VISION

The Department of Mechanical Engineering strives to be recognized globally for excelling in engineering education and research leading to innovative, entrepreneurial, and competent graduates in Mechanical Engineering and allied disciplines.

MISSION

1. Providing world class education by fostering effective teaching learning process that is supported through pioneering and cutting-edge research to make impactful contribution to the society.

2. Attracting highly motivated students with enthusiasm, aptitude, and interest in the field of Mechanical and allied Engineering disciplines.

3. Expanding the frontiers of Engineering and Science in technological innovation while ensuring academic excellence and scholarly learning in a collegial environment.

4. Excelling in industrial consultancy and research leading to innovative technology development and transfer.

5. Serving the society with innovative and entrepreneurially competent graduates for the national and international community towards achieving the sustainable development goals.
PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

The Internal Combustion Engineering program seeks to prepare PG students for productive and rewarding careers in the engines and propulsion field. The PEOs are listed below:

I. Excelling as an engine expert for providing solutions towards improving the efficacy of engine package
II. Inclination towards advanced research for developing solutions for green mobility
III. Uphold professional ethics in the field of work for societal upliftment.

PROGRAMME OUTCOMES (POs):

<table>
<thead>
<tr>
<th>PO</th>
<th>Programme Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An ability to independently carry out research/investigation and development work to solve practical problems.</td>
</tr>
<tr>
<td>2</td>
<td>An ability to write and present a substantial technical report/document.</td>
</tr>
<tr>
<td>3</td>
<td>Students should be able to demonstrate a degree of mastery in the area of mechatronics.</td>
</tr>
<tr>
<td>4</td>
<td>Technically sound and competent to work in a challenging automotive industry</td>
</tr>
<tr>
<td>5</td>
<td>Ability to transfer acquired knowledge through innovative and modern teaching methodologies</td>
</tr>
<tr>
<td>6</td>
<td>Capability to excel in core engine research at national and international institutions / laboratories</td>
</tr>
</tbody>
</table>

PEO & PO Mapping

<table>
<thead>
<tr>
<th>PEO</th>
<th>PO</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>II.</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>III.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>YEAR</td>
<td>SEMESTER</td>
<td>COURSE NAME</td>
<td>PO1</td>
<td>PO2</td>
<td>PO3</td>
<td>PSO4</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------------------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>I</td>
<td>I</td>
<td>Advanced Numerical Methods</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Thermodynamics</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Heat transfer</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emission Formation and Control</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combustion in IC Engines</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research Methodology and IPR</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fuel Synthesis and Characterisation Laboratory</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Combustion Engines Laboratory</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>II</td>
<td>Electronic Engine Management Systems</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design of Engine Components and Testing</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instrumentation for Thermal Systems</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computational Fluid Dynamics for Mobility Systems</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective - I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective - II</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Seminar</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computational Laboratory</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>III</td>
<td>Low and Zero Carbon Fuels</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective - III</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective - IV</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research Data Analysis Laboratory</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Work I</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>IV</td>
<td>Project Work II</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>
### SEMESTER-I

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>THEORY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA3155</td>
<td>Advanced Numerical Methods</td>
<td>FC</td>
<td>4 0 0</td>
<td>4 4</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>IC3151</td>
<td>Advanced Thermodynamics</td>
<td>FC</td>
<td>3 1 0</td>
<td>4 4</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>RA3151</td>
<td>Advanced Heat Transfer</td>
<td>FC</td>
<td>3 0 2</td>
<td>5 4</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>IC3101</td>
<td>Emission Formation and Control</td>
<td>PCC</td>
<td>2 0 2</td>
<td>4 3</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>IC3152</td>
<td>Combustion in IC Engines</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>RM3151</td>
<td>Research Methodology and IPR</td>
<td>RMC</td>
<td>2 1 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>PRACTICALS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>IC3111</td>
<td>Fuel Synthesis and Characterisation Laboratory</td>
<td>PCC</td>
<td>0 0 4</td>
<td>4 2</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>IC3112</td>
<td>Internal Combustion Engines Laboratory</td>
<td>PCC</td>
<td>0 0 4</td>
<td>4 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>TOTAL</strong></td>
<td></td>
<td></td>
<td>17 2 12</td>
<td>31 25</td>
</tr>
</tbody>
</table>

### SEMESTER-II

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>THEORY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>IC3251</td>
<td>Electronic Engine Management Systems</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>IC3252</td>
<td>Design of Engine Components and Testing</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>IC3201</td>
<td>Instrumentation for Thermal Systems</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>IC3253</td>
<td>Computational Fluid Dynamics for Mobility systems</td>
<td>PCC</td>
<td>2 0 2</td>
<td>4 3</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective - I</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective - II</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>PRACTICALS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>IC3211</td>
<td>Technical Seminar</td>
<td>EEC</td>
<td>0 0 2</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>IC3212</td>
<td>Computational Laboratory</td>
<td>PCC</td>
<td>0 0 4</td>
<td>4 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>TOTAL</strong></td>
<td></td>
<td></td>
<td>17 0 8</td>
<td>25 21</td>
</tr>
</tbody>
</table>
### SEMESTER-III

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IC3301</td>
<td>Low and Zero Carbon Fuels</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Professional Elective - III</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Professional Elective - IV</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>IC3361</td>
<td>Research Data Analysis Laboratory</td>
<td>EEC</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>IC3311</td>
<td>Project Work - I</td>
<td>EEC</td>
<td>0 0 12</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>TOTAL</strong></td>
<td></td>
<td>9 0 14</td>
<td>23</td>
<td>16</td>
</tr>
</tbody>
</table>

**TOTAL CREDITS : 74**

### SEMESTER-IV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IC3411</td>
<td>Project Work - II</td>
<td>EEC</td>
<td>0 0 24</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>TOTAL</strong></td>
<td></td>
<td>0 0 24</td>
<td>24</td>
<td>12</td>
</tr>
</tbody>
</table>

**TOTAL CREDITS : 74**
### FOUNDATION COURSES (FC)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods Per Week</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA3155</td>
<td>Advanced Numerical Methods</td>
<td>4 0 0</td>
<td>4</td>
<td>I</td>
</tr>
<tr>
<td>2.</td>
<td>IC3151</td>
<td>Advanced Thermodynamics</td>
<td>3 1 0</td>
<td>4</td>
<td>I</td>
</tr>
<tr>
<td>3.</td>
<td>RA3151</td>
<td>Advanced Heat Transfer</td>
<td>3 0 2</td>
<td>4</td>
<td>I</td>
</tr>
</tbody>
</table>

### PROFESSIONAL CORE COURSES (PCC)

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods Per Week</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IC3101</td>
<td>Emission Formation and Control</td>
<td>2 0 2</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>2.</td>
<td>IC3152</td>
<td>Combustion in IC Engines</td>
<td>3 0 0</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>3.</td>
<td>IC3111</td>
<td>Fuel Synthesis and Characterisation Laboratory</td>
<td>0 0 4</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>4.</td>
<td>IC3112</td>
<td>Internal Combustion Engines Laboratory</td>
<td>0 0 4</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>5.</td>
<td>IC3251</td>
<td>Electronic Engine Management Systems</td>
<td>3 0 0</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>6.</td>
<td>IC3252</td>
<td>Design of Engine Components and Testing</td>
<td>0 0 3</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>7.</td>
<td>IC3201</td>
<td>Instrumentation for Thermal Systems</td>
<td>0 0 3</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>8.</td>
<td>IC3253</td>
<td>Computational Fluid Dynamics for Mobility Systems</td>
<td>2 0 2</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>9.</td>
<td>IC3212</td>
<td>Computational Laboratory</td>
<td>0 0 4</td>
<td>2</td>
<td>II</td>
</tr>
<tr>
<td>10.</td>
<td>IC3301</td>
<td>Low and Zero Carbon Fuels</td>
<td>3 0 0</td>
<td>3</td>
<td>III</td>
</tr>
</tbody>
</table>
## PROFESSIONAL ELECTIVE COURSES (PEC)

