VISION OF DEPARTMENT OF ARCHITECTURE

The Department of Architecture is committed to excellence in the field of architectural education and the discipline of architecture through its pedagogical, research, extension and outreach activities, directed towards the betterment of the world that we inhabit, in all realms shaped by architecture. It shall uphold universal moral and ethical values in all endeavours that it undertakes and be exemplary in creating positive transformations.

MISSION OF DEPARTMENT OF ARCHITECTURE

The Mission of the Department of Architecture is

- To tap and strengthen the innate potential of each student and deepen their knowledge/skills in order to enable them to self-actualise as well as become catalysts for positive change.
- To contribute to immediate context, larger society and the world through knowledge creation and dissemination.
- To engage and extend the expertise of the department in addressing and solving of issues/problems related to the built environment.
- To actively interact and collaborate with professionals, educational institutions and other related organisations at all scales in order to collectively further the cause of appropriate architecture.
1. PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)
 I. Increase competency as an architect with ability to discern problems and identify solutions through both deep and broad parameters.
 II. Find gainful employment in architectural firms/ building sector through offering of specialised knowledge.
 III. Be a part of organisations that influence policy and decision making through contributing in-depth knowledge in relevant fields of study.
 IV. Become a teacher/ researcher with ability to apply critical, investigative and analytical thinking towards future society.
 V. Become a thinker and entrepreneur who can anticipate and project future transformations in the built environment.

2. PROGRAMME OUTCOMES (POs)
 After going through two years of study, our M. Arch (General) Graduates will exhibit ability to:

 PO# Programme Outcome
 1. Independently carry out research / investigation and design development work to solve practical problems of built environment.
 2. Write and present a substantial technical report/ research document.
 3. Intensify thoughts, techniques and knowledge with a demonstration of mastery in specific areas of architecture.
 4. Resolve architectural problems with due consideration to environmental issues.
 5. Look at the larger urban cultural and social context in the making of design decisions.
 6. Bring contemporary tools/ methods/ approaches to analyse situations and explore design.

<table>
<thead>
<tr>
<th>PROGRAMME EDUCATIONAL OBJECTIVES</th>
<th>PROGRAMME OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low
Mapping of Course Outcomes and Programme Outcomes

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course Name</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>Process in Design</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Contemporary Architectural Practices</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Society, Culture, Media and Technology</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Predictive Building Modelling Techniques</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Process Based Design Studio</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Professional Elective I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Research Methodologies for Built Environment</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Sustainable Architecture-Historic and Community Perspective</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Climate Change Adaptation and Resilience in Architecture</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Geographical Information Systems for Built Environment</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Sustainable Design Studio</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Professional Elective II</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Urban Design: Theory and Practice</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Architectural Conservation: Policies and Practice</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Thesis Phase I</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Urban Environment Design Studio</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Professional Elective III</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Internship Training</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Thesis Phase II</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

- High 2-Moderate 1-Low
ANNA UNIVERSITY, CHENNAI
UNIVERSITY DEPARTMENTS
M. ARCH. (GENERAL). FULL-TIME PROGRAMME
REGULATIONS 2023
CHOICE BASED CREDIT SYSTEM
I TO IV SEMESTERS CURRICULA AND SYLLABUS

SEMESTER I

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSETITLE</th>
<th>CATEGORY</th>
<th>PERIODS PERWEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P/S</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>AA3101</td>
<td>Process in Design</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>AA3102</td>
<td>Contemporary Architectural Practices</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>AA3103</td>
<td>Society, Culture, Media and Technology</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>THEORETICAL STUDIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>AA3111</td>
<td>Predictive Building Modelling Techniques</td>
<td>EEC</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUDIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>AA3121</td>
<td>Process Based Design Studio</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>PROFESSIONAL ELECTIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Professional Elective I</td>
<td></td>
<td>PEC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>0</td>
<td>26</td>
</tr>
</tbody>
</table>

SEMESTER II
(Prerequisite- Pass in Process Based Design Studio)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSETITLE</th>
<th>CATEGORY</th>
<th>PERIODS PERWEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P/S</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>AA3201</td>
<td>Research Methodologies for Built Environment</td>
<td>RMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>AA3202</td>
<td>Sustainable Architecture-Historic and Community Perspective</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>AA3203</td>
<td>Climate Change Adaptation and Resilience in Architecture</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>THEORETICAL STUDIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>AA3211</td>
<td>Geographical Information Systems for Built Environment</td>
<td>EEC</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUDIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>AA3221</td>
<td>Sustainable Design Studio</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>PROFESSIONAL ELECTIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Professional Elective II</td>
<td></td>
<td>PEC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>0</td>
<td>26</td>
</tr>
</tbody>
</table>
SEMESTER III
(Prerequisite- Pass in Sustainable Design Studio)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PERWEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P/S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>AA3301</td>
<td>Urban Design: Theory and Practice</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>AA3302</td>
<td>Architectural Conservation: Policies and Practice</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>STUDIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>AA3321</td>
<td>Thesis Phase I</td>
<td>PCC</td>
<td>0 0 6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4.</td>
<td>AA3322</td>
<td>Urban Environment Design Studio</td>
<td>PCC</td>
<td>0 0 10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>6 0 16</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>PROFESSIONAL ELECTIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective III</td>
<td>PEC</td>
<td>X X X</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>INTERNSHIP TRAINING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>AA3311</td>
<td>Internship Training</td>
<td>EEC</td>
<td>X X X</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>6 0 16</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>

SEMESTER IV
(Prerequisite- Pass in Urban Environment Design Studio)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PERWEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P/S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUDIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>AA3421</td>
<td>Thesis Phase II</td>
<td>PCC</td>
<td>0 0 16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>6 0 16</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>

TOTAL NO. OF CREDITS: 95

PROFESSIONAL CORE COURSES (PCC)

<table>
<thead>
<tr>
<th>S NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PERWEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P/S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>AA3101</td>
<td>Process in Design</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>AA3102</td>
<td>Contemporary Architectural Practices</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>AA3103</td>
<td>Society, Culture, Media and Technology</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>AA3121</td>
<td>Process Based Design Studio</td>
<td>PCC</td>
<td>0 0 10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5.</td>
<td>AA3201</td>
<td>Research Methodologies for Built Environment</td>
<td>RMC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>AA3202</td>
<td>Sustainable Architecture - Historic and Community Perspective</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SL. NO.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATE-</td>
<td>PERIODS PER</td>
<td>TOTAL</td>
<td>CREDITS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GORY</td>
<td>WEEK</td>
<td>CONTACT</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>AA3203</td>
<td>Climate Change Adaptation and Resilience in Archi-</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>AA3221</td>
<td>Sustainable Design Studio</td>
<td>PCC</td>
<td>0 0 10</td>
<td>10 10</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>AA3301</td>
<td>Urban Design: Theory and Practice</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>AA3302</td>
<td>Architectural Conservation: Policies and Practice</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>AA3321</td>
<td>Thesis Phase I</td>
<td>PCC</td>
<td>0 0 6</td>
<td>6 6</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>AA3322</td>
<td>Urban Design Studio</td>
<td>PCC</td>
<td>0 0 10</td>
<td>10 10</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>AA3421</td>
<td>Thesis Phase II</td>
<td>PCC</td>
<td>0 0 16</td>
<td>16 16</td>
<td></td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVE COURSES (PEC)

SEMESTER I, ELECTIVE I

SL. NO.	COURSE CODE	COURSE TITLE	CATE-	PERIODS PER	TOTAL	CREDITS
			GORY	WEEK	CONTACT	
1.	AA3001	Explorations in Architectural Form	PEC	2 0 1	3 3	
2.	AA3002	Architecture and Critical Theory	PEC	3 0 0	3 3	
3.	AA3003	Environmental Psychology	PEC	3 0 0	3 3	
4.	AA3004	Architectural Lighting	PEC	3 0 0	3 3	
5.	AA3005	Performance Evaluation of Buildings	PEC	2 0 1	3 3	
6.	AA3006	Soft Skills	PEC	2 0 1	3 3	

