and its simplification into the Kubelka – Munk model

UNIT II HUMAN COLOUR VISION
Colour sensation – physiological and psychological mechanism of colour vision; colour vision theories; defects in colour vision; colour vision tests; additive and subtractive colour mixing and confusion in colour perception

UNIT III COLOUR ORDER SYSTEMS
Description of colour, various colour order systems, CIE numerical system for colour definition and its components – illuminants, the versions of the standard observer, the colour scales, chromaticity diagram.

UNIT IV METAMERISM AND COLOUR DIFFERENCE ASSESSMENT
Metamerism – types and its assessment, metamerism in textile materials; colour differences – visual assessment, standard conditions, methods and problems, assessment of colour difference, non-linearity of subjective perception of colour, need for specific colour difference systems, setting up of objective pass/fail standards.

UNIT V NUMERICAL COLOUR MATCHING
Reflectance and K/S value, relationship between dye concentrations and a) reflectance values and b) K/S values, reflectance and K/S curves of dyed samples; CIE model for computer colour matching and the calculation of colour recipes; non CIE models for colour matching, limitations of computer colour matching

OUTCOMES:
Upon completion of this course, the students shall be able to know about

CO1: Light matter interaction using various theories and laws
CO2: Colour vision theories, tests and colour mixing
CO3: Concepts of colour and colour order system
CO4: Concepts of Metamerism, colour difference assessment
CO5: Numerical colour matching

TEXT BOOKS
REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Light matter interaction using various theories and laws</td>
<td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 3 - 2 2 - - - - 2</td>
</tr>
<tr>
<td>CO2</td>
<td>Colour vision theories, tests and colour mixing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 3 - 2 2 - - - - 2</td>
</tr>
<tr>
<td>CO3</td>
<td>Concepts of colour and colour order system</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 3 - 2 2 - - - - 2</td>
</tr>
<tr>
<td>CO4</td>
<td>Concepts of Metamerism, colour difference assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 3 - 2 2 - - - - 2</td>
</tr>
<tr>
<td>CO5</td>
<td>Numerical colour matching</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 3 - 2 2 - - - - 2</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 3 - 2 2 - - - - 2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVES

- Enzymes, types and kinetics of enzyme reaction on textile fibres
- Application of enzymes on different fibres and

UNIT I ENZYMES
Nomenclature and classification of enzymes; characteristic features of enzymes; modifiers of enzyme activity - activators and inhibitors; specificity of enzyme action; extraction and purifications of enzymes

UNIT II ENZYME KINETICS
Kinetics of single-substrate enzyme-catalyzed reactions; basics of kinetics of multi-substrate enzyme-catalyzed reactions

UNIT III ENZYMES FOR COTTON FIBRE
Chemistry and structure of cotton fibre; enzymes in pretreatment of cotton substrates – desizing, scouring, bleaching and bio finishes

UNIT IV ENZYMES FOR OTHER FIBERS
Enzymes for processing and functionalizing protein fibres; enzymatic modification of polyester, polyamide, polyacrylonitrile and cellulose acetate fibres

UNIT V ENZYMES IN EFFLUENT TREATMENT
Enzyme technology and biological remediation, enzyme decolourisation and decolouration by bio sorption and enrichment cultures

TOTAL: 45 PERIODS

OUTCOMES
Upon completion of this course, the student shall be able to understand the

- CO1: Classification, characteristics and activity of enzymes
- CO2: Kinetics of single and multi-substrate enzyme
- CO3: Activity of enzyme on cotton fibres
- CO4: Activity of enzyme on protein and synthetic fibres
- CO5: Application of enzymes for effluent treatment

TEXT BOOKS

REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Classification, characteristics and activity of enzymes</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Kinetics of single and multi-substrate enzyme</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Activity of enzyme on cotton fibres</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Activity of enzyme on protein and synthetic fibres</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Application of enzymes for effluent treatment</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVE
To enable the students to learn about advanced spinning technology for manufacturing high performance fibres, their properties and applications

UNIT I
Fundamentals of high performance fibres; comparison of regular and high performance fibres; fibre forming process; manufacturing, properties and applications - aramid fibres, high performance polyethylene

UNIT II
Manufacturing, properties and applications - glass fibres, basalt fibres; carbon fibres, ceramic fibres

UNIT III
Manufacturing, properties and applications - alginate fibres; chitosan fibres; regenerated protein fibres – silk, wool, casein, soy bean fibre; synthetic biodegradable fibres

UNIT IV
Manufacturing, properties and applications of chemical resistance fibres – chlorinated fibres, fluorinated fibres, PPS, PEEK and PEI; thermal resistant fibres – semi carbon fibres, PBI, PBO

UNIT V
Manufacturing, properties and applications - hollow fibres, profile fibres blended and bi-component fibres, film fibres; functionalization of fibres – methods and applications

TOTAL: 45 PERIODS

OUTCOMES
Upon completion of this course, the student shall be able to understand
CO1: Method of producing high performance fibres
CO2: High performance fibres for industrial applications
CO3: Manufacturing of biodegradable and protein fibres and their properties
CO4: Manufacturing of chemical resistant fibres and their properties
CO5: Manufacturing of specialty fibres and their properties

TEXT BOOKS

REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Method of producing high performance fibres</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>High performance fibres for industrial applications</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Manufacturing of biodegradable and protein fibres and their properties</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Manufacturing of chemical resistant fibres and their properties</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Manufacturing of specialty fibres and their properties</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVE
To enable the students to learn about pollutants from textile chemical processing industry, treatment and Government regulations