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PW3052</td>
<td>Electric Vehicles and Power Management</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>EY3052</td>
<td>Fuel Cell Technology</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>IC3051</td>
<td>Advanced Combustion Technologies</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>IC3004</td>
<td>Electric Vehicle Systems</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>IC3052</td>
<td>Hydrogen – Production and Utilization</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>IC3001</td>
<td>Automotive Systems</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>ET3251</td>
<td>Automotive Embedded System</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>IC3053</td>
<td>Machine Learning in IC Engines</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>IC3002</td>
<td>Green Energy Production Technologies</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>PW3059</td>
<td>Electrical Drives and Control</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>IC3054</td>
<td>Autonomous and Connected Vehicle Systems</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>IC3003</td>
<td>Aerospace Propulsion</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
### EMPLOYABILITY ENHANCEMENT COURSES (EEC)

<table>
<thead>
<tr>
<th>S. NO</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>PERIODS PER WEEK</th>
<th>CREDITS</th>
<th>SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>IC3211</td>
<td>Technical Seminar</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>IC3361</td>
<td>Research Data Analysis Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>IC3311</td>
<td>Project Work - I</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>4.</td>
<td>IC3411</td>
<td>Project Work - II</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S.NO</th>
<th>ME INTERNAL COMBUSTION ENGINEERING (FULL TIME)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUBJECT AREA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>FC</td>
</tr>
<tr>
<td>2.</td>
<td>PCC</td>
</tr>
<tr>
<td>3.</td>
<td>PEC</td>
</tr>
<tr>
<td>4.</td>
<td>RMC</td>
</tr>
<tr>
<td>5.</td>
<td>EEC</td>
</tr>
<tr>
<td></td>
<td>TOTAL CREDIT</td>
</tr>
</tbody>
</table>
OBJECTIVES:
- To impart knowledge in understanding the advantages of various solution procedures of solving the system of linear and nonlinear equations.
- To give a clear picture about the solution methods for solving the BVPs and the system of IVPs.
- To acquire knowledge in solving time dependent one and two dimensional parabolic PDEs by using various methodologies.
- To strengthen the knowledge of finite difference methods for solving elliptic equations.
- To get exposed to the ideas of solving PDEs by finite element method.

UNIT I  ALGEBRAIC EQUATIONS

UNIT II  ORDINARY DIFFERENTIAL EQUATIONS
Runge Kutta Methods for system of IVPs, numerical stability, Adams-Bashforth multistep method, solution of stiff ODEs, shooting method, BVP: Finite difference method, collocation method, orthogonal collocation method, Galerkin finite element method.

UNIT III  FINITE DIFFERENCE METHOD FOR TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATION

UNIT IV  FINITE DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS
Laplace and Poisson’s equations in a rectangular region: Five point finite difference schemes, Leibmann’s iterative methods, Dirichlet and Neumann conditions – Laplace equation in polar coordinates: finite difference schemes – approximation of derivatives near a curved boundary while using a square mesh.

UNIT V  FINITE ELEMENT METHOD

TOTAL: 60 PERIODS

OUTCOMES:
At the end of the course, students will be able to
CO1 Get familiarized with the methods which are required for solving system of linear, nonlinear equations and eigenvalue problems.
CO2 Solve the BVPs and the system of IVPs by appropriate methods discussed.
CO3 Solve time dependent parabolic PDEs by using various methodologies up to dimension two.
CO4 Solve elliptic equations by finite difference methods.
CO5 Use the ideas of solving PDEs by finite element method.
REFERENCES:

CO-PO Mapping:

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
1. To achieve an understanding of basic principle and scope of thermodynamics
2. To predict the availability and irreversibility associated with the thermodynamic processes and Chemical availability of reactive systems
3. To arrive at the adiabatic flame temperature during combustion of air-fuel mixture

UNIT I THERMODYNAMIC PROPERTY RELATIONS 12
Thermodynamic Potentials, Maxwell relations, Generalised relations for changes in Entropy, Internal Energy and Enthalpy, Generalised Relations for Cp and Cv, Clausius Clapeyron Equation, Joule Thomson Coefficient, Bridgeman Tables for Thermodynamic Relations.

UNIT II REAL GAS BEHAVIOUR AND MULTI-COMPONENT SYSTEMS 12

UNIT III AVAILABILITY OF MIXTURES 12

UNIT IV PHASE EQUILIBRIUM OF MIXTURES 12

UNIT V THERMO CHEMISTRY 12

COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
CO1 Find thermodynamic properties using various thermodynamic relations.
CO2 Apply the law of thermodynamics to thermal systems.
CO3 Perform second law analysis to thermal systems
CO4 Design and analyse a multi component thermodynamic system
CO5 Understand and analyse the combustion of different fuels
REFERENCES:


CO – PO Mapping:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.4</td>
<td>2.2</td>
<td>2.6</td>
<td>2.2</td>
<td>2.4</td>
<td>2</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
- To teach the fundamentals and advancements of heat transfer and its applications with emphasis on numerical solutions to the students and prepare them for research.
- To offer hands-on training on measurement, analysis of heat transfer phenomena with emphasis on data analysis and report preparation.

UNIT – I CONDUCTION 9L, 6P

PRACTICALS:
Thermal conductivity of solids & liquids and effect of temperature, Thermal analysis of fins, Lumped heat method for analysis of different geometries

UNIT – II CONVECTION 9L, 6P
Energy & Momentum equations, Laminar & Turbulent Boundary Layers, Entry length, Reynolds-Colburn Analogy, Heat transfer coefficient for flow over a flat surface, circular & non-circular ducts

PRACTICALS:
Thermal & hydraulic boundary layer development through fluid, Free & Forced convective heat transfer coefficient studies.

UNIT – III TWO-PHASE FLOW 9L, 6P
Flow patterns, Void fraction, critical flow, Dispersed, slug, annular & stratified flow, Homogeneous, Drift & Separated flow model

PRACTICALS:
Temperature & Flow field visualisation

UNIT – IV TWO-PHASE HEAT TRANSFER 9L, 6P
Pool & Convective boiling, critical heat flux, Dropwise & filmwise condensation, Melting & Solidification, Heat transfer enhancement methods.

PRACTICALS:
Plotting of boiling & condensation curves, T-t plots during melting & solidification

UNIT – V THRUST AREAS 9L, 6P
Thermoregulation, Laser Generated Heat Transfer, Tissue Thermal Properties and Perfusion, Thermal Damage and Rate Processes in Biologic Tissues, Thermal Injury, Mathematical models of bio-heat transfer

PRACTICALS:
Irradiation studies & heat generation from lasers

TOTAL: 45L + 30P = 75 PERIODS
COURSE OUTCOMES:
Upon completion of this course, the students will be able to:
1. Demonstrate the concepts of conduction and experimentation in the thermal systems.
2. Illustrate the concept of conservation of energy, solve problems and conduct experiments in convection heat transfer.
3. Categorise & examine the different two-phase flow models and evaluate the parameters of flow fields through experimentation.
4. Analyse the phase change heat transfer and formulate practical problems and interpret data of experimentation.
5. Use engineering tools and appraise the heat transfer in biological systems.

