DEPARTMENT OF BIOTECHNOLOGY
ANNA UNIVERSITY, CHENNAI

Vision:

The Department of Biotechnology is committed to evolve as a world class science and technology centre by integrating quality and ethics in teaching and research.

Mission:

The mission of the department is

- To provide students a unique and multidisciplinary learning experience that will foster the young minds to develop as a researcher, entrepreneur etc.
- To enhance academic and industrial collaborative research initiatives for the development of biotechnological, food and therapeutic products.
- To emphasise and equip the students towards innovative industrial and research updates.
- To serve the society with utmost commitment, integrity, enthusiasm, and dedication.
1. PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The Food Technology curriculum is designed to prepare graduates having knowledge with high ethical values and industrial preparedness

1. To understand and apply the concepts of basic sciences, Engineering and technology towards their application in the area of Food Technology.

2. Identification and analysis to solve problems for the development of products, processes, techniques to meet the demands of the society.

3. To apply the learnt theory and practical skills in Food Technology for industry, R&D and entrepreneurship.

4. To learn professional and ethical attitude especially its impact on safety, health and environment

5. Build an environment that is conducive to higher academic pursuit and nurture creative and innovative thoughts.

2. PROGRAMME OUTCOMES (POs)

After completion of four years of study, the Food technology Graduates will be able to

<table>
<thead>
<tr>
<th>Graduate Attribute</th>
<th>Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1 Engineering Knowledge</td>
<td>Apply knowledge of mathematics, basic science and engineering.</td>
</tr>
<tr>
<td>PO2 Problem Analysis</td>
<td>Identify, formulate and solve problems in the area of Food Technology.</td>
</tr>
<tr>
<td>PO3 Design/ development of solutions</td>
<td>Design new processes/ modifying the existing system to improve the performance and to satisfy the constraints.</td>
</tr>
<tr>
<td>PO4 Conduct investigations of complex problems</td>
<td>Perform experiments, analyze and interpret the data.</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern tool usage</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>PO6</td>
<td>The Engineer and society</td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and sustainability</td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and team work</td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
</tr>
<tr>
<td>PO11</td>
<td>Project management and finance</td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long learning</td>
</tr>
</tbody>
</table>

3. PROGRAMME SPECIFIC OUTCOMES (PSOs)

By the completion of Food Technology B. Tech programme the student will have following programme specific outcomes

- Students will develop theoretical and practical knowledge, develop effective communication and cognitive skills.
- Develop focus in the Food Technology and apply critical thinking and problem-solving skills to address current challenges in the food industry.
- Understand the importance of responsibility, dependability, punctuality, courtesy, sensitivity, respect for others and effort in the work place.
- Commit to the highest standards of professional integrity and ethical values.
4. MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVE WITH PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th>Programme educational objectives</th>
<th>PROGRAMME OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>✓</td>
</tr>
</tbody>
</table>
5. MAPPING OF COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th>Course Name</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical English</td>
<td></td>
</tr>
<tr>
<td>Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td>Engineering Physics</td>
<td></td>
</tr>
<tr>
<td>Engineering Chemistry</td>
<td></td>
</tr>
<tr>
<td>Problem solving and Python programming</td>
<td></td>
</tr>
<tr>
<td>Basic Sciences Laboratory</td>
<td></td>
</tr>
<tr>
<td>Problem solving and Python programming Laboratory</td>
<td></td>
</tr>
<tr>
<td>Professional communication</td>
<td></td>
</tr>
<tr>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td>Engineering Graphics</td>
<td></td>
</tr>
<tr>
<td>Basic Electrical and Electronics Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Food Microbiology</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Biochemistry and Nutrition</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Biochemistry and Nutrition Laboratory</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Food Microbiology Laboratory</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Semester 3</td>
<td>Course Name</td>
<td>PO1</td>
<td>PO2</td>
<td>PO3</td>
<td>PO4</td>
<td>PO5</td>
<td>PO6</td>
<td>PO7</td>
<td>PO8</td>
<td>PO9</td>
<td>PO10</td>
<td>PO11</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Transform Techniques & Partial differential Equations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Food Process Calculations</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Principles of Thermodynamics</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Fluid mechanics in Food processes</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Food Chemistry</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Food Chemistry Laboratory</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Elective - Humanities I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective - Humanities II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmental Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Audit Course- I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probability and Statistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat and Mass transfer in Food Processes</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Unit operations in Food Industries</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Food analysis</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Semester 4</td>
<td>Chemical Engineering laboratory</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>--</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Food analysis Laboratory</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

YEAR 2

<table>
<thead>
<tr>
<th>Course Name</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective - Humanities II</td>
<td></td>
</tr>
<tr>
<td>Environmental Sciences</td>
<td></td>
</tr>
<tr>
<td>Audit Course- I</td>
<td></td>
</tr>
<tr>
<td>Probability and Statistics</td>
<td></td>
</tr>
<tr>
<td>Heat and Mass transfer in Food Processes</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Unit operations in Food Industries</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Food analysis</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Chemical Engineering laboratory</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>--</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Food analysis Laboratory</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Course Name</td>
<td>PO1</td>
<td>PO2</td>
<td>PO3</td>
<td>PO4</td>
<td>PO5</td>
<td>PO6</td>
<td>PO7</td>
<td>PO8</td>
<td>PO9</td>
<td>PO10</td>
<td>PO11</td>
<td>PO12</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Total quality management</td>
<td></td>
</tr>
<tr>
<td>Audit Course- II</td>
<td></td>
</tr>
<tr>
<td>Food Process Engineering</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Professional Elective I</td>
<td></td>
</tr>
<tr>
<td>Fruit and Vegetable Processing and Preservation</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Livestock and Marine Technology</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Professional Elective II</td>
<td></td>
</tr>
<tr>
<td>Livestock and Marine Technology Laboratory</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Fruit and Vegetable Processing Preservation</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Food Packaging Technology</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Food Refrigeration Systems</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Cereals, Pulses and Oil Seed Technology</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Professional Elective III</td>
<td></td>
</tr>
<tr>
<td>Professional Elective IV</td>
<td></td>
</tr>
<tr>
<td>Semester 7</td>
<td>FOOD SAFETY, QUALITY AND REGULATION</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>DAIRY PROCESS TECHNOLOGY</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PROFESSIONAL ELECTIVE V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROFESSIONAL ELECTIVE VI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROFESSIONAL ELECTIVE VII</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPEN ELECTIVE II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAIRY PROCESS TECHNOLOGY</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>INTERNSHIP/TRAINING</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PROJECT I</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Semester 8</td>
<td>PROJECT II</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
ANNA UNIVERSITY, CHENNAI
UNIVERSITY DEPARTMENTS
B. TECH. FOOD TECHNOLOGY
REGULATIONS – 2019
CHOICE BASED CREDIT SYSTEM CURRICULA AND
SYLLABI FOR I TO VIII SEMESTERS

SEMESTER I

<table>
<thead>
<tr>
<th>SI.NO.</th>
<th>CODE NO</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>Periods</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PERIODS</td>
<td>CONTACT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>HS5151</td>
<td>Technical English</td>
<td>HSMC</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>MA5158</td>
<td>Engineering Mathematics I</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>PH5151</td>
<td>Engineering Physics</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>CY5151</td>
<td>Engineering Chemistry</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>GE5153</td>
<td>Problem solving and Python programming</td>
<td>ESC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PERIODS</td>
<td>CONTACT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CREDITS</td>
</tr>
<tr>
<td>6.</td>
<td>BS5161</td>
<td>Basic Sciences Laboratory</td>
<td>BSC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>GE5161</td>
<td>Problem solving and Python programming Laboratory</td>
<td>ESC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>
SEMESTER II

<table>
<thead>
<tr>
<th>SI.NO.</th>
<th>CODE NO</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>HS5251</td>
<td>Professional Communication</td>
<td>HSMC</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>MA5252</td>
<td>Engineering Mathematics II</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>GE5151</td>
<td>Engineering Graphics</td>
<td>ESC</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>EE5251</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>ESC</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>FT5201</td>
<td>Food Microbiology</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>FT5202</td>
<td>Biochemistry and Nutrition</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PRACTICALS

<table>
<thead>
<tr>
<th>SI.NO.</th>
<th>CODE NO</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>FT5211</td>
<td>Biochemistry and Nutrition Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>FT5212</td>
<td>Food Microbiology Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SI.NO.</td>
<td>CODE NO</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>PERIODS PER WEEK</td>
<td>TOTAL CONTACT PERIODS</td>
<td>CREDITS</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMESTER III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA5355</td>
<td>Transform Techniques & Partial Differential Equations</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>FT5301</td>
<td>Food Process Calculations</td>
<td>PCC</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>FT5302</td>
<td>Food Chemistry</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>FT5303</td>
<td>Principles of Thermodynamics</td>
<td>ESC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>FT5304</td>
<td>Fluid mechanics in Food processes</td>
<td>ESC</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Elective - Humanities I</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PRACTICALS

<table>
<thead>
<tr>
<th>SI.NO.</th>
<th>CODE NO</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>FT5311</td>
<td>Food Chemistry Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SI.NO.</td>
<td>CODE NO</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>PERIODS PER WEEK</td>
<td>TOTAL CONTACT PERIODS</td>
<td>CREDITS</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMESTER III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI.NO.</td>
<td>CODE NO</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>PERIODS PER WEEK</td>
<td>TOTAL CONTACT PERIODS</td>
<td>CREDITS</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-------------------------------------</td>
<td>----------</td>
<td>------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Elective - Humanities II</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>GE5251</td>
<td>Environmental Sciences</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Audit Course - I*</td>
<td>AC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>MA5354</td>
<td>Probability and Statistics</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>FT5401</td>
<td>Heat and Mass transfer in Food</td>
<td>PCC</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>FT5402</td>
<td>Unit operations in Food Industries</td>
<td>ESC</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>FT5403</td>
<td>Food Analysis</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>IB5451</td>
<td>Chemical Engineering Laboratory</td>
<td>ESC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>FT5411</td>
<td>Food Analysis Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

* Audit Course is optional
<table>
<thead>
<tr>
<th>SI.NO.</th>
<th>CODE NO</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEOREY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>GE5451</td>
<td>Total quality management</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Audit Course - I*</td>
<td>AC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>FT5501</td>
<td>Food Process Engineering</td>
<td>PCC</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>FT5502</td>
<td>Fruit and Vegetable Processing and Preservation</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>FT5503</td>
<td>Livestock and Marine Technology</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective I</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Professional Elective II</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>FT5511</td>
<td>Livestock and Marine Technology Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>FT5512</td>
<td>Fruit and Vegetable Processing & Preservation Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

* Audit Course is optional
SEMESTER VI

<table>
<thead>
<tr>
<th>SI.NO.</th>
<th>CODE NO</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>FT5601</td>
<td>Food Packaging Technology</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>FT5602</td>
<td>Food Refrigeration Systems</td>
<td>PCC</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>FT5603</td>
<td>Cereals, Pulses and Oil seed Technology</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Professional Elective III</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective IV</td>
<td>PEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Open elective I</td>
<td>OEC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>FT5611</td>
<td>Food Packaging Technology Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>FT5612</td>
<td>Cereal, Pulses and Oil Seed Technology Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>FT5712</td>
<td>Internship/ Training (Minimum 4 Weeks)*</td>
<td>EEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>17</td>
<td>8</td>
<td>26</td>
<td>22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Students should undergo Internship/ Training for which assessment will be done in the seventh semester.
SEMESTER VII

<table>
<thead>
<tr>
<th>SI.NO.</th>
<th>CODE NO</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>FT5701</td>
<td>Food Safety, Quality and Regulation</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>FT5702</td>
<td>Dairy Process Technology</td>
<td>PCC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Professional Elective V</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Professional Elective VI</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective VII</td>
<td>PEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Open Elective II</td>
<td>OEC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>FT5711</td>
<td>Dairy Process Technology Laboratory</td>
<td>PCC</td>
<td>0 0 4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>FT5712</td>
<td>Internship / Training</td>
<td>EEC</td>
<td>- - -</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>FT5713</td>
<td>Project I</td>
<td>EEC</td>
<td>0 0 6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>18 0 10</td>
<td>28</td>
<td>25</td>
</tr>
</tbody>
</table>

SEMESTER VIII

<table>
<thead>
<tr>
<th>SI.NO.</th>
<th>CODE NO</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>FT5811</td>
<td>Project II</td>
<td>EEC</td>
<td>0 0 16</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>0 0 16</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

TOTAL CREDITS : 166
<table>
<thead>
<tr>
<th>SI. NO.</th>
<th>CODE NO</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>TOTAL CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>FT5001</td>
<td>Principles of Biochemical Engineering</td>
<td>PEC</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>FT5002</td>
<td>Analytical Methods for Food Products</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>FT5003</td>
<td>Food Fermentation Technology</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>FT5004</td>
<td>Functional Foods and Nutraceuticals</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>FT5005</td>
<td>Post-Harvest Technology</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>FT5006</td>
<td>Technology of Plantation Crops and Spices</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>FT5007</td>
<td>Food Flavours</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>FT5008</td>
<td>Instrumentation and Food Process Control</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>IB5072</td>
<td>Biological Spectroscopy</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>FT5009</td>
<td>Baking and Confectionery Technology</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>FT5010</td>
<td>Food Plant Design and Layout</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>IB5073</td>
<td>Chemical Reaction Engineering</td>
<td>PEC</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>FT5011</td>
<td>Food Biotechnology</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>FT5012</td>
<td>Food Allergens and Toxicology</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>GE5076</td>
<td>Professional Ethics in Engineering</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>FT5013</td>
<td>Traditional and Organic Foods</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>FT5014</td>
<td>Food Process Economics and Industrial Management</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>FT5015</td>
<td>Food Supply Chain Management</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19.</td>
<td>FT5016</td>
<td>Food Plant Equipment Design</td>
<td>PEC</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>FT5017</td>
<td>Food Ingredients and Additives</td>
<td>PEC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
BASIC SCIENCE COURSES (BSC)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE NO</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDITS</th>
<th>SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA5158</td>
<td>Engineering Mathematics I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>I</td>
</tr>
<tr>
<td>2.</td>
<td>PH5151</td>
<td>Engineering Physics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>3.</td>
<td>CY5151</td>
<td>Engineering Chemistry</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>4.</td>
<td>BS5161</td>
<td>Basic Sciences Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>5.</td>
<td>MA5252</td>
<td>Engineering Mathematics II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>II</td>
</tr>
<tr>
<td>6.</td>
<td>MA5355</td>
<td>Transform Techniques & Partial Differential Equations</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>III</td>
</tr>
<tr>
<td>7.</td>
<td>GE5251</td>
<td>Environmental Sciences</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>IV</td>
</tr>
<tr>
<td>8.</td>
<td>MA5354</td>
<td>Probability and Statistics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>IV</td>
</tr>
</tbody>
</table>

PROFESSIONAL CORE COURSES (PCC)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE NO</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDITS</th>
<th>SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>FT5201</td>
<td>Food Microbiology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>2.</td>
<td>FT5202</td>
<td>Biochemistry and Nutrition</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>3.</td>
<td>FT5211</td>
<td>Biochemistry and Nutrition Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>II</td>
</tr>
<tr>
<td>4.</td>
<td>FT5212</td>
<td>Food Microbiology Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>II</td>
</tr>
<tr>
<td>5.</td>
<td>FT5301</td>
<td>Food Process Calculations</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>6.</td>
<td>FT5302</td>
<td>Food Chemistry</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>7.</td>
<td>FT5311</td>
<td>Food Chemistry Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>III</td>
</tr>
<tr>
<td>8.</td>
<td>FT5401</td>
<td>Heat and Mass transfer in Food Processes</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>FT5403</td>
<td>Food Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>IV</td>
</tr>
<tr>
<td>10.</td>
<td>FT5411</td>
<td>Food Analysis Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>IV</td>
</tr>
<tr>
<td>11.</td>
<td>FT5501</td>
<td>Food Process Engineering</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>12.</td>
<td>FT5502</td>
<td>Fruit and Vegetable Processing and Preservation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>13.</td>
<td>FT5503</td>
<td>Livestock and Marine Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>14.</td>
<td>FT5511</td>
<td>Livestock and Marine Technology Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>15.</td>
<td>FT5512</td>
<td>Fruit and Vegetable Processing & Preservation Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>16.</td>
<td>FT5601</td>
<td>Food Packaging Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>VI</td>
</tr>
<tr>
<td>17.</td>
<td>FT5602</td>
<td>Food Refrigeration Systems</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>VI</td>
</tr>
<tr>
<td>18.</td>
<td>FT5603</td>
<td>Cereals, Pulses and oil seed Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>VI</td>
</tr>
<tr>
<td>19.</td>
<td>FT5611</td>
<td>Food Packaging Technology Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>VI</td>
</tr>
<tr>
<td>20.</td>
<td>FT5612</td>
<td>Cereal, Pulses and Oil Seed Technology Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>VI</td>
</tr>
<tr>
<td>22.</td>
<td>FT5701</td>
<td>Food Safety, Quality and Regulation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>VII</td>
</tr>
<tr>
<td>25.</td>
<td>FT5711</td>
<td>Dairy Process Technology Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>VII</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>CODE NO</td>
<td>COURSE TITLE</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>CREDITS</td>
<td>SEMESTER</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>1.</td>
<td>GE5153</td>
<td>Problem solving and Python programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>2.</td>
<td>GE5161</td>
<td>Problem solving and Python programming Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>3.</td>
<td>GE5151</td>
<td>Engineering Graphics</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>4.</td>
<td>EE5251</td>
<td>Basics of Electrical and Electronics Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>5.</td>
<td>FT5303</td>
<td>Principles of Thermodynamics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>6.</td>
<td>FT5304</td>
<td>Fluid mechanics in Food processes</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>7.</td>
<td>FT5402</td>
<td>Unit operations in Food Industries</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>IV</td>
</tr>
<tr>
<td>8.</td>
<td>IB5451</td>
<td>Chemical Engineering Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>IV</td>
</tr>
</tbody>
</table>
HUMANITIES AND SOCIAL SCIENCES (HSMC) – MANAGEMENT AND OTHERS

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
<th>SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HS5151</td>
<td>Technical English</td>
<td>4 L 0 T 0 P</td>
<td>4</td>
<td>4</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>HS5251</td>
<td>Professional Communication</td>
<td>4 L 0 T 0 P</td>
<td>4</td>
<td>4</td>
<td>II</td>
</tr>
<tr>
<td>5</td>
<td>GE5451</td>
<td>Total Quality Management</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
<td>3</td>
<td>V</td>
</tr>
</tbody>
</table>

HSMC– ELECTIVES – HUMANITIES I (ODD SEMESTER)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods per week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HU5171</td>
<td>Language and Communication</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>HU5172</td>
<td>Values and Ethics</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>HU5173</td>
<td>Human Relations at Work</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>HU5174</td>
<td>Psychological Process</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>HU5175</td>
<td>Education, Technology and Society</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>HU5176</td>
<td>Philosophy</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>HU5177</td>
<td>Applications of Psychology in Everyday Life</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
</tbody>
</table>