UNIT I
Industrial policy of India; pollution monitoring and control; functions and activities of Ministry of Environment; Central and State pollution control boards; environmental clearance and guidelines for industries; environment impact assessment; fiscal incentives for environmental protection; environmental auditing

UNIT II
Wastewater characteristics; wastewater treatment - objectives, methods and implementation considerations; recycling of effluents

UNIT III
Identification and reduction of pollution sources in textile wet processing; pollution control in man-made fibre industry; analysis of textile processing effluents – colour, odour, pH, total solids, suspended solids, total dissolved solids, BOD, COD, total alkalinity, chloride, sulphates, calcium and chromium; tolerance limits for effluents; bio-degradability of textile chemicals and auxiliaries.

UNIT IV
Technical regulations on safety and health aspects of textile materials – banned dyes and chemicals; eco labeling, eco friendly textile processes - machines and specialty chemicals; natural dyes and environmental considerations.

UNIT V
Need for solid and hazardous waste management in textile industry, types and sources of solid and hazardous wastes, storage, collection and transport of wastes, waste processing technologies, waste disposal

TOTAL: 45 PERIODS

OUTCOMES
Upon completion of this course, the student shall know about

CO1: Pollution control policies and Government regulations
CO2: Method of treatment of waste water from processing industry
CO3: Managing pollutants as per Government regulations
CO4: Eco labeling, eco friendly textile processes
CO5: Solid and hazardous waste management in textile industry

TEXT BOOKS
REFERENCES

Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Pollution control policies and Government regulations</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>Method of treatment of waste water from processing industry</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>Managing pollutants as per Government regulations</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>Eco labeling, eco friendly textile processes</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>Solid and hazardous waste management in textile industry</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVE
To enable the students to learn the production and applications of coated and laminated textile and their testing

UNIT I POLYMERS USED IN COATING 9
Natural Latex & synthetic rubbers, synthetic polymers: polyurethanes, poly (vinyl chloride), polyacrylate elastomers, silicone elastomers, poly (Tetrafluoroethylene), polyethylene, chlorinated and chlorosulphonatedpolyethylenes, foams for laminates; textile substrate for coating

UNIT II METHODS OF COATING 9
Knife coating, roll coating, dip coating, transfer coating, gravure coating, rotary screen printing, calendaring, hot melt coating, foam coating, laminating by adhesives, welding.

UNIT III END USES OF COATING I 9
Breathable textiles, microporous coatings and films, hydrophilic coatings, smart temperature responsive breathable coatings; synthetic leather, architectural textiles, fluid containers, tarpaulins, automotive applications, carpet backing, flocking, fusible interlinings.

UNIT IV END USES OF COATING II 9
Thermochromic fabrics, temperature adaptable fabrics, fabrics for chemical protection, camouflage nets, high visibility garments, intumescent coating, metal and conducting polymer coated fabrics, coating with hydrogel and shape memory polymers

UNIT V CHARACTERIZATION OF COATED TEXTILES 9
Tensile strength, elongation, adhesion, tear resistance, weathering behavior, microbiological degradation, yellowing, testing standards

TOTAL: 45 PERIODS

OUTCOMES
Upon completion of this course the student shall know

CO1: Different kinds of polymers used for coating and laminating
CO2: Different methods of coating and laminating
CO3: Application of coated and laminated textiles in different industry
CO4: Characterization of coated textiles

TEXT BOOKS

REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Different kinds of polymers used for coating and laminating</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Different methods of coating and laminating</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Application of coated and laminated textiles in different industry</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Characterization of coated textiles</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVE
To enable the students to learn the concepts of sustainability and its importance in textile industry

UNIT I INTRODUCTION TO SUSTAINABILITY
Sustainability; Concepts and terminologies in sustainable approach; principles of sustainability; importance and application of sustainable approaches in textile industry

UNIT II SUSTAINABILITY IN TEXTILE INDUSTRY
Supply chain in textile industry; sustainable cotton, wool, and synthetic fibre production and processing

UNIT III SUSTAINABILITY IN PROCESSING
Enzyme biotechnology, plasma technology in textiles; waterless dyeing technologies, low liquor dyeing

UNIT IV RECYCLING
Textile recycling: polymer, fibre, yarn and fabric; consumer perception of recycled textile products

UNIT V ECO DESIGNING AND ECOLABELLING
Eco-design, building eco-design through supply chain; sustainability for credit rating; environmental management systems; standards for labelling, textile labels and environmental labelling; life cycle analysis of textiles

TOTAL: 45 PERIODS

OUTCOMES
Upon completion of this course the student shall be able to understand the
CO1: Concept of sustainability and importance
CO2: Sustainability in textile fibre production
CO3: Sustainability in dyeing of textiles
CO4: Importance of recycling in textile industry
CO5: Eco-labelling and eco-designing

TEXT BOOKS

REFERENCES
<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Concept of sustainability and importance</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>Sustainability in textile fibre production</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>Sustainability in dyeing of textiles</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>Importance of recycling in textile industry</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>Eco-labelling and eco-designing</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVES
To enable the students to learn about
- Different types of biomaterials and
- Biomedical application of textile products

UNIT I
Biomaterials—introduction, types; natural, polymeric and biological biomaterials

UNIT II
Textile based healthcare and hygiene products; application of nano technology in medical hygiene textiles; advanced textile materials in healthcare; infection control and barrier materials

UNIT III
Bandages and pressure garments - elastic and non-elastic compression bandages, support and retention bandages; evaluation of bandages; bandages for various end uses.