REFERENCES:

Mapping of CO with PO

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.2</td>
</tr>
</tbody>
</table>
IC3101  EMISSION FORMATION AND CONTROL  L  T  P  C
2  0  2  3

COURSE OBJECTIVES
1. To provide an insight about effect of engine out emissions on human health and environment, emission formation and techniques to measure and mitigate them

UNIT I  INTRODUCTION  3
Atmospheric pollution from automotive, stationary engines and gas turbines, Global warming – Green-house effect, Effects of engine pollution on human health and environment

UNIT II  POLLUTANT FORMATION  6
Formation of Oxides of Nitrogen, Carbon monoxide, Hydrocarbon, Aldehydes, Smoke and Particulate matter emissions. Effect of Engine design and operating variables on emission formation.

UNIT III  EMISSION MEASUREMENT TECHNIQUES  6L + 6P
CO, CO2 - Non dispersive infrared gas analyser, NOx - Chemiluminescent analyser, HC - Flame ionization detector, Smoke – Opacity and filter paper measurements, Particulate Matter – Full flow and Partial flow dilution tunnel, Gas chromatography, Noise measurement.

UNIT IV  EMISSION CONTROL TECHNIQUES  9L + 3P
Engine design modifications, Fuel modification, Evaporative emission control, EGR, Air injection, Water injection, Common rail direct injection, and Gasoline direct injection system, After treatment systems - Catalytic converters, Diesel oxidation catalyst, Particulate traps, De-NOx catalysts, SCR systems.

UNIT V  DRIVING CYCLES AND EMISSION STANDARDS  6L + 6P
Transient dynamometer, Test cells, Driving cycles for emission measurement, chassis dynamometer, CVS system, National and International emission standards, RDE

TOTAL: 60 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to

CO1 Understand about atmospheric pollution from engines and its impact on human health and environment.

CO2 Understand the formation of emissions in both SI and CI engines

CO3 Understand the various measurement techniques used globally for the measurement of automotive and stationary engine out emissions.

CO4 Learn the various control methods/techniques used in IC engine to control the engine out emissions

CO5 Learn the transient and steady state driving cycles performed on automotive and stationary engines and emission standards that are followed in the national and international level

REFERENCES:
CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
IC3152 COMBUSTION IN IC ENGINES  L  T  P  C  
3 0 0 3

COURSE OBJECTIVE
1. To familiarize with the principles of combustion in engines and modern concepts of combustion

UNIT I THERMODYNAMICS OF COMBUSTION  9

UNIT II COMBUSTION PRINCIPLES  9
Combustion – Combustion equations, chemical equilibrium, and Dissociation -Theories of Combustion - Flammability Limits - Reaction rates - Laminar and Turbulent Flame Propagation in Engines, Flame structure and speed - Chemical kinetics.

UNIT III COMBUSTION IN S.I. ENGINES  9
Stages of combustion, Cylinder pressure measurement and heat release analysis normal and abnormal combustion, knocking, Variables affecting Knock, Features and design consideration of combustion chambers, Types of combustion chambers., Cyclic variations, Lean burn combustion, Stratified charge combustion systems. Heat release correlations.

UNIT IV COMBUSTION IN C.I. ENGINES  9
Stages of combustion, and spray formation and characterization, air motion, swirl measurement, knock and engine variables, Features and design considerations of combustion chambers, delay period correlations, heat release correlations, Influence of the injection system on combustion, Direct and indirect injection systems.

UNIT V LOW TEMPERATURE COMBUSTION CONCEPTS  9
Homogeneous charge compression ignition (HCCI) engine – Premixed charge compression ignition (PCCI) engine, Gasoline Direct Injection Compression Ignition (GDCI) engine, Reactivity controlled compression ignition (RCCI) engine – An introduction.

TOTAL:45 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to
CO1 Knowledge to apply laws of thermodynamics to combustion processes
CO2 Understanding and Analysing ability on theories of combustion, flame, and flame structure
CO3 Acquired knowledge on SI normal and abnormal combustion
CO4 Acquired knowledge on CI stages of combustion and various factors influencing CI combustion
CO5 Gained brief knowledge about various low temperature combustion schemes and its benefits.
REFERENCES:


CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Attested

DIRECTOR
Centre for Academic Courses
Anna University, Chennai-600 025
OBJECTIVES:
To impart knowledge on
- Formulation of research problems, design of experiment, collection of data, interpretation and presentation of result
- Intellectual property rights, patenting and licensing

UNIT I  RESEARCH PROBLEM FORMULATION 9
Objectives of research, types of research, research process, approaches to research; conducting literature review- information sources, information retrieval, tools for identifying literature, Indexing and abstracting services, Citation indexes, summarizing the review, critical review, identifying research gap, conceptualizing and hypothesizing the research gap

UNIT II  RESEARCH DESIGN AND DATA COLLECTION 9
Statistical design of experiments- types and principles; data types & classification; data collection - methods and tools

UNIT III  DATA ANALYSIS, INTERPRETATION AND REPORTING 9
Sampling, sampling error, measures of central tendency and variation; test of hypothesis-concepts; data presentation- types of tables and illustrations; guidelines for writing the abstract, introduction, methodology, results and discussion, conclusion sections of a manuscript; guidelines for writing thesis, research proposal; References – Styles and methods, Citation and listing system of documents; plagiarism, ethical considerations in research

UNIT IV  INTELLECTUAL PROPERTY RIGHTS 9
Concept of IPR, types of IPR – Patent, Designs, Trademarks and Trade secrets, Geographical indications, Copy rights, applicability of these IPR; IPR & biodiversity; IPR development process, role of WIPO and WTO in IPR establishments, common rules of IPR practices, types and features of IPR agreement, functions of UNESCO in IPR maintenance.

UNIT V  PATENTS 9
Patents – objectives and benefits of patent, concept, features of patent, inventive steps, specifications, types of patent application; patenting process - patent filing, examination of patent, grant of patent, revocation; equitable assignments; Licenses, licensing of patents; patent agents, registration of patent agents.

COURSE OUTCOMES
Upon completion of the course, the student can
CO1: Describe different types of research; identify, review and define the research problem
CO2: Select suitable design of experiment s; describe types of data and the tools for collection of data
CO3: Explain the process of data analysis; interpret and present the result in suitable form
CO4: Explain about Intellectual property rights, types and procedures
CO5: Execute patent filing and licensing

REFERENCES:
IC3111  FUEL SYNTHESIS AND CHARACTERISATION  L  T  P  C
LABORATORY  0  0  4  2

COURSE OBJECTIVES:
1. To acquire a knowledge on selection of feedstock for biodiesel, bioethanol production and testing interpreting and analysing fuel properties through various testing methods

LIST OF EXPERIMENTS
1. Selection of feedstock and catalyst for biodiesel, bioethanol production
2. Biodiesel production through conventional technique using different feedstock
3. Liquid fuel production through pyrolysis process
4. Determination of calorific value for liquid and gaseous fuels.
5. Determination of oxidation stability of biodiesel and diesel fuel
6. Determination of copper strip corrosion of biodiesel and diesel
7. Study the elemental composition of fuel using ultimate analyzer
8. Categorize the organic compounds of fuel using proximate analysis

TOTAL: 60 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to

CO1 Understand the importance of selection of feedstock on biodiesel and bioethanol production
CO2 Understand the catalyst production on biodiesel production
CO3 Determine the property of fuels
CO4 Determine the elemental composition of liquid fuels using ultimate analyzer
CO5 Determine the organic compounds of fuels using proximate analysis

CO – PO MAPPING:

<table>
<thead>
<tr>
<th>COs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TOTAL: 60 PERIODS
COURSE OBJECTIVES:
1. To impart hands on experience in dismantling and assembling of engines
2. To impart practical exposure to the advanced engine technologies
3. To provide practical experience in fuel property measurements, engine combustion, performance, and emission testing

LIST OF EXPERIMENTS
1. Disassembly and Assembly of single and multi-cylinder engines
2. Study of advanced diesel and gasoline engine technology engines.
3. Experimental investigation of combustion, performance, and emission characteristics of spark ignition engine.
4. Experimental study on the effect of fuel injection pressure on CI engine performance, combustion, and emission characteristics.
5. Experimental study on the effect of fuel injection timing on CI engine performance, combustion, and emission characteristics.
6. Determination of Flash and Fire point of various fuel blends.
7. Determination of Viscosity of various fuel blends

LABORATORY REQUIREMENTS
1. Single and Multi-Cylinder SI or CI Engine for disassembly and assembly
2. Engine Components for drawing and dimensioning
3. Single/ Multi-Cylinder S.I. Engine Test Rig with combustion, performance, and emission measurement facility
4. Single/ Multi-Cylinder C.I. Engines Test Rig with combustion, performance, and emission measurement facility
5. Exhaust Gas Analyser
6. Smoke Meter
7. In cylinder Pressure Transducers, Charge Amplifiers, and crank angle encoders with high speed data acquisition system
8. Open cup or Closed cup Flash and Fire Point Apparatus
9. Viscometer

COURSE OUTCOMES:
On successful completion of this course the student will be able to

**CO1** Understand the various components of engine, its function, assembling of engine parts and working of advanced engine technologies

**CO2** Understand the procedures of conducting performance, combustion and emission test on engines and its significance

**CO3** Understand the method of calculating the volumetric efficiency and fuel-air ratio of an engine

**CO4** Understand the effect of various operating parameters of the engine on combustion, performance, and emissions

**CO5** Understand the methods of calculating flash point, fire point and viscosity of the various oil samples
CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
IC3251  ELECTRONIC ENGINE MANAGEMENT SYSTEMS  L  T  P  C  3  0  0  3

COURSE OBJECTIVES

1. To provide basic grounding on electronics used in engine management, and how engine is managed electronically using these electronic devices for reduced emissions and performance

UNIT I  ELECTRICAL AND ELECTRONICS PRINCIPLES  7

UNIT II  SENSORS AND ACTUATORS  10

UNIT III  IGNITION SYSTEMS  8
Ignition fundamentals, Solid state ignition systems, High energy ignition systems, Electronic spark timing and control. Combined ignition and fuel management systems. Dwell angle calculation, Ignition timing calculation, Engine mapping, Lookup tables and maps.

UNIT IV  GASOLINE INJECTION SYSTEMS  10
Open loop and closed loop systems, Single-point, Multi-point, Direct injection systems and Air assisted systems – Principles and Features, Types of injection systems, Idle speed, lambda, knock and spark timing control, simple fuel injection calculation, Fuel injection volume control for different engine operation

UNIT V  DIESEL INJECTION SYSTEMS  10

TOTAL:45 PERIODS

COURSE OUTCOMES:

On successful completion of this course the student will be able to

CO1  Learn the application of electronics in engine management systems
CO2  Able to choose the types of sensors
CO3  Decide on the type of ignition systems to be employed for different applications
CO4  Able to design gasoline injection systems
CO5  Demonstrate the capabilities of diesel fuel injection systems
REFERENCES:

1. Eric Chowanietz, Automobile Electronics, SAE Publications 1995

CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

1. To introduce the concepts for designing engine components and testing

UNIT I  DESIGN OF CYLINDER, CYLINDER HEAD AND PISTON  9
Introduction - Stress, fatigue, material selection, Determination of required displacement, Determination of number of cylinders and arrangement of cylinders, Determination of bore diameter & stroke length, Design of cylinder – cylinder head – piston – piston rings

UNIT II  DESIGN OF CONNECTING ROD AND CRANK SHAFT  9
Design of connecting rod, Design of overhang and center crank shaft – for maximum bending – for maximum torsion.

UNIT III  DESIGN OF VALVE TRAIN AND SUBSYSTEMS  9
Design of valve train components, Design of cooling system, Design of lubrication system, Manifold tuning, Selection of bearings and gaskets.

UNIT IV  ENGINE TESTING  9
During engine development: Performance Testing - Emission Testing (Steady state, Transient and Real driving emissions) - Durability testing (Individual components, Complete engine) - Emission and performance tuning. During engine production: Hot test - Cold test.

UNIT V  MODELING AND ANALYSIS  9
Modelling and analysis of designed components using computer aided design and analysis software, Generation of production drawings.

TOTAL:  45 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to

CO1  Design cylinder, cylinder head and piston.
CO2  Design connecting rod and crank shaft.
CO3  Design of valve train components and sub systems.
CO4  Demonstrate understanding about engine testing.
CO5  Model and analyze engine components.

REFERENCES:

CO – PO MAPPING:

<table>
<thead>
<tr>
<th>COs</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

1. To expose students to basic characteristics of measurement parameters, and enable the students use appropriate measurement system for various applications
2. To elaborate the students on the need, types of control systems and architecture of a control system

UNIT I MEASUREMENT CHARACTERISTICS
Introduction to measurements, Errors in measurements, Statistical analysis of data, Regression analysis, correlation, estimation of uncertainty and presentation of data, design of experiments – Experimental design factors and protocols

UNIT II MEASUREMENTS IN THERMAL SYSTEMS
Basic Electrical measurements, Transducers and its types, Signal conditioning and processing - Measurement of temperature, pressure, velocity, flow – basic and advanced techniques

UNIT III MEASUREMENT OF FUEL PROPERTIES AND POLLUTANTS
Thermo / Physical / Chemical and transport properties of solids, liquids and gaseous fuels, Analysers – Flame Ionisation Detector, Non-Dispersive Infrared Analyser, Chemiluminescent detector, Smoke meters, and Gas chromatography

UNIT IV CONTROL SYSTEMS, COMPONENTS AND CONTROLLERS
Introduction, Open and closed loop control systems, Transfer function. Types of feedback and feedback control system characteristics – Control system parameters – DC and AC servomotors, servo amplifier, potentiometer, synchro transmitters, synchro receivers, synchro control transformer, stepper motors - Continuous, Discontinuous and Composite control modes – Analog and Digital controllers

UNIT V DESIGN OF MEASUREMENT AND CONTROL SYSTEMS
Data logging and acquisition - Sensors for error reduction, elements of computer interfacing, Timers, and Counters, Designing of measurement and control systems for specific applications - Fault finding – Computer based controls

COURSE OUTCOMES:
On successful completion of this course the student will be able to

CO1 Understand the fundamental concepts of measurement parameters
CO2 Select the suitable type of sensor for a measuring a fundamental parameter
CO3 Use appropriate devices to measure different properties of solids and fuels

REFERENCES:

CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

1. To make the students understand the basic principles of fluid flow, heat transfer, computational fluid dynamics (CFD) and its applications
2. To enlighten the students on the fundamental governing equations and turbulence models used in CFD solvers
3. To enable the students to understand grid generation techniques and post processing techniques.

UNIT I - INTRODUCTION
Introduction to fluid flow and heat transfer – Mathematical description of fluid flow and heat transfer, incompressible and compressible flows, turbulent flows, boundary layer theory. Introduction to Computational Fluid Dynamics (CFD) – Objectives, modelling process, 2D and 3D simulations, advantages, limitations, application domains, software tools.