SEMESTER II, ELECTIVE II

SL. NO.	COURSE CODE	COURSE TITLE	CATE-	PERIODS PER	TOTAL	CREDITS
			GORY	WEEK	CONTACT	
1.	AA3007	Anthropology and Architecture	PEC	3 0 0	3 3	
2.	LN3051	Landscape Urbanism	PEC	3 0 0	3 3	
3.	AA3008	Emerging Practices in Housing	PEC	3 0 0	3 3	
4.	AA3009	Appropriate Technologies and Sustainable Construction	PEC	3 0 0	3 3	
5.	AA3010	Building Skins and Smart Materials	PEC	3 0 0	3 3	
6.	AA3011	Sustainable Building Services and Water Management	PEC	3 0 0	3 3	
7.	AA3012	Facilities Programming and Management for Architec-	PEC	3 0 0	3 3	
SEMESTER III, ELECTIVE III

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AA3013</td>
<td>Urban Cultural Landscapes</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>AA3014</td>
<td>Retrofitting and Adaptive Reuse</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>AA3015</td>
<td>Urban Infrastructure and Management</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>AA3016</td>
<td>Psychology of Learning and Development</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>AA3017</td>
<td>Theory of Architectural Education</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>AA3018</td>
<td>Architectural Journalism and Photography</td>
<td>PEC</td>
<td>2 0 1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>AA3019</td>
<td>Advanced Professional Practice</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

EMPLOYMENT ENHANCEMENT COURSES (EEC)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AA3111</td>
<td>Predictive Building Modelling Techniques</td>
<td>EEC</td>
<td>1 0 3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>AA3211</td>
<td>Geographical Information Systems for Built Environment</td>
<td>EEC</td>
<td>1 0 3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>AA3311</td>
<td>Internship Training</td>
<td>EEC</td>
<td>X X X</td>
<td>X</td>
<td>2</td>
</tr>
</tbody>
</table>

SUMMARY

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Subject Area</th>
<th>Credits per Semester</th>
<th>Credits Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCC</td>
<td>19 16 22 16</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>PEC</td>
<td>3 3 3 0</td>
<td>09</td>
</tr>
<tr>
<td>3</td>
<td>EEC</td>
<td>4 4 2 0</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>RMC</td>
<td>3 0 0 0</td>
<td>03</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>26 26 27 16</td>
<td>95</td>
</tr>
</tbody>
</table>
OBJECTIVES
- To impart knowledge about the history of process in the discipline of design.
- To give familiarity to different processes in design- analytical, social, computational, etc.,
- To provide an overview of various contemporary design processes and its relation to computation.

UNIT I INTRODUCTION 6
History of design process across time. Types of Design- unselfconscious Design/ self-conscious design, design through craft/ design through craft, etc., Design Methodology movement. Different models of the design process.

UNIT II ASPECTS OF DIGITAL ARCHITECTURE 9

UNIT III CONTEMPORARY PROCESS 9

UNIT IV GEOMETRIES AND SURFACES 9

UNIT V PROCESS AND PEOPLE 12
Overview of different methods related to study and design in the context of people. User behavior studies, post occupancy studies, participatory approach to design, collaborative processes, computational processes related to people.

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1 An understanding of the importance of process in design across time
CO2 An understanding of various tools to study the existing and processes to design future desirable situations.

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>AVERAGE</td>
<td></td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3102 CONTEMPORARY ARCHITECTURAL PRACTICES L T P/S C
3 0 0 3

OBJECTIVES

- To impart knowledge about contemporary architectural practices/ practitioners along with stated ideas/ theoretical writings.
- To give an understanding about how architectural practices engage with issues/ conditions.
- To give an understanding of architecture as a product of the context that produces it as well as a way towards the future.
- To enable engagement in architectural interpretation and criticism

UNIT I ARCHITECTURE AND IDEAS/ INTENT
Understanding and interpreting works of architects who explicitly state their ideas/ theories for example Bernard Tschumi, Peter Eisenman. Understanding and interpreting contemporary Iconic architecture/ Starchitecture through stated intent of architect and final form- for example Gehry, Zaha Hadid, Libeskind, BIG architects

UNIT II ARCHITECTURE AND CONTEXT
Understanding and interpreting works of architects whose response to universals and particulars of context – social/ cultural/ environmental are considered exemplary- for example Zumthor, Murcutt, Siza, Barragan, Souto de Moura, Correa, Doshi, Aravena. Ken Yeang, William McDonough.

UNIT III ARCHITECTURAL FORM IN THE DIGITAL AGE
Understanding and interpreting works of architects who are considered exemplary in their engagement with the digital age and technology through contemporary processes- for example Greg Lynn, ZHA, UNstudio, NOX, Novak, FOA, Gehry,

UNIT IV ARCHITECTURE AND THE CITY
Understanding and interpreting works of architects who include the city and its forces within the discourse of architecture - for example Rem Koolhaas, MVRDV.
UNIT V EMERGING ARCHITECTURAL PRACTICES IN INDIA

Study and analysis of emerging practices in India along with their stated ideals/ approaches/ writings in the context of the diverse interests and concerns of the contemporary world.

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1 A critical understanding of contemporary architectural practice that is influenced by or informed by specific conditions/ ideas/ situations and that is explicitly evident in the final work.

CO2 An ability to understand the role of architecture as built propositions towards future by interpreting the present

REFERENCES

1. B.V. Doshi, Paths Uncharted
2. Bjarke Ingels, Yes is More
3. Daniele Pauly, Barragan, Space and Shadow, Walls and Colour, Birkhauser 2002
5. Kate Nesbitt, Theorizing a New Agenda for Architecture, Princeton Architectural Press, 1996
9. MVRDV, FARMAX
10. Rahul Mehrotra, Architecture in India since 1990

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>AVERAGE</td>
<td></td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3103 SOCIETY, CULTURE, MEDIA AND TECHNOLOGY

OBJECTIVES

- To introduce the interdisciplinary field of research, science, technology and society studies.
- To create awareness of the interface between science, technology and society from a theoretical perspective.

UNIT I SOCIOLOGY OF SCIENTIFIC KNOWLEDGE

UNIT II TECHNOLOGY – SOCIETY INTERFACE I
Techno science and the Interpenetration of Science & Technology
Questioning of the traditional boundary between science (knowing) and technology (doing). How science and technology together shape the ways in which knowledge is constructed. Technological Determinism, Power and the Politics of Knowledge Production.

UNIT III TECHNOLOGY – SOCIETY INTERFACE II

UNIT IV NEW MEDIA
The new communication paradigm brought about by digital technologies. Digitality (Digital versus Analogue Media) – Interactivity, Extractive versus immersive navigation, Registrational Interactivity and Interactive communication – Hypertextuality - Networked Media –Virtuality

UNIT V VISUAL CULTURE

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1 Understanding of trends that problematize production of scientific knowledge and the sociology of scientific knowledge
CO2 Familiarity with the technology-society interface from a wide range of theoretical Stand points such as social shaping of technology, social constructionist and actor network theoretical perspectives
CO3 Understanding of science and technology as socially and culturally embedded activities.

REFERENCES
7. Mirzoeff, Nicholas, An Introduction to Visual Culture, Routledge
CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>AVERAGE</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3111 PREDICTIVE BUILDING MODELLING TECHNIQUES L T P/S C 1 0 3 4

OBJECTIVES
- To give knowledge and enable skill in modelling techniques and passive strategies for assessing the energy performance, environmental response and impact of built form.

UNIT I PREDICTIVE BUILDING MODELLING 15
Modelling-Simple Modelling, Advanced Modelling. Understanding and familiarizing with Layers and Zones, Objects and Nodes, Element, Types, Object Relationships, Display Options, Viewing the Model and Operational Modes.

UNIT II SOLAR ANALYSIS 10
Solar Analysis- Shading Analysis, Shading Design. Learning to - Display and animate complex shadows and reflections, Generate interactive sun-path diagrams for instant overshadowing analysis and Calculate the incident solar radiation on any surface and its percentage shading.

UNIT III LIGHTING ANALYSIS 10
Lighting Analysis–Day lighting Analysis, Artificial Lighting Analysis. Learning to work out daylight factors and artificial lighting levels either spatially or at any point.

UNIT IV THERMAL ANALYSIS 10

UNIT V INTEGRATED PASSIVE ENERGY STRATEGIES 15
Cognitive, analytical and simulated modeling and design of buildings. zero net energy (ZNE) building-Traditional buildings-electrical grid - HVAC and lighting-Net Zero Energy Building -Case studies.