UNIT IV
Wound – types, healing process; requirements of wound dressing; wound care materials – types, advantages and limitations; testing of wound dressings; advanced wound dressings

UNIT V
Implantable products; sutures – requirements, classifications, specifications, materials and their applications; vascular grafts, artificial ligaments, artificial tendons; scaffolds for tissue engineering; intelligent textiles for medical applications; ethical issues, clearance; disposal of medical products

TOTAL: 45 PERIODS

OUTCOMES
Upon completion of this course, the student shall know the

CO1: Types of materials used for biomedical applications
CO2: Health care and hygiene products
CO3: Different types of bandages
CO4: Wound dressing construction, testing
CO5: Implantable products, scaffolds for tissue engineering, ethical issues

TEXT BOOKS

REFERENCES
<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Types of materials used for biomedical applications</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Health care and hygiene products</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Different types of bandages</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Wound dressing construction, testing</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Implantable products, scaffolds for tissue engineering, ethical issues</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVES:
To enable the students to learn about

- Functional requirements of protective clothing
- Selection of fibre, yarn and fabric for developing protective clothing
- Evaluation of protective clothing

UNIT I FIBRE REQUIREMENTS 9
Suitability and properties of high performance fibres for various protective clothing – chemical composition and physical structure

UNIT II YARN AND FABRIC REQUIREMENTS 9
Types of yarns, woven, knitted and nonwoven fabric structures used for protective garments, methods of production, effect of structure on their performance

UNIT III CLOTHING CONSTRUCTION 9
Method of construction of garments according to various protective end uses like protection against cold, ballistic protection; use of different fabric type (knitted, woven, and nonwoven), coated, laminated in different places; use of inter lining and composites; 3D structures; high tech textiles—wearable electronics; protective garments for industrial and apparel end uses

UNIT IV FINISHING OF PROTECTIVE CLOTHING 9
Types of finishes - fire retardant finishes, water repellent finishes, anti - microbial finishes; chemical finishes against radiation and chemicals; method of application of finishes; protective finishes for health care garments

UNIT V QUALITY EVALUATION 9
Evaluation of protective fabrics - desirable properties of protective textiles, method of testing for thermal protective performance, abrasion and wear resistance, evaluation of resistance to mildew, ageing, sunlight, chemical, electrostatic and electrical resistivity, impact properties; ASTM standards for protective garments

OUTCOMES:
Upon completion of the course, the students will be able to understand

CO1: Properties of fibres required for protective clothing
CO2: Selection of fibre, yarn and fabric for developing protective clothing for different applications
CO3: Protective clothing construction
CO4: Different types of finishes given to develop protective clothing
CO5: Evaluation of protective clothing

TEXT BOOKS
REFERENCES

Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Properties of fibres required for protective clothing</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Selection of fibre, yarn and fabric for developing protective clothing for different applications</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Protective clothing construction</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Different types of finishes given to develop protective clothing</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Evaluation of protective clothing</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVES
To enable the students to learn about
- Reinforcements, matrices used for the composites
- Manufacture and testing of composites and
- Mechanics of failure of composites

UNIT I REINFORCEMENTS
Introduction – composites – classification and application; reinforcements- fibres and its properties; preparation of reinforced materials and quality evaluation; preforms for various composites

UNIT II MATRICES
Preparation, chemistry, properties and applications of natural matrices, thermoplastic and thermostet resins; mechanism of interaction of matrices and reinforcements; optimization of matrices

UNIT III COMPOSITE MANUFACTURING
Classification; methods of composites manufacturing for both thermoplastics and thermostets- Hand layup, Filament Winding, Resin transfer moulding, prepregsand autoclave moulding, pultrusion, vacuum impregnation methods, compression moulding; post processing of composites and composite design requirements

UNIT IV TESTING
Fibre volume and weight fraction, specific gravity of composites, tensile, flexural, impact, compression, inter laminar shear stress and fatigue properties of thermostet and thermoplastic composites.

UNIT V MECHANICS
Micro mechanics, macro mechanics of single layer, macro mechanics of laminate, classical lamination theory, failure theories and prediction of inter laminar stresses using at ware

OUTCOMES
Upon completion of this course, the student shall be able to
- CO1: Understand different types of textile reinforcements
- CO2: Understand different types of matrices
- CO3: Understand manufacturing of composites
- CO4: Evaluate the properties of thermoset and thermoplastic composite
- CO5: Mechanics of composites failure

TEXT BOOKS

REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Understand different types of textile reinforcements</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Understand different types of matrices</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Understand manufacturing of composites</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Evaluate the properties of thermoset and thermoplastic composite</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Mechanics of composites failure</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVES
To enable the students to learn about
- Textiles used for civil construction and transportation applications and their functional requirements and
- Evaluation of textile materials used for civil construction and transportation applications.