HSMC– ELECTIVES – HUMANITIES II (EVEN SEMESTER)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods per week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HU5271</td>
<td>Gender Culture and Development</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>HU5272</td>
<td>Ethics and Holistic Life</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>HU5273</td>
<td>Law and Engineering</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>HU5274</td>
<td>Film Appreciation</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>HU5275</td>
<td>Fundamentals of Language and Linguistics</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>HU5276</td>
<td>Understanding Society and Culture through Literature</td>
<td>3 L 0 T 0 P</td>
<td>3</td>
</tr>
</tbody>
</table>
AUDIT COURSES (AC)
Registration for any of these courses is optional to students

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AD5091</td>
<td>Constitution of India</td>
<td>Lecture 3</td>
<td></td>
<td>2/6</td>
</tr>
<tr>
<td>2.</td>
<td>AD5092</td>
<td>Value Education</td>
<td>Lecture 3</td>
<td></td>
<td>2/6</td>
</tr>
<tr>
<td>3.</td>
<td>AD5093</td>
<td>Pedagogy Studies</td>
<td>Lecture 3</td>
<td></td>
<td>2/6</td>
</tr>
<tr>
<td>4.</td>
<td>AD5094</td>
<td>Stress Management by Yoga</td>
<td>Lecture 3</td>
<td></td>
<td>2/6</td>
</tr>
<tr>
<td>5.</td>
<td>AD5095</td>
<td>Personality Development Through Life Enlightenment Skills</td>
<td>Lecture 3</td>
<td></td>
<td>2/6</td>
</tr>
<tr>
<td>6.</td>
<td>AD5096</td>
<td>Unnat Bharat Abhiyan</td>
<td>Lecture 3</td>
<td></td>
<td>2/6</td>
</tr>
<tr>
<td>7.</td>
<td>AD5097</td>
<td>Essence of Indian Knowledge Tradition</td>
<td>Lecture 3</td>
<td></td>
<td>2/6</td>
</tr>
<tr>
<td>8.</td>
<td>AD5098</td>
<td>Sanga Tamil Literature Appreciation</td>
<td>Lecture 3</td>
<td></td>
<td>2/6</td>
</tr>
</tbody>
</table>

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Code No</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>FT5712</td>
<td>Internship / Training (Minimum 4 Weeks)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>VII</td>
</tr>
<tr>
<td>2.</td>
<td>FT5713</td>
<td>Project I</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>VII</td>
</tr>
<tr>
<td>3.</td>
<td>FT5811</td>
<td>Project II</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>8</td>
<td>VIII</td>
</tr>
</tbody>
</table>
SUMMARY

<table>
<thead>
<tr>
<th>SUBJECT AREA</th>
<th>CREDITS PER SEMESTER</th>
<th>TOTAL CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1 HSMC</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2 BSC</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>3 ESC</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4 PCC</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>5 AC (Non Credit)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6 PEC</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7 OEC</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>8 EEC</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>24</td>
</tr>
</tbody>
</table>
OBJECTIVES

The course aims to

- familiarise first year students of engineering and technology with the fundamental aspects of technical English.
- develop all the four language skills by giving sufficient practice in the use of the skills in real life contexts.
- enhance the linguistic and communicative competence of first year engineering and technology students.

UNIT I INTRODUCING ONESELF 12
Listening Listening and filling a form, listening to speeches by specialists from various branches of engineering and completing activities such as answering questions, identifying the main ideas of the listening text, style of the speaker (tone and tenor) – Speaking Introducing oneself –introducing friend/ family - Reading Descriptive passages (from newspapers / magazines)- Writing Writing a paragraph (native place, school life)- Grammar Simple present, present continuous – Vocabulary Development One word substitution

UNIT II DIALOGUE WRITING 12
Listening Listening to conversations (asking for and giving directions) – Speaking making conversation using (asking for directions, making an enquiry), Role plays-dialogues- Reading Reading a print interview and answering comprehension questions-Writing Writing a checklist, Dialogue writing- Grammar Simple past – question formation (Wh- questions, Yes or No questions, Tag questions)-Vocabulary Development Stress shift, lexical items related to the theme of the given unit.

UNIT III FORMAL LETTER WRITING 12
Listening Listening to speeches by famous people and identifying the central message of the speech – answering multiple-choice questions)- Speaking Giving short talks on a given topic-Reading Reading motivational essays on famous engineers and technologists (answering open-ended and closed questions)- Writing Writing formal letters/ emails (Complaint letters)-Grammar Future Tense forms of verbs, subject and verb agreement-Vocabulary Development Collocations – Fixed expressions

UNIT IV WRITING COMPLAINT LETTERS 12
Listening Listening to short talks (5 minutes duration and fill a table, gap-filling exercise) note taking/note making- Speaking Small group discussion, giving recommendations-Reading Reading problem – solution articles/essays drawn from various sources- Writing Making recommendations – Writing a letter/ sending an email to the Editor- note making- Grammar Modals – Phrasal verbs – cause and effect sentences- Vocabulary Development Connectives, use of cohesive devices in writing, technical vocabulary.

UNIT V WRITING DEFINITIONS AND PRODUCT DESCRIPTION 12
Listening Listening to a product description (labeling and gap filling) exercises- Speaking Describing a product and comparing and contrasting it with other products- Reading Reading graphical material for comparison (advertisements)- Writing Writing Definitions (short and long) – compare and contrast paragraphs- Grammar Adjectives – Degrees of comparison - compound nouns- Vocabulary Development Use of discourse markers – suffixes (adjectival endings).
OUTCOMES

At the end of the course the students will be able to

CO 1 be exposed to basic aspects of technical English.
CO 2 have confidence to communicate effectively various academic situations.
CO 3 learn the use of basic features of Technical English.

TEXTBOOKS

Assessment pattern

☐ Assessments will assess all the four skills through both pen and paper and computer based tests.
☐ Assessments can be pen and paper based, quizzes.

MA5158 ENGINEERING MATHEMATICS – I
(Common to all branches of B.E / B.Tech. Programmes in I Semester)

OBJECTIVES

The course aims to

☐ develop the use of matrix algebra techniques that is needed by engineers for practical applications.
☐ familiarize the students with differential calculus.
☐ familiarize the student with functions of several variables. This is needed in many branches of engineering.
☐ make the students understand various techniques of integration.
☐ acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

UNIT I MATRICES

UNIT II DIFFERENTIAL CALCULUS

UNIT III FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives – Homogeneous functions and Euler’s theorem – Total derivative – Differentiation of implicit functions – Change of variables – Jacobians – Partial differentiation of...

UNIT IV INTEGRAL CALCULUS
Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT V MULTIPLE INTEGRALS

TOTAL: 60 PERIODS

OUTCOMES
At the end of the course the students will be able to
CO 1 use the matrix algebra methods for solving practical problems.
CO 2 apply differential calculus tools in solving various application problems.
CO 3 able to use differential calculus ideas on several variable functions.
CO 4 apply different methods of integration in solving practical problems.
CO 5 apply multiple integral ideas in solving areas, volumes and other practical problems.

TEXTBOOKS

REFERENCES
OBJECTIVES
The course aims to
- make the students understand the importance of mechanics.
- equip the students on the knowledge of electromagnetic waves.
- introduce the basics of oscillations, optics and lasers.
- enable the students in understanding the importance of quantum physics.
- elucidate the application of quantum mechanics towards the formation of energy bands in crystalline materials.

UNIT I MECHANICS

UNIT II ELECTROMAGNETIC WAVES
Gauss’s law – Faraday’s law - Ampere’s law - The Maxwell’s equations - wave equation; Plane electromagnetic waves in vacuum, Conditions on the wave field - properties of electromagnetic waves speed, amplitude, phase, orientation and waves in matter - polarization - Producing electromagnetic waves - Energy and momentum in EM waves. Intensity, waves from localized sources, momentum and radiation pressure - Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

UNIT III OSCILLATIONS, OPTICS AND LASERS

UNIT IV BASIC QUANTUM MECHANICS
Photons and light waves - Electrons and matter waves - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Particle in a infinite potential well - Normalization, probabilities and the correspondence principle.

UNIT V APPLIED QUANTUM MECHANICS
The harmonic oscillator - Barrier penetration and quantum tunneling - Tunneling microscope - Resonant diode - Finite potential wells - particle in a three dimensional box - Bloch’s theorem for particles in a periodic potential, Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students will be able to
- CO 1 understand the importance of mechanics.
- CO 2 express the knowledge of electromagnetic waves.
- CO 3 know the basics of oscillations, optics and lasers.
- CO 4 understand the importance of quantum physics.
- CO 5 apply quantum mechanical principles towards the formation of energy bands in crystalline materials.
TEXT BOOKS:

REFERENCES:

CY5151 ENGINEERING CHEMISTRY (COMMON TO ALL BRANCHES) 3 0 0 3

OBJECTIVES
The course aims to
- introduce the basic concepts of polymers, their properties and some of the important applications.
- impart knowledge on the basic principles and preparatory methods of nanomaterials.
- facilitate the understanding of the laws of photochemistry, photoprocesses and instrumentation & applications of spectroscopic techniques.
- familiarize the operating principles and applications of energy conversion, its processes and storage devices.
- inculcate sound understanding of water quality parameters and water treatment techniques.

UNIT I POLYMER CHEMISTRY 9
Introduction Functionality-degree of polymerization. Classification of polymers- natural and synthetic, thermoplastic and thermosetting. Types and mechanism of polymerization addition (free radical, cationic, anionic and living); condensation and copolymerization. Properties of polymers Tg, tacticity, molecular weight-weight average, number average and polydispersity index. Techniques of polymerization Bulk, emulsion, solution and suspension. Structure, Properties and uses of PE, PVC, PC, PTFE, PP, Nylon 6, Nylon 66, Bakelite, Epoxy; Conducting polymers – polyaniline and polypyrrole.

UNIT II NANO CHEMISTRY 9

UNIT III PHOTOCHEMISTRY AND SPECTROSCOPY 9
UNIT IV ENERGY CONVERSIONS AND STORAGE
Nuclear fission - controlled nuclear fission - nuclear fusion - differences between nuclear fission and fusion - nuclear chain reactions - nuclear energy - light water nuclear power plant – fast breeder reactor. Solar energy conversion - solar cells. Wind energy. Batteries - types of batteries – primary battery (dry cell), secondary battery (lead acid, nickel-cadmium and lithium-ion-battery). Fuel cells – H2-O2 and microbial fuel cell. Explosives – classification, examples TNT, RDX, Dynamite; Rocket fuels and propellants – definition and uses.

UNIT V WATER TECHNOLOGY
Water – sources and impurities – water quality parameters colour, odour, pH, hardness, alkalinity, TDS, COD and BOD. Boiler feed water – requirement – troubles (scale & sludge, caustic embrittlement, boiler corrosion and priming & foaming. Internal conditioning – phosphate, calgon and carbonate treatment. External conditioning - zeolite (permutit) and ion exchange demineralization. Municipal water treatment process – primary (screening, sedimentation and coagulation), secondary (activated sludge process and trickling filter process) and tertiary (ozonolysis, UV treatment, chlorination, reverse osmosis).

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students will be able to

CO 1 recognize and apply basic knowledge on different types of polymeric materials, their general preparation methods and applications to futuristic material fabrication needs.

CO 2 identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.

CO 3 identify and apply suitable spectroscopic technique for material analysis and study different forms of photochemical reactions.

CO 4 recognize different forms of energy resources and apply them for suitable applications in energy sectors.

CO 5 demonstrate the knowledge of water and their quality in using at different industries.

TEXT BOOKS

REFERENCES

Attested

DIRECTOR
Cent for Academic Courses
Anna University, Chennai-600 025
OBJECTIVES

The course aims to
- know the basics of algorithmic problem solving.
- develop Python programs with conditionals and loops.
- define Python functions and use function calls.
- use Python data structures - lists, tuples, dictionaries.
- do input/output with files in Python.

UNIT I INTRODUCTION TO COMPUTING AND PROBLEM SOLVING

Suggested Activities
- Developing Pseudocodes and flowcharts for real life activities such as railway ticket booking using IRCTC, admission process to undergraduate course, academic schedules during a semester etc.
- Developing algorithms for basic mathematical expressions using arithmetic operations.
- Installing Python.
- Simple programs on print statements, arithmetic operations.

Suggested Evaluation Methods
- Assignments on pseudocodes and flowcharts.
- Tutorials on Python programs.

UNIT II CONDITIONALS AND FUNCTIONS

Suggested Activities
- Simple Python program implementation using Operators, Conditionals, Iterative Constructs and Functions.
- Implementation of a simple calculator.
- Developing simple applications like calendar, phone directory, to-do lists etc.
- Flow charts for GCD, Exponent Functions, Fibonacci Series using conditionals and iterative statements.
- External learning - Recursion vs. Iteration.

Suggested Evaluation Methods
- Tutorials on the above activities.
- Group Discussion on external learning.
UNIT III SIMPLE DATA STRUCTURES IN PYTHON 10

Suggested Activities

☐ Implementing python program using lists, tuples, sets for the following scenario
 Simple sorting techniques
 Student Examination Report
 Billing Scheme during shopping.

☐ External learning - List vs. Tuple vs. Set – Implementing any application using all the three data structures.

Suggested Evaluation Methods

☐ Tutorials on the above activities.
☐ Group Discussion on external learning component.

UNIT IV STRINGS, DICTIONARIES, MODULES 10

Suggested Activities

☐ Implementing Python program by importing Time module, Math package etc.
☐ Creation of any package (student’s choice) and importing into the application.

Suggested Evaluation Methods

☐ Tutorials on the above activities.

UNIT V FILE HANDLING AND EXCEPTION HANDLING 7

Introduction to Files – File Path – Opening and Closing Files – Reading and Writing Files – File Position – Exception Errors and Exceptions, Exception Handling, Multiple Exceptions.

Suggested Activities

☐ Developing modules using Python to handle files and apply various operations on files.
☐ Usage of exceptions, multiple except blocks -for applications that use delimiters like age, range of numerals etc.
☐ Implementing Python program to open a non-existent file using exceptions.
Suggested Evaluation Methods

- Tutorials on the above activities.
- Case Studies.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to
- CO 1 develop algorithmic solutions to simple computational problems.
- CO 2 develop and execute simple Python programs.
- CO 3 write simple Python programs for solving problems.
- CO 4 decompose a Python program into functions.
- CO 5 represent compound data using Python lists, tuples, dictionaries etc.
- CO 6 read and write data from/to files in Python programs.

TEXT BOOKS:

REFERENCES:

OBJECTIVES:

The course aims to
- inculcate experimental skills to test basic understanding of physics of materials including properties of matter, thermal and optical properties.
- induce the students to familiarize with experimental determination of velocity of ultrasonic waves and band gap determination.

LIST OF EXPERIMENTS

1. Torsional pendulum - Determination of rigidity modulus of wire and moment of inertia of disc
2. Non-uniform bending - Determination of young’s modulus
3. Uniform bending – Determination of young’s modulus
4. Lee’s disc Determination of thermal conductivity of a bad conductor
5. Potentiometer-Determination of thermo e.m.f of a thermocouple
6. Laser- Determination of the wave length of the laser using grating
7. Air wedge - Determination of thickness of a thin sheet/wire
8. a) Optical fibre - Determination of Numerical Aperture and acceptance angle
 b) Compact disc- Determination of width of the groove using laser.
10. Ultrasonic interferometer – determination of the velocity of sound and compressibility of liquids
11. Post office box - Determination of Band gap of a semiconductor.
13. Photoelectric effect
14. Michelson Interferometer.
16. Melde’s string experiment

TOTAL: 30 PERIODS

OUTCOMES:

At the end of the course the students will be able to
- determine various moduli of elasticity and also various thermal and optical properties of materials.
- determine the velocity of ultrasonic waves, band gap determination and viscosity of liquids.

CHEMISTRY LABORATORY (Minimum of 8 experiments to be conducted)

OBJECTIVES

The course aims to
- inculcate experimental skills to test basic understanding of water quality parameters, such as, acidity, alkalinity, hardness, DO, chloride and copper.
- induce the students to familiarize with electroanalytical techniques such as, pH metry, potentiometry and conductometry in the determination of impurities in aqueous solutions.
- demonstrate the analysis of metals and polymers by spectroscopy and visometry methods.
LIST OF EXPERIMENTS

1. Estimation of HCl using Na2CO3 as primary standard and Determination of alkalinity in water sample.
2. Determination of total temporary & permanent hardness of water by EDTA method.
3. Determination of DO content of water sample by Winkler’s method.
4. Determination of chloride content of water sample by argentometric method.
5. Estimation of copper content of the given solution by iodometry.
6. Determination of strength of given hydrochloric acid using pH meter.
7. Determination of strength of acids in a mixture of acids using conductivity meter.
8. Estimation of iron content of the given solution using potentiometer.
9. Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthroline / thiocyanate method).
10. Estimation of sodium and potassium present in water using flame photometer.
12. Pseudo first order kinetics-ester hydrolysis.
14. Phase change in a solid.

TOTAL: 30 PERIODS

OUTCOMES:

At the end of the course the students will be able to
 CO 1 analyse the quality of water samples with respect to their acidity, alkalinity, hardness and DO.
 CO 2 determine the amount of metal ions through volumetric and spectroscopic techniques
 CO 3 determine the molecular weight of polymers by viscometric method.
 CO 4 quantitatively analyse the impurities in solution by electroanalytical techniques
 CO 5 design and analyse the kinetics of reactions and corrosion of metals

TEXTBOOKS:

OBJECTIVES:

The course aims to
- understand the problem solving approaches.
- learn the basic programming constructs in Python.
- articulate where computing strategies support in providing Python-based solutions to real world problems.
- use Python data structures - lists, tuples, dictionaries.
- do input/output with files in Python.

LIST OF EXPERIMENTS

1. Identification and solving of simple real life or scientific or technical problems, and developing flow charts for the same.
2. Python programming using simple statements and expressions.
3. Scientific problems using Conditionals and Iterative loops.
4. Implementing real-time/technical applications using Lists, Tuples.
5. Implementing real-time/technical applications using Sets, Dictionaries.
6. Implementing programs using Functions.
7. Implementing programs using Strings.
9. Implementing real-time/technical applications using File handling.
10. Implementing real-time/technical applications using Exception handling.
12. Developing a game activity using Pygame like bouncing ball, car race etc.

TOTAL: 60 PERIODS

OUTCOMES:

At the end of the course the students will be able to
- CO 1 develop algorithmic solutions to simple computational problems
- CO 2 develop and execute simple Python programs.
- CO 3 structure simple Python programs for solving problems.
- CO 4 decompose a Python program into functions.
- CO 5 represent compound data using Python data structures.
- CO 6 apply Python features in developing software applications.
SEMESTER II

HS5251 PROFESSIONAL COMMUNICATION L T P C
4 0 0 4

OBJECTIVES

The course aims to

- improve the relevant language skills necessary for professional communication.
- develop linguistic and strategic competence in workplace context.
- enhance language proficiency and thereby the employability of budding engineers and technologists.