TOTAL: 60 PERIODS

COURSE OUTCOMES
CO1 Knowledge and ability to use predictive Modelling techniques for assessing the energy performance through different software.
CO2 Understanding of how to calculate the percentage of shade and incident solar radiation on any surface.
CO3 Knowledge how to compute hourly temperature graphs and monthly heat loads for any zone to achieve thermal comfort.
CO4 Understanding of building simulation modelling and design

REFERENCES
4. Manual of the selected software – Ecotect Analysis 2011 ,TAS-version 9.2.1.6, etc

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>3</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3121 PROCESS BASED DESIGN STUDIO

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P/S</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

OBJECTIVES

- To enable understanding of complex situations through engaging appropriate tools that help analyse different aspects of the situations.
- To help incorporate appropriate processes into design- social, environmental, parametric/ contemporary process, computational process, etc., in order to get a holistic design/ address the most crucial aspects of a given design situation.

CONTENT

The increasing complexity of the world today needs a richer analysis to understand interconnected layers. Also, this complexity is correspondingly reflected in the needs of buildings and the built environment. Appropriate design processes can help in study, analysis and integration of specific inputs and needs into the projects. The studio will focus on engaging processes for study/ analysis and for incorporating complex inputs/ data into design so that architecture can address human needs in a holistic manner. Processes such as diagramming, mapping, participatory approaches, collaboration, statistics, data, etc., would be used to understand situations such as macro environment, socio-cultural aspects, user behaviour, aspects of contemporary life, activity and movement, landform, urban form, etc., as required. The projects could be of macro scale involving large campus/ township oriented architectural projects and/ or architectural design interventions in the urban context. The idea of process in design can be deterministic/ generative/ innovative as appropriate for a particular studio project situation.

In the study and proposition stage, focus would be on how to study and analyse/ understand a situation through appropriate processes based on the design project and context given. At the end of this, the nature of the problem and the nature of the solution would be arrived at.

In the design stage, the aim is to project a solution from the process. The outcome will be a workable, ingenious, innovative solution of any scale based on the project. The emphasis would be on how the design solution is connected to the intent through the process and is generated through the process.

TOTAL: 150 PERIODS
COURSE OUTCOMES

CO1 Ability to identify, study the effects and connections of complex forces and project a desired scenario for a given situation through appropriate processes and tools

CO2 Ability to find innovative and workable transformations of the existing from the projections in an organic manner.

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>1</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3201 RESEARCH METHODOLOGIES FOR BUILT ENVIRONMENT L T P/S C 3 0 0 3

OBJECTIVES
- To give introduction to the importance of critical inquiry as a way of gaining knowledge and adding to it through research.
- To give exposure to the various forms of research and research methodologies/ processes.
- To understand research in the specific domain of built environment research.

UNIT I INTRODUCTION 9
Basic research issues and concepts. Orientation to research process. Types of research: historical, qualitative, co-relational, experimental, simulation and modelling, logical argumentation, case study and mixed methods. Illustration using research samples including research in the domain of built environment.

UNIT II RESEARCH PROCESS 9
Elements of Research process: finding a topic, writing an introduction, stating a purpose of study, identifying key research questions and hypotheses, reviewing literature, using theory, defining, delimiting and stating the significance of the study, advanced methods and procedures for data collection and analysis. Illustration using research samples including research in the domain of built environment.
UNIT III RESEARCHING AND DATA COLLECTION
Methods of data collection- Primary sources: observation and recording, interviews structured and unstructured, questionnaire, open ended and close ended questions and the advantages, sampling. Collecting data from secondary sources.

UNIT IV REPORT WRITING
Research writing in general and its components. Developing the outline, referencing, writing the bibliography, presentation, etc.

UNIT V CASE STUDIES
Case studies of competent research, from project inception to completion with a focus on research in the domain of built environment. Review of research publications.

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1 Skill to identify, decipher and interpret issues relating to architecture based on research enquiry methods
CO2 Knowledge of different methods of conducting research and research writing
CO3 Familiarity with specific research related to built environment.

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>3</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3202 SUSTAINABLE ARCHITECTURE - HISTORIC AND COMMUNITY PERSPECTIVE

OBJECTIVES
- To give familiarity about the evolution of the idea of sustainability in built environment from the past to the present.
- To inform about sustainable concepts and principles of vernacular and historical
architecture.

- To give knowledge about contemporary applications of traditional principles of sustainability
- To give overview of practices, strategies and implementation processes that shape sustainable architecture.

UNIT I INTRODUCTION TO SUSTAINABILITY

UNIT II SUSTAINABLEBUILT ENVIRONMENT ACROSS HISTORY
Life style of early humans. Evolution of sustainability. Ancient and traditional perspectives in neighbourhood planning and architecture from cultures across the world. Planning principles and concepts of historic and vernacular Indian cities/settlements with respect to sustainability. Cultural beliefs associated with the principles/concepts.

UNIT III TRADITIONAL ARCHITECTURE AND ITS RESPONSE TO CLIMATE
Sustainable architecture in human settlement planning and housing – examples from vernacular and planned cities in different geo-climatic zones. Climatic response of vernacular architecture - analytical studies including developing scientific evidence. Water management in buildings- water saving/ demand management, water harvesting for recharge and use, reuse/ recycling.

UNIT IV SUSTAINABILITY LESSONS FROM TRADITIONAL ARCHITECTURE
Scale and context of sustainability, issues and solutions in the current world. Relevance of traditional and vernacular architecture in finding sustainable solutionsto present situations. Importance of application of principles of traditional and vernacular architecture in modern context to achieve sustainability in various aspects- urban built space ratios, urban street canyons, environmental design and cultural identity, etc., Case studies of contemporary examples inspired from the past.

UNIT V STRATEGIES FOR SUSTAINABLE DESIGN

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1 An understanding of relation between sustainability and human history.

CO2 Knowledge about sustainable principles in built environments from the past and familiarity with their applications in contemporary situations.

CO3 An understanding of sustainability in a holistic manner, incorporating past knowledge and current developments in the field.

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>-</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3203 CLIMATE CHANGE ADAPTATION AND RESILIENCE IN ARCHITECTURE L T P/S C 3 0 0 3

OBJECTIVES
- To give understanding of the effects of climate change at global and local levels.
- To inform about vulnerability assessment methods.
- To give knowledge about strategies and methods in the design of built environment for adaptation, mitigation and resilience with respect to climate change.
- To give knowledge about government policies with respect to measures regarding climate change.

UNIT I INTRODUCTION TO CLIMATE CHANGE 6
Climate Change across History. Causes of Climate Change. Anthropogenic drivers of climate change. Global warming, greenhouse effect, carbon stocks and flow, Interaction of these factors at global and Indian scale. Evidences of climate change. Climate change predictions at macro and micro level. Disaster vulnerability of India with emphasis on climate change.

UNIT II ADAPTATION TO CLIMATE CHANGE/ITS EFFECTS 12

UNIT III MITIGATION OF CLIMATE CHANGE 9

UNIT IV CLIMATE CHANGE AND RESILIENT ARCHITECTURE 12
Architectural responses to impact of climate change. Concept of climate resilience. Components and action for resilient built forms. Planning strategies, methods and tools for resilient architecture at various scales reacting to earthquakes, floods, cyclones, storms, temperature, etc. Resilient back up and power systems. Lighting services during emergency. Resilient HVAC, water, storm water and grey water systems.
UNIT V LEGAL FRAMEWORKS, CODES AND POLICIES, STRATEGIES

Climate change initiatives at international level and participating bodies. Goals, objectives, challenges. IPCC, UNFCCC, Kyoto Protocol, Montreal Protocol and Paris Agreement. Climate change policy framework. India’s Response to Climate Change. NAPCC and SAPCC. Green actions of India.

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1 An understanding of the impact of climate change and specific vulnerabilities related to it.
CO2 Knowledge about designing built environment with respect to adaptation, mitigation and resilience associated with climate change.
CO3 Familiarity with frameworks for addressing climate change.

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>-</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3211 GEOGRAPHICAL INFORMATION SYSTEMS FOR BUILT ENVIRONMENT L T P/S C

1 0 3 4

OBJECTIVES
• To introduce role of GIS in
• To give basic familiarity with the concepts, tools and techniques of GIS
• To give training in the application of GIS for built environment.
UNIT I INTRODUCTION TO G.I.S
Introduction to Geographical Information System (GIS). Defining the objectives of GIS in problems related to the macro environment. Outline of commercial and open source GIS software and introduction to basic components of GIS software. Outline of Spatial and non spatial data. Understanding of Projection and Coordinate systems. Preparation of map with appropriate format for specific purposes.