UNIT I G E O T E X T I L E S I
Geo textile – definition, types, functions; types of fibers and fabrics used in geo textiles; applications of natural fibers in geo-textiles; joining of geo-textiles

UNIT II G E O T E X T I L E S II
Usage of geo-synthetics in civil engineering applications as filters, reinforcement, separation and drainage medium; material specifications and design criteria of geo-synthetics for specific applications

UNIT III A R C H I T E C T U R E T E X T I L E S
Fiber and fabric property requirements for architecture textiles; coated textiles; Tents, Awnings and Canopies; Inflatable structures – high pressure and low pressure inflatable structures; textile for roofing applications; acoustic and heat insulation textiles; floor and wall covering, scaffolding nets

UNIT IV T R A N S P O R T A T I O N T E X T I L E S
Quality and design of textile materials used in automobiles – tire cord, filter, air bag, belt, seat cover, noise insulation; design and development of textile reinforced composites in automobile and aeronautic industry.

UNIT V E V A L U A T I O N
Evaluation of textile material used in civil construction and transportation industry in terms of performance, construction survivability and durability

TOTAL: 45 PERIODS

OUTCOMES
Upon completion of this course, the student shall be able to
- CO1: Understand the requirements of textiles used for civil construction and transportation applications and
- CO2: Understand geo synthetics in civil engineering applications
- CO3: Design the textiles for the architectural applications
- CO4: Design of textile materials for automobile industry
- CO5: Evaluation of textiles to be used for civil construction and transportation industry

TEXT BOOKS

REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understand the requirements of textiles used for civil construction and transportation applications</td>
<td>3 3 - 3 3 2 - - 2</td>
</tr>
<tr>
<td>CO2</td>
<td>Understand geo synthetics in civil engineering applications</td>
<td>3 3 - 3 3 2 - - 2</td>
</tr>
<tr>
<td>CO3</td>
<td>Design the textiles for the architectural applications</td>
<td>3 3 - 3 3 2 - - 2</td>
</tr>
<tr>
<td>CO4</td>
<td>Design of textile materials for automobile industry</td>
<td>3 3 - 3 3 2 - - 2</td>
</tr>
<tr>
<td>CO5</td>
<td>Evaluation of textiles to be used for civil construction and transportation industry</td>
<td>3 3 - 3 3 2 - - 2</td>
</tr>
</tbody>
</table>

Overall CO

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVE
To enable the students to learn about the principles of filtration and textile materials used for filtration process

UNIT I BASIC PRINCIPLES
Filtration and separation, contaminants, surface and depth filtration; filter ratings and filter test, dust collection – theory and principles, practical implications, cleaning mechanisms; fabric design and selection considerations; filter media: introduction, absorbent, adsorbent and biological filter media, paper and fabrics, woven wire and screens, constructed filter cartridges, membranes, packed beds; types of filters.

UNIT II TEXTILE FILTERS & FINISHING TREATMENTS
Fabric construction -woven fabrics, needle felts, knitted fabrics; heat setting, singeing, raising, calendaring, chemical treatments, special surface treatments

UNIT III LIQUID AND OIL FILTRATION
Water filters, waste water treatments, surface treatment chemicals; oil and hydraulic systems; engine filters, oil-water separators, oil cleaning and hydraulic systems. gas filtration-introduction, engine filters, oil–water separators, oil cleaning, hydraulic systems

UNIT IV TEXTILE FILTER IN SOLID-LIQUID SEPARATION
Introduction, fabric design/selection consideration, filtration equipment, considerations; yarn types and fabric constructions - monofilaments, multi filaments, fibrillated tape (split film) yarns, staple-fibre yarns, yarn combinations; fabric constructions and properties - plain weave, twill weaves, satin weaves, duplex and semi duplex weaves, link fabrics, needle felts

UNIT V GAS FILTRATION
Introduction, indoor air quality, fume and vapour emissions, dust collectors, machine air intake filters, vehicle cabin filters, compressed air filtration, pneumatic systems, sterile air and gas filters, respiratory air filters

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course, the student shall be able to understand
- CO1: Principles of filtration
- CO2: Fabric construction and finishing treatments of filtration textiles
- CO3: Concepts of liquid and oil filtration
- CO4: Concepts of solid liquid separation
- CO5: Types of Gas filters

TEXT BOOKS

REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Principles of filtration</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Fabric construction and finishing treatments of filtration textiles</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Concepts of liquid and oil filtration</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Concepts of solid liquid separation</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Types of Gas filters</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVES
To enable the students to learn about

- Important characteristics of fabric that are responsible for its comfort properties and
- Different phenomena which take place in the fabric related to the comfort properties of the fabric.

UNIT I FABRIC HAND

UNIT II CHARACTERISTICS OF POROUS MATERIALS
Geometrical characterization of single fibres; structural analysis of fibrous materials with fibre orientations; determination of the fibre orientation; characterization of porous fibrous materials; pore distribution in a fibrous material

UNIT III MOISTURE VAPOUR TRANSFER AND INTERACTIONS
Mass transfer by diffusion; moisture vapour transfer – principle of moisture diffusion, methods of measurement of moisture vapour transfer; concept of moisture management tester; effect of fibre, yarn and fabric parameters on moisture vapour transfer

UNIT IV HEAT TRANSFER AND INTERACTIONS
Thermal conduction in fibrous materials – thermal conduction analysis; Effective thermal conductivity (ETC) for fibrous materials; prediction of ETC by thermal resistance networks, volume averaging method and homogenization method; structure of plain weave woven fabric composites and the corresponding unit cell

UNIT V PHYSIOLOGICAL COMFORT

TOTAL: 45 PERIODS

OUTCOMES
Upon completion of this course, the student shall be able to understand

CO1: Fabric hand and its comfort parameters
CO2: Permeability and porous nature of fibrous assemblies
CO3: Moisture vapour transfer phenomenon
CO4: Heat transfer phenomenon
CO5: Fabric properties with respect to comfort and correlate the property of the fabric with comfort to the wearer.