UNIT I TECHNICAL COMMUNICATION

Listening to telephone conversations (intent of the speaker and note taking exercises)-
Speaking Role play exercises based on workplace contexts, introducing oneself- Reading
Reading the interview of an achiever and completing exercises (skimming, scanning and predicting)- Writing Writing a short biography of an achiever based on given hints- Grammar
Asking and answering questions, punctuation in writing, prepositional phrases- Vocabulary
Development use of adjectives.

UNIT II SUMMARY WRITING

Listening to talks/lectures both general and technical and summarizing the main points- Speaking Participating in debates- Reading Reading technical essays/articles and answering comprehension questions-Writing Summary writing-Grammar Participle forms, relative clauses- Vocabulary Development Use of compound words, abbreviations and acronyms.

UNIT III PROCESS DESCRIPTION

Listening to a process description and drawing a flowchart-Speaking Participating in Group Discussions, giving instructions- Reading Reading instruction manuals- Writing Writing process descriptions- Writing instructions- Grammar Use of imperatives, active and passive voice, sequence words- Vocabulary Development Technical jargon

UNIT IV REPORT WRITING

Listening to a presentation and completing gap-filling exercises- Speaking Making formal presentations- Reading Reading and interpreting charts/tables and diagrams- Writing Interpreting charts/tables and diagrams, writing a report- Grammar Direct into indirect speech, use of phrases- Vocabulary Development reporting words

UNIT V WRITING JOB APPLICATIONS

Listening to a job interview and completing gap-filling exercises- Speaking Mock interview, telephone interviews- Reading Reading a job interview, SOP, company profile and completing comprehension exercises- Writing job applications and resumes and SOPs- Grammar Present perfect and continuous tenses- Vocabulary Development Technical vocabulary.

Attested

[Signatures and seals]
OUTCOMES:

At the end of the course the students will be able to

- **CO 1** read and comprehend technical texts effortlessly.
- **CO 2** write reports of a technical kind.
- **CO 3** speak with confidence in interviews and thereby gain employability.

TEXTBOOKS

Assessment pattern

- Assessments will assess all the four skills through both pen and paper and computer based tests.
- Assessments can be pen and paper based, quizzes.

MA5252 ENGINEERING MATHEMATICS – II
(Common to all branches of B.E. / B.Tech. Programmes in II Semester)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

OBJECTIVES

The course aims to

- acquaint the students with the concepts of vector calculus which naturally arises in many engineering problems.
- develop an understanding of the standard techniques of complex variable theory in particular analytic function and its mapping property.
- familiarize the students with complex integration techniques and contour integration techniques which can be used in real integrals.
- acquaint the students with Differential Equations which are significantly used in Engineering problems.
- make the students appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

UNIT I VECTOR CALCULUS

UNIT II ANALYTIC FUNCTION

UNIT III COMPLEX INTEGRATION

UNIT IV DIFFERENTIAL EQUATIONS

Method of variation of parameters – Method of undetermined coefficients – Homogenous equations of Euler’s and Legendre’s type – System of simultaneous linear differential equations with constant coefficients.

UNIT V LAPLACE TRANSFORMS

TOTAL: 60 PERIODS

OUTCOMES:

At the end of the course the students will be able to

1. CO 1 calculate grad, div and curl and use Gauss, Stokes and Greens theorems to simplify calculations of integrals.
2. CO 2 construct analytic functions and use their conformal mapping property in application problems.
3. CO 3 evaluate real and complex integrals using the Cauchy’s integral formula and residue theorem.
4. CO 4 apply various methods of solving differential equation which arise in many application problems.
5. CO 5 apply Laplace transform methods for solving linear differential equations.

TEXTBOOKS:

REFERENCES:

OBJECTIVES

The course aims to prepare the students for

- drawing free hand sketches of basic geometrical shapes and multiple views of objects.
- drawing orthographic projections of lines and planes.
- drawing orthographic projections of solids.
- drawing development of the surfaces of objects.
- drawing isometric and perspective views of simple solids.

CONCEPTS AND CONVENTIONS (NOT FOR EXAMINATION) 1

Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREE HANDSKETCHING 14

Basic Geometrical constructions, Curves used in engineering practices-Conics – Construction of ellipse, parabola and hyperbola by different methods – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves. Visualization concepts and Free Hand sketching Visualization principles – Representation of Three-Dimensional objects – Layout of views- Free hand sketching of multiple views from pictorial views of objects

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES 15

Orthographic projection- principles-Principle planes-First angle projection-Projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes- Determination of true lengths and true inclinations by rotating line method and trapezoidal method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS 15

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to both the principal planes by rotating object method and auxiliary plane method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 15

Sectioning of solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes.
UNITV ISOMETRIC AND PERSPECTIVE PROJECTIONS

Principles of isometric projection – isometric scale – Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems. Perspective projection of simple solids-Prisms pyramids and cylinders by visual ray method and vanishing point method.

COMPUTER AIDED DRAFTING (DEMONSTRATION ONLY) 3

Introduction to drafting packages and demonstration of their use

TOTAL: (L 15 + P 60)=75 PERIODS

OUTCOMES:

At the end of the course the students will be able to

CO 1 draw free hand sketching of basic geometrical shapes and multiple views of objects.
CO 2 draw orthographic projections of lines and planes
CO 3 draw orthographic projections of solids
CO 4 draw development of the surfaces of objects
CO 5 draw isometric and perspective views of simple solids.

TEXT BOOKS:

REFERENCES:

Publication of Bureau of Indian Standards

1. IS 10711 – 2001 Technical products Documentation – Size and lay out of drawing sheets
2. IS 9609 (Parts 0 & 1) – 2001 Technical products Documentation – Lettering.
5. IS 15021 (Parts 1 to 4) – 2001 Technical drawings – Projection Methods.

Special points applicable to University Examinations on Engineering Graphics

1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a Total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only.
4. The students will be permitted to use appropriate scale to fit solution within A3 size.
5. The examination will be conducted in appropriate sessions on the same day.
OBJECTIVES
The course aims to
- understand the basic concepts of electric circuits, magnetic circuits and wiring.
- understand the operation of AC and DC machines.
- understand the working principle of electronic devices and circuits.

UNIT I BASIC CIRCUITS AND DOMESTIC WIRING 9

UNIT II THREE PHASE CIRCUITS AND MAGNETIC CIRCUITS 9

UNIT III ELECTRICAL MACHINES 9

UNIT IV BASICS OF ELECTRONICS 9
Intrinsic semiconductors, Extrinsic semiconductors – P-type and N-type, P-N junction, VI Characteristics of PN junction diode, Zener effect, Zener diode, Zener diode Characteristics-Rectifier circuits-Wave shaping.

UNIT V CURRENT CONTROLLED AND VOLTAGE CONTROLLED DEVICES 9
Working principle and characteristics - BJT, SCR, JFET, MOSFET.

TOTAL: 45 PERIODS

OUTCOMES:
CO1 To be able to understand the concepts related with electrical circuits and wiring.
CO2 To be able to study the different three phase connections and the concepts of magnetic circuits.
CO3 Capable of understanding the operating principle of AC and DC machines.
CO4 To be able to understand the working principle of electronic devices such as diode and zener diode.
CO 5 To be able to understand the characteristics and working of current controlled and voltage controlled devices.
TEXT BOOKS:

REFERENCES:

FT5201 FOOD MICROBIOLOGY L T P C
3 0 0 3

OBJECTIVES
The course aims to

□ enable students to understand the methods of isolating and characterizing various microbes associated with foods and food groups.
□ enable students to understand and use various microbiological techniques for the study of foods.
□ understand the methods used to detect pathogens in foods.

UNIT I MICROBES - STRUCTURE AND MULTIPLICATION 12
Basics of microbial existence; history of microbiology, classification and nomenclature of microorganisms, microscopic examination of microorganisms, light and electron microscopy; principles of different staining techniques like gram staining, acid fast, capsule staining and flagella staining. Nutritional requirements of bacteria; different media used for bacterial culture; growth curve and different methods to quantify bacterial growth; aerobic and anaerobic bioenergetics and utilization of energy for biosynthesis of important molecules.
Calculation of doubling time of bacteria.

UNIT II ROLE OF MICROBES IN SPOILAGE OF FOODS AND THEIR CONTROL 8
Factors affecting spoilage of foods, Microbial flora associated with various food groups their spoilage potential. Microbiological spoilage problems associated with typical food products. Use of antimicrobial chemicals- organic acids, sugars, sodium chloride, nitrites, phosphates, sulphites, Benzoates, Sorbates / Propionates naturally occurring antimicrobials; Physical methods- Low and high temperatures, drying, radiation and high pressure; Tolerance of microbes to chemical and physical methods in various foods.

UNIT III BENEFICIAL MICROBES IN FOODS 9
Microbes of importance in food fermentations, – Homo & hetero-fermentative bacteria, yeasts and fungi; Biochemistry of fermentations – pathways involved, Lactic acid bacteria fermentation and starter cultures, Alcoholic fermentations - Yeast fermentations - characteristics and strain selection, Fungal fermentations. Microbes associated with typical food fermentations- yoghurt, cheese, fermented milks, breads, idli, soy products, fermented vegetables and meats.
UNIT IV MICROBIAL AGENTS OF FOOD BORNE ILLNESS
Food borne infections and food poisoning, Microbial toxins - types, Gram Negative and Gram positive food borne pathogens – *Salmonella, E. coli, Shigella, Vibrio cholerae, Staphylococcus aureus; Clostridium botulinum; Lysteria monocytogenes. Toxigenic algae and fungi; Food borne viruses; helminths, nematodes and protozoa.

UNIT V MICROBIAL EXAMINATION OF FOODS
Detection & Enumeration of microbes in foods, Most Probable Number calculations; Indicator organisms and microbiological criteria; Rapid and automated microbial methods - development and impact on the detection of food borne pathogens; Applications of immunological techniques, importance of *Clostridium botulinum* to food industry; Detection methods for *E. coli, Staphylococci, Yersinia, B. cereus, C. botulinum & Salmonella, Listeria monocytogenes, Norwalkvirus, Rotavirus, Hepatitis A virus from food samples.

TOTAL: 45 PERIODS

OUTCOMES

At the end of the course the students will be able to

- **CO 1** understand the structure and identify the various microbes associated with foods and food groups.
- **CO 2** understand and identify the role of these microbes in food spoilage, food preservation.
- **CO 3** understand the role of pathogens in food borne infections and how to detect them.

TEXT BOOKS

REFERENCES

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes(PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>CO1 understand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the structure</td>
<td>1 - - - - - - 2 1 - - 2 1 - - -</td>
<td></td>
</tr>
<tr>
<td>and identify the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>various microbes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>associated with foods and food groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 understand</td>
<td>2 1 - - 3 1 - 2 1 - 1 2 1 1 1</td>
<td></td>
</tr>
<tr>
<td>and identify the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>role of these</td>
<td></td>
<td></td>
</tr>
<tr>
<td>microbes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in food spoilage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>food preservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3 understand</td>
<td>2 1 1 2 1 2 2 1 - 2 - 2 1 1</td>
<td></td>
</tr>
<tr>
<td>the role of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pathogens in food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>borne infections and how to detect them</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over all CO</td>
<td>2 1 1 1 1 1 1 2 1 1 1 2</td>
<td>1 1 - -</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to
- ensure students have a strong grounding in structures and reactions of biomolecules.
- introduce them to metabolic pathway of the major biomolecules
- enable the students to understand roles of each nutrients in growth and metabolism

UNIT I INTRODUCTION TO BIOMOLECULES 5
Basic principles of organic chemistry, role of carbon, types of functional groups, biomolecules, chemical nature of water, pH and biological buffers.

UNIT II STRUCTURE AND PROPERTIES OF IMPORTANT BIOMOLECULES 15
Carbohydrates mutarotation, glycosidic bond, reactions of monosaccharides and reducing sugars.Starch, glycogen, cellulose and chitin structures and functions .Proteoglycans, glycosaminoglycans, hyaluronic acid, chondroitin sulfate.

UNIT III AN OVERVIEW OF NUTRITION AND ENERGY BALANCE 6
Definition, six classes of nutrients, calculating energy values from food, using the RDA, nutritional status, nutritional requirement, malnutrition, nutritional assessment of individuals and populations, dietary recommendations, Balanced diet planning Diet planning principles, dietary guidelines; Glycemic and Non-glycemic carbohydrates, health effects of fiber and starch intake food groups, exchange lists, personal diet analysis; Digestion, Absorption and Transport Anatomy and physiology of the digestive tract, mechanical and chemical digestion, absorption of nutrients. Energy balance; body weight and body composition; health implications; obesity, BMR and BMI calculations

UNIT IV VITAMINS AND MINERALS 5
Water Soluble Vitamins B vitamins examined individually (Thiamine, Riboflavin, Niacin, Pyridoxine, Biotin, folate B12, choline, pantothenic acid, and carnitine) and in concert; B vitamin deficiencies, toxicities, and food sources; vitamin C roles and recommended intake, deficiency, toxicity and food sources. Fat Soluble Vitamins A, D, E, and K Function, recommended intakes, toxicities, food sources of vitamin A, D, E, and K; Water and Major Minerals Water balance and recommended intakes; fluid/electrolyte balance, acid-base balance; function, recommended intakes, and regulation of sodium, potassium, and calcium. Trace Minerals Food sources, function, recommended intakes, toxicities, deficiencies and transport of iron and zinc; importance of selenium, copper, fluoride, and chromium.

UNIT V INTERMEDIARY METABOLISM AND REGULATION 14
Enzymes, introduction to biocatalysts, metabolic pathways, primary and secondary metabolites. Glycolysis, TCA cycle, gluconeogenesis, pentose phosphate shunt, glyoxalate shunt, fatty acid synthesis and oxidation, reactions of amino acids, deamination, transamination and decarboxylation, urea cycle, Bioenergetics - High energy compounds, electronegative potential
of compounds, respiratory chain, ATP cycle, calculation of ATP yield during oxidation of glucose and fatty acids.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students will be able to

CO 1 understand the fundamentals of biomolecules, biochemical reactions in a living organism.
CO 2 understand the importance of nutrients in growth and metabolism.
CO 3 gain knowledge of importance of nutrients in physiological function and biochemical pathways.

TEXT BOOKS:

REFERENCES:
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO 1 understanding on the fundamentals of biomolecules, biochemical reactions in a living organism.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO 2 understand the importance of nutrients in growth and metabolism.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO 3 gain knowledge of importance of nutrients in physiological function and biochemical pathways.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Over all CO</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to
 - learn and understand the principles behind the qualitative and quantitative estimation of biomolecules.
 - understand the quantitative methods in assessing nutritional status of individuals and groups

LIST OF EXPERIMENTS

1. Units of volume, weight, density and concentration measurements and their range in biological measurements. Demonstration of proper use of volume and weight measurement devices.
2. Preparation of buffer – titration of a weak acid and a weak base.
3. Qualitative tests for carbohydrates – distinguishing reducing from non-reducing sugars and keto from aldo sugars.
5. Protein estimation by Biuret and Lowry’s methods.
6. Protein estimation by Bradford and spectroscopic methods.
7. Extraction of lipids and analysis by TLC.
8. Enzymatic assay phosphatase from potato.
10. Techniques of measuring height, weight, head, chest and arm circumference, waist to hip ratio, skin-fold thickness, Calculation of percent Body fat using skin folds callipers
11. Calculation of the calories from nutrient composition of foods
12. Comparison of Food Composition data bases

TOTAL: 60 PERIODS

OUTCOMES:

At the end of the course the students will be able to
CO 1 understand the experimental protocols for qualitative and quantitative analysis of biomolecules.
CO 2 familiarize with the calculation of energy values of foods and composition table.
CO 3 gain knowledge of Nutritional anthropology techniques.

TEXT BOOKS:

REFERENCES:
<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO 1</td>
<td>understand the experimental protocols for qualitative and quantitative analysis of biomolecules.</td>
<td>3</td>
</tr>
<tr>
<td>CO 2</td>
<td>familiarize with the calculation of energy values of foods and composition table.</td>
<td>3</td>
</tr>
<tr>
<td>CO 3</td>
<td>gain knowledge of Nutritional anthropometry techniques.</td>
<td>3</td>
</tr>
<tr>
<td>Over all CO</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to
☐ enable students to understand the methods of isolating and characterizing various microbes associated with foods and food groups.
☐ enable students to understand and use various microbiological techniques for the study of foods.
☐ Understand the methods used to detect pathogens in foods.

LIST OF EXPERIMENTS
1. Introduction, Laboratory Safety, Use of Equipment; Sterilization Techniques; Culture Media-Types and Use; Preparation of Nutrient broth and agar
2. Culture Techniques, Isolation and Preservation of Cultures- Broth flask, test tubes; Solid Pour plates, streak plates, slants, stabs
3. Microscopy – Working and care of Microscope; Microscopic Methods in the Study of Microorganisms; Staining Techniques - Simple, Differential- Gram’s Staining
4. Quantification of Microbes Sampling and Serial Dilution; Bacterial count in food products TVC
5. Microbiological quality of water (MPN)
6. Microbiological quality of milk
7. Enumeration of Lactic acid bacteria from fermented foods
8. Yeast & Mould count from fruits
9. Enumeration of spores from pepper
10. Inhibitory effect of spices on microbial load in fish & flesh foods
11. Enumeration & Isolation of E. coli from processed meat/chicken
12. Thermal destruction of microbes TDT & TDP
13. Enumeration & Isolation of Staphylococci from ready to eat street foods
14. Effect of cleaning and disinfection on microbial load

OUTCOMES:
At the end of the course the students will be able to
 CO 1 different techniques for the identification, isolation and culture of microbes.
 CO 2 analyse and identify microbial contamination in food
 CO 3 disinfection techniques

REFERENCES
<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programmes outcome (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>different techniques for the identification, isolation and culture of microbes.</td>
<td>1 - 1 - 3 1 - 2 3 2 - 2 2 1 3 2</td>
</tr>
<tr>
<td>CO2</td>
<td>analyse and identify microbial contamination in food.</td>
<td>1 1 1 1 2 - - 1 2 1 - 2 2 2 3 2</td>
</tr>
<tr>
<td>CO3</td>
<td>disinfection techniques.</td>
<td>1 2 1 2 3 1 - 3 3 1 - 2 2 2 3 2</td>
</tr>
<tr>
<td>Over all CO</td>
<td>1 2 1 1 3 1 - 2 3 1 - 2 2 2 3 2</td>
<td></td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to
- introduce the effective mathematical tools for the solutions of partial differential equations that model physical processes;
- introduce Fourier series analysis which is central to many applications in engineering.
- develop the analytic solutions for partial differential equations used in engineering by Fourier series;
- acquaint the student with Fourier transform techniques used in wide variety of situations in which the functions used are not periodic;
- develop Z- transform techniques which will perform the same task for discrete time systems as Laplace Transform, a valuable aid in analysis of continuous time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS 12
Formation – Solutions of first order equations – Standard types and Equations reducible to standard types – Lagrange’s Linear equation – Solution of linear equations of higher order with constant coefficients – Linear non-homogeneous partial differential equations.