UNIT II SPATIAL AND ATTRIBUTE DATA INPUT

UNIT III SPATIAL ANALYSIS USING GIS

UNIT IV MODELLING THE MACRO ENVIRONMENT
Need for modelling the macro environment for different scales and purposes. Modelling for suitability/ projects/ situations/ problems in the realm of landscape design, urban design, urban and environmental planning.

TOTAL: 60 PERIODS

COURSE OUTCOMES
CO1 Awareness of GIS and the context of its use for different purposes
CO2 Knowledge of concepts, techniques, methods of GIS
CO3 Ability to apply GIS for specific situations/ realms involving the built environment

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>1</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low
OBJECTIVES
- To enable the incorporation of sustainability in architectural design at various scales.
- To help balance varied technical and planning considerations in building design with aspects of sustainability.

CONTENT
The studio will focus on the challenges of incorporating sustainable principles into architectural design projects and typologies of increased complexity that are prevalent in the contemporary world. Aspects of climatic response, resilience, planning, technology, services, density, height of construction, management, etc., would be examined along with considerations such as environmental performance, resource optimisation, ecological impact in order to produce a viable synthesis of diverging needs.

In study and overall design stage, focus would be on studying macro and micro level issues and coming up with design propositions and strategies. This may include policy, master plan, building design as the case may be based on the project.

In the detailed design stage, the aim is to freeze on the propositions and then develop a part of it to completion in all aspects. The outcome will be a workable solution to a part of a building project if the project is large or the entire building if the project is small. It could range from building envelope design to developing prototypical solutions.

TOTAL: 150 PERIODS

COURSE OUTCOMES
CO1 An ability to balance human needs with environmental concerns in architectural design.
CO2 Skill in executing a small part of a broader idea into a workable solution.

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>1</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low
OBJECTIVES

- To introduce the evolution of urbanism and the urban design discipline.
- To introduce tools and techniques used in critical enquiry into urban issues.
- To give understanding of the complex challenges faced by contemporary urbanism.
- To introduce emerging concepts and strategies in urban interventions.

UNIT I INTRODUCTION 12
Introduction to the origin and evolution of urbanism across the world with key examples. Historic overview of the development of the urban design discipline and principles.

UNIT II READING THE URBAN ENVIRONMENT 9
Introduction to the different tools and methods to read the urban environment and interpret underlying issues.

UNIT III CONTEMPORARY ISSUES AND CHALLENGES IN URBANISM 9
Introduction to various contemporary issues that influence urbanism such as globalisation, environmental degradation and pollution, imageability and identity, digital revolution, splintering urbanism, privatization of the public realm, climate change, etc.

UNIT IV URBAN INTERVENTIONS: CONTEMPORARY PROCESSES 9
Contemporary processes and digital tools in urban design. Place-making in digital age. Participative design and community engagement. Restructuring the urban realm, urban conservation and regeneration policies. Suitable case studies for all the above.

UNIT V URBAN INTERVENTIONS: EMERGING CONCEPTS AND STRATEGIES 6

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1 Awareness of urbanism as a phenomenon.
CO2 An understanding of the complexity involved in addressing contemporary urban issues
CO3 Knowledge of various contemporary processes and urban interventions

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>-</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low
OBJECTIVES

- To introduce the idea of conservation as enhancing quality of life, as effective planning strategy, as means of particularisation of place and as a way to address issues of memory and identity.
- To give an overview of current status of conservation in India and introduce issues and practices of architectural conservation at various levels and scales.
- To give detailed understanding of architectural conservation techniques including materials, decay and preservation.
- To give familiarity about real life conservation projects.

UNIT I INTRODUCTION TO CONSERVATION

UNIT III URBAN CONSERVATION AND PLANNING
Historic districts and heritage precincts. Norms for conservation of heritage buildings and sites as part of Development Regulations. Central and state government policies and legislations. Financial incentives and planning tools such as TDR (transferable development right). Urban conservation and heritage tourism. Community participation. Urban renewal, urban recycling, brown field project, adaptive reuse. Project implementation processes and framework through case studies.

UNIT III ARCHITECTURAL CONSERVATION PROCESS

UNIT IV PRESERVATION OF BUILDINGS
Decay of monuments and reasons. Decay and characteristics of materials such as brick, stone, composite masonry, terracotta, mud, lime, wood, timber, iron and steel. Decay mapping. Quantifying techniques. Introduction to structural analysis. Seismic retrofit. Cleaning, restoring and reconstruction of monuments using appropriate techniques and materials.

UNIT V CASE STUDIES
Case studies at the national, international and state level conservation projects done by ASI, INTACH and Conservation Architects at various scales with particular emphasis to architectural conservation, material conservation, adaptive reuse.

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1 An understanding of the need and benefits of conservation at different scales
CO2 Sensitivity and knowledge about the process of architectural conservation
CO3 Knowledge about material aspects of historic buildings and their preservation
CO4 Exposure to various case studies involving conservation

REFERENCES
3. INTACH, Conservation Briefs
11. J. Stanley Rabun; Structural Analysis of Historic buildings: Restoration, Preservation and Adaptive Reuse; Applications for Architects and Engineers; Wiley 2000

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>-</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3321 THESIS PHASE I

OBJECTIVES
- To facilitate integration of specialised and appropriate knowledge into a design project through research, study, special methodologies, design process and techniques, etc.,
- To complete the study/research, site selection and analysis, project formulation and requirements for further progress in Thesis Phase II of subsequent semester.

CONTENT
The students will synthesise the areas of knowledge, skills and techniques of a specialised domain of architecture through a thesis project of their choice. This thesis project would be a design project with a strong research component and will be completed over two semesters. The scale of the project could extend from individual site to settlement level.

Proposal for the design project with a possible direction of study and research has to be submitted for approval prior to the commencement of the semester. In Thesis Phase I, the study part of the project will be undertaken.

The project should involve the application of specialised knowledge in domains such as history, theory, design, energy, sustainability, technology, social aspects, digital architecture, urban design, etc,. The design interventions will be at scales appropriate to the topic and the final project should manifest strong directions in terms of research/study/advanced practice.

The project shall desirably have the potential to serve as a starting point for specific area of architectural practice/consultancy and/or further research. In this, a master’s degree thesis should be innately different from a bachelor’s degree thesis.

The progress of work will be reviewed periodically throughout the semester. At the end of the semester for Thesis Phase I, students should have completed all the study and research work, site
selection and site analysis, project formulation and requirements for project. The study sheets, study models, reports, case study drawings, etc., project report summarising the entire work and soft copy of all the work should be submitted for evaluation through Viva Voce Examination.

TOTAL: 90 PERIODS

COURSE OUTCOMES

CO1 Ability to understand the relationship between study and design.
CO2 Ability to study, analyse and conclude on an area of interest
CO3 Depth of knowledge in a particular area that would inform the design project.

REFERENCES:
2. John W Creswell; Research design: Qualitative, Quantitative and Mixed Methods Approaches;
5. Wayne C Booth; Joseph M Williams; Gregory G. Colomb; The Craft of Research, 2nd Edition; Chicago guides to writing, editing and publishing.

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>3</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3322 URBAN ENVIRONMENT DESIGN STUDIO

OBJECTIVES
- To enable architectural design in the context of the city.

CONTENT
The studio will focus on architecture as being shaped by and shaping the urban context. The process of architectural design would be seen along with the aspects such as nature of cities, urban morphology, history, place, density, society, public realm, economy, climate and microclimate, ecology, legislation, finance. The design projects would become the site for taking positions on specific issues and developing these ideas to completion.

In the study and overall design stage, focus would be on studying issues related to any one or more of the aspects of the content and come up with design propositions and strategies. This may include
policy, master plan, building design as the case may be based on the project.

In the detailed design stage, the aim is to freeze on the propositions and then develop a part of it to completion in all aspects. The outcome will be a workable solution to any identified aspect of the overall design. It could range from infill design to street character design.

TOTAL: 150 PERIODS

COURSE OUTCOME

CO1 An ability to design buildings as positive additions to the city.

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>1</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>1</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3311 INTERNSHIP TRAINING

OBJECTIVES

- To help in developing depth of knowledge and inquiry in any one of a chosen area of specialty in architecture.
- To enable interacting with practicing architects, allied professionals, researchers and organisations working in the field of speciality in architecture.