TEXT BOOKS

REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Fabric hand and its comfort parameters</td>
<td>PO1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Permeability and porous nature of fibrous assemblies</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Moisture vapour transfer phenomenon</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Heat transfer phenomenon</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Fabric properties with respect to comfort and correlate the property of the fabric with comfort to the wearer.</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVES
To enable the students to
- recall the basics of dyes and their use in textile industry
- define functional dyes and recognize their use
- understand the application of functional dyes
- know the importance of toxicity and health aspects of dyes

UNIT I BASICS OF DYES 9
General survey of dyes; chemical structure of dyes, general properties of dyes, chromophores and dye classes for textile application

UNIT II DYES USED IN TEXTILES 9
Dyeing technology; standardization of textile dyes: dyes for cellullosic fibres, polyamides, polyesters and acrylic fibres; optical brightening agents: chemistry and evaluation of OBA

UNIT III FUNCTIONAL DYES 9
Functional dyes: dyes for leather; fur; paper; hair; food and inks – introduction, chemical structure and requirements

UNIT IV APPLICATION OF FUNCTIONAL DYES 9
Dyes used for imaging, invisible imaging, displays, electronic materials and biomedical applications; solar cells

UNIT V TOXICOLOGY AND HEALTH ASPECTS 9
Toxicity and environmental assessment; regulatory and legislative aspects

TOTAL: 45 PERIODS

OUTCOMES
Upon completion of this course the student shall be able to understand
- CO1: Chemical structure and properties of dyes
- CO2: Dyes used in textiles
- CO3: Functional dyes, their chemical structure and requirements
- CO4: Applications of the functional dyes in different industries
- CO5: Toxicity and health issues

TEXT BOOKS
REFERENCES
6. Non-Textile Dyes, Freeman H. S.
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Chemical structure and properties of dyes</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Dyes used in textiles</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Functional dyes, their chemical structure and requirements</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Applications of the functional dyes in different industries</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Toxicity and health issues</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVE
To enable the students to learn various finishes applied on the textile fabrics for different applications.

UNIT I THEORY OF DYEING
Dyeing equilibrium; dye-fibre interaction; adsorption isotherm; dye affinity; heat of dyeing; half dyeing time

UNIT II INK JET PRINTING
Concept and methods of inkjet printing; colour separation; selection of dyes and developments in inks; techno-economical features

UNIT III COATING
Coating polymers and auxiliaries, coating techniques and coated fabric assessment.

UNIT IV ENZYMES IN PROCESSING I
Enzymes – classifications of enzymes and nomenclature of enzymes, synthesis of enzymes, enzyme kinetics

UNIT V ENZYMES IN PROCESSING II
Substrates and their structure, scaling of enzyme production, textile processing enzymes

OUTCOMES:
Upon completion of this course, the student shall be able to know about
CO1: Theories and concepts of dyeing
CO2: Concepts of ink jet printing
CO3: Different coating techniques
CO4: Overview of enzymes and enzymes usage in chemical processing

TOTAL: 45 PERIODS

TEXT BOOKS

REFERENCES
Course Articulation Matrix:

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Statement</th>
<th>Program Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>Theories and concepts of dyeing</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Concepts of ink jet printing</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Different coating techniques</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Overview of enzymes and Enzymes usage in chemical processing</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.
OBJECTIVES:

- To understand the basics of business analytics and its life cycle.
- To gain knowledge about fundamental business analytics.
- To learn modeling for uncertainty and statistical inference.
- To understand analytics using Hadoop and Map Reduce frameworks.
- To acquire insight on other analytical frameworks.

UNIT I OVERVIEW OF BUSINESS ANALYTICS 9

Suggested Activities:

- Case studies on applications involving business analytics.
- Converting real time decision making problems into hypothesis.
- Group discussion on entrepreneurial opportunities in Business Analytics.

Suggested Evaluation Methods:

- Assignment on business scenario and business analytical life cycle process.
- Group presentation on big data applications with societal need.
- Quiz on case studies.

UNIT II ESSENTIALS OF BUSINESS ANALYTICS 9

Suggested Activities:

- Solve numerical problems on basic statistics.
- Explore chart wizard in MS Excel Case using sample real time data for data visualization.
- Use R tool for data visualization.

Suggested Evaluation Methods:

- Assignment on descriptive analytics using benchmark data.
- Quiz on data visualization for univariate, bivariate data.

UNIT III MODELING UNCERTAINTY AND STATISTICAL INFERENCE 9

Suggested Activities:

- Solving numerical problems in sampling, probability, probability distributions and hypothesis testing.
- Converting real time decision making problems into hypothesis.

Suggested Evaluation Methods:

- Assignments on hypothesis testing.
- Group presentation on real time applications involving data sampling and hypothesis testing.
• Quizzes on topics like sampling and probability.

UNIT IV ANALYTICS USING HADOOP AND MAPREDUCE FRAMEWORK

Suggested Activities:
• Practical – Install and configure Hadoop.
• Practical – Use web based tools to monitor Hadoop setup.
• Practical – Design and develop MapReduce tasks for word count, searching involving text corpus etc.

Suggested Evaluation Methods:
• Evaluation of the practical implementations.
• Quizzes on topics like HDFS and extensions to MapReduce.