UNIT II FOURIER SERIES 12
Dirichlet’s conditions – General Fourier series – Odd and even functions – Half-range Sine and cosine series – Complex form of Fourier series – Parseval’s identity – Harmonic Analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATION 12

UNIT IV FOURIER TRANSFORM 12

UNIT V TRANSFORM AND DIFFERENCE EQUATIONS 12

TOTAL: 60 PERIODS

OUTCOMES:
At the end of the course students will be able to
CO 1 solve partial differential equations which arise in application problems.
CO 2 analyze the functions as an infinite series involving sine and cosine functions.
CO 3 obtain the solutions of the partial differential equations using Fourier series.
CO 4 obtain Fourier transforms for the functions which are needed for solving application problems.
CO 5 manipulate discrete data sequences using Z transform techniques.

TEXTBOOKS:
FT5301 FOOD PROCESS CALCULATIONS

OBJECTIVES
The course aims to
- learn various units, dimensions and unit conversions
- learn mass and energy balance in unit operations and processes involved in food industries

UNIT I UNITS AND DIMENSIONS 9
Units and Dimensions Basic and derived units, use of model units in calculations, Methods of expression, compositions of mixture and solutions. Ideal and real gas laws – Gas constant - calculations of pressure, volume and temperature using ideal gas law.

UNIT II HUMIDITY CALCULATIONS 9
Fundamental food process Calculations and Humidity Calculation of absolute humidity, molal humidity, relative humidity and percentage humidity - Use of humidity in condensation and drying of foods - Humidity chart, dew point.

UNIT III STOICHIOMETRY AND MATERIAL BALANCE 9
Basic Principles of Stoichiometry - Importance of material balance and energy balance in a food Industry-Dimensions, Units, conversion factors and their use –Data sources, Humidity and applications. Material Balance Stoichiometric principles, Application of material balance in food operations like distillation, evaporation, crystallization, drying, extraction, Leaching.

UNIT IV ENERGY BALANCE 9
Energy Balance Heat capacity of solids, liquids, gases and solutions, use of mean heat capacity in heat calculations, problems involving sensible heat and latent heats for food products.

UNIT V ENTHALPY 9
Enthalpy Changes Standard heat of reaction, heats of formation, combustion, solution, mixing etc., calculation of standard heat of reaction - Effect of pressure and temperature on heat of reaction - Energy balance for systems without chemical reaction.

TOTAL: 45 PERIODS

(Use of Psychometric chart is permitted in the examination)
OUTCOMES:
At the end of the course the students will be able to
CO 1 make them understand different types of laws of chemistry of materials
CO 2 accurately calculate the stoichiometric relations between the materials involved in
the unit operation process.
CO 3 perform elementary material and energy balance for different unit operations.

TEXT BOOKS:
2. Gavhane, K.A —Introduction to Process Calculations (Stoichiometry)

REFERENCES:
1. Venkataramani, V. and Anantharaman, N., —Process Calculations, Prentice Hall of India,
 New Delhi, 2003.
2. Himmelblau, D.M., —Basic Principles and Calculations in Chemical Engineering,
<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programmespecific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 make them understand different types of laws of chemistry of materials.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2 accurately calculate the stoichiometric relations between the materials involved in the unit operation process.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3 perform elementary material and energy balance for different unit operations.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Over all CO</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to
- train the students on the basics and applications of energy in Mechanical Engineering
- impart knowledge on thermodynamics and thermal engineering power generating units such as engines and theory of machines

UNIT I BASIC CONCEPTS

UNIT II LAWS OF THERMODYNAMICS

UNIT III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE

UNIT IV IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS

UNIT V GAS MIXTURES AND PSYCHROMETRY
Mole and Mass fraction, Dalton’s and Amagat’s Law. Properties of gas mixture – Molar mass, gas constant, density, change in internal energy, enthalpy, entropy and Gibbs function. Psychrometric properties, Psychrometric charts. Property calculations of air vapour mixtures by using chart and expressions. Psychrometric process – adiabatic saturation, sensible heating and cooling, humidification, dehumidification, evaporative cooling and adiabatic mixing. Simple Applications

TOTAL: 45 PERIODS
OUTCOMES:

At the end of the course the students will be able to

- CO 1 apply thermodynamic principles to Engineering Applications
- CO 2 apply mathematical fundamentals to study the properties of steam, gas and gas mixture.
- CO 3 apply fundamentals of thermodynamics and to perform thermal analysis on their behaviour and performance

TEXT BOOKS:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 apply thermodynamic principles to Engineering Applications</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2 apply mathematical fundamentals to study the properties of steam, gas and gas mixture.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3 apply fundamentals of thermodynamics and to perform thermal analysis on their behaviour and performance</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Over all CO</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to
- introduce about the mechanics of fluids through a thorough understanding of the properties of the fluids, behaviour of fluids under static conditions. The dynamics of fluids through the control volume approach which gives an integrated understanding of the transport of mass, momentum and energy.
- expose to the applications of the conservation laws to a) flow measurements b) flow through pipes (both laminar and turbulent) and c) forces on vanes.

UNIT I PROPERTIES OF FLUIDS

UNIT II FLUID FLOW ANALYSIS

UNIT III FLOW MEASUREMENTS

UNIT IV OPEN CHANNEL FLOW AND FLUID FLOW THROUGH BEDS

UNIT V DIMENSIONAL ANALYSIS & PUMPS

TOTAL: 45 PERIODS
OUTCOMES:

At the end of the course the students will be able to

CO 1 get a basic knowledge of fluids in static, kinematic and dynamic equilibrium.
CO 2 gain the knowledge of the applicability of physical laws in addressing problems in hydraulics.
CO 3 perceive knowledge on metering and transportation of fluids.

TEXT BOOKS:

REFERENCES:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 get a basic knowledge of fluids in static, kinematic and dynamic equilibrium</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO2 gain the knowledge of the applicability of physical laws in addressing problems in hydraulics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3 perceive knowledge on metering and transportation of fluids</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Over all CO</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to

• develop the knowledge of students in the basic area of Food Chemistry such as the composition and properties of food and the chemical changes of nutrients during handling, processing, and storage.
• effective understanding of food processing and technology.
• appreciate the similarities and complexities of the chemical components in foods.

UNIT I CARBOHYDRATES

The principal carbohydrates in the human diet. Chemical properties of carbohydrates - dehydration, caramelization, Maillard reaction. Types Simple Sugars mono and disaccharides, solubility; Artificial sweeteners; Glucose syrup, fructose syrup, Sugar alcohols; Oligosaccharides structure, nomenclature, occurrence, uses in foods. Polysaccharides Starch- amylase and amylopectin- properties, thickening & gelatinization, modified starches, resistant starch, Dextrins and dextrans, Starch hydrolysates – Maltodextrins and dextrins; Structure of glycogen. Fiber-Cellulose & hemicellulose Pectins Gums & seaweeds- gel formation & viscosity.

UNIT II PROTEINS

The principal proteins in the human diet. Review of protein structure & conformation; Optical activity, solubility, hydration, swelling, foam formation & stabilization, gel formation, emulsifying effect, thickening & binding, amino acids in Maillard reaction, denaturation; Properties & reactions of proteins in food systems and Food enzymes and its role in food spoilage, application of food enzymes; Texturized proteins; Functional role and uses in foods.

UNIT III LIPIDS

Review of structure, composition and nomenclature of fats. Properties of fats & oils Edible oil refining processes, winterization, melting points, plasticity, isomerisation, hydrolysis of triglycerides, Saponification number, iodine value, Reichert-Meissi number. Types of fatty acids; Modification of fats hydrogenation- cis and trans isomers, inter-esterification, acetylation, Hydrolytic rancidity & oxidative rancidity; Shortening power of fats, tenderization, frying - smoke point, auto oxidation, polymerization, lipids having emulsifying properties, its application in food industry and detergents; Shortening power of fats, chemistry of steroids, types of fat substitute.

UNIT IV FOOD COMPOSITION, WATER, MINERALS AND VITAMINS

Proximate composition of food, water activity in food, moisture content of food, water quality for food processing. Mineral & vitamin content of foods- stability & degradation during food processing.

UNIT V AROMA & IMPORTANT PHYTOCHEMICALS IN FOOD

Naturally occurring colours/pigments in food and impact on antioxidant level, Synthetic food grade Colours, enzymatic browning of food, flavour & aroma components present in herbs, spices, coffee, tea, cocoa, fruits, vegetables & fermented products; and Naturally similar/artificial flavours, Threshold values, off flavours & food taints. Naturally occurring toxic substances, protease inhibitors, bioactive components phytates, polyphenols, saponins, phytoestrogens etc.
OUTCOMES:

At the end of the course the students will be able to
 CO 1 gain knowledge on chemical nature of food components.
 CO 2 imparting knowledge on chemical changes of food components during food handling, processing, and storage.
 CO 3 facilitate basic platform for further understanding of food analysis.

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>CO1 gain knowledge on chemical nature of food components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 imparting knowledge on chemical changes of food components during food handling, processing, and storage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3 facilitate basic platform for further understanding of food analysis.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Over all CO | 1 2 - - - - - - - - - - 3 | 1 3 - 3 | 1, 2, and 3 are correlation levels with weightings on slight (low), moderate (medium), and substantial (high) respectively.
OBJECTIVES

The course aims to

- study and understand the chemical properties of foods.
- study the physical, chemical, thermal properties of various food constituents

LIST OF EXPERIMENTS

1. Experiment to study the properties of carbohydrates- caramelization, Maillard reaction.
2. Experiment on enzymatic and acid hydrolysis of sucrose
3. Preparation of emulsions and study its stability
4. Determination of Foaming properties of proteins
5. Determination of Solubility, specific gravity and Refractive index of oils
6. Estimation of free fatty acid content of oil
7. Determination of peroxide value and Anisidine value of fats.
8. Experiment to study the effect of heat on proteins.
9. Determination of Iso-electric point of casein & experiment to study effect of rennin on milk proteins
10. Experiments to study the gelling properties of starch
11. Experimental study of gluten formation using wheat flour
12. Experimental study on enzymatic Browning in foods

TOTAL: 60 PERIODS

OUTCOMES

At the end of the course the students will be able to

- CO 1 gain practical knowledge on chemical nature of food components.
- CO 2 expertise on the protocols of chemical properties of individual components in foods.
- CO 3 facilitate for further understanding of food analysis lab.

REFERENCES

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes</th>
<th>Programme specific outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>CO1 gain practical knowledge on chemical nature of food components</td>
<td>3 3 2 3 2 - - 3 2 - - 2 3 3 3 3</td>
<td>3 3 3 3</td>
</tr>
<tr>
<td>CO2 expertise on the protocols of chemical properties of individual components in foods.</td>
<td>3 3 2 3 2 - - 3 2 - - 2 3 3 3 3</td>
<td>3 3 3 3</td>
</tr>
<tr>
<td>CO3 facilitate for further understanding of food analysis lab.</td>
<td>3 3 2 3 2 - - 3 2 - - 2 3 3 3 3</td>
<td>3 3 3 3</td>
</tr>
<tr>
<td>Over all CO</td>
<td>3 3 2 3 2 - - 3 2 - - 2 3 3 3 3</td>
<td>3 3 3 3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to

- introduce the basic concepts of environment, ecosystems and biodiversity and emphasize on the biodiversity of India and its conservation.
- impart knowledge on the causes, effects and control or prevention measures of environmental pollution and natural disasters.
- facilitate the understanding of global and Indian scenario of renewable and non-renewable resources, causes of their degradation and measures to preserve them.
- familiarize the influence of societal use of resources on the environment and introduce the legal provisions, National and International laws and conventions for environmental protection.
- inculcate the effect of population dynamics on human and environmental health and inform about human right, value education and role of technology in monitoring human and environmental issues.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY 14
Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition genetic, species and ecosystem diversity – bio geographical classification of India – value of biodiversity consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION 8
Definition – causes, effects and control measures of (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – soil waste management causes, effects and control measures of municipal solid wastes – role of an individual in prevention of pollution – pollution case studies – disaster management floods, earthquake, cyclone and landslides. Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES 10
Forest resources Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral resources Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. case studies – Land resources Land as a resource, land 47 degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.
UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

TOTAL: 45 PERIODS

OUTCOMES

At the end of the course the students will be able to

CO 1 recognize and understand the functions of environment, ecosystems and biodiversity and their conservation.

CO 2 identify the causes, effects and environmental pollution and natural disasters and contribute to the preventive measures in the immediate society.

CO 3 identify and apply the understanding of renewable and non-renewable resources and contribute to the sustainable measures to preserve them for future generations.

CO 4 recognize different forms of energy and apply them for suitable applications in for technological advancement and societal development.

CO 5 demonstrate the knowledge of societal activity on the long and short term environmental issues and abide by the legal provisions, National and International laws and conventions in professional and personal activities and to identify and analyse effect of population dynamics on human value education, consumerism and role of technology in environmental issues.

TEXT BOOKS:

REFERENCE BOOKS:

OBJECTIVES

- To understand the basics of random variables with emphasis on the standard discrete and continuous distributions.
- To understand the basic probability concepts with respect to two-dimensional random variables along with the relationship between the random variables and the significance of the Central Limit theorem.
- To apply the small/large sample tests through Tests of hypothesis.
- To understand the concept of analysis of variance and use it to investigate factorial dependence.
- To monitor a process and detect a situation when the process is out of control.

UNIT I RANDOM VARIABLES

Discrete and continuous random variables – moments – moment generating functions – binomial, poisson, geometric, uniform, exponential, gamma, weibull and normal distributions – functions of a random variable.

UNIT II TWO-DIMENSIONAL RANDOM VARIABLES

UNIT III TESTS OF SIGNIFICANCE

Type I and Type II errors – tests for single mean, proportion, difference of means (large and small samples) – tests for single variance and equality of variances – chi-square test for goodness of fit – independence of attributes – non-parametric tests: test for randomness and rank – sum test (wilcoxon test).

UNIT IV DESIGN OF EXPERIMENTS

Completely randomized design – randomized block design – latin square design – factorial design – taguchi’s robust parameter design.

UNIT V STATISTICAL QUALITY CONTROL

Control charts for measurements (X and R charts) – control charts for attributes (p, c and np charts) – tolerance limits – acceptance sampling.

TOTAL: 60 PERIODS

OUTCOMES

CO1 To analyze the performance in terms of probabilities and distributions achieved by the determined solutions
CO2 To be familiar with some of the commonly encountered two dimensional random variables and be equipped for a possible extension to multivariate analysis
CO3 To apply the basic principles underlying statistical inference (estimation and hypothesis testing)
CO4 To demonstrate the knowledge of applicable large sample theory of estimators and tests To obtain a better understanding of the importance of the methods in modern industrial processes.

TEXT BOOKS:

REFERENCES:

FT5401 HEAT AND MASS TRANSFER IN FOOD PROCESSES LT P C 2 1 0 3

OBJECTIVES

The course aims to
- learn the principles and applications of heat and mass transfer operations in food industries.
- understand the mechanisms and concept of heat transfer effectively.
- Investigatethe mass transfer operational approaches.

UNIT I HEAT TRANSFER – CONDUCTION

UNIT II HEAT TRANSFER - CONVECTION
Heat transfer - convection – free and forced convection - factors affecting the heat transfer coefficient in free and forced convection heat transfer – overall heat transfer coefficient - solving problems in foods.

UNIT III HEAT TRANSFER – RADIATION AND HEAT EXCHANGER
Radiation heat transfer – concept of black and grey body - monochromatic Total emissive power– Kirchhoff’s law – Planck’s law - Stefan-Boltzmann’s law –Heat exchangers – parallel,
counter and cross flow - Logarithmic Mean Temperature Difference – overall coefficient of heat transfer in shell and tube heat exchanger for food products.

UNIT IV MASS TRANSFER -DIFFUSION

UNIT V MASS TRANSFER – DISTILLATION
Vapour liquid equilibria - Raoult’s law- Principle of distillation - flash distillation, differential distillation, steam distillation, multistage continuous rectification, Number of ideal stages by Mc.Cabe -Thiele method.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to
CO 1 apply the different heat and mass transfer principles in different approaches.
CO 2 gain knowledge on types of heat exchangers used in food industry
CO 3 design the heat and mass transfer equipments.

TEXT BOOKS:

REFERENCES:
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course Outcomes Statement</th>
<th>Programme outcomes(PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td></td>
</tr>
<tr>
<td>CO1 apply the different heat and mass transfer principles in different approaches</td>
<td>2 2 1 2 - 2 1 2 2 -</td>
<td>3 2 2 2 1 1</td>
</tr>
<tr>
<td>CO2 design the heat and mass transfer equipment.</td>
<td>1 2 2 3 - - 1 2 - -</td>
<td>1 3 3 1 2 1</td>
</tr>
<tr>
<td>CO3 gain knowledge on types of heat exchangers used in food industry.</td>
<td>2 1 - 1 - - - 2 - 1 3 - 2 2 2 1</td>
<td></td>
</tr>
<tr>
<td>Overall CO</td>
<td>2 2 1 2 - 1 1 2 1 1 2 2 2 2 2 1</td>
<td></td>
</tr>
</tbody>
</table>

1,2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.

Attested

[Signature]

DIRECTOR

[Name]
OBJECTIVES

The course aims to

- understand the principles involved in separation methods.
- study about the types of crystallization and evaporation.

UNIT I EVAPORATION

UNIT II MECHANICAL SEPARATION

UNIT III SIZE REDUCTION

UNIT IV CONTACT EQUILIBRIUM SEPARATION

UNIT V EXTRACTION AND CRYSTALLIZATION

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to

CO 1 develop various separation techniques.
CO 2 apply the knowledge on filtration and centrifugation in food processing units
CO 3 design the different crystallizers and evaporator equipment.

Attested

DIRECTOR

UNIVERSITY
TEXT BOOKS:

REFERENCES:
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 develop various separation techniques.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO2 design the different crystallizers and evaporator equipment.</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO3 apply the knowledge on filtration and centrifugation in food processing units.</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Over all CO</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

1, 2, and 3 are correlation levels with weightings on slight (low), moderate (medium), and substantial (high) respectively.
OBJECTIVES

The course aims to

- expose the students to the principles, methods and techniques of food analysis.
- make the students to handle different chemical and instrumental methods of food analysis.