UNIT II - GOVERNING EQUATIONS

UNIT III - GRID GENERATION AND POST PROCESSING TECHNIQUES
Surface preparation, Volume meshing – cell types, structured, unstructured and hybrid meshing. Considerations for accurate and fast solutions. Mesh generation techniques, dynamic meshing, overset meshing, mesh size control, y+ and wall layer, adaptive mesh refinement, grid independence study. Post processing techniques – Vector plot, scalar plot, streamline plot, flow animation, x-y plot, surface area and mass flow integrated reports

UNIT IV - NUMERICAL METHODS
Finite volume method, Discretization schemes – First order, higher order and hybrid schemes, stability of schemes. Steady and unsteady flow solvers – CG and AMG solvers, SIMPLE, SIMPLER & PISO solution algorithms. Initial and boundary conditions, material properties, solver control, convergence criteria, parallel processing.

UNIT V - ADVANCED CFD SIMULATIONS
Compressible flow, conjugate heat transfer, VOF, MRF, porous media, radiation, combustion and emission simulations. Fluid flow and heat transfer modelling of IC engine, thermal systems, power generation and storage systems, turbomachinery etc. Introduction to fluid-structure interaction modelling

TOTAL: 30 PERIODS

LABORATORY EXPERIMENTS (30 PERIODS):

1. Prepare a closed surface geometry for a given application as per given dimensions
2. Clean-up a raw geometry for the given flow domain and mark different boundaries
3. Prepare surface mesh and volume mesh as per given size and quality criteria
4. Prepare volume meshing with different grid controls like wall layering, boundary refinement, etc.
5. Perform a simple fluid flow analysis as per given problem description
6. Perform a simple heat transfer analysis as per given problem description
7. Perform an advanced CFD analysis as per given problem description

TOTAL: 60 PERIODS

Attested

DIRECTOR
Centre for Academic Courses
Anna University, Chennai-600 025
**COURSE OUTCOMES:**
On successful completion of this course the student will be able to

**CO1** Understand the basic principles of fluid flow, heat transfer, computational fluid dynamics (CFD) and its applications

**CO2** Analyse the governing equations and boundary conditions

**CO3** Create grid for any simulation domain and post process various simulations

**CO4** Setup solvers and perform all common simulations

**CO5** Perform advance fluid flow and heat transfer simulations

**REFERENCES:**


**CO – PO MAPPING:**

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES
1. This course will prepare you to prepare and deliver instructive, informational, and persuasive presentations based on well-defined and achievable outcomes.
2. This course will improve the communication and lecture delivering skills.

Selection of topics, Abstract writing for review articles, literature collection and critical review of articles, Writing conclusion and future research directions, Case studies on published review articles.

Selection of problem, Experimental design of the article, Checking the scientific originality and novelty of the designed experiment.

Selection of template, Background, Planning of number of slides, Planning of content structure, Selection of font, font size, and color, Readability of the presentation, Animation, clarity on pictures, and videos.

TOTAL: 30 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to:

**CO1** Demonstrate theoretical knowledge to create and present effective technical presentation.

**CO2** Apply and adapt flexible process strategies to produce clear, high-quality deliverables in a multitude of technical writing genres.

**CO3** Gather and apply researched information that is appropriate to your field, as demonstrated by reading and analyzing documents, and citing sources correctly.

**CO – PO MAPPING:**

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Attested

DIRECTOR
Centre for Academic Courses
Anna University, Chennai-600 025
COURSE OBJECTIVES
1. The objective of this course is to make the student familiarize with simulation softwares for IC engine and hybrid vehicle applications

LIST OF EXPERIMENTS
1. Modelling of a hybrid vehicle using appropriate software
2. Performance matching for a hybrid vehicle
3. Simulation of Heating / Cooling requirement of battery and control system
4. Aerodynamic performance study of electric vehicle
5. Engine intake flow analysis using different port shapes
6. Engine exhaust flow analysis
7. Engine in-cylinder cold flow analysis for the given engine sector model
8. Fuel spray studies
9. Combustion analysis – arriving at p- theta and heat release rate

NOTE: The above exercises are only guidelines to maintain the standard for teaching and conduct of examination

TOTAL: 30 PERIODS

SIMULATION LAB – REQUIREMENT:
1. Software – For preprocessing – Any 3D Modelling software compatible for the geometry, along with meshing software(s) capable of meshing different type of geometry
2. Solving and post-processing Open-FOAM / Any commercially available CFD codes and mathematical equation solving softwares.
3. Every student in a batch must be provided with a hardware terminal with atleast 16 GB RAM , SSD HDD 512 GB capacity, and with dedicated Graphics card of atleast 4 GB

COURSE OUTCOMES:
On successful completion of this course the student will be able to
CO1 Model and analyse any engine related study using CFD software
CO2 Simulate the temperature distribution of an EV power pack / control system
CO3 Carryout simulation studies on fuel -air mixing inside the combustion chamber of IC engine

CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES
1. To impart knowledge about the low carbon and zero carbon fuels production and utilization in IC engines.

UNIT I INTRODUCTION
Desirable properties of IC engine fuels, Petroleum fuel standards – ASTM & EN, Need for low carbon and zero carbon fuels, flexi fuel systems, Dual fuel system, Bi fuel system.

UNIT II LOW CARBON FUELS – LNG, LPG, BIOGAS
Properties – Merits – Demerits - Fuel production technologies – Strategies for using the fuel in IC engines – Fuel supply system - Performance, combustion, and emission characteristics

UNIT III LOW CARBON FUELS – METHANOL, ETHANOL, DME
Properties – Merits – Demerits - Fuel production technologies – Strategies for using the fuel in IC engines - Fuel supply system - Performance, combustion, and emission characteristics.

UNIT IV ZERO CARBON FUEL – HYDROGEN
Properties – Merits – Demerits - Fuel production technologies – Storage and safety aspects - Strategies for using the fuel in IC engines - Fuel supply system - Performance, combustion, and emission characteristics.

UNIT V ZERO CARBON FUEL – AMMONIA
Properties – Merits – Demerits - Fuel production technologies – Storage and safety aspects - Strategies for using the fuel in IC engines - Fuel supply system - Performance, combustion, and emission characteristics

TOTAL:45 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to

CO1 Evaluate the suitability of a particular fuel for IC engines.
CO2 Devise strategies for utilising LNG, LPG, and Biogas in IC engines
CO3 Devise strategies for utilising Methanol, Ethanol, and DME in IC engines
CO4 Devise strategies for utilising Hydrogen in IC engines.
CO5 Devise strategies for utilising Ammonia in IC engines.

REFERENCES
CO – PO MAPPING:

<table>
<thead>
<tr>
<th>COs</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Avg.</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

1. The objective of the course is to acquire knowledge on the various aspects of data presentation, data collection, documentation and interpretation of research data

LIST OF EXPERIMENTS

1. Interpretation and analysis of diesel engine performance data using any analytical tool
2. Plot and analysis of given engine combustion data using graphical tool
3. Uncertainty analysis of given engine emission data using graphical tool
4. Visualize the velocity, temperature, HRR using the 3D post processing file using Tec plot software
5. Optimization of biodiesel production parameters using RSM technique for given data
6. Optimization of bioethanol production parameters using RSM technique for given data
7. Prediction of pyrolysis oil yield with experimental data by using ANN technique
8. Prediction of biofuel yield with experimental data by using Genetic Algorithm
9. Optimization and prediction of engine performance, and emission characteristics using ANN and RSM technique

TOTAL: 30 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to

CO1 Use different plotting tools such as MS Excel and Origin for data visualization and analysis

CO2 Familiar in uncertainty analysis of experimental data in Matlab/Minitab

CO3 Post process the experimental data for 3D visualization using Tecplot software

CO4 Develop non-parametric model for prediction of unknown data using experimental data with techniques such as RSM, ANN and GA

CO5 Optimize the experimental parameters using different techniques such as RSM and GA

CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Attested

DIRECTOR
Centre for Academic Courses
Anna University, Chennai-600 025
COURSE OBJECTIVES
1. The main learning objective of this course is to prepare the students for identifying a specific problem for the current need of the society and or industry, through detailed review of relevant literature, developing an efficient methodology to solve the identified specific problem.