UNIT V OTHER DATA ANALYTICAL FRAMEWORKS

Overview of Application development Languages for Hadoop – PigLatin – Hive – Hive Query Language (HQL) – Introduction to Pentaho, JAQL – Introduction to Apache: Sqoop, Drill and Spark, Cloudera Impala – Introduction to NoSQL Databases – Hbase and MongoDB.

Suggested Activities:
• Practical – Installation of NoSQL database like MongoDB.
• Practical – Demonstration on Sharding in MongoDB.
• Practical – Install and run Pig
• Practical – Write PigLatin scripts to sort, group, join, project, and filter data.
• Design and develop algorithms to be executed in MapReduce involving numerical methods for analytics.

Suggested Evaluation Methods:
• Mini Project (Group) – Real time data collection, saving in NoSQL, implement analytical techniques using Map-Reduce Tasks and Result Projection.

OUTCOMES:
On completion of the course, the student will be able to:
• Identify the real world business problems and model with analytical solutions.
• Solve analytical problem with relevant mathematics background knowledge.
• Convert any real world decision making problem to hypothesis and apply suitable statistical testing.
• Write and Demonstrate simple applications involving analytics using Hadoop and MapReduce
• Use open source frameworks for modeling and storing data.
• Apply suitable visualization technique using R for visualizing voluminous data.

REFERENCES:
<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
OBJECTIVES:
- Summarize basics of industrial safety
- Describe fundamentals of maintenance engineering
- Explain wear and corrosion
- Illustrate fault tracing
- Identify preventive and periodic maintenance

UNIT I INTRODUCTION
Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes.
Fire prevention and firefighting, equipment and methods.

UNIT II FUNDAMENTALS OF MAINTENANCE ENGINEERING
Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT III WEAR AND CORROSION AND THEIR PREVENTION
Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun,

UNIT IV FAULT TRACING
Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment’s like, i. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT V PERIODIC AND PREVENTIVE MAINTENANCE
Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

OUTCOMES:
- CO1: Ability to summarize basics of industrial safety
- CO2: Ability to describe fundamentals of maintenance engineering
- CO3: Ability to explain wear and corrosion
- CO4: Ability to illustrate fault tracing
- CO5: Ability to identify preventive and periodic maintenance

TOTAL: 45 Periods
REFERENCES:

OE5093 OPERATIONS RESEARCH

OBJECTIVES:

- Solve linear programming problem and solve using graphical method.
- Solve LPP using simplex method
- Solve transportation, assignment problems
- Solve project management problems
- Solve scheduling problems

UNIT I LINEAR PROGRAMMING
Introduction to Operations Research – assumptions of linear programming problems - Formulations of linear programming problem – Graphical method

UNIT II ADVANCES IN LINEAR PROGRAMMING
Solutions to LPP using simplex algorithm- Revised simplex method - primal dual relationships – Dual simplex algorithm - Sensitivity analysis

UNIT III NETWORK ANALYSIS – I
Transportation problems -Northwest corner rule, least cost method, Voges’s approximation method - Assignment problem - Hungarian algorithm

UNIT IV NETWORK ANALYSIS – II
Shortest path problem: Dijkstra’s algorithms, Floyds algorithm, systematic method - CPM/PERT

UNIT V NETWORK ANALYSIS – III
Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models

TOTAL: 45 PERIODS

OUTCOMES:
CO1: To formulate linear programming problem and solve using graphical method.
CO2: To solve LPP using simplex method
CO3: To formulate and solve transportation, assignment problems
CO4: To solve project management problems

Attested

DIRECTOR
Centre for Academic Courses
Anna University, Chennai-600 025
CO5: To solve scheduling problems

<table>
<thead>
<tr>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

REFERENCES:

OE5094 COST MANAGEMENT OF ENGINEERING PROJECTS

OBJECTIVES:
- Summarize the costing concepts and their role in decision making
- Infer the project management concepts and their various aspects in selection
- Interpret costing concepts with project execution
- Develop knowledge of costing techniques in service sector and various budgetary control techniques
- Illustrate with quantitative techniques in cost management

UNIT I INTRODUCTION TO COSTING CONCEPTS
Objectives of a Costing System; Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost; Creation of a Database for operational control.

UNIT II INTRODUCTION TO PROJECT MANAGEMENT
Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities, Detailed Engineering activities, Pre project execution main clearances and documents, Project team: Role of each member, Importance Project site: Data required with significance, Project contracts.

UNIT III PROJECT EXECUTION AND COSTING CONCEPTS
Project execution Project cost control, Bar charts and Network diagram, Project commissioning: mechanical and process, Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis, Various decision-making problems, Pricing strategies: Pareto Analysis, Target costing, Life Cycle Costing.

UNIT IV COSTING OF SERVICE SECTOR AND BUDGETERY CONTROL
Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis, Budgetary Control: Flexible Budgets; Performance budgets; Zero-based budgets.

UNIT V QUANTITATIVE TECHNIQUES FOR COST MANAGEMENT
Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Learning Curve Theory.

TOTAL: 45 PERIODS
OUTCOMES
CO1 – Understand the costing concepts and their role in decision making
CO2–Understand the project management concepts and their various aspects in selection
CO3–Interpret costing concepts with project execution
CO4–Gain knowledge of costing techniques in service sector and various budgetary control techniques
CO5 - Become familiar with quantitative techniques in cost management

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES:
2. Charles T. Horngren and George Foster, Advanced Management Accounting, 1988

OE5095 COMPOSITE MATERIALS L T P C
3 0 0 3

OBJECTIVES:
- Summarize the characteristics of composite materials and effect of reinforcement in composite materials.
- Identify the various reinforcements used in composite materials.
- Compare the manufacturing process of metal matrix composites.
- Understand the manufacturing processes of polymer matrix composites.
- Analyze the strength of composite materials.