UNIT I SAMPLING METHODS FOR FOOD ANALYSIS 6
Introduction, Food Regulations and Standards - Sampling methods - Sample preparation and preservation- Extraction methods and Separation process of food components; Statistical evaluation of analytical data - Official Methods of Food Analysis. Proximate analysis of foods-Moisture in foods, Ash content of foods - determination by different methods; Titratable Acidity in foods, Determination of dietary fibre and crude fibre,

UNIT II LIPIDS AND PROTEINS ANALYSIS 9
Determination of Total fat in foods by different methods; Analysis of oils and fats for physical and chemical parameters, Quality standards, and adulterants.
Determination of Proteins Concentration- Colorimetric methods, Determination of Total nitrogen, Spectrophotometric determination; Protein Characterization- Electrophoresis and Isoelectric focussing; Analysis of Protein quality – Protein Efficiency Ratio (PER), Net Protein Utilization (NPU), Biological Value, Protein Digestibility- Corrected Amino acid Score (PDCAAS), In vitro Protein digestibility for C-PER; Measurement of Functional properties of proteins- Protein hydration properties, Surface properties of protein, Protein gel properties.Calculation of proximate and ultimate composition of foods.

UNIT III CARBOHYDRATE ANALYSIS, REFRACTOMETRY AND POLARIMETRY 9
Refractometry- Basic Principles and Instrumentation, and Applications-Brix Value of Fruit juices, Total soluble solids in fruit products.
Carbohydrate analysis- Colorimetric Quantification methods of Mono and Di-Saccharides, HPLC of Mono and Di-Saccharides using refractive index detection; Starch- Enzymatic quantification and Determination of Total amylose content; Cell wall polysaccharides-Determination of uronic acid content and β-Glucan content, Degree of Methylation and Acetylation of pectin.
Polarimetry- Basic principles, Instrumentation and Applications-Determination of specific rotations of sugars; Estimation of simple sugars and disaccharides.

UNIT IV SPECTROSCOPIC AND CHROMATOGRAPHIC TECHNIQUES IN FOOD ANALYSIS 12
Spectrophotometry Basic Principles, Spectrophotometric analysis of food additives and food Components -IR Spectroscopy in online determination of components in foods; AAS and ICP-AES in mineral elements and toxic metals analysis; use of fluorimeter in vitamin assay- specific use of Tintometer in Vanaspati analysis.
Chromatography Basic Principles, Detection of adulterants in foods by paper chromatography and thin layer chromatography, Column chromatography for purification of pigments, Analysis of food additives, phytochemicals and aflatoxins, contaminants and other food components by HPLC, GC analysis of fatty acids, cis, trans Isomers - volatile oils, flavours and pesticides, contaminants and other volatile derivatives of food components; Significance MS detector in HPLC and GC. Ion Exchange Chromatography for amino acid purification, Affinity chromatography for protein purification, Problem solving using chromatogram.

Attested

[Signature]

DIRECTOR
Cente for Academic Courses
Anna University, Chennai-600 025
UNITV SENSORY EVALUATION TECHNIQUES

Introduction to quality attributes of food Appearance, flavour, textural factors and additional quality factors; Gustation importance of gustation, Mechanism of taste perception, Chemical dimensions of basic tastes- sweet, salt, sour, bitter and umami, Taste measurement-Electronic Tongue; Olfaction definition and importance of odour and flavour, Mechanism of odour perception, Theories of odour classification, chemical specificity of odour, Odour measurement technique- e- nose; Colour importance of colour, Dimensions of colour and attributes of colour and gloss, Perception of colour, Colour Measurement; Texture definition and importance of texture, Phases of oral processing, Texture perception, Rheology of foods, Texture classification, Texture measurement and recent advances in texture evaluation.

Sensory Evaluation Objectives, Type of food panels, Characteristics of panel member, Layout of sensory evaluation laboratory, Sensitivity tests, Threshold value, Paired comparison test, Duo trio test, Triangle test, Hedonic scale.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to
CO 1 understand the principles behind analytical techniques in food analysis.
CO 2 know the methods of selecting appropriate techniques in the analysis of food products.
CO 3 appreciate the role of food analysis in food standards and regulations for the manufacture of food products and food quality control in food industries.
CO 4 familiarize with the current state of knowledge in food analysis.

TEXT BOOKS:

REFERENCES:
<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understand the principles behind analytical techniques in food analysis.</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO2 know the methods of selecting appropriate techniques in the analysis of food products.</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3 appreciate the role of food analysis in food standards and regulations for the manufacture of food products and food quality control in food industries.</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO4 familiarize with the current state of knowledge in food analysis.</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Over all CO</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

1,2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to

- handle basic unit operation equipments in food industries
- measure fluid flows
- evaluate performance factors of various unit operation equipments

LIST OF EXPERIMENTS
1. Flow measurement a) Orifice meter b) Venturimeter, c) Rotameter
2. Determination of economy and thermal efficiency of rotary flash evaporator
3. Solving problems on single and multiple effect evaporator
5. Determination of collection efficiency in cyclone separator.
8. Determination of porosity, coefficient of friction and angle of repose of grains.
11. Determination of performance characteristics in size reduction using the burr mill.
12. Determination of energy requirement in size reduction using the ball mill and hammer mill.

TOTAL: 60 PERIODS

OUTCOMES:
At the end of the course the students will be able to

- CO 1 have knowledge on the basic principles of various unit operations and its applications in food industry.
- CO 2 gain hands on experience in handling various chemical engineering equipments.
- CO 3 apply the skill of material balance and energy balance in unit operations.
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes(PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>3 3 2 3 2 - - - 1 1 1 1</td>
<td>3 3 1 1</td>
</tr>
<tr>
<td>have knowledge on the basic principles of various unit operations and its applications in food industry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>1 1 2 3 2 - - - 2 1 1</td>
<td>3 3 1 1</td>
</tr>
<tr>
<td>gain hands on experience in handling various chemical engineering equipment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3 3 2 3 2 - - - 1 1 1 1</td>
<td>3 3 1 1</td>
</tr>
<tr>
<td>apply the skill of material balance and energy balance in unit operations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over all CO</td>
<td>2 2 2 3 2 -- - - 1 1 1 1</td>
<td>3 3 1 1</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to
 - equip students with characterization and estimation of chemical compounds in food for its compliance with standards.
 - learn the analysis of foods for the detection of adulterants in foods.

LIST OF EXPERIMENTS

1. Determination of moisture in spices powder by distillation method and Hot air oven method.
2. Determination of Total fat, protein in milk and milk products.
3. Rancidity test for fried foods to assess primary and secondary oxidative products.
4. Determination of Vitamin C in fruit juices.
 a. Titrimetric method using dichlorophenolindophenol dye
 b. Spectrophotometric method using dinitrophenylhydrazine
 c. HPLC method
5. Extraction and identification of synthetic Food colour in sweets, confectioneries and beverages.
7. Determination of Iodine content in iodized salt.
10. Determination of soluble and insoluble fibre in foods.
11. Detection of adulterants in edible oil and ghee.
12. Column chromatographic separation of carotenoids
13. The identification of sugars in fruit juice using TLC.

TOTAL: 60 PERIODS

OUTCOMES:

At the end of the course the students will be able to

CO 1 understand the analysis of foods and food products for chemical components.
CO 2 learn standards for food products.
CO 3 obtain knowledge of adulterants in foods.

TEXT BOOKS:

REFERENCES:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understanding in analysis of foods and food products for chemical components.</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO2 knowing standards for food products.</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3 obtain knowledge of adulterants in foods</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to
- teach the need for quality, its evolution, basic concepts, contribution of quality gurus, TQM framework, Barriers and Benefits of TQM.
- explain the TQM Principles for application.
- define the basics of Six Sigma and apply Traditional tools, New tools, Benchmarking and FMEA.
- describe Taguchi’s Quality Loss Function, Performance Measures and apply Techniques like QFD, TPM, COQ and BPR.
- illustrate and apply QMS and EMS in any organization.

UNIT I INTRODUCTION
Introduction - Need for quality - Evolution of quality - Definition of quality - Dimensions of product and service quality - Definition of TQM - Basic concepts of TQM - Gurus of TQM (Brief introduction) - TQM Framework - Barriers to TQM - Benefits of TQM.

UNIT II TQM PRINCIPLES

UNIT III TQM TOOLS & TECHNIQUES I

UNIT IV TQM TOOLS & TECHNIQUES II
Quality circles - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures - Cost of Quality - BPR.

UNIT V QUALITY MANAGEMENT SYSTEM

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students will be able to
- CO 1 ability to apply TQM concepts and principles in a selected enterprise.
- CO 2 ability to understand Six Sigma and apply Traditional tools, New tools, Benchmarking and FMEA.
- CO 3 ability to understand Taguchi’s Quality Loss Function, Performance Measures and apply QFD, TPM, COQ and BPR.
- CO 4 ability to apply QMS and EMS in any organization.
TEXT BOOKS:

REFERENCES:

FT5501 FOOD PROCESS ENGINEERING
L T P C 2 1 0 3

OBJECTIVES
The course aims to
- understand basic engineering properties of food.
- understand different thermal and non-thermal processes used in Food Industry.

UNIT I PROPERTIES OF FOOD 11
Engineering properties of food materials - Rheological and textural Properties, Thermal Properties, Thermodynamic Properties, surface and gas exchange properties, electric and dielectric properties
Water activity and states a thermodynamic quantity, water sorption isotherms, hysteresis, theories of sorption hysteresis, water activity measurement methods, water binding, control of water activity and moisture, principles of IMF and their application

UNIT II SEDIMENTATION AND CENTRIFUGATION 7
The velocity of particles moving in a fluid - terminal velocity - drag coefficient terminal velocity magnitude, Sedimentation - sedimentation equipment, Flotation, Sedimentation of Particles in a Gas Settling Under Combined Forces Cyclones- optimum shape, efficiency Impingement, separators Classifiers, Centrifugal separations - centrifugal force particle velocity Liquid Separation radial variation of pressure radius of neutral zone Centrifuge Equipment

UNIT III DRYING AND FREEZING 10
Freezing - Freezing curve for Homogenous and Non-homogenous food system, Freezing point depression, Freezing rate, Effect of freezing Physical and chemical changes in Foods, Enzyme activity, Microbe inactivation and Food quality sensory quality, nutritional aspects, freeze drying and freeze concentration
UNIT IV THERMAL PROCESSING 9

UNIT V FOOD MATERIAL PROCESSING 8
Membrane processes Ultra filtration, Reverse osmosis, Electrodialysis, per-evaporation and micro filtration – principles - application in food industry, Extrusion - Extrusion cookers - cold extrusion, single and twin-screw extrusion - Low pressure and high-pressure extrusion - properties of Food materials and its significance in equipment design - processing and handling application in food industry; Baking Principles, baked foods, baking equipment; Roasting Principles of roasting, roasting equipment

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students will be able to
 CO 1 learn and apply basic engineering properties of foods
 CO 2 familiarize with separation techniques involved in food industry
 CO 3 learn various engineering operations in food processing

TEXTBOOKS:

REFERENCES:
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 learn and apply basic engineering properties of foods</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2 familiarize with separation techniques involved in food industry</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3 learn various engineering operations in food processing</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Over all CO</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2, and 3 are correlation levels with weightings on slight (low), moderate (medium), and substantial (high) respectively.
OBJECTIVES

The course aims to

- develop the knowledge of students in the area of vegetable and fruit processing and technology.
- enable students to appreciate the application of scientific principles in the processing of fruits and vegetables.

UNIT I BASIC AGRICULTURAL ASPECTS OF VEGETABLES AND FRUITS 8
Ability to identify all commercially important fruits and vegetables with their names in important Indian languages, important regions, season, Morphology, structure and composition of fruit and vegetable. Production and processing scenario of fruits and vegetable India and World. Scope of Fruit and Vegetable Preservation Industry in India. Present status, constraints and prospectus. Problem solving in post-harvest quality of fruits and vegetables.

UNIT II FRESH FRUITS AND VEGETABLES 8
Physical, Textural characteristics, structure and composition. Maturity standards; Importance, methods of Maturity determinations maturity indices for selected fruits and vegetables. Harvesting of important fruits and vegetables. Fruit ripening- chemical changes, regulations, methods. Calculation of respiration rates, Storage practices Control atmospheric, Bead atmosphere, hypotactic storage, cool store. Zero energy cool chamber, stores striation. Commodity pre-treatment’s - chemicals, wax coating, pre-packaging, phytonutrients in fruits and vegetables grading, cleaning, Physiological post harvest diseases chilling injury and disease. Handling and packaging of fruits and vegetables

UNIT III PRESERVATION OF FRUITS AND VEGETABLES 9
Preservation by fermentation- Definition, Advantages, disadvantages, Types of fermentation, equipments; Fruit wine. Irradiation applications for fruits and Vegetable. Minimally processed fruits and vegetables, solving problems with respect to natural resistance of fruit, Emerging technologies for fruits and vegetables processing technologies General pre processing, drying and freezing problems associated with specific fruits and vegetables, problem solving in Post-cutting treatments to extend the shelf-life of fresh-cut products.

UNIT IV CANNING, PUREES AND JUICES 12
Canning- General pre-processing, specific or salient points in fruits and vegetables like – Blanching, exhausting, processing conditions; Indian Food Regulation and Quality assurance Fruit Juice / pulp/ Nectar/Drinks, concentrates – General and specific processing, different packing including aseptic. Indian Food Regulation and Quality assurance Vegetable Purees/pastes - General and specific processing, different packing including aseptic. Technology for juice pressing, juice extraction and clarification, methods of bottling, enzymatic clarification and debittering of juices, fruit juice powders- preparation and packaging

UNIT V FRUIT AND VEGETABLE PRODUCTS 8
Ready to eat fruit and vegetable products, Jams/Marmalades, Squashes/cordials, Ketchup/sauces, Chutneys, Fruit Bar, Soup powders, Candied Fruits, Natural colors, Fruit and Vegetable Fibres- General and specific processing, different packing including aseptic, Dried Onion, Powder. Garlic Dried Garlic, Powder, Oil. Potato Wafer; starch, Papad, Carrot Preserve, candy, Pickle, Jam. Cauliflower and cabbage Dried cauliflower and cabbage, Sauerkraut, Pickle Leafy vegetables; Dried Leafy Vegetables. (Spinach, Fenugreek, Coriander leaves, Curry leaves), Bitter gourd Pickle, Dried bitter gourd. Indian Food Regulation and Quality assurance, Case studies- Improving the nutritional quality of processed fruits and vegetables, Waste management in fruit and vegetable processing industries.
OUTCOMES:

At the end of the course the students will be able to

CO 1 understand the concepts of physiological characteristics of fruits and vegetables.

CO 2 have insight about fruit losses during storage and ways to prevent it.

CO 3 have thorough Knowledge and understandings of the specific processing technologies

TEXT BOOKS:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understand</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>of the concepts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of physiological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of fruits and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vegetables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 have</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>insight about</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fruit losses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>during storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and ways to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prevent it</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3 have</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Knowledge and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>understandings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of the specific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall CO</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to
• develop the knowledge of students in the area of animal product processing and technology.
• enable students to appreciate the application of scientific principles in the processing of these materials.

UNIT-I EGG PROCESSING 9

UNIT II MEAT PROCESSING 9

UNIT III MEAT PRODUCTS 9

UNIT IV MARINE FOOD PROCESSING 9
Composition of marine fish, fresh water fish, finfish and shell fish - major species, structure and spoilage factors of fish. Post-mortem changes in fish. Handling and transportation of fish. Processing and preservation of shrimp, lobster, crab, crawfish, molluscan shellfish, surimi and surimi seafood.

UNIT V MARINE FOOD PRODUCTS 9
Seaweed products and their economic significance, fish meal and oil, protein concentrates, industrial products, bioactive compounds, Seafood quality Assurance, sea food safety – illness associated with consumption –toxins, allergies and intolerances.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to
CO 1 understand and identify the specific processing technologies used for meat and marine products.
CO 2 familiarize with quality evaluation techniques for meat and marine products..
CO 3 grasp the changes in the composition of foods with respect to the type of processing technology used.

[Signature]
DIRECTOR
TEXT BOOKS:

REFERENCES:
<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcome (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4</td>
<td></td>
</tr>
<tr>
<td>CO1 understand and identify the specific processing technologies used for meat and marine products.</td>
<td>1 1 2 2 2 1 1 3 2 1 1 2 2 2 - 1</td>
<td></td>
</tr>
<tr>
<td>CO2 familiarize with quality evaluation techniques for meat and marine products.</td>
<td>1 1 2 2 2 - - 3 2 1 1 2 2 2 - 1</td>
<td></td>
</tr>
<tr>
<td>CO3 grasp the changes in the composition of foods with respect to the type of processing technology used.</td>
<td>1 1 2 2 2 1 1 3 2 1 1 2 2 2 - 1</td>
<td></td>
</tr>
<tr>
<td>Overall CO</td>
<td>1 1 2 2 2 1 1 3 2 1 1 2 2 2 - 1</td>
<td></td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to
☐ enable students to perform and analyse, livestock, fish and marine products for its proximate and chemical constituents
☐ understand different industrial processes involved in livestock, fish and marine products.

LIST OF EXPERIMENTS

1. Proximate analysis of meat, poultry and fish - Direct and indirect method of Moisture Determination, fat Content, Vitamin, Mineral and Trace Element Analysis
2. Quality analysis of Meat, poultry and fish – Color, Texture, pH, Water/Protein Ratio
3. Determination of vitamin content in meat using HPLC.
4. Analysis of the Technological Quality of Fat in meat - Fatty Acid Profile, Lipid Fractions, Cholesterol, Fat Firmness, Oxidation Status
5. Determination of Microbial load and Toxins in Meat and Meat Products
6. Determination of Total Volatile Basic Nitrogen (TVBN)
7. Determination of Picric Acid Turbidity (PAT)
9. i) Assessment of Lipid and protein Oxidation in meat
 ii) Determination of proteolysis and lipolysis of meat
10. Determination of Meat Swelling Capacity (MSC)
11. Determine % of different components & constituents such as yolk portion, white portion, ash, Total solid, moisture, specific gravity of egg.
12. Determine the efficiency of reduction in microbial load during egg Pasteurization
13. Determine the effect of drying temperature on production of egg white powder using spray dryer.

OUTCOMES:

At the end of the course the students will be able to
CO 1 understand the specific processing technologies used for meat and marine products.
CO 2 familiarize with quality evaluation techniques for meat and marine products.
CO 3 familiarize with physiochemical analytical techniques.