Note: A project topic must be selected by the students in consultation with their guides. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated jointly by external and internal examiners constituted by the Head of the Department based on oral presentation and the project report.

COURSE OUTCOMES:
On successful completion of this course the student will be able to

CO1 Identify a suitable industrial problem with regard to engines.
CO2 Develop the required setup for testing

CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES
1. The main learning objective of this course is to prepare the students for solving the specific problem for the current need of the society and or industry, through the formulated efficient methodology, and to develop necessary skills to critically analyse and discuss in detail regarding the project results and making relevant conclusions.

Note: A project topic must be selected by the students in consultation with their guides. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated jointly by external and internal examiners constituted by the Head of the Department based on oral presentation and the project report.

COURSE OUTCOMES:
On successful completion of this course the student will be able to

CO1 Conduct the experiments, interpret and analyse the data
CO2 Validate, present and publish the findings

CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
UNIT I  HYBRID ELECTRIC VEHICLE ARCHITECTURE AND POWER TRAIN COMPONENTS

History of Evolution of Electric Vehicles (EV) - Comparison of Electric Vehicles with Internal Combustion Engines - Architecture of Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV) – Plug-in Hybrid Electric Vehicles (PHEV)- Power Train Components and Sizing, Gears, Clutches, Transmission and Brakes

UNIT II  MECHANICS OF HYBRID ELECTRIC VEHICLES


UNIT III  CONTROL OF DC AND AC MOTOR DRIVES

Speed control for Constant Torque, Constant HP operation of all Electric Motors - DC/DC chopper based Four Quadrant Operation of DC Motor Drives, Inverter-based V/f Operation (motoring and braking) of Induction Motor Drives, Vector Control Operation of Induction Motor and PMSM, Brushless DC Motor Drives, Switched Reluctance Motor (SRM) Drives

UNIT IV  ENERGY STORAGE SYSTEMS

Battery: Principle of operation, Types, Estimation Of Parameters, Battery Modeling, SOC of Battery, Traction Batteries and their capacity for Standard Drive Cycles, Vehicle to Grid operation of EV's -Alternate sources: Fuel cells, Ultra capacitors, Fly wheels

UNIT V  HYBRID VEHICLE CONTROL STRATEGY AND ENERGY MANAGEMENT

HEV Supervisory Control - Selection of modes - Power Spilt Mode - Parallel Mode - Engine Brake Mode - Regeneration Mode - Series Parallel Mode - Energy Management of HEV's

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of the course, students will be able to:

CO1: Learn the electric vehicle architecture and power train components.

CO2: Acquire the concepts of dynamics of Electrical Vehicles.

CO3: Understand the vehicle control for Standard Drive Cycles of Hybrid Electrical Vehicles (HEVs).

CO4: Ability to model and understand the Energy Storage Systems for EV.

CO5: Acquire the knowledge of different modes and Energy Management in HEVs.

REFERENCES:


# MAPPING OF COs WITH POs AND PSOs

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Average</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>
OBJECTIVE:
The major objective of this course is to enhance the knowledge of the students about classifications, construction, working, analysis and applications of fuel cells. This course will also enable students to understand various production and storage techniques of Hydrogen.

UNIT – I  OVERVIEW  9

UNIT – II  CLASSIFICATION  9
Classification of Fuel Cells - Based on Temperature and Electrolyte - Description and working principles of various types of fuel cells - Components used - Fabrication - Applications - Merits and Demerits of PEMFC, DMFC, PAFC, AMFC, SOFC, MCFC and MFC - Recent Developments and Achievements.

UNIT – III  THERMODYNAMIC AND KINETIC ASPECTS OF FUEL CELL  9

UNIT – IV  HYDROGEN PRODUCTION, STORAGE AND SAFETY  9

UNIT – V  APPLICATIONS AND CHALLENGES OF FUEL CELL  9

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course, the students will be able to:
CO1 Get introduced to the concepts of fuel cell technology.
CO2 Recognize the need for development of various types of fuel cells and their scopes.
CO3 Understand and apply the principles of thermodynamics and reaction kinetics of fuel cell to increase the fuel cell efficiency.
CO4 Gain knowledge on the use of hydrogen as a source of green energy and understand the challenges associated.
CO5 Analyse the cost effectiveness and eco-friendliness of fuel cell technology and understand the impact on the application aspects.
REFERENCES:

CO – PO MAPPING:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td></td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td></td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES
1. To provide fundamental knowledge about low temperature combustion concepts
2. To impart in-depth knowledge about various advanced LTC methods
3. To impart knowledge on fuel requirements for LTC combustion and its effect

UNIT I  FUNDAMENTALS OF LOW TEMPERATURE COMBUSTION  9
Introduction, low temperature combustion (LTC) Fundamentals – Background of LTC, Principle, Benefits, Challenges, Need for control.

UNIT II  GASOLINE AND DIESEL LOW TEMPERATURE COMBUSTION  9
Conventional Gasoline and Diesel Combustion, Effects of EGR, Techniques to HCCI operation in gasoline engines, Overview of diesel HCCI engines, Techniques–Early Injection, Multiple injections, Narrow angle direct injection (NADI™) concept, Modulated kinetics (MK)combustion – First and Second generation of MK combustion, RCCI combustion, Gasoline Direct Injection Compression Ignition (GDCI) combustion.

UNIT III  LOW TEMPERATURE COMBUSTION CONTROL  9
Control Methods, Combustion timing sensors, HCCI/SI switching, Transition between operating modes (HCCI-SI-HCCI), Fuel effects in HCCI - gasoline, diesel, auto-ignition requirement, combustion phasing, Influence of equivalence ratio, auto-ignition timing, combustion duration, auto-ignition temperature and auto-ignition pressure, Combustion limits, IMEP and indicated efficiency, other approaches to characterizing fuel performance in HCCI engines.

UNIT IV  FUEL REQUIREMENTS FOR ADVANCED COMBUSTION  9
Introduction, Background, Diesel fuel HCCI, HCCI fuel ignition quality, Gasoline HCCI, HCCI fuel specification, Fundamental fuel factors

UNIT V  LTC COMBUSTION WITH ALTERNATIVE FUELS  9
Natural gas HCCI engines, CNG HCCI engines, methane/n- butane/air mixtures. DME HCCI engine - chemical reaction model, Combustion completeness, Combustion control system, Method of combining DME and other fuels, Unmixed-ness of DME/air mixture

TOTAL:  45 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to
CO1 Understand the fundamentals of HCCI combustion, benefits and challenges
CO2 Learn the methods followed to achieve HCCI in Gasoline and Diesel engines
CO3 Learn the HCCI combustion control methods and its significance
CO4 Understand the fuel requirements for HCCI operation and its role on complete load range operation
CO5 Learn the HCCI operation with alternative fuels and its comparison over conventional fuels
REFERENCES:

6. HCCI Diesel Engines - NPTEL - https://nptel.ac.in/courses/112104033/34
7. HCCI and CAI Engines – NPTEL - https://nptel.ac.in/courses/112104033/33

CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVE

1. The objective of this course is to introduce the basic concepts of electric vehicle and their characteristics and their architecture, various energy storage systems, different types of motors and their characteristics and to design an electric vehicle.