CONTENT

The students will undertake the Internship Training in any organisation engaged in activities relating to a specialised area of architecture for a period of 4 weeks. The Internship Training is expected to make aware how specific areas in architecture can be pursued to depth in the realm of practice and research. The Internship Training can thus be in any architectural practice/ research organisation/ university, etc., where there are such pursuits. Through the Internship Training, the students could obtain mastery in a specific area of practice or research. The students may also utilise the Internship Training to strengthen their ability to do Thesis in the subsequent semester.

The students are expected to complete the Internship Training in the Summer Vacation between second and third semesters, before the commencement of the third semester, and enroll for the course in the third semester. The students shall submit an Internship Training Report, on or before the last working day of the third semester. The students shall be evaluated on the basis of the Report submitted, through a Viva-Voce Examination, as part of the End Semester Examinations of the third semester.
COURSE OUTCOMES

CO1 Additional knowledge and exposure with respect to specific areas of architecture for pursuing practice or independent research.

CO2 Ability to interact with others for constructive and holistic output.

CO - PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>1</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3421 THESIS PHASE II

OBJECTIVES

- To facilitate integration of specialised and appropriate knowledge into a design project through research, study, special methodologies, design process and techniques, etc.,

- To complete the design part of the thesis project that will apply the study/research completed in the Thesis Phase I of the previous semester.

CONTENT

In Thesis Phase II, the students will undertake the design part of the project and work towards incorporating the study and research completed in the previous semester through appropriate processes/methodologies/techniques. The progress of work will be reviewed periodically throughout the semester. At the end of the semester for Thesis Phase II, students should have completed the design part in such a manner that not only does it qualitatively and quantitatively demonstrate the application of the research, but it is also complete in all respects as a design project. The design approach sheets, optional design process models, methodologies and techniques, design presentation sheets, final model, detailed drawings based on the research component, project report summarising the entire thesis work and soft copy of all the work should be submitted for evaluation through Viva Voce Examination

TOTAL: 240 PERIODS

COURSE OUTCOMES

CO1 Ability to integrate particular areas of focus/study through methodologies/techniques/skills into the design project.

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>2</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>2</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low
OBJECTIVES

- To inform about aspects, concepts and methods related to some contemporary architectural design processes.
- To enable use of contemporary processes in order to generate architectural form for specific design situations.

UNIT I DIAGRAMMING
Introduction to diagramming and its history. Traditional diagrams. Contemporary diagramming processes as tool to creative interpretation and design of architectural form. Simple exercises in diagramming.

UNIT II SHAPE GRAMMAR AND FRACTALS
Introduction to shape grammar and its applications. Introduction to Fractals. Examples from nature and built environment. Types of fractals. Fractal creation, generator and initiator, direction and proportion. Simple design exercises in shape grammar and fractals.

UNIT III EVOLUTIONARY ALGORITHMS

UNIT IV PARAMETRIC DESIGN
Introduction to parametric design. Concept of scripting. Simple design exercises in parametric design

COURSE OUTCOMES
CO1 Familiarity with some basic contemporary processes of architectural design.
CO2 Ability to explore architectural form through contemporary processes

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>-</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low
OBJECTIVES

- To introduce the idea of architecture as enmeshed in society and a product of larger socio-cultural processes, and not as autonomous object within a hermetically sealed discipline.
- To introduce the various interdisciplinary critical theories and explain their interpretation of architecture.

UNIT I INTRODUCTION

UNIT II POWER AND GENDER IN ARCHITECTURE

Definition of power - Forms of power - ideas of power and society, power-knowledge postcolonialism-Colonialism in India as a form of dominance - architecture and urbanism of colonialism in India - Indo-Saracenic architecture - New Delhi as part of imperial vision - Power in the built environment at various scales - Case studies in the contemporary world - Introduction to the idea of gender and space - Case studies.

UNIT III PLACE AND ARCHITECTURE

Modernity, modern architecture and issues of particularity, place and context - Critical Regionalism and architectures of resistance - Phenomenology in architecture - placemaking.

UNIT IV MEANING IN ARCHITECTURE

Architecture as communication and representation - introduction to linguistic concepts of semiotics, structuralism, post structuralism and deconstruction - debates on modern, postmodern and deconstructivist architecture with reference to these concepts - Conditions of late capitalism - Society of spectacle - Architecture as spectacle and seduction.

UNIT V ARCHITECTURE IN THE AGE OF GLOBALISATION AND DIGITAL TECHNOLOGY

Influence of globalisation and digital revolution on architectural processes - global/ regional debates - contemporary issues in architecture in India.

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1 The students would gain an understanding of architecture as an integral production of society as well as engage in critical thinking to interpret architecture.

CO2 The students’ awareness through this course would inform their future practice/ research/ teaching.

REFERENCES

3. Guy Debord. Society of Spectacle,
11. Neil Leach, Anaesthetics of Architecture, MIT Press 1999,

Course Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>2</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3003 ENVIRONMENTAL PSYCHOLOGY

OBJECTIVES
- To give introduction to the realm of environmental psychology.
- To introduce interdisciplinary social science approaches and to explore ways that people experience environments and make decisions about them.

UNIT I INTRODUCTION TO ARCHITECTURAL PSYCHOLOGY
9
Introduction to the discipline, its importance in the field of architecture. Understanding the principle of psychology- Form, perception, attention, concepts, types of concepts, physical settings and varied emotions. Creative Thinking: Process of creativity, visual and creative thinking. Types of thinking- directed thinking, convergent, divergent. Articulation of masses and spaces, sense and sensation modalities. Language of architecture and its role in creativity, like rhythm, harmony, balance and other visual traits.

UNIT II ENVIRONMENTAL RESPONSE
9
Environmental variables-fixed feature variable, semi-permanent feature variable, ambient feature variable and human comportment, human adaptation to the given environment, collective behaviour and spatial orders, effects of colour and behaviour in built environment

UNIT III CONCEPT OF BEAUTY AND HUMAN ATTITUDE
9
Philosophies of beauty, aesthetics and physio-psychological association to it and the human mind, simulated by 'pull' and 'push' factors of the environment physical manifestation and emotional impact attitudes towards typical physical settings form, space and attitude relations.

UNIT IV APPLICATION OF PSYCHOLOGY IN ARCHITECTURE DESIGN
9
Evaluation of the satisfactory levels of a residential building. Parameters to provoke desired emotions in the built environment application of the knowledge in the design of a residence, community, neighbourhood in all stages of design.

UNIT V PSYCHOLOGY OF SUSTAINABLE BEHAVIOR / GREEN INTERVENTIONS
9

TOTAL: 45 PERIODS

COURSE OUTCOME
- CO1 Understanding the principle of psychology in field of environmental Architecture
- CO2 Ability to understand the linkage between form, space and attitude
REFERENCES

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>3</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3004 ARCHITECTURAL LIGHTING

OBJECTIVES
- To inform about daylight and its use in buildings.
- To give knowledge about electric lighting in interiors and urban lighting.
- To give exposure to lighting research.

UNIT I DAYLIGHT

UNIT II DAYLIGHT INTEGRATION IN BUILDINGS

UNIT III ELECTRIC LIGHTING IN INTERIORS
Sources of electric lighting. Luminaires- types and applications, design and optimisation. Energy efficient strategies. Integration of daylight and electric lighting using physical models / software.
UNIT IV URBAN LIGHTING
Elements of urban lighting. Street lighting, city lighting. Lighting the building exteriors: concepts, decorative and accent, etc. Issues in urban lighting – energy, light pollution, safety and security.

UNIT V LIGHTING RESEARCH
Introduction to lighting research, need and issues. Types of lighting research – qualitative, quantitative, empirical, case study methods. Review of research papers on lighting.

TOTAL: 45 PERIODS

COURSE OUTCOME
CO1 Knowledge about lighting in buildings and urban spaces
CO2 Awareness of different types of lighting research

REFERENCES
3. Emily Dufner, VasilikiMalakasi, Simone Collon, Dan Lister, ‘Lighting in The Urban Age: Meaningful Design For Cities, People & Places’, ARUP.

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>AVERAGE</td>
<td></td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3005 PERFORMANCE EVALUATION OF BUILDINGS LT P/S C
2 0 1 3

OBJECTIVES
- To facilitate simulation and auditing techniques for assessing energy performance, environmental response and impact of built form.
- To give knowledge about solar shadow modeling tools, heat flow analysis, light simulation tools, modelling of ventilation, fire dynamics, sizing of passive solar features, estimation of energy conservation.