REFERENCES:

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understand and identify the specific processing technologies used for meat and marine products.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO2 familiarize with quality evaluation techniques for meat and marine products.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO3 familiarize with physiochemical analytical techniques.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Overall CO</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to
- analyze spices, fruits and vegetable crops for its chemical compounds
- understand the processing and preservation techniques for storage of spices, fruits and vegetable crops

EXPERIMENTS
1. Proximate analysis of fruits and vegetables - moisture, ash, mineral matter, protein, starch, Crude fat and % Total sugars
2. Estimation of quality criteria - maturity indices, color, texture, brix, pH in various fruits and vegetables
3. Determination of effective freezing and cooling time for fruits and vegetables
4. Osmotic dehydration of fruits and vegetables
5. Accelerated shelf life testing of canned fruits and vegetables.
6. Optimization of ingredients (pectin and sugars) of Jam and its analysis – colour, texture, TSS, titrable acidity
7. Optimization of ingredients and its analysis of Ready to serve products - colour, viscosity, TSS
8. Experimental study on effect of thickeners, stabilizers and preservatives in tomato sauce.
9. Dehydration kinetics of
 i) Vegetable products – onion/garlic/ginger
 ii) Fruits products – grapes/fig/banana
10. Waste management in fruit and vegetable processing industries.
 i) Pectin (Extraction, purification, Characterization and Estimation)
 ii) Pigments (Extraction and characterization) - carotene, xanthophylls and lycopene
 iii) Polysaccharides
 iv) Phytochemicals (qualitative) – flavanoids, tannin, saponin, anthocyanin
11. Identification and characterization of flavouring compounds of spices
12. Estimation of oil contents in different spices – clove/ pepper/ cardamom/ chilli
13. Extraction and quantification of oleoresins - Turmeric/ ginger/ pepper/ clove
14. Phytochemicals (quantitative) estimation in spices - Turmeric/ ginger/ pepper/ clove
15. Preparation of fermented soy products

TOTAL: 60 PERIODS

OUTCOMES:
At the end of the course the students will be able to
CO 1 understand the processing technologies used for fruit and Vegetable processing.
CO 2 familiarize with quality evaluation techniques
CO 3 familiarize with physiochemical, analytical and applications techniques.

REFERENCES:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcome Statements</th>
<th>Programme outcome (PO)</th>
<th>Programme specific outcome (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>understand the processing technologies used for fruit and Vegetable processing.</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>familiarize with quality evaluation techniques</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>familiarize with physiochemical, analytical and applications techniques.</td>
<td>1</td>
</tr>
<tr>
<td>Over all CO</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to

- understand the different methods involved in development of food packaging systems.
- understand the different packaging system available for food packaging

UNIT I BASICS OF PACKAGING 6
Packaging –Concepts, definition, Significance, classification. Packaging – Development, Retail/Unit; Packaging of foods –fresh and processed, Hazards to the Packaging

UNIT II PACKAGING MEDIA & MATERIALS 12
Metal packaging- Metals Tinplate, tinning process, components of tinplate, tin free can (TFC) types of can, metallic films, lacquers. Glass as package material, manufacture, advantages, disadvantages; Paper as package material, its manufacture, types, advantages of corrugated and paper board boxes. Plastic as package material, classification of polymers, properties of each plastics, uses of each plastic; Caps and closures, inks and lacquers, cushioning materials, reinforcements

UNIT III PACKAGING SYSTEMS AND METHODS 9
Lamination, need of lamination, types, properties, advantages & disadvantages of each type. Coating on paper & films, types of coatings. Need of coating, methods of coatings, Vacuum packaging, gas flush packaging - CAP & MAP, aseptic & retort packaging, box in box, edible, Active packaging systems and their food applications.

UNIT IV PACKAGING OF FOOD PRODUCTS AND TESTING OF PACKAGE 9
General classification and packaging types - Packaging of Specific Foods with its properties like bread, biscuits coffee, milk powder, egg powder, carbonated beverages Snack foods etc, pallets & containers. Interaction of Food Material with Packaging Material, Testing & evaluation of packaging media – retail packs & transport packages

UNIT V REGULATORY ASPECTS OF PACKAGING 9
Food marketing and role of packaging; Packaging aesthetic and graphic design; Food Packaging Laws and Regulations, Food Labelling, coding and marking including bar coding. Packaging Costs; Packaging Environmental consideration and restoration – sustainable development, biodiversity, global environment facility, environmental impact assessment, environmental protection act, national conservation strategies, ISO 14000. & wastemanagement, Sources-Reduce, Reuse and Recycling (3R’s), 7R’s of Packaging, Biodegradable materials, Recycling techniques/methods – Paper/Paperboard, Plastics, Metals, Glass

OUTCOMES:
At the end of the course the students will be able to

- CO 1 understand the concepts, types of food packaging systems
- CO 2 analyse complex systems of food packaging and logistics.
- CO 3 understand the importance of law, regulations and monitoring agencies involved in labelling of foods.

TEXT BOOKS
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understand the concepts, types of food packaging systems</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO2 analyse complex systems of food packaging and logistics.</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CO3 understand the importance of law, regulations and monitoring agencies involved in labelling of foods.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Over all CO</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to
- study the principles of cooling, air conditioning and freezing
- achieve effective and efficient food refrigeration design solutions

UNIT I REFRIGERATION PRINCIPLES AND REFRIGERANTS

UNIT II VAPOUR REFRIGERATION SYSTEM

UNIT III PSYCHROMETRIC PROPERTIES AND PROCESSES

Properties of moist Air-Gibbs Dalton law, Specific humidity, Dew point temperature, Degree of saturation, Relative humidity, Enthalpy, Humid specific heat, Wet bulb temperature Thermodynamic wet bulb temperature, Psychrometric chart; Psychrometric of air-conditioning processes, mixing of air streams

UNIT IV FOOD REFRIGERATION

UNIT V COLD CHAIN

Introduction, need for the chain for chilled / frozen food item, various links of the chain; importance of shelf- life; just – in-time deliveries; Refrigerated transport Handling and distribution, cold chain, refrigerated product handling, refrigerated vans, refrigerated display. Challenges in international food supply chain – managing challenges; Trends in supply chain relationships; PPP and TTT concepts; Temperature monitoring; -Critical temperatures; Temperature –time indicators (TTI); Thaw indicators.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to
- CO 1 understand the principles and working of refrigeration, air conditioning, and cold chain.
- CO 2 gain knowledge on refrigeration and problem solving ability on types of loads.
- CO 3 design refrigeration and cold storage system for food products.
TEXT BOOKS:

REFERENCES:
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understand the principles and working of refrigeration, air conditioning, and cold chain.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2 gain knowledge on refrigeration and problem solving ability on types of loads.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3 able to design refrigeration and cold storage system for food products.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Over all CO</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to

- develop the knowledge of students in the area of Cereal, pulse and oilseed processing and technology.
- effective understanding specific aspects of food processing related to these foods.

UNIT I WHEAT AND RICE 10

Status, major growing areas and production of cereals, millets, pulses and oil seeds in India and the world, structure, Physical properties, Chemical composition, Distribution of nutrients, nutritional and anti-nutritional factors. Wheat Morphology, Physicochemical properties, Wheat Quality, Wheat Milling, quality aspects of flour, wheat proteins and their function, rheology of wheat flour. Paddy Processing and treatment for quality improvement, Milling of rice Conventional Milling, Modern milling, Advantages and disadvantages of milling machineries, calculation of milling efficiency, By products of rice milling, Parboiling of rice, Aging of rice, Enrichment and fortification.

Cereal based baked products – Bread, Biscuit, Cakes, Extruded processing and products, Pizza, Chapatis malting and malt products - Processed Foods from rice Breakfast cereals, flakes, puffing, canning and instant rice

UNIT II MILLETS AND OTHER CEREALS 9

Sorghum, Pearl Millet, Finger millet, Foxtail millet, Kodo Millet - storage, insect control; processing - Pearling, Milling, Malting, Malt based foods, value addition, by product utilization, flaked and fermented products; Traditional and Nutritional products based on finger millet. Other cereals Corn - Morphology, Physico-chemical properties, Corn milling - Wet and dry milling, Milling fractions and modify starches Corn Products – Corn flakes, Corn starch, canned corn products, puffed product; HFCS; Oats- Milling, Oat Products – Steel cut, rolled oats, quick cooking; Rye bread; Traditional and Fermented cereal products.

UNIT III LEGUME PROCESSING 10

UNIT IV OIL SEEDS AND NUTS 8

Chemical composition and characters of oil seed and nuts, Anti-nutritional factors, elimination Methods. Post Harvest Technology of Oil seeds, Handling Drying, Storage, Grading, Pre-treatments, cleaning, Dehulling, solving problems in size reduction and flaking.

UNIT V OIL SEED PROCESSING 8

Oil seeds Processing Sesame, Coconut, Groundnut, Mustard, Soybean, Sunflower, Safflower. Oil extraction Traditional Methods, New Technologies in oil seed processing, calculation of extraction efficiency, Oil modification process- hydrogenation, inter esterification and dry fractionation, utilization of oil seed meals of different food uses. High protein product, like protein concentrates and isolates.

TOTAL: 45 PERIODS
OUTCOMES:

At the end of the course the students will be able to

CO 1 gain knowledge on the identify the specific processing technologies for cereals, pulses and oilseeds
CO 2 understand the application of scientific principles in the processing technologies related to these foods.
CO 3 understand the specific aspects of products from these foods.

TEXT BOOKS:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 gain knowledge on the identify the specific processing technologies for cereals, pulses and oilseeds</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO2 understand the application of scientific principles in the processing technologies related to these foods.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO3 understand the specific aspects of products from these foods</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Over all CO</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to
- analyze different kind of packaging materials.
- analyze and evaluate different packing characteristics for development of food packages

LIST OF EXPERIMENTS

1. Identification of different types of packaging and packaging materials
2. Measurement of thickness of packaging films, papers and boards
3. Measurement of water absorption of paper, paper boards
4. Measurement of bursting strength of paper of paper boards
5. Determination of tensile/compression strength of given material
6. Destructive and non-destructive test on glass container, drop test
7. Determination of wax weights, tensile strength of papers, bursting strength
8. Determination of WVTR of various packaging materials
9. Determination of Oxygen Transmission Rate of various packaging materials
10. Determination of coating on package materials
11. Evaluation of residue migration from package to food

TOTAL: 60 PERIODS

OUTCOMES:

At the end of the course the students will be able to
- CO 1 understand the principles and working of refrigeration, air conditioning, and cold chain.
- CO 2 gain knowledge on refrigeration and problem solving ability on types of loads.
- CO 3 design refrigeration and cold storage system for food products.

TEXTBOOKS:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understand the principles and working of refrigeration, air conditioning, and cold chain.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2 gain knowledge on refrigeration and problem solving ability on types of loads.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3 design refrigeration and cold storage system for food products.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Over all CO</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to

- evaluate different physical and chemical properties of cereals, pulses and oil seeds.
- determine the effects of different processing and conditions for cereals, pulses and oilseeds

LIST OF EXPERIMENTS

1. Determination of physical and chemical properties of grain and flour- thousand grain weight, sieve analysis, colour, sedimentation value, Liquid number, falling number, hardness, gluten index.
2. Production of malt and Value added products from cereals and millets.
3. Production and characterisation of modified starch.
4. Studies on cooking quality of cereals (cooking time, grain elongation, etc)
5. To study the methods of extraction of oil from oilseeds
6. Determination of under milled grains from polished rice
7. Production of Ready-to-eat breakfast cereals by extrusion cooking
8. Determination of alcoholic acidity of the sample of the wheat flour / Maida.
9. Experiment on leavening action of baking powder, sodium- bicarbonate and ammonium bicarbonate in cake.
10. Determination of dough rising capacity of yeast
11. Studies of dough characteristics- farinographic, amylograph and extensiographic
12. Preparation & evaluation of biscuits and bread
13. Shelf life studies of cereal and legume grains having different moisture levels.
15. Optimization and production of fermented bakery products.

TOTAL: 60 PERIODS

OUTCOMES:

At the end of the course the students will be able to

CO 1 gain knowledge of processing technologies for cereals, pulses and oilseeds in compliance with food standards
CO 2 understand the application of scientific principles in the processing technologies related to these foods.
CO 3 understand the specific aspects of products from these foods.

TEXTBOOKS:

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 gain knowledge of processing technologies for cereals, pulses and oilseeds in compliance with food standards</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO2 understand the application of scientific principles in the processing technologies related to these foods.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO3 understand the specific aspects of products from these foods</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Over all CO</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to

- characterize different type of food hazards, physical, chemical and biological in the industry and food service establishments
- help become skilled in systems for food safety surveillance
- aware of the regulatory and statutory bodies in India and the world

UNIT I INTRODUCTION TO FOOD SAFETY 10
Definition of food safety and concept of safe food; characterization of food hazards- physical, chemical and biological; Hygienic design of food plants and equipments, Food Contaminants (Microbial, Chemical, Physical), Food Adulteration (Common adulterants), Food Additives (functional role, safety issues), Food Packaging & labeling. Sanitation in warehousing, storage, shipping, receiving, containers and packaging materials. Control of rats, rodents, mice, birds, insects and microbes. Cleaning and Disinfection.

UNIT II FOOD QUALITY 8
Food quality Various Quality attributes of food, Instrumental, chemical and microbial Quality control. Sensory evaluation of food and statistical analysis. Water quality and other utilities.

UNIT III HAZARDS AND QUALITY CONTROL 10
Critical Quality control point in different stages of production including raw materials and processing materials. Food Quality and Quality control including the HACCP system. Food inspection and Food Law, Risk assessment – microbial risk assessment, dose response and exposure response modelling, risk management, implementation of food surveillance system to monitor food safety, risk communication. ISO 22000 – Importance and Implementation.

UNIT IV REGULATIONS 9
Indian and global regulations FAO in India, Technical Cooperation programmes, Bio-security in Food and Agriculture, World Health Organization (WHO), World Animal Health Organization (OIE), International Plant Protection Convention (IPPC)

UNIT V CODEX COMMISSION 8
Codex Alimentarius Commission - Codex India – Role of Codex Contact point, National Codex contact point (NCCP), National Codex Committee of India – ToR, Functions, Shadow Committees etc.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students will be able to

- CO 1 gain knowledge about adulteration and contamination in foods
- CO 2 acquire thorough Knowledge of food hazards, GMP, HACCP in industry and food service establishments
- CO 3 have awareness on regulatory and statutory bodies in India and the world

REFERENCES:
1. Handbook of Food Toxicology by S. S. Deshpande, 2002
2. The Food Safety Information handbook by Cynthia A. Robert, 2009
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programme outcomes (PO)</th>
<th>Programme Specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>gain knowledge about adulteration and contamination in foods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>acquire thorough Knowledge of food hazards, GMP, HA CCP in industry and food service establishments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>have awareness on regulatory and statutory bodies in India and the world</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over all CO</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1,2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to
- introduce the students to dairy industry, properties and processing of milk
- enable the learning in manufacture of dairy products, sanitation and effluent treatment in dairy industry

UNIT I PROPERTIES OF MILK

UNIT II PROCESSING AND QUALITY PARAMETERS OF MILK

UNIT III MILK PRODUCTS
Traditional dairy products, Technology of traditional Indian dairy products. Technology of fermented milk and milk products and probiotic milk based products., Manufacturing of Yogurt, Cheese, Butter, Ghee, Ice-cream, overrun calculation in ice-cream, malted products, evaporated milk products - properties, Classification-processing Methods, Equipment used, standards and quality parameters.

UNIT IV MILK POWDER PROCESSING AND MILK SUBSTITUTES
Processing of Milk Powder- Composition - Properties- methods of drying, comparison of different drying methods and calculating of drying efficiency, quality evaluation, Instantization, flow ability dustiness, reconstitutability, dispersability, wet ability, sink ability and appearance of milk powders substitutes for milk and milk products – casein, lactose and other by-products and its use in formulated foods, weaning foods, therapeutic foods, fortification and enrichment.

UNIT V STORAGE SANITATION AND EFFLUENT TREATMENT
Storage of Milk in Tanks-Storage of ice cream and other milk products - in cold storage Cleaning and Sanitation-Importance-Detergents-Properties-Cleaning procedures-Cleaning in place-Dairy effluent treatment and disposal.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students will be able to
- CO 1 gain knowledge about functioning of cooperatives and dairy processing methods.
- CO 2 understand the manufacturing processes of various dairy products.
- CO 3 gain knowledge of sanitation and effluent treatment in dairy industry.

TEXT BOOKS:
REFERENCES:

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 gain knowledge about functioning of cooperatives and dairy processing methods</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO2 understand the manufacturing processes of various dairy products.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO3 gain knowledge of sanitation and effluent treatment in dairy industry.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Over all CO</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to:

☐ learn about the preservation and analytical techniques in milk and milk products
☐ educate about the use of various techniques in milk product processing and quality analysis

LIST OF EXPERIMENTS

1. Sampling, chemical and microbial examination of pasteurized, sterilized and UHT processed milk.
2. Determination of viscosity, density and specific gravity of milk.
3. Detection of adulterants and preservatives in milk.
4. Batch and Continuous pasteurization of milk – study on Different controls on pasteurizer and Different sterilizers.
5. Determination of the rate of filtration and settling.
7. Study and operation of Butter, Ghee, Ice-cream and cheese making equipment.
8. Study the Reverse Osmosis and Ultra filtration system.
10. Determination of thermal load during retort processing of milk and milk products.
12. Determination of degree of browning-chemical/physical methods.
15. Production of probiotic food products.

OUTCOMES:

At the end of the course the students will be able to:

CO 1 gain knowledge of platform test in dairy processing.
CO 2 understand the manufacturing processes of milk and milk products and the equipments used.
CO 3 gain knowledge of functional properties.

TEXT BOOKS:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programme outcomes (PO)</th>
<th>Programme Specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Over all CO</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES
This course aims to
- encourage the students to get connected with any industry/ laboratory/research institute
- acquire knowledge on solving practical problems, gaining work experience and skills
- Learn to work in an academic/ industrial/research environment.

The students individually undergo training in reputed companies/ research institutes/ organizations for the specified duration.

OUTCOMES:
At the end of the industrial training the students will be able to
CO 1 work in an industry/academia/research institute
CO 2 gain experience to work as an individual as well as a member of a team
CO 3 acquire practical knowledge and enhance skills

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes(PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>learn to work in an industrial/academic/research institute</td>
<td>1 3 - 3 3 3 2 3 2 3 2 3</td>
<td>1 2 - -</td>
</tr>
<tr>
<td>CO2</td>
<td>gain experience to work as an individual as well as a member of a team</td>
<td>1 3 - 3 3 2 3 2 3 2 3 3</td>
<td>1 2 1 1</td>
</tr>
<tr>
<td>CO3</td>
<td>Acquire practical knowledge and enhance skills</td>
<td>1 3 - 3 3 2 3 2 3 2 3 3</td>
<td>1 2 3 1</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>1 3 - 3 3 3 2 3 2 3 2 3 3</td>
<td>1 2 1 1</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to
- make the students identify a project/problem/process relevant to their field of interest that can be carried out
- make them equipped to search databases and journals to collect relevant data and identify a solution
- plan, learn and perform experiments to verify the solution

TOTAL: 90 PERIODS

OUTCOMES:

At the end of the project work the students will be able to

CO 1 identification of field of interest

CO 2 equip the students to search and think about logical solutions

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes(PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>CO1</td>
<td>identification of field of interest</td>
<td>2 3 2 2 1 2 - 2 2 1 1 1</td>
<td>1 1 2 1</td>
</tr>
<tr>
<td>CO2</td>
<td>equip the students to search and think about logical solutions</td>
<td>2 3 2 2 1 - 2 2 2 1 1</td>
<td>1 1 2 2</td>
</tr>
<tr>
<td>Overall CO</td>
<td></td>
<td>2 3 2 2 1 - 2 2 2 1 1</td>
<td>1 2 1 2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The Course aims to

- train students to analyze a problem/ think innovatively to develop a new product/process
- make them understand how to find solutions/ create products economically and in an environmentally sustainable way
- enable them to acquire technical and experimental skills to validate the solution, analyze the results and communicate
- enable them to effectively think about strategies to commercialize the product.