UNIT I  ELECTRIC VEHICLE FUNDAMENTALS  9
History and need for electric and hybrid vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies, comparison of diesel, petrol, electric, hybrid vehicles, and Fuel cell vehicles, limitations, technical challenges.

UNIT II  VEHICLE ARCHITECTURE  9
Electric vehicle types, layout and power delivery, performance – traction motor characteristics, tractive effort, transmission requirements, vehicle performance, energy consumption, Concepts of hybrid electric drive train, architecture of series and parallel hybrid electric drive train, merits and demerits, mild and full hybrids, plug-in hybrid electric vehicles and range extended hybrid electric vehicles.

UNIT III  ENERGY STORAGE SYSTEMS  9
Batteries – types – lead acid batteries, nickel-based batteries, and lithium-based batteries, electrochemical reactions, thermodynamic voltage, specific energy, specific power, energy efficiency, Battery modeling and equivalent circuit, battery charging and types, battery cooling, Ultra-capacitors, Flywheel technology.

UNIT IV  ELECTRIC DRIVES  9
Types of electric motors – working principle of AC and DC motors, advantages and limitations, DC motor drives and control, PMSM and brushless DC motor -drives and control, Drive system efficiency – Inverters – DC and AC motor speed controllers

UNIT V  DESIGN OF ELECTRIC VEHICLES  9
Materials and types of production, Chassis skate board design, motor sizing, power pack sizing, component matching, Ideal gear box – Gear ratio, torque–speed characteristics, Dynamic equation of vehicle motion, Maximum tractive effort – Power train tractive effort Acceleration performance, rated vehicle velocity, maximum gradeability, Electronic control system, safety and challenges in electric vehicles.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

On successful completion of this course the student will be able to

CO1  Understand the advantages and challenges of electric vehicles
CO2  Understand and select appropriate electric vehicle architecture
CO3  Adopt a suitable energy storage system for a vehicle
CO4  Choose an appropriate electric motor and drive system for a vehicle
CO5  Design a suitable electric vehicle for various applications
REFERENCES:


CO – PO MAPPING:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES
1. To impart knowledge about hydrogen production from different sources
2. To impart knowledge about utilization of hydrogen in fuel cells.
3. To impart knowledge about utilization of hydrogen in IC engines.

UNIT I INTRODUCTION

UNIT II HYDROGEN PRODUCTION FROM FOSSIL FUELS AND BIOMASS
Gasification, Pyrolysis, reforming - steam reforming - partial oxidation – autothermal reforming.

UNIT III HYDROGEN PRODUCTION FROM WATER
Fundamentals of electrolysis of water, Types of electrolyzers, sizing of electrolyzers, electrolysis parameters – current density, pressure, operating temperature, hydrogen purity

UNIT IV UTILIZATION OF HYDROGEN IN FUEL CELL
Introduction to fuel cells, thermodynamics and electrochemical kinetics of fuel cells, Fuels cells for automotive applications – Sizing - Performance evaluation - Parameters affecting the efficiency

UNIT V UTILIZATION OF HYDROGEN IN IC ENGINES
Merits and demerits of hydrogen as a fuel for IC engines, Strategies for using hydrogen as fuel in IC engines, hydrogen fuel supply system, Performance – combustion - emission characteristics

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to
CO1 Demonstrate understanding of properties of hydrogen
CO2 Demonstrate understanding of technologies to produce hydrogen from fossil fuel and biomass.
CO3 Demonstrate understanding of technologies to produce hydrogen by electrolysis of water
CO4 Carry out performance analysis and sizing of fuel cell for automotive application.
CO5 Devise strategies for utilizing hydrogen as fuel in IC engines.

REFERENCES:
CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES
1. To distinguish different types of chassis, frames and body and its component design.
2. To introduce the automobile subsystems
3. To introduce the concept of aerodynamics in automobiles
4. To introduce the concept of vehicle dynamics
5. To introduce different automobile safety technologies

UNIT I CHASSIS & LAYOUT 9
Basic construction of Chassis, types of Chassis layout, types of Body, types of frames, Loads acting on vehicle frame, materials for frames, testing of frames, Bharat New Vehicle Safety Assessment Program (BNVSAP) - Protocols.

UNIT II AUTOMOBILE POWERTRAIN 9

UNIT III AUXILIARY SYSTEMS 9
Braking system - types, steering geometry - steering system - types, suspension system – types, cooling and lubrication system

UNIT IV ENGINE & VEHICLE TESTING 9

UNIT V SAFETY SYSTEMS 9
Antilock Braking System, Electronic Brake Force Distribution, Dual stage Airbag, Seatbelt Pretensioner, Dynamic Radar Cruise Control, Traction control system, Pre-Collision System, Automatic High Beam, Adaptive Headlights, Daytime Running Lamp, Active headrests, Crumple Zone

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to

CO1 Differentiate different types of automobiles based on body features.
CO2 Identify automotive power train components
CO3 Identify auxiliary systems
CO4 Carryout engine and vehicle testing
CO5 Demonstrate understanding of automobile safety technologies
REFERENCES:


CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>
UNIT I  ELECTRONIC ENGINE CONTROL SYSTEMS  9
Overview of Automotive systems, fuel economy, air-fuel ratio, emission limits and vehicle performance; Automotive microcontrollers - Electronic control Unit - Hardware & software selection and requirements for Automotive applications – open source ECU - RTOS - Concept for Engine management-Standards; Introduction to AUTOSAR and Introduction to Society SAE - Functional safety ISO 26262 - Simulation and modeling of automotive system components.

UNIT II  SENSORS AND ACTUATORS FOR AUTOMOTIVES  9
Review of sensors- sensors interface to the ECU, conventional sensors and actuators, Modern sensor and actuators - LIDAR sensor- smart sensors- MEMS/NEMS sensors and actuators for automotive applications.

UNIT III  VEHICLE MANAGEMENT SYSTEMS  9

UNIT IV  ONBOARD DIAGNOSTICS AND TELEMATICS  9

UNIT V  ELECTRIC VEHICLES  9

TOTAL: 45 PERIODS

COURSE OUTCOMES:
At the end of this course, the students will have the ability in
CO1: Insight into the significance of the role of embedded system for automotive applications.
CO2: Illustrate the need, selection of sensors and actuators and interfacing with ECU
CO3: Develop the Embedded concepts for vehicle management and control systems.
CO4: Demonstrate the need of Electrical vehicle and able to apply the embedded system technology for various aspects of EVs
CO5: Improved Employability and entrepreneurship capacity due to knowledge up gradation on recent trends in embedded systems design and its application in automotive systems.

REFERENCES:


### MAPPING OF COs WITH POs

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td><strong>Average</strong></td>
<td><strong>2.75</strong></td>
<td><strong>2.8</strong></td>
<td><strong>2.4</strong></td>
<td><strong>2.4</strong></td>
<td><strong>2.75</strong></td>
<td><strong>2.2</strong></td>
</tr>
</tbody>
</table>
UNIT I  INTRODUCTION AND MATHEMATICAL FOUNDATIONS  9

UNIT II  SUPERVISED LEARNING  9

UNIT III  UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING  9

UNIT IV  PROBABILISTIC METHODS FOR LEARNING  9

UNIT V  MODELING, DIAGNOSTICS AND OPTIMIZATION OF IC ENGINE  9
Conventional modeling approaches for ICE, Limitations of conventional ICE modeling, ICE modeling challenges, ML to address ICE optimization and calibration challenges, ML to address ICE control challenges, Combining ML-based control with conventional ICE calibration methods, ML For combustion stability control, ML to address ICE diagnostics challenges, Systematic decision tree for use of ML in ICES, Optimum data required for ML-based ICE applications, ML for ICE component fault diagnostics

TOTAL:  45 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to

CO1 Understand and outline problems for each type of machine learning
CO2 Implement Discriminative and Generative algorithms for an application and analyze the results.