UNIT I ENERGY AND THE PERFORMANCE OF BUILDING
Need for performance analysis of buildings - Investigation and assessment, energy audit procedures - Design investigations - Basics of thermal comfort, solar shading/access/ control, day lighting, acoustics air movement etc.- Energy conservation measure calculations - Modelling systems: cognitive, empirical and analytical assessment of buildings - Architectural Computation and performance audit. Introduction to ECOTECT.
UNIT II MODELLING OF THE BUILDING FORM

Modelling the Building form - Parametric and empirical building simulation - Factors affecting accuracy of energy model - Thermal performance criteria of buildings - Envelope considerations, climatic analysis, weather data-Heating and cooling systems modelling, ventilation systems modelling - Energy use analysis through open source software such as EQUEST. Integration of ECOTECT with BIM, RAPID ENERGY MODELLING -Modelling and performance simulation of existing buildings – eQuest and Sketch Up + Open Studio + Energy Plus or any free wares which are approved by Department of Energy, USA / India as simulation software Design builder, IES VE, TRNSYS etc.

Simple exercises in the above.

UNIT III POST OCCUPANCY EVALUATION OF BUILDINGS

Purpose and components of Post occupancy evaluation (POE), Building performance bench marks, Occupant satisfaction, Indoor air quality, PPD and PMV analysis, Techniques and methods for post occupancy evaluation, assessing existing buildings based on their energy and water usage.

Case Studies and exercises in the above.

UNIT IV SEMINAR AND CASE STUDY PRESENTATION

Case study presentation of students on performance evaluation of a small residential / office typology in different climate zones- on how to integrate passive design and show results of how energy efficiency has been achieved - Real time data collection using physical instruments and paper publication to journals.

TOTAL: 45 PERIODS

COURSE OUTCOME

CO1 Knowledge about environmental assessment methods, audit and simulation techniques, energy modelling skills.

CO2 Ability to add value to architectural design processes

REFERENCE

CO-PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>2</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low
OBJECTIVES:
- To give introduction to the soft skills and personality
- To give understanding of and enable better interpersonal communication.
- To apprise of aspects of organisational communication and develop skill in it.
- To enable skill in reading and writing.

UNIT I INTRODUCTION TO SOFT SKILLS AND PERSONALITY

UNIT II INTERPERSONAL COMMUNICATION

UNIT III ORGANISATIONAL COMMUNICATION

UNIT IV ADVANCED READING AND WRITING SKILLS

COURSE OUTCOME
CO1 Awareness of importance of soft skills.
CO2 Knowledge and skill in interpersonal communication.
CO3 Knowledge and skill in organisational communication.
CO4 Competency in reading and writing.

REFERENCES
1. Soft Skills, K.Alex, S.Chand, 2010

CO-PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>3</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3007 ANTHROPOLOGY AND ARCHITECTURE 3 0 0 3

OBJECTIVES:
- To understand the relationship between society and the making of the built environment.
- To understand phenomenology and the role of meaning in built form.
- To look at place making from the architectural as well as urban design point of view.

UNIT I RELATIONSHIP BETWEEN CULTURE, SOCIETY, ANTHROPOLOGY AND ARCHITECTURE 6

UNIT II ANTHROPOLOGY OF TRADITIONAL ARCHITECTURE 10
Architecture as a Process – kinship and house societies – perceptions of built form – conceptions of space – symbolism and technology – study of the above through case study of traditional architecture in India, Asia and Africa.

UNIT III ANTHROPOLOGY AND PLACE MAKING 15

UNIT IV AN OVER VIEW OF URBAN ANTHROPOLOGY 6
Meaning of urban studies and urban anthropology – role of cities – urban ethnography, primary units, major components and units of integration – anthropology and contemporary urban issues.

UNIT V SEMINAR 8
Students would make presentations exploring the relevance and impact of anthropological studies on contemporary architecture and design through readings/case studies. The proposal must be discussed with course faculty prior to presentation.

TOTAL: 45 PERIODS
COURSE OUTCOMES

CO1 A comprehensive understanding of architecture and urbanism as expressions of particular societies in time and place.

REFERENCES
2. Edwin James; Anthropology of the City; Prentice Hall; 1977.
3. F Bollnow; Mann, Bensch and Raum, Stuttgart; 1963.
4. J Carstern and S H Jones; About the house: Levi Strauss and Beyond; Cambridge University Press; 1955.

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>1</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>1</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

LN3051 LANDSCAPE URBANISM L T P/S C 3 0 0 3

OBJECTIVE:
- To analyze the role of Landscape Urbanism – theory (texts) & practice (projects) in forming the contemporary city. To understand the evolution of a new urban morphology for contemporary cities adopting new models & strategies based on the Landscape of the city.

UNIT I LANDSCAPE URBANISM – AN INTRODUCTION 5
Background(what & why), the emergence of Landscape urbanism, characteristics, revaluating landscape, history and driving forces, Landscape in practice: Defining competitions of landscape urbanism

UNIT II LANDSCAPE (SUB) URBANISM IN THEORY AND PRACTICE 10
LU – a school of thought, Smart growth and LU, New Urbanism, Green Urbanism, From Critical Regionalism to Critical Pragmatism
Practical limitations to innovation – Case study – The Wugong Urban Water (WUW) Landscape Structure Plan, The WUW project in relation to theory

UNIT III LANDSCAPE URBANISM –PLANNING 6
Performative Processes – process cycles, processes engaged in design, a democratic urban environment, processes of planning – Surface Strategies – Contemporary Positions – Network city, New pragmatism, philosophy of world complexity, ecological design media – Evolution of Planning Ideas – from the modern to the contemporary, the rise of landscape urbanism

UNIT IV SUSTAINABLE(SU) & ECOLOGICAL URBANISM (EU) 12
SU- Urban design with nature – The case for sustainable urbanism – Emerging thresholds – Sustainable neighborhoods – Time: The 2030 Community Challenge – Implementing sustainable urbanism – Rethinking cities for the future – Case studies EU- Historic roots and current trends,
propositions and principles for the design of resilient cities, Cities – as habitats, part of the natural world, Urban ecosystems, The future of Urban Design.

UNIT V ASIAN LANDSCAPE URBANISM
Emerging challenges, Relationship between Asian Urbanism and Landscape Urbanism – social & cultural aspects of Asian Urbanism – Landscape Urbanism in India – case studies Hampi, Goa

TOTAL: 45 PERIODS

COURSE OUTCOME
CO1 Sensitivity with respect to the significance of landscape urbanism in make cities livable

REFERENCES:
1. Charles Waldheim, The Landscape Urbanism Reader (paperback)
5. http://www.ibs.or.jp/sites/default/files/5_publish/09
7. Landscape urbanism – large-scale architecture, ecological urban planning or a designerly research policy, GUNILLA LINDHOLM Senior lecturer, landscape architect, Department of Landscape Architecture, SLU, Alnarp, Sweden – Research paper
8. Mohsen Mostafavi, Ecological Urbanism, Harvard University, Graduate school of design, Lars Muller Publisher.
11. Steven Velegrinis, Flux-scape: Emerging Challenges of Asian (Landscape) Urbanism,
12. Tigran Haas (Editor), Sustainable Urbanism and Beyond – Rethinking cities for the future, Rizzoli, NY, USA.

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>1</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3- High 2-Moderate 1-Low</td>
</tr>
</tbody>
</table>

AA3008 EMERGING PRACTICES IN HOUSING L T P/S C

OBJECTIVES
- To give an outline of the evolution of housing to its present forms.
- To give familiarity with respect to redefinition of contemporary housing within the contexts of multicultural cities due to globalisation.
UNIT I INTRODUCTION
Introduction to housing, from its industrial beginnings in London and Paris to New York City’s Lower East Side and the 20th century designs of Le Corbusier, Antonio Sant’Elia, and Mies van der Rohe. Investigation of contemporary life and its influence on space and architecture. Globalisation and influences on economy. Alternate housing solutions: Commune, Co Housing, Cooperatives, etc.

UNIT II SINGLE FAMILY, MULTI FAMILY HOUSING
Review of latest developments in single family and multifamily housing by examining the works of WielArets, Shigeru Ban, Ben van Berkel, Kees Christiaanse, Philippe Gazeau, Frank O. Gehry, Steven Holl, Hans Kollhoff, MorgerandDegelo., Jean Nouvel, KasOosterhuis, MVRDV.