TOTAL: 240 PERIODS

OUTCOMES:

At the end of the project the student will be able to

CO 1 formulate and analyze a problem/ create a new product/process.

CO2 plan experiments to find solutions in a logical manner/ work out sustainability

CO 3 analyze the results, interpret and communicate/strategies for commercialization

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>CO1 formulate and analyze a problem/ create a new product/process</td>
<td>1 3 2 2 2 1 - 2 2 2 1 1</td>
<td>1 2 1 3</td>
</tr>
<tr>
<td>CO2 plan experiments to find solutions in a logical manner/ work out sustainability</td>
<td>2 3 2 2 2 1 - 2 2 2 1 1</td>
<td>1 2 1 3</td>
</tr>
<tr>
<td>CO3</td>
<td>analyze the results, interpret and communicate/st strategies for commercialization</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>-</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to
- expose the students in enzyme studies and overview of fermentation processes so that the knowledge can be applied in food processing industries
- understand the Enzyme kinetics, Inhibition kinetics, Immobilization
- understand the concept of basic fermentation processes and its control systems etc.
- get a practical knowledge about running the fermenter and its scale – up and modes of operation etc.

UNITI ENZYME STUDIES
Enzyme Kinetics- Single substrate reactions; Estimation of Michaelis – Menten parameters, turnover number, Multisubstrate reactions- mechanisms and kinetics; Enzyme Inhibition Kinetics- Enzyme Immobilization methods.

UNITII BASICS OF FERMENTER & MEDIA FORMULATION
Basic configuration of fermenter and ancillaries, main parameters to be monitored and controlled in fermentation processes. - Medium formulation for optimal growth and product formation-Medium Optimization Methods-Sterilization Concepts- Thermal death kinetics of microorganisms, batch and continuous heat sterilization of liquid media, filter sterilization of liquid, media & air.

UNITIII STUDIES ON CELL GROWTH
Stoichiometry of cell growth and product formation, elemental balances, degrees of reduction of substrate and biomass, available electron balances, yield coefficients of biomass and product formation, maintenance coefficients, energetic analysis of microbial growth and product formation, oxygen consumption and heat evolution in aerobic cultures, thermodynamic efficiency of growth.

UNITIV REACTOR TYPES & MODES OF OPERATION

UNITV GAS EXCHANGE & SCALE-UP OF BIOREACTORS
Regime analysis of bioreactor processes, oxygen mass transfer in bioreactors – Mass transfer Coefficient- methods for the determination of mass transfer coefficients; mass transfer correlations; Power requirements of Bioreactors. Scale-up considerations on heat transfer, oxygen transfer, power consumption and impeller tip speed.

PRACTICALS
2. Medium optimization – Plackett Burman design, response surface methodology
3. Enzyme kinetics – MichelisMenton parameter, effect of temperature and pH
4. Enzyme immobilization – gel entrapment, cross linking
5. Preparation of bioreactor, utilities for bioreactor operation
6. Thermal death kinetics
7. Batch cultivation, estimation of kLa – dynamic gassing method
OUTCOMES:

At the end of the course the students will be able to

- CO 1 get familiarized with the fundamentals about Enzymes and its reaction kinetics
- CO 2 gained the knowledge on the concept of basic fermentation processes
- CO 3 know the applications of both enzyme and fermentation studies which may help during scale up operations in industries.

TEXT BOOKS:

REFERENCES:
<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme Specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 familiarized with the fundamentals about Enzymes and its reaction kinetics</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2 gained the knowledge on the concept of basic fermentation processes</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3 knowing the applications of both enzyme and fermentation studies, may help during scale up operations</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Over all CO</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to
- expose the students to the principles, methods and techniques of chemical and instrumental methods of food analysis.
- enable the students about the quality analysis of the functional groups in fruits and vegetables.

UNIT I ANALYSIS OF WATER 9
Parameters tested as per FSSAI Regulations- Organoleptic and Physico-chemical Parameters- Colour, Odour, pH, Taste, Turbidity, General Chemical parameters- Ammoniacal nitrogen, Anionic surface active agent, Boron, Nitrate, Chloride, Magnesium, Fluoride, Total hardness, Alkalinity, Sulphates, Residual free chlorine & Chloramines Sulphide, Cyanide, Calcium, Total Dissolved Solids, Phenol, Sodium, Hexavalent chromium, Total solids, Nitrite, Mineral Oil, Estimation of Anions in Drinking water by Ion Chromatography, Metals A By AAS- By Flame AAS (Zn, Mg, Ca.), By Graphite furnace AAS (Al, Cu, Fe, Mn, Se, Ag, Cd, Pb, Hg, Mo, Ni, As, Cr, Hg), By Cold Vapour AAS (Hg) B. By ICP-MS (Zn, Mg, Ca, Al, Cu, Fe, Mn, Se, Ag, Cd, Pb, Hg, Mo, Ni, As, Cr, Hg), Toxic substances- Pesticide Residues, Polychlorinated Biphenyls, Polyaromatic Hydrocarbons, IS protocol 10500 and 14543.

UNIT II ANALYSIS OF PLANTATION PRODUCTS 9
Tea & Coffee- Preparation of sample, Moisture content, Total ash, Water soluble ash, Determination of Caffeine content by different methods, Microscopic examination, Determination of solubility in boiling water, Determination of Iron filings and size of the particles, Test for presence of added colouring matter
Spices- Sample preparation, Determination of moisture, Acid insoluble ash, Determination of Cold Water Extract, Determination of Alcohol Soluble Extract, Calcium Oxide, Non Volatile Ether Extract, Volatile Oil, Crude Fibre, Allyl isothiocyanate in Mustard, p-hydroxybenzyl isothiocyanate in white mustard, Microscopic Examination of Spices, Black Pepper- Determination ofBulk density, Light berries, Piperine content, Turmeric- Determination of curcumin content, Starch content, Detection of chromate content, Detection of Argemone seeds in Mustard, Detection of Mineral Oil in Black Pepper, Detection of Papaya seeds in Black Pepper, Detection of Turmeric in Chillies and Coriander, Detection of Oil Soluble Colour, Determination of Light and Heavy Filth in Spices and Condiments, Determination of capsaicin content in chilli powder.

UNIT III ANALYSIS OF FRUIT & VEGETABLE PRODUCTS, OILS & FATS 9
Thermally Processed fruits and vegetables- Physical examination, Determination of Vacuum, Drained weight, Internal conditions of can, Determination of sodium chloride in brine; Jams and Jellies- Insoluble matter, pH, Titratable Acidity, Volatile oils, Total sugars, Vitamin C, Determination of fruit content.

UNIT IV ANALYSIS OF BAKING AND CONFECTIONERY PRODUCTS 9
Bread- Sample preparation, Determination of alcoholic acidity, Acid-insoluble ash, Non-Fat milk solids in milk bread, Biscuits- Determination of acidity of extracted fat,
Confectionery- Preparation of Sample, Determination of Moisture, Determination of Sulphated Ash, Determination of Sulphated Ash on salt free basis, Determination of Ash in dil. HCl, Test for presence of added synthetic colour, Determination of Total Protein, Determination of Fat, Determination of Reducing Sugar, Determination of Sucrose, Determination of Sulphur dioxide, Determination of Lead, Copper and Zinc.

Attested

DIRECTOR
Centres for Academic Courses
UNITV ANALYSIS OF MEAT AND FISH PRODUCTS

Preparation of Sample for Meat and Processed Meat products, Determination of Nitrite in Processed animal foods, Determination of Ascorbic acid, Alternate method for Determination of Ascorbic acid, Determination of Total Phosphorous, Test for presence of Polyphosphates, Determination of Glucono-delta-lactone, Additional tests, Determination of physico-chemical quality of meat and meat products- pH, Extract Release Volume (ERV), Meat Swelling Capacity (MSC), Total Volatile Basic Nitrogen (TVBN), Picric Acid Turbidity (PAT), Determination of dye reduction capacity

Preparation of sample for Fish and Processed Fish, Frozen Fish- Determination of Histamine, Dried fish- Moisture content, Sodium chloride content, Acid insoluble ash.

Milk & Milk products- Preparation of sample, Detection test for adulterants and contaminants, Alkaline phosphatase test, Turbidity test, Determination of Total solids, Determination of fat.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to

CO 1 understand the principles behind analytical techniques in food analysis.

CO 2 know the methods of selecting appropriate techniques in the analysis of food products.

CO 3 appreciate the role of food analysis in food standards and regulations for the manufacture and the sale of food products and food quality control in food industries.

CO 4 familiarize with the current state of knowledge in food analysis.

REFERENCES:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understand</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>the principles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>behind analytical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>techniques in food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>analysis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 know the</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>methods of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>selecting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>appropriate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>techniques in the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>analysis of food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>products.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3 appreciate</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>the role of food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>analysis in food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>standards and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>regulations for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the manufactur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e of food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>products and food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quality control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>industries.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4 familiarize</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>with the current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>state of knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in food analysis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over all CO</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

1,2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to

- impart knowledge and skills related to process technologies in fermented food products
- learn about the different equipment used for the production of various fermented food products.

UNIT I INTRODUCTION

History of food fermentations; types of fermented foods and substrates/raw materials used, traditional fermented foods, major biotransformation of raw materials during fermentation, Modern fermented foods industry, Properties of fermented foods, Fermented foods in the twenty-first century, Health benefits of fermented foods and beverages.

UNIT II STARTER CULTURES AND FERMENTATIVE METABOLISM

Microorganisms and metabolism - Bacteria used in the manufacture of fermented foods, Yeasts and molds used in the manufacture of fermented foods. Fermentation and metabolism basics-Sugar metabolism, Protein metabolism, Other metabolic systems of bacteria, yeast and molds. Starter cultures History, Starter culture microorganisms- bacteria, yeast and mold starter cultures, Strain identification, Culture composition, Manufacture of starter cultures, Evaluation of culture performance, Usage of starter cultures, Starter culture maintenance- Bacteriophages and their control, Engineered phage resistance, Starter culture technology in the twenty-first century-Encapsulated and immobilized cells, Probiotics and culture adjuncts

UNIT III FERMENTED DAIRY, FRUIT AND VEGETABLE PRODUCTS

UNIT IV FERMENTED CEREAL AND LEGUME PRODUCTS

Fermented Legumes- Major legumes used for fermentation, biochemical changes during fermentation, Soy based products- Soy sauce, Miso, Natto and Tempeh Manufacturing steps, biochemical and microbiological changes during fermentation.

UNIT V FERMENTED MEAT AND FISH PRODUCTS

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to
CO 1 understand the concepts, principles and procedures involved in the area of fermented food production.
CO 2 evaluate the raw materials quality and their influence on the properties of final products
CO 3 describe malting, brewing, winemaking spirit and dairy production processes from raw materials to final products
CO 4 distinguish the characteristic faults of fermented food products

TEXT BOOKS:

REFERENCES:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understand concepts, principles and procedures involved in the area of fermented food production.</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CO2 evaluate raw materials quality and their influence on the properties of final products</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CO3 describe malting, brewing, winemaking spirit and dairy production processes from raw materials to final products.</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CO4 distinguish the characteristic faults of fermented food products</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to

- understand the basic concepts of Nutraceuticals and functional food, their chemical nature and methods of extraction.
- understand the role of Nutraceuticals and functional food in health and disease

UNIT I CLASSIFICATION AND SIGNIFICANCE

Introduction to Nutraceutical Industry Organizational elements, classification of nutraceuticals, dietary supplements, fortified foods, classification of functional foods and their benefits, Phytochemicals, zoo chemicals and microbes in food, plants, animals and microbes. Scope involved in the industry, Indian and global scenario.

UNIT II ANALYSIS OF PHYTOCHEMICALS

Sources and role of Isoprenoids, Isoflavones, Flavonoids, carotenoids, Tocotrienols, polyunsaturated fatty acids, sphingolipids, lecithin, choline.terpenoids. Qualitative and quantitative methods phytoestrogens in plants; isoflavones; flavonols, polyphenols, tannins, saponins, lignans. In vitro and In vivo methods for the assessment of antioxidant activity. Comparison of different In Vitro methods to evaluate the antioxidant, Optimising phytochemical release by process technology; Variation of Antioxidant Activity during technological treatments, new food grade peptidases from plant sources.

UNIT III ROLE IN HEALTH AND TREATMENT OF DISEASE

Nutraceuticals and Functional foods in Gastrointestinal disorder, Cancer, CVD, Diabetic Mellitus; Importance and function of probiotics, prebiotics and synbiotics and their applications, Functional foods and immune competence; role and use in obesity and nervous system disorders.

UNIT IV NUTRACEUTICAL STABILITY CONCERNS AND SHELF LIFE TESTING

UNIT V MARKETING, REGULATORY AND SAFETY ASPECTS

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to

- CO 1 have knowledge of the basic concepts of nutraceuticals and its role in health and disease
- CO 2 understand the chemical nature of nutraceuticals and methods of extraction
- CO 3 understand the role of Nutraceuticals and functional food in health and disease
TEXT BOOKS:

REFERENCES:
<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>knowledge of the basic concepts of Nutraceuticals and functional food.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>understand the chemical nature of nutraceuticals and methods of extraction</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>understand the role of Nutraceuticals and functional food in health and disease</td>
<td>1</td>
</tr>
<tr>
<td>Over all CO</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to

- To develop the knowledge of students in the area of post-harvest processing of various foods and related technology.
- To enable students to appreciate the application of scientific principles in the processing of post harvesting materials.

UNIT I INTRODUCTION 7
Post-harvest engineering of crops – objectives – post harvest systems and losses in agricultural commodities structure, engineering properties of agricultural materials, optimum stage of harvest, importance of loss reduction; Post Harvest Handling operations. Pre-drying operation-Moisture content, RH measurement, air-grain measurement.

UNIT II CLEANING, THRESHING AND GRADING 10
Threshing and shelling operation - principles and operation - various decorticators/dehullers/shellers, description of groundnut decorticators, maize shellers, etc. Cleaning – principles and machineries – Cleaning of grains, washing of fruits and vegetables, types of cleaners, screens, types of screens - rotary screens, vibrating screens, machinery for cleaning of fruits and vegetables (air cleaners, washers), cleaning efficiency, care and maintenance; Peeling, Sorting and Grading - grain grading system, effectiveness of separation and performance index., hydrothermal treatment and conditioning of grains; Size grading, colour grading, specific gravity grading; screening, equipment for grading of fruits and vegetables, grading efficiency. Separation - Magnetic separator, de-stoners, electrostatic separators, pneumatic separator

UNIT III MATERIAL HANDLING 10
Introduction to different conveying equipment used for handling of grains, fruits and vegetables; Scope and importance of material handling devices Classification, principles of operation, conveyor system selection/design. Belt conveyor Principle, characteristics, design, relationship between belt speed and width, capacity, inclined belt conveyors, idler spacing, belt tension, drive tension, belt tripper. Chain conveyor -Principle of operation, advantages, disadvantages, capacity and speed, conveying chain. Screw conveyor Principle of operation, capacity, power, troughs, loading and discharge, inclined and vertical screw conveyors. Bucket elevator Principle, classification, operation, advantages, disadvantages, capacity, speed, bucket pickup, bucket discharge, relationship between belt speed, pickup and bucket discharge, buckets types, power requirement. Pneumatic conveying system types, air/product separators; Gravity conveyor design considerations, capacity and power requirement.

UNIT IV PRINCIPLES AND PRACTICE OF STORAGE 10
Importance of scientific storage systems, post-harvest physiology of semi-perishables and perishables. Damages Direct damages, indirect damages, causes of spoilage in storage (moisture, temperature, humidity, respiration loss, heat of respiration, sprouting), destructive agents (rodents, birds, insects, etc.), sources of infestation and control. Storage structures Traditional storage structures, improved storage structures, modern storage structures; Farm silos Horizontal silos, tower silos, pit silos, trench silos, size and capacity of silos.

Storage of perishables Cold storage, controlled and modified atmospheric storage, hypobaric storage, evaporative cooling storage, conditions for storage of perishable products, control of temperature and relative humidity inside storage
UNIT V PEST CONTROL

Primary and secondary insect pests, rodents and microorganisms of stored food grains and their control, integrated pest management, Fumigation and controlled atmosphere storage of food grains, Rodent Control.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to

- CO 1 understand and identify the specific processing technologies used for different foods and the various products derived from these materials.
- CO 2 understand the application of scientific principles in the processing technologies specific to the materials.
- CO 3 understand and design storage systems for different food products

TEXTBOOKS:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understand and identify the specific processing technologies used for different foods and the various products derived from these materials.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2 understand the application of scientific principles in the processing technologies specific to the materials.</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3 understand and design storage systems for different food products</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Over all CO</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1,2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to

• understand about coffee and its processing techniques, instant coffee, and quality grading, cocoa and its processing, chocolate manufacturing technology
• understand about different types of tea and its manufacturing techniques, instant tea, quality parameters of Tea
• understand about the processing and chemistry of major and minor spices

UNITI IMPORTANCE AND PROCESSING OF SPICES

A. Major Spices

B. Minor Spices

Post-Harvest Technology, composition, processed products of - Cumin, Coriander, Cinnamon, fenugreek, pepper, Garlic, Clove and Vanilla - Oleoresins and essential oils – Method of manufacture – Chemistry of the volatiles – flavors, Quality control, Present trends in synthesis of volatiles – micro-organisms, plant suspension cultures

UNITII PROCESSING OF COFFEE AND TEA

UNITIII CHEMISTRY AND TECHNOLOGY OF COCOA AND COCOA PRODUCTS

Occurrence - Chemistry of the cocoa bean – changes taking place during fermentation of cocoa bean – Processing of cocoa bean – cocoa powder – cocoa liquor, manufactureChocolates – Types – Chemistry and technology of chocolate manufacture – Quality control of chocolates

UNITIV PROCESSING OF COCONUT, OILPALM, ARECANUT AND CASHEW

UNITV PACKAGING, GRADING AND QUALITY ANALYSIS OF SPICES

Cleaning and grading of spices - packaging and storage of spices – grading specifications – AGMARK, ASTA, ESA specifications - processes involved in the manufacture of oleoresins and essential oils – quality analysis of spices and their derivatives
OUTCOMES:

At the end of the course the students will be able to

CO 1 learn about processing steps involved in different types of coffee, tea, instant coffee, instant tea and quality grading parameters.

CO 2 acquire knowledge on cocoa processing and chocolate manufacturing technology

CO 3 learn about processing and chemistry of major and minor spices.

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcome (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 processing steps involved in different types of coffee, tea, instant coffee, instant tea and quality grading parameters</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO2 knowledge on cocoa processing and chocolate manufacturin g technology</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO3 processing and chemistry of major and minor spices.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Over all CO</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to
- describe manufacturing procedures used to produce the common food flavouring materials
- understand the flavour compounds involved in development of flavour
- understand the analytical techniques involved in flavour analysis
- understand mechanisms of flavour perception

UNIT I INTRODUCTION

Problems in flavour research – classification of food flavours; chemical compounds responsible for flavour.