CO3 Understand the Clustering Algorithms, EM Algorithm and Reinforcement Learning
CO4 Use a tool to implement different algorithms for different types of applications
CO5 Understand the modeling, diagnostic and optimization of IC engine using Machine learning Techniques
REFERENCES:


CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

1. To introduce the technologies for producing power from solar, wind, hydro, ocean, and geothermal energy.

UNIT I INTRODUCTION
Global and Indian energy scenario, National & State Energy Policy, Greenhouse effect and the carbon cycle, United Nations Framework Convention on Climate Change (UNFCCC) - Conference of Parties (COP) - Kyoto Protocol - Emissions trading (ET) - Joint implementation (JI) - Clean Development Mechanism (CDM), Need for green energy technologies.

UNIT II SOLAR THERMAL TECHNOLOGIES

UNIT III SOLAR PHOTOVOLTAIC TECHNOLOGIES
Solar PV fundamentals, Solar cell array design, PV system design, voltage regulation, maximum tracking, Solar PV systems – standalone – hybrid – grid connected

UNIT IV WIND ENERGY TECHNOLOGIES

UNIT V HYDRO, OCEAN, AND GEOTHERMAL ENERGY TECHNOLOGIES
Small hydro - Tidal energy – Wave energy – Open and closed OTEC Cycles – Limitations – Geothermal energy – Geothermal energy sources - Types of geothermal power plants – Applications - Environmental impact

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to:

CO1 Suggest projects for reducing greenhouse gas emission
CO2 Design solar thermal systems.
CO3 Design solar PV systems.
CO4 Demonstrate understanding of wind energy technologies.
CO5 Demonstrate understanding of hydro, ocean, and geothermal technologies
REFERENCES:


CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES
1. To expose the students to the fundamentals of electric drives systems and their components
2. To understand AC and DC drives, and to model and control them

UNIT I INTRODUCTION 9

UNIT II POWER SEMICONDUCTOR DEVICES 9

UNIT III DYNAMIC MODELING OF ELECTRIC MACHINES 9
Construction and types of Electric motors - Development of dynamic equations of DC motor - derivation of dynamic equations of three phase AC machine (only cylindrical rotor), SRIM and PMSM - development of steady state machine models (equivalent circuit) from the dynamic equations

UNIT IV DC MOTOR DRIVES 9
Basic characteristics - Single phase and three phase controlled rectifier fed DC drives -Dual converters drives - Chopper drives - Rheostat and regenerative braking - effects of changes in supply voltage and load torque - closed loop control schemes.

UNIT V AC MOTOR DRIVES 9
Induction motor drives - Voltage Source Inverter and its PWM strategies - stator voltage control - stator impedance control, rotor voltage control - Slip power recovery, FOC, DTC, Sensorless control - Dynamic, plugging, and regenerative breaking - Need for harmonic filter.
Control of Synchronous motors, Brushless DC motor, Permanent Magnet Synchronous motor, and Synchronous Reluctance Motor.

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to

CO1 Gain fundamental knowledge on electric motors and power electronics
CO2 Acquire and develop knowledge on control systems
CO3 Gain knowledge on drive system architecture and components
CO4 Explore real-world applications of electrical drives and control systems across various industries
CO5 Develop and design controlled electrical drives & control systems to ensure system stability and reliable operations
REFERENCES:


CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

1. The objective of the course is to impart knowledge on the various machine learning aspects of IC engines

UNIT I  INTRODUCTION TO AUTOMOUS VEHICLE TECHNOLOGY  9
Introduction- SAE autonomous level classification-Examples-Application of Autonomous vehicle, Advantages and disadvantages of autonomous vehicles

UNIT II  PATH PLANNING AND DECISION MAKING  9
Principles of decision making and path planning for autonomous vehicles-Decision making approaches-Approximation-Heuristic-Graph based-Point guidance. Verification and validation of decision making and path planning-Application examples of task allocation and path planning algorithm

UNIT III  SENSORS, PERCEPTION AND VISUALIZATION  9
Introduction to sensors, perception and visualization for autonomous vehicles-Sensor integration architectures and multiple sensor fusion- AI algorithm for sensor and imaging-neural networks.

UNIT IV  NETWORKING AND CONNECTING VEHICLES  9
Current and future vehicle networking technologies-CAN, LIN,MOST and Flex-ray. The use of modern validation and verification methods-software-in-the-loop, and hardware-in-the-loop technologies. The role of functional safety and ISO 26262 within the overall control system. Interdependency between software engineering and control system-advanced test methods for validation of safety-critical systems. Connected vehicle control (CACC). Vehicle to vehicle (v2v), vehicle to infrastructure and vehicle to cloud (v2c). Applications such as intelligent traffic signals, collaborative adaptive cruise and vehicle platooning.

UNIT V  HUMAN FACTORS AND ETHICAL DECISION MAKING  9

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to

CO1  Gain fundamental knowledge on electric motors Estimate vehicle state based on available data.

CO2  facilitate various computer vision features and techniques

CO3  Develop motion plan for the vehicle based on the environment, behavior and interaction of objects

CO4  Describe the applications of AL in autonomous and connected vehicles.

CO5  Incorporate the human related factors in decision making of ADAS

Attested

DIRECTOR
Centre for Academic Courses 
Anna University, Chennai-600 025
REFERENCES:

CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
IC3003  AEROSPACE PROPULSION  L  T  P  C  3  0  0  3

COURSE OBJECTIVES
1. To familiarize with the concept of compressible flow and effect of shock waves
2. To gain insight on the working principle of aircraft engines, rocket engines, different feed systems, propellants and their properties and dynamics of rocket

UNIT I  WAVE MOTION AND SHOCK WAVES  9
Wave motion, Mach waves and Mach cone, sound waves, Shock waves – Normal and Oblique, Relation of physical properties across a shock, Deflection Relations, Method of Characteristics– Applications, Problems, Expansion Waves – Introduction

UNIT II  AIR – BREATHING ENGINES  9

UNIT III  THERMODYNAMICS OF AIRCRAFT ENGINES, PERCEPTION AND VISUALIZATION  9
Engine - Aircraft matching – Design of inlets and nozzles – Performance characteristics of Ramjet, Turbojet, Scramjet and Turbofan engines, Problems

UNIT IV  ROCKET PROPULSION  9

UNIT V  ROCKET STAGING AND PERFORMANCE  9
Rocket equations – Escape and Orbital velocity – Multi-staging of Rockets – Space missions – Performance characteristics of rockets – Losses and efficiencies, Design of Rockets

TOTAL: 45 PERIODS

COURSE OUTCOMES:
On successful completion of this course the student will be able to

CO1 Use concepts of compressible flow to design variable area ducts for the given conditions.
CO2 Identify various aircraft engines and know its inner workings with emphasis on its limitations and applications
CO3 Mix and match various components of an aircraft engine for its design conditions
CO4 Classify various rocket engines based on its type and design it for requirements
CO5 Use orbital mechanics principles to design payload for rockets
REFERENCES:

5. Ramamurthy, Rocket Propulsion, Pan Macmillan (India) Ltd, 2010

CO – PO MAPPING:

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

Attested

DIRECTOR
Centre for Academic Courses
Anna University, Chennai-600 025