UNIT I INTRODUCTION
Definition – Classification and characteristics of Composite materials - Advantages and application of composites - Functional requirements of reinforcement and matrix - Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

UNIT II REINFORCEMENTS
Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers - Properties and applications of whiskers, particle reinforcements - Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures - Isostrain and Isostress conditions.

UNIT III MANUFACTURING OF METAL MATRIX COMPOSITES
UNIT IV MANUFACTURING OF POLYMER MATRIX COMPOSITES

UNIT V STRENGTH
Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

OUTCOMES:
- CO1 - Know the characteristics of composite materials and effect of reinforcement in composite materials.
- CO2 – Know the various reinforcements used in composite materials.
- CO3 – Understand the manufacturing processes of metal matrix composites.
- CO4 – Understand the manufacturing processes of polymer matrix composites.
- CO5 – Analyze the strength of composite materials.

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

REFERENCES:
OBJECTIVES:
- Interpret the various types of wastes from which energy can be generated
- Develop knowledge on biomass pyrolysis process and its applications
- Develop knowledge on various types of biomass gasifiers and their operations
- Invent knowledge on biomass combustors and its applications on generating energy
- Summarize the principles of bio-energy systems and their features

UNIT I: INTRODUCTION TO EXTRACTION OF ENERGY FROM WASTE
Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

UNIT II: BIOMASS PYROLYSIS
Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

UNIT III: BIOMASS GASIFICATION

UNIT IV: BIOMASS COMBUSTION
Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

UNIT V: BIO ENERGY
Properties of biogas (Calorific value and composition), Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

OUTCOMES:
CO1 – Understand the various types of wastes from which energy can be generated
CO2 – Gain knowledge on biomass pyrolysis process and its applications
CO3 – Develop knowledge on various types of biomass gasifiers and their operations
CO4 – Gain knowledge on biomass combustors and its applications on generating energy
CO5 – Understand the principles of bio-energy systems and their features

TOTAL: 45 PERIODS

REFERENCES:
AUDIT COURSES (AC)

AX5091 ENGLISHFOR RESEARCHPAPERWRITING L T P C 2 0 0 0

OBJECTIVES
- Teach how to improve writing skills and level of readability
- Tell about what to write in each section
- Summarize the skills needed when writing a Title
- Infer the skills needed when writing the Conclusion
- Ensure the quality of paper at very first-time submission

UNIT I INTRODUCTION TO RESEARCH PAPER WRITING 6
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT II PRESENTATION SKILLS 6

UNIT III TITLE WRITING SKILLS 6
Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check

UNIT IV RESULT WRITING SKILLS 6
Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions

UNIT V VERIFICATION SKILLS 6
Useful phrases, checking Plagiarism, how to ensure paper is as good as it could possibly be the first-time submission

TOTAL: 30 PERIODS

OUTCOMES
CO1 – Understand that how to improve your writing skills and level of readability
CO2 – Learn about what to write in each section
CO3 – Understand the skills needed when writing a Title
CO4 – Understand the skills needed when writing the Conclusion
CO5 – Ensure the good quality of paper at very first-time submission

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>CO5</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES
OBJECTIVES

- Summarize basics of disaster
- Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Develop the strengths and weaknesses of disaster management approaches

UNIT I INTRODUCTION

Disaster: Definition, Factors and Significance; Difference between Hazard And Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

UNIT II REPERCUSSIONS OF DISASTERS AND HAZARDS

UNIT III DISASTER PRONE AREAS IN INDIA

Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides And Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics

UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT

Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT V RISK ASSESSMENT

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People’s Participation in Risk Assessment. Strategies for Survival

TOTAL : 30 PERIODS

OUTCOMES

CO1: Ability to summarize basics of disaster
CO2: Ability to explain critical understanding of key concepts in disaster risk reduction and humanitarian response.
CO3: Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
CO4: Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
CO5: Ability to develop the strengths and weaknesses of disaster management approaches

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

AX5093 SANSKRIT FOR TECHNICAL KNOWLEDGE L T P C 2 0 0 0

OBJECTIVES
- Illustrate the basic sanskrit language.
- Recognize sanskrit, the scientific language in the world.
- Appraise learning of sanskrit to improve brain functioning.
- Relate sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power.
- Extract huge knowledge from ancient literature.

UNIT I ALPHABETS 6
Alphabets in Sanskrit

UNIT II TENSES AND SENTENCES 6
Past/Present/Future Tense - Simple Sentences

UNIT III ORDER AND ROOTS 6
Order - Introduction of roots

UNIT IV SANSKRIT LITERATURE 6
Technical information about Sanskrit Literature

UNIT V TECHNICAL CONCEPTS OF ENGINEERING 6
Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

TOTAL: 30 PERIODS

OUTCOMES
- CO1 - Understanding basic Sanskrit language.
- CO2 - Write sentences.
- CO3 - Know the order and roots of Sanskrit.
- CO4 - Know about technical information about Sanskrit literature.
- CO5 - Understand the technical concepts of Engineering.