UNIT III HIGH DENSITY HOUSING
Issues and concerns of high density housing. Review of the current state of high density houses. Perspectives and future developments through a study of a few international projects.

UNIT IV NEW FORMS OF LIVING AND HOUSING IN THE DIGITAL ERA

UNIT V CONTEMPORARY HOUSING IN THE INDIAN CONTEXT
Social and economic changes in India in the 21st century. Impact on housing form and its evolution. Housing policies today. Case studies of government, market oriented projects and innovations by architects for the current scenario.

TOTAL: 45 PERIODS

COURSE OUTCOMES
CO1 Sensitivity to the various forces that shape the form of housing today.
CO2 Knowledge about the latest development, issues and design strategies governing housing at national and international level.

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>-</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low
OBJECTIVES
• To give knowledge and skills to enable the facilitation and transformation of places and spaces where culture and technology are in a state of rapid change and resources are scarce.
• To give familiarity with self-help techniques of construction, adaptation, repair and management in order to give understanding about what is involved in sustainable construction of domestic and community architecture.

UNIT I INTRODUCTION

UNIT II DESIGN PRINCIPLES
Principle 1: Conserving energy; Principle 2: Working with Climate; Principle 3: minimising new resources; Principle 4: respect for users; Principle 5: respect for site; Principle 6: Holism. Illustrated with examples.

UNIT III SUSTAINABLE CONSTRUCTION
Design issues relating to sustainable development including site and ecology, community and culture, health, materials, energy, and water. Domestic and Community buildings using self help techniques of construction. Adaptation, repair and management.

UNIT IV SYSTEMS, MATERIALS AND APPLICATIONS

UNIT V BEST CURRENT PRACTICE
Case studies demonstrating best current practice in a scale ranging from small dwellings to large commercial buildings drawn from across the world.

TOTAL: 45 PERIODS

COURSE OUTCOME
CO1 An understanding on the needs of alternative technologies in buildings
CO2 Exposure to sustainable materials and construction

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>PO1</td>
</tr>
<tr>
<td>CO2</td>
<td>PO1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVERAGE</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
</table>

3- High 2-Moderate 1-Low
OBJECTIVES
- To introduce smart materials for use in architectural design.
- To give familiarity about products that have changeable properties in response to elements.
- To inform about materials and technologies such as LEDs, smart glazing, displays, etc.
- To give introduction to building skins in terms of their performance and functionality, bio inspired facades and interactive surfaces.
- To give familiarity about the methods of fabrication, production and construction for innovation in design.

UNIT I INTRODUCTION 7

UNIT II NEW AGE MATERIALS I 9

UNIT III NEW AGE MATERIALS II 10

UNIT IV SUSTAINABLE BUILDING SKIN 10
Parameters for designing a sustainable building skin - sun control, natural ventilation, daylighting, connection to outdoors, thermal insulation, moisture control, micro-climate zones, structural efficiency, material choices, potential for energy generation, bio inspired facades, responsive façade, interactive façade.

UNIT V CASE STUDIES 9
Case studies on the innovative applications of smart materials and various building skins in design.

TOTAL: 45 PERIODS

COURSE OUTCOME
CO1 Knowledge about fundamentals of material and current innovations.
CO2 Ability to explore the potential of smart materials in creative designing
CO3 Knowledge about smart material characteristics and methods of material technology that can be translated to innovative approaches to design
CO4 Ability to examine building skin as both giver of character and as part of the performative technology of buildings.

REFERENCES
7. Maggie McIntosh, ‘Sustainable Building Skin Design’
https://soa.utexas.edu/sites/default/disk/technologies/technologies/09_03_fa_speck_mcintosh_h_ml.pdf

CO-PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>

AVERAGE 3- High 2-Moderate 1-Low

AA3011 SUSTAINABLE BUILDING SERVICES AND WATER MANAGEMENT

<table>
<thead>
<tr>
<th>L T P/S C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 0 0 3</td>
</tr>
</tbody>
</table>

OBJECTIVES

- To give knowledge about the importance of water management systems for optimal use and sustainability and give knowledge about the same.
- To give knowledge about designing and managing building services for sustainability.
- To give familiarity about laws and methods that help in the management of resources in a sustainable manner.

UNIT I TRADITIONAL WATER MANAGEMENT SYSTEMS

Sources of water. Settlements influenced by water bodies. Traditional water management systems in India and other countries. Examples from history. Issues in current context.

UNIT II WATER MANAGEMENT SYSTEMS

UNIT III POLICIES AND BYELAWS

UNIT IV CARBON NEUTRALITY

UNIT V CASE STUDIES

Online case studies / Visit to high rise buildings. Building services studies – location, optimisation, conformity to LEED India. Green rated buildings – Issues and proposals.

TOTAL: 45 PERIODS

COURSE OUTCOME

CO1: Ability to manage water resources for a building in an optimal and sustainable manner.
CO2: Familiarity with different methods to design and manage building services for sustainability.
CO3: Knowledge about laws and strategies with respect to sustainable building services and resources.
REFERENCES

CO-PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>-</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3012 FACILITIES PROGRAMMING AND MANAGEMENT FOR ARCHITECTURE

L T P/S C
3 0 0 3

OBJECTIVE

- To enable development of capability to plan for and manage various aspects of building so as to give user satisfaction and safety.

UNIT I BASICS OF ARCHITECTURAL PROGRAMMING

UNIT II BASICS OF FACILITIES MANAGEMENT
Principle duties of a facility manager. Business aspects of facilities management. Diverse responsibilities and decision-making processes from building infrastructure to fleet services.
UNIT III FACILITIES DESIGN AND SPACE PLANNING
Applications of facilities design in defining the requirements of a project. Developing design strategies, implementing corporate philosophies and methodologies, and understanding the project development process. Flexibility and facilities planning. Optimal space planning and cost minimisation through facility layout.

UNIT IV FACILITY PLANNING AND DECISION SUPPORT SYSTEM
Knowledge based facility planning and decision support system. Application of artificial intelligence. Graphical and theoretic approach to multi-floor building design. Facility layout algorithm using graphics. Simulation in facility planning and efficiency analysis

UNIT V FACILITY MANAGEMENT DURING CONSTRUCTION PHASE & HANOVER
Types of facility management options. Functionality of Building Automation systems. Wear and tear of technical installations. Recording operating costs, safety concepts, energy supply and waste management. Service tenders and contracts.

COURSE OUTCOMES
CO1 Familiarity about facilities programming in planning a building
CO2 Understanding of the relation between facilities planning and facilities management and their importance, especially in the context of service-oriented spaces and building types.

REFERENCES

CO -PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>2</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3013 URBAN CULTURAL LANDSCAPES

OBJECTIVES
- To give understanding of social and cultural diversity as design generators.
- To introduce tools for documentation and analysis of urban cultural landscapes.
- To introduce the various theories and discourses on urban cultural landscape.
- To give understanding of the complex challenges involved in the practice of conservation of urban cultural landscapes through national and international case studies.
UNIT I DEFINING URBAN CULTURAL LANDSCAPES
Introduction to the concept of Urban Cultural Landscape as the result of interplay between natural and built environment and as the generator of Spirit of place - uniqueness of place, peoples and traditions.

Definition of Urban Cultural Landscapes and Historic Urban Landscape as understood in the international framework (Vienna Memorandum, World Heritage Cities Programme, ICOMOS)

UNIT II TOOLS AND METHODS FOR MAPPING CULTURAL LANDSCAPES
Tools and methods to delineate, document and analyze the complexity of the urban cultural landscape; Mapping tangible and intangible values (recording oral history and traditional knowledge systems)

UNIT III URBAN CULTURAL LANDSCAPE: THEORIES AND DISCOURSE
Introduction to the evolution of theories and discourse on urban cultural landscape. Inclusion of traditional and indigenous cultural values, emphasis on local and lived experience, collective memory, identity, meaning and association, local and traditional knowledge systems, sacred landscape.

UNIT IV URBAN CULTURAL LANDSCAPES: PRACTICE AND CHALLENGES
Challenges in managing urban continuity and change: global processes, urbanization and development, economics, changing cities, tourism. Shift from object or monument-centric approach to the notion of ‘value’ guided by urban values and the economic value of conservation. Shift from expert oriented approach to inter-disciplinary and community-based or people-centric approaches.