UNIT II FLAVOUR COMPOUNDS

Chemical compound classes and their flavour responses; flavour development during biogenesis, flavour development during food processing; use of biotechnology to develop flavours.

UNIT III FLAVOUR PERCEPTION

Flavour and taste perception, smell and taste sensation, olfaction, flavour compounds, volatile flavour compounds, chemesthesis and chemesthetic responses, tactile response, Aroma compounds, flavour profile, bio-flavour and reconstituted flavour.

UNIT IV FLAVOUR ANALYSIS

Subjective versus Objective methods of analysis; psychophysics and sensory evaluation; Instrumental analysis; sample handling and artifacts; data handling

UNIT V TEACHING FLAVOUR CONCEPTS

Problem based learning; tongue and nose; Onion-Beverage-Maillard reaction-Thio-stench, Flavour legislation, flavour release, Useful principles to predict the performance of polymeric flavor delivery systems, Delivery of flavours from food matrices, Packaging and flavour compounds.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of course students will be able to
- CO 1 understand mechanisms of flavour formation and flavour release
- CO 2 explain metabolic routes leading to flavour formation in plants
- CO 3 recognize off-flavour defects in foods and strategies of identification.

TEXT BOOKS:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understan d mechanisms of flavor formation and flavor release</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO2 explain metabolic routes leading to flavor formation in plants</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO3 recognize off-flavor defects in foods and strategies of identification</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Overall CO</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to
- Introduce the dynamic response of open and closed loop systems, control loop components and stability of control systems.
- Learn instrumentation for the measurement of key process variables in food processing.
- Update the applications of sensors in food processing Industry.

UNIT I PROCESS INSTRUMENTATION 12
Principles of measurements and classification of process instruments, measurement of temperature, pressure, fluid flow, liquid weight and weight flow rate, viscosity, pH, concentration, electrical and thermal conductivity, humidity of gases.

UNIT II OPEN LOOP SYSTEMS 7
Laplace transformation, application to solve ODEs. Open-loop systems, first order systems and their transient response for standard input functions, first order systems in series, linearization and its application in process control, second order systems and their dynamics; transportation lag.

UNIT III CLOSED LOOP SYSTEMS 7
Closed loop control systems, development of block diagram for feed-back control systems, servo and regulatory problems, transfer function for controllers and final control element, principles of pneumatic and electronic controllers, transient response of closed-loop control systems and their stability.

UNIT IV FREQUENCY RESPONSE 7
Introduction to frequency response of closed-loop systems, control system design by frequency response techniques, Bode diagram, stability criterion, tuning of controller settings.

UNIT V ADVANCED SENSOR APPLICATIONS FOR FOOD PROCESSING 12
Ultrasound sensors - Electric impedance sensors - Gas sensors - Electronic noses, tongues and testers - Chemosensors, biosensors, immunosensors and DNA probes - Sensors for food flavour and freshness; Biosensors for process monitoring and quality assurance; Conductance/impedance techniques for microbial assay - Commercial devices based on biosensors; New biosensors.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of course students will be able to
CO 1 gain skills and knowledge in instrumentation and process control of the food process system.
CO 2 apply principles of process control to analyze the performance of industrial processes.
CO 3 apply concepts of measurement and sensor selection to specify, install, configure, calibrate, troubleshoot, and maintain various process instruments commonly used in industry.
CO 4 understand the prerequisites of control strategies and design different process control systems.
CO 5 evaluate the suitable controllers for different food processes.
enable students aware of recent developments in monitoring and control of food processes using sensors

TEXT BOOKS:

REFERENCES:

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 Have a comprehensive understanding of the principles and in instrumentation and process control of the food process systems</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2 Apply principles of process control to analyze the performance of industrial food processes</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3 Apply concepts of measurement and sensor selection to specify, install, configure, calibrate, troubleshoot, and maintain various process instruments commonly used in food</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO</td>
<td>Description</td>
<td>Level 1</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand the prerequisites of control strategies and design different process control systems</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Evaluate the suitable controllers for different food processes</td>
<td>2</td>
</tr>
<tr>
<td>CO6</td>
<td>Enable students aware of recent developments in monitoring and control of food processes using sensors</td>
<td>2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to
- deliver the knowledge of spectroscopic techniques and its functions
- provide the technical information of spectroscopy for biological applications

UNIT I CIRCULAR DICHROISM (CD) AND OPTICAL ROTATORY DISPERSION (ORD)

UNIT II FLUORESCENCE AND RAMAN SPECTROSCOPY 10

UNIT III NUCLEAR MAGNETIC RESONANCE 10

UNIT IV MASS SPECTROMETRY AND X-RAY DIFFRACTION 15

UNIT V SPECIAL TOPICS AND APPLICATIONS 5
Electron microscopy – transmission and scanning electron microscopy – scanning tunnelling and atomic force microscopy – combinatorial chemistry and high throughput screening methods.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students will be able to
- CO 1 understand the principle of spectroscopic techniques widely used in many quantitative experiments
- CO 2 understand the central techniques associated with the elucidation of structure and composition molecules in natural and life sciences
- CO 3 comprehend the high-resolution imaging techniques to assess surface and intracellular complexity.

TEXT BOOKS:
<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understand the principle of spectroscopic techniques widely used in many quantitative experiments</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO2 understand the central techniques associated with the elucidation of structure and composition molecules in natural and life sciences</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO3 comprehend the high-resolution imaging techniques to assess</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
surface and intracellular complexity.

Over all CO 2 2 2 3 2 - - - - - - 2 2 2 2 3

1,2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.

FT5009 BAKING AND CONFECTIONERY TECHNOLOGY L T P C
3 0 0 3

OBJECTIVES

The course aims to
- familiarize with the different methods of baking bread and recent advances in baking industry.
- learn microbiological aspects of bakery products, sanitation and hygiene of baking industries.

UNIT I INTRODUCTION TO BAKING
Classification of bakery products. Bakery ingredients and their functions-Essential ingredients Flour, yeast and sour dough, water, salt- Other ingredients Sugar, color, flavor, fat, milk, milk powder and bread improvers. Leaveners and yeast foods. Shortenings, emulsifiers and antioxidants.

UNIT II EQUIPMENTS
Introduction to utensils and equipments used in bakery industry with their purpose.Bulk handling of ingredients- Dough mixing and mixers, Dividing, rounding, sheeting, and laminating-Fermentation enclosures and brew equipment - Ovens and Slicers. Rheology of dough Farinograph, Amylograph, Alveograph and Extensiograph.

UNIT III BREAD MAKING PROCESS

UNIT IV BAKERY PRODUCTS
UNIT V CONFECTIONERY PRODUCTS

OUTCOMES:

At the end of the course the students will be able to

CO 1 understand and optimize different food Ingredients in baking process.
CO 2 different methods of preparation of baking products
CO 3 understand the rheological properties and microbiological aspects of baking products

TEXT BOOKS:

2. Cauvain, Stanley P, and Young, Linda S., —Technology of Bread Making, 2007, springer

REFERENCES:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understand and optimize different food ingredients in baking process.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO2 different methods of preparation of baking products</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO3 understand the rheological properties and microbiological aspects of baking products</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Over all CO</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to
- understand the process development and design consideration of food plant layout.
- understand the quantitative analysis of cost estimation and practical consideration of food plant layout.

UNIT I OVERALL DESIGN OF AN ENTERPRISE
Plant design, sales planning for plant design. Plant Location, levels of Plant location. Location of layout location factors, plant site selection. Location theory and models, industrial buildings and grounds. Classification of Dairy and Food Plants, farm level collection and Chilling centre. Space requirement.

UNIT II PREPARATION OF A PLANT LAYOUT

UNIT III DEVELOPMENT AND PRESENTATION OF LAYOUT
Development of the pilot layout, constructing the detailed layout. Functional design. Siting of different sections in a plant, Layout installations.

UNIT IV QUANTITATIVE ANALYSIS FOR PLANT LAYOUT
Engineering economy, Linear programming, Queuing theory, Common Problems in Plant Layout and Process scheduling, Siting of Process sections, Equipment selection and capacity determination, Arrangement of process, and service equipment, Estimation of Services and Utilities, Office layout, line balancing, Flexibility.

UNIT V PRACTICAL LAYOUTS

OUTCOMES:
At the end of course students will be able to
- CO 1 design and setting up of new food processing plant as Entrepreneur and/or consultant
- CO 2 help to minimize the food industry losses and maximize the processed food production
- CO 3 prepare cost estimate and economic analysis of food industry

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcome (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and setting up of new food processing plant as Entrepreneur and/or consultant</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Help to minimize the food industry losses and maximize the processed food production</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepare cost estimate and economic analysis of food industry</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Over all CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to

- impart knowledge of reaction rate theories and reaction mechanisms to derive expressions for rate equations mass and energy balances.
- provide a core foundation for the analysis and design of chemical reactors.

UNIT I SCOPE OF CHEMICAL REACTION ENGINEERING

Broad outline of chemical reactors; rate equations; concentration and temperature dependence; development of rate equations for different homogeneous reactions. Industrial scale reactors.

UNIT II DEAL REACTORS

Isothermal batch, flow, semi-batch reactors; performance equations for single reactors; multiple reactor systems; multiple reactions.

UNIT III IDEAL FLOW AND NON IDEAL FLOW

RTD in non-ideal flow; non-ideal flow models; reactor performance with non-ideal flow.

UNIT IV GAS-SOLID, GAS-LIQUID REACTIONS

Resistances and rate equations; heterogeneous catalysis; reactions step; resistances and rate equations.

UNIT V FIXED BED AND FLUID BED REACTORS

G/L reactions on solid catalysis; trickle bed, slurry reactors; three phase-fluidized beds; reactors for fluid-fluid reactions; tank reactors.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to

- CO 1 write the rate equation for any type of reaction
- CO 2 design reactors for homogeneous and heterogeneous reactions and optimize operating conditions
- CO 3 relate and calculate the conversions, concentrations and rates in a reaction and identify, formulate and solve chemical engineering problems.

TEXT BOOKS:

REFERENCES:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 write the rate equation for any type of reaction</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2 design reactors for homogeneous and heterogeneous reactions and optimize operating conditions</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3 relate and calculate the conversions, concentrations and rates in a reaction and identify, formulate and solve chemical engineering problems.</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Over all CO 3 3 2 1 1 1 - - 1 1 - 2 2 2 1 1

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to
- acquaint with the fundamentals of biotechnology in relation to raw materials for food processing.
- enable the students to learn about food fermentations, waste utilization and use better genetic resources in food industry.

UNIT I INTRODUCTION TO GENETIC MATERIAL 9
Genetic material, Chemical nature, properties, and functions of the genetic material, Overview of bacterial DNA replication Origin of replication, Enzymes and proteins required for DNA replication, Overview of replication Bacterial transcription Types of RNA and overview of bacterial translation, Bacterial translation Genetic code and overview of bacterial translation, Mutation and DNA repair Types of mutation, mechanisms of repair of damaged DNA (photo reactivation, excision repair, recombination repair, SOS repair and mismatch repair).

UNIT II OVERVIEW OF GENETIC RECOMBINATION IN BACTERIA 9

UNIT III INTRODUCTION TO RECOMBINANT DNA TECHNOLOGY 9
DNA modifying enzymes Restriction enzymes and other modifying enzymes, Cloning vectors Introduction, plasmid and other vectors, Steps of gene cloning Isolation and purification of insert DNA, selection and isolation of vector DNA, construction of recombinant DNA, and introduction of recombinant DNA into host cell, identification and selection of cells containing cloned genes.

UNIT IV DNA LIBRARIES, SEQUENCING AND AMPLIFICATION OF DNA 9
DNA Library Construction of genomic and cDNA libraries, Artificial chromosomes – BACs and YACs, Screening of DNA libraries using nucleic acid probes and antisera.

DNA Amplification- Maxam Gilbert's and Sanger's methods of DNA sequencing. Inverse PCR, Nested PCR, AFLP-PCR, Allele specific PCR, Assembly PCR, Asymmetric PCR, Hot start PCR, inverse PCR, Colony PCR, single cell PCR, Real-time PCR/qPCR – SYBR green assay, Taqman assay, Molecular beacons. Site directed mutagenesis.

UNIT V TRANSGENIC TECHNOLOGY & APPLICATIONS IN FOODS 9
DNA microinjection, Retroviral vectors, Transgenic animals – Knock in and knock out animals, Transgenic plants – Ti plasmid. Genetically engineered proteins Bovine Somatotropin in Milk; Genetically engineered bacteria Chymosin Lite beer; Tryptophan; Transgenic plants CalgeneFlavrSavr™ tomato, Monsanto Round-Up TM Ready, Ciba Geigy Basta TM resistant crops; Edible vaccines Cholera vaccine in potatoes; Transgenic Fish Atlantic salmon.

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course the students will be able to
CO 1 understand the Basics of Biotechnological concepts.
CO 2 understand the genetically modified plants, animals and modified microorganisms
CO 3 familiarize in Food Technological applications of genetically engineered plants

TEXT BOOKS:

REFERENCES:
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Understand the Basics of Biotechnological concepts.</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Understand genetically modified plants, animals and modified microorganisms.</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Familiarize in Food Technological applications of genetically engineered plants.</td>
<td></td>
</tr>
<tr>
<td>Over all CO</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to
• familiarize with hazards, and toxicity associated with food and their implications for health.
• know the various kinds of allergens and basis of allergic reactions
• familiarize with various natural toxins in food.

UNIT I INTRODUCTION
Definition and need for understanding food toxicology; Hazards - Microbiological, nutritional and environmental. Basics of immune resources - humoral and cell media resources. Allergen and mechanism of allergic resources.

UNIT II FOOD ALLERGY AND SENSITIVITY
Chemistry of food allergens, celiac disease, food disorders associated with metabolism, lactose intolerance, and asthma

UNIT III PRINCIPLES OF TOXICOLOGY
Natural food toxicants - toxicity of mushroom alkaloids, seafood, vegetables, fruits, pulses, and antinutritional compounds. Biological factors that influence toxicity, toxin absorption in the G.I. track, Industrial microflora, blood, brain barrier, storage and excretion of toxins

UNIT IV DETERMINATION OF TOXICANTS IN FOOD SAMPLING
Quantitative and qualitative analysis of toxicants in foods; Biological determination of toxicants Assessment of food safety – Risk assessment and risk benefit indices of human exposure, acute toxicity, mutagen city and carcinogenicity, reproductive and developmental toxicity, neurotoxicity and behavioural effect, immunotoxicity.

UNIT V TOXICANTS FORMED DURING FOOD PROCESSING
Intentional direct additives, preservatives, nitrate, nitrite, and N- nitroso compound flavour enhancers, food colours, indirect additives, residues and contaminants, heavy metals, other organic residues and packaging materials. Toxicity of heated and processed foods, food carcinogens and mutagens - Polycyclic aromatic hydrocarbons, N - nitrosamines, Acrylamide and their mode of action.

OUTCOMES:
At the end of the course the students will be able to
CO 1 understand the basics of immune system and its response
CO 2 learn about allergens, natural toxins and their nature
CO 3 understand the toxin production during food processing and their detection

TEXTBOOKS:

REFERENCES:
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 learnt basics about the immune system and its response.</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO2 learnt and about allergens, natural toxins and their nature.</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO3 toxin production during food processing and their detection.</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Over all CO</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to
- identify the core values that shape the ethical behaviour of an engineer.
- utilize opportunities to explore one's own values in ethical issues
- learn about the ethical concerns and conflicts
- enhance familiarity with codes of conduct.
- increase the ability to recognize and resolve ethical dilemmas.

UNIT I ENGINEERING ETHICS

UNIT II ENGINEERING AS SOCIAL EXPERIMENTATION

UNIT III ENGINEER’S RESPONSIBILITY FOR SAFETY

UNIT IV RESPONSIBILITIES AND RIGHTS

UNIT V GLOBAL ISSUES

OUTCOMES:
At the end of the course the students will be able to
- CO 1 apply ethics in society,
- CO 2 have responsibility of an engineer towards safety
- CO 3 acquire social responsibility in society

TEXT BOOKS:

REFERENCES:
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 apply ethics in society.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2 have responsibility of an engineer towards safety.</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO3 acquire social responsibility in society</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Over all CO</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to
- understand the traditional methods of food processing and production.
- understand the commercialization and health aspects of traditional and organic foods.

UNIT I HISTORICAL AND CULTURAL PERSPECTIVES 9
Food production and accessibility - subsistence foraging, horticulture, agriculture and pastoralization, origin of agriculture, earliest crops grown. Food as source of physical sustenance, food as religious and cultural symbols; importance of food in understanding human culture - variability, diversity, from basic ingredients to food preparation; impact of customs and traditions on food habits, heterogeneity within cultures (social groups) and specific social contexts - festive occasions, specific religious festivals, mourning etc. Kosher, Halal foods; foods for religious and other fasts.

UNIT II TRADITIONAL METHODS OF FOOD PROCESSING 9

UNIT III TRADITIONAL FOOD PATTERNS 9
Typical breakfast, meal and snack foods of different regions of India. Regional foods that have gone Pan Indian / Global. Popular regional foods; Traditional fermented foods, pickles and preserves, beverages, snacks, desserts and sweets, street foods; IPR issues in traditional foods.

UNIT IV COMMERCIAL PRODUCTION OF TRADITIONAL FOODS 12
Commercial production of traditional breads, snacks, ready-to-eat foods and instant mixes, frozen foods – types marketed, turnover; role of SHGs, SMES industries, national and multinational companies; commercial production and packaging of traditional beverages such as tender coconut water, neera, lassi, buttermilk, dahi. Commercial production of intermediate foods – ginger and garlic pastes, tamarind pastes, masalas (spice mixes), idli and dosa batters.

UNIT V HEALTH ASPECTS 6
Comparison of traditional foods with typical fast foods / junk foods – cost, food safety, nutrient composition, bioactive components; energy and environmental costs of traditional foods; traditional foods used for specific ailments /illnesses. Organic foods types of organic foods, identifying organic foods, organic food & preservatives.

OUTCOMES:
At the end of the course the students will be able to
- CO 1 understand the historical and traditional perspective of foods and food habits
- CO 2 understand the wide diversity and common features of traditional Indian foods and meal patterns.
- CO 3 familiarize with health benefits of bioactive components rich traditional foods over junk foods.

TEXT BOOKS:
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes</th>
<th>Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1</td>
<td>understand the historical and traditional perspective of foods and food habits</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>understand the wide diversity and common features of traditional Indian foods and meal patterns</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>familiarize with health benefits of bioactive components rich traditional foods over junk foods.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Over all CO</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1,2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to

- introduce the students about the process economics and industrial management principles.
- improve the management and planning skills in students thus enabling them for functional role in industries.

UNIT I \ PRODUCTION MANAGEMENT AND ORGANISATION \