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES
1. “Abhyaspustakam” – Dr.Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
OBJECTIVES
Students will be able to
• Understand value of education and self-development
• Imbibe good values in students
• Let the should know about the importance of character

UNIT I
Values and self-development–Social values and individual attitudes.
Workethics, Indian vision of humanism. Moral and non-moral valuation. Standards and principles. Value judgements

UNIT II

UNIT III

UNIT IV

TOTAL: 30 PERIODS

OUTCOMES
Students will be able to
• Knowledge of self-development.
• Learn the importance of Human values.
• Developing the over all personality.

Suggested reading
OBJECTIVES
Students will be able to:
- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

UNIT I HISTORY OF MAKING OF THE INDIAN CONSTITUTION:
History, Drafting Committee, (Composition & Working)

UNIT II PHILOSOPHY OF THE INDIAN CONSTITUTION:
Preamble, Salient Features

UNIT III CONTOURS OF CONSTITUTIONAL RIGHTS AND DUTIES:

UNIT IV ORGANS OF GOVERNANCE:
Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.

UNIT V LOCAL ADMINISTRATION:

UNIT VI ELECTION COMMISSION:
Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners - Institute and Bodies for the welfare of SC/ST/OBC and women.

OUTCOMES
Students will be able to:
- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reform sliding to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

Suggested reading
1. The Constitution of India, 1950 (Bare Act), Government Publication.
OBJECTIVES
Students will be able to:
- Review existing evidence on there view topic to inform programme design and policy
- Making under taken by the DfID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

UNIT I INTRODUCTION AND METHODOLOGY:
Aims and rationale, Policy background, Conceptual framework and terminology - Theories of learning, Curriculum, Teacher education - Conceptual framework, Research questions - Overview of methodology and Searching.

UNIT II THEMATIC OVERVIEW
Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries - Curriculum, Teacher education.

UNIT III EVIDENCE ON THE EFFECTIVENESS OF PEDAGOGICAL PRACTICES
Methodology for the in depth stage: quality assessment of included studies - How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? - Theory of change - Strength and nature of the body of evidence for effective pedagogical practices - Pedagogic theory and pedagogical approaches - Teachers’ attitudes and beliefs and Pedagogic strategies.

UNIT IV PROFESSIONAL DEVELOPMENT
Professional development: alignment with classroom practices and follow up support - Peer support - Support from the head teacher and the community - Curriculum and assessment - Barriers to learning: limited resources and large class sizes

UNIT V RESEARCH GAPS AND FUTURE DIRECTIONS
Research design – Contexts – Pedagogy - Teacher education - Curriculum and assessment - Dissemination and research impact.

OUTCOMES
Students will be able to understand:
- What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- What is the evidence on the effectiveness of pedagogical practices, in what conditions, and with what population of learners?
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

TOTAL: 30 PERIODS
Suggested reading

AX5097

STRESS MANAGEMENT BY YOGA

OBJECTIVES
- To achieve overall health of body and mind
- To overcome stress

UNIT I
Definitions of Eight parts of yoga.(Ashtanga)

UNIT II
Yam and Niyam - Do’s and Don’t’s in life - i) Ahinsa, satya, astheya, bramhacharya and aparigraha, ii) Ahinsa, satya, astheya, bramhacharya and aparigraha.

UNIT III
Asan and Pranayam - Various yog poses and their benefits for mind & body - Regularization of breathing techniques and its effects-Types of pranayam

OUTCOMES
Students will be able to:
- Develop healthy mind in a healthy body thus improving social health also
- Improve efficiency

SUGGESTEDREADING
1. ‘YogicAsanasforGroupTarining-Part-I”:JanardanSwamiYogabhyasiMandal, Nagpur
2. “Rajayogaorconquering the Internal Nature” by Swami Vivekananda, Advaita Ashrama
 (Publication Department),Kolkata
OBJECTIVES
- To learn to achieve the highest goal happily
- To become a person with stable mind, pleasing personality and determination
- To a waken wisdom in students

UNIT I
Neetishatakam-holistic development of personality - Verses- 19,20,21,22 (wisdom) - Verses- 29,31,32 (pride & heroism) – Verses- 26,28,63,65 (virtue) - Verses- 52,53,59 (dont's) - Verses- 71,73,75,78 (do's)

UNIT II
Approach to day to day work and duties - Shrimad BhagwadGeeta: Chapter 2-Verses 41, 47,48 - Chapter 3-Verses 13, 21, 27, 35 Chapter 6-Verses 5,13,17,23, 35 - Chapter 18-Verses 45, 46, 48.

UNIT III
Statements of basic knowledge - Shrimad BhagadGeeta: Chapter2-Verses 56, 62, 68 Chapter 12 - Verses 13, 14, 15, 16,17, 18 -Personality of role model - shrimadbhagwadgeeta - Chapter2-Verses 17, Chapter 3-Verses 36,37,42 - Chapter 4-Verses 18, 38,39 Chapter18 – Verses 37,38,63

TOTAL: 30 PERIODS

OUTCOMES
Students will be able to
- Study of Shrimad- Bhagwad- Geeta will help the student in developing his personality and achieve the highest goal in life
- The person who has studied Geeta will lead the nation and man kind to peace and prosperity
- Study of Neetishatakam will help in developing versatile personality of students.

Suggested reading
1. Gopinath, Rashtriya Sanskrit Sansthanam P, Bhartrihari’s Three Satakam, Niti-sringar-vairagya, New Delhi,2010