UNIT V CASE STUDIES
National and International case studies to understand the application of theoretical frameworks and trace the relation between discourse and practice of conservation of urban cultural landscapes

TOTAL: 45 PERIODS

COURSE OUTCOME
CO1 Ability to identify and appreciate the importance of social and cultural diversity
CO2 Ability to document urban cultural landscapes
CO3 Sensitivity to complex challenges involved in urban conservation

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>3</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low
OBJECTIVES

- To introduce the importance of traditional architectural knowledge system for conservation.
- To emphasise need for sustainability of the existing morphology through adaptive reuse in order to provide alternative options in urban renewal with reference to changing market dynamics.
- To enable a better understanding of the structure and fabric of historic structures.

UNIT I TRADITIONAL KNOWLEDGE SYSTEM

UNIT II STRUCTURAL SYSTEMS

Introduction to construction techniques and structural components in a historic structure. Understanding various types of historic structural systems. Structural analysis of historic structures. Understanding various techniques for structural analysis. Understanding the failure and distress in historic structures and development of new forms. Inspection and diagnosis of structures.

UNIT III THEORY OF MATERIALS

UNIT IV RETROFITTING OF BUILDINGS / PROPERTIES AND ADAPTIVE REUSE

UNIT V CASE STUDIES

Legal framework and administrative aspects, policies and charters. Case studies of proposals for conservation / adaptive reuse from India and abroad. Sustainable development, Brownfield projects, mixed use strategies (examples in Indian and Western context).

TOTAL: 45 PERIODS

COURSE OUTCOME

CO1 Sensitivity with respect to the significance of adaptive reuse and retrofitting with its implications in creating value

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>1</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>1</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low
OBJECTIVES

- To provide basic knowledge on the functions, dynamics, planning and management of urban infrastructure systems.
- To give understanding about the dynamics within and between urban infrastructure systems, and their relation to the built environment and economic development.
- To give knowledge about how to assess the qualities of infrastructure systems in terms of vulnerability, sustainability, equity and efficiency.

UNIT I INTRODUCTION, TRANSPORTATION, POWER AND COMMUNICATION 15
An overview of different types of urban infrastructures. Status of urban and rural infrastructure in India. Road Transportation- Design criteria for road, types of traffic and transportation survey, types of roads, infrastructure for road, facilitating pedestrians. Power and communication system - source and distribution networks with safety norms applicable.
Study and design exercises in the above.

UNIT II WATER SUPPLY AND DRAINAGE 12
Water supply systems. Quality and quantity requirements. Sources. Collection and conveyance of water. Treatment methods, treatment plant location. Planning distribution systems and their zoning with respect to urban structure.
Study and design exercises in the above.

UNIT III SOLID WASTE MANAGEMENT 9
Study and design exercises in the above.

UNIT IV INFRASTRUCTURE AND ENVIRONMENT 9

TOTAL: 45 PERIODS

COURSE OUTCOME

CO1 Understanding about the infrastructure system at micro level to macro level
CO2 Ability to plan integrating all aspects of infrastructure for a sustainable development

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>1</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3016 PSYCHOLOGY OF LEARNING AND DEVELOPMENT

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>S</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3003</td>
</tr>
</tbody>
</table>

OBJECTIVES

- To introduce general concepts of learning theory.
- To help understand research related to theories of learning.
- To enable opportunity to engage in critical analysis of theories through discussions.

UNIT I INTRODUCTION

UNIT II EDUCATIONAL PSYCHOLOGY

UNIT III UNDERSTANDING LEARNER STAGES OF HUMAN DEVELOPMENT

UNIT IV LEARNING AND MOTIVATION

UNIT V APPRECIATION AND CRITICISM

Ability of Understanding—appreciation, advocacy, descriptive, evaluative, interpretative and other evaluation criteria and methodology. Development of Design Thoughts—understanding, developing and expressing a design thought in its right perspective purpose, manner and mode. Theories and models for experiencing architecture.

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1 Knowledge about major social and psychological processes involved in learning and development in an educational setting.

CO2 Ability to engage in knowledgeable and productive dialogue with colleagues about human learning, development, and educational practice.

REFERENCES

CO -PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>3</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3017 THEORY OF ARCHITECTURAL EDUCATION L T P/S C 3 0 0 3

OBJECTIVES

- To give familiarity about theories of architectural education.
- To introduce the idea of cognition development.
- To give familiarity about ways of thinking and learning with respect to architecture.

UNIT I INTRODUCTION

Overview of the important aspects of the discipline of architecture. Nature of Architectural Education based on the nature of the discipline of architecture.
UNIT II TOOLS/ TECHNIQUES TO TEACH ARCHITECTURE
Models and methods of Teaching. Teaching Aids In Architecture Education. Types of Teaching Aids- Visual, Audio, etc., Learning by Doing, reflection, exploring, arguing, incidentally. Case-Based Teaching. Advanced Organizer, Concept attainment model, Simulations.

UNIT III SYNECTICS AS A MODEL OF TEACHING.
The essence of creativity in synectics. Use of synectics in the design studio. Techniques of teaching-learning: Maxims of teaching and its application to subjects of architecture. Concept mapping, creating concept maps. Basic aspects of classroom management.

UNIT IV STUDENT DEVELOPMENT

UNIT V LEARNING IN ARCHITECTURE DESIGN STUDIO
Development of Critical, Creative and Pragmatic Thinking in Architectural Design Studio. Bloom Taxonomy in Design Studio. Qualities which can be attained at various stages in Architectural Design Studio.

TOTAL: 45 PERIODS

COURSE OUTCOME
CO1 Awareness of the importance of contextual excellence in architectural design and methods for the same.
CO2 Knowledge about and ability to integrate interdisciplinary and cognitive aspects of learning, teaching and development.

REFERENCES

CO - PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

AA3018 ARCHITECTURAL JOURNALISM AND PHOTOGRAPHY

OBJECTIVES
1. To introduce basic objectives, methods and skills for practice of professional journalism with particular emphasis on architectural journalism.
2. To introduce and explore photography as an important aspect of journalism and as a standalone requirement for the architectural profession.

UNIT I INTRODUCTION TO JOURNALISM.
UNIT II TECHNIQUES AND SKILLS FOR JOURNALISM
Exercises in the above.

UNIT III DISCUSSIONS AND ISSUES ON ARCHITECTURE
Exercises in the above.

UNIT IV ARCHITECTURAL PHOTOGRAPHY
Exercises in the above.

COURSE OUTCOME
CO1 Knowledge and skill in the basics of journalism
CO2 Familiarity with the scope of architectural journalism
CO3 Skill in architectural photography.

REFERENCES

CO – PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>-</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low

TOTAL: 45 PERIODS
OBJECTIVES:

- To give detailed understanding of architectural services.
- To give in depth knowledge on consultancy contract/agreement processes.
- To provide exposure to Arbitration in the realm of the architectural profession.
- To give information on construction project management.

UNIT I ARCHITECTURAL SERVICES 9
Types of practices/firms – Comprehensive Scope of services and deliverables- Methods of Engagement of Architects- Architectural Competitions methods and guidelines – Consultancy Fee structure for various typology and value of projects- Professional Ethics and Regulations – Case Studies.

UNIT II CONTRACTING PROCESSES 9

UNIT III ARBITRATION AS AN ALTERNATIVE DISPUTES RESOLUTION (ADR) MECHANISM 9

UNIT IV ARBITRAL PROCEEDINGS 9

UNIT V PROJECT MANAGEMENT 9
Architect’s role in project implementation- Architect’s deliverables for Tender stage- Assistance in Tender process- Co-ordination with Project Management Consultant, Engineer-in-charge or Supervisor – Site meetings, site inspection, shop drawing review- Issues related to Management of Clients and other stake holders - Case Studies.

COURSE OUTCOME

- CO1 Detailed understanding of architectural services
- CO2 Familiarity with process of consultancy contracts/agreements
- CO3 Exposure to arbitration as alternative dispute resolution mechanism
- CO4 Understanding of importance of Architect's role in project implementation and managing issues related to all stake holders

TOTAL: 45 PERIODS

REFERENCES:

5. Prof. Madhav Deobhakta; Arbitration for Architects and Project Managers, 2011.
6. Manual of Architectural Practice 2022 (Published by Registrar Council of Architecture, India)
CO-PO Mapping

<table>
<thead>
<tr>
<th>Course Outcome (CO)</th>
<th>Programme Outcome (POs)</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

3- High 2-Moderate 1-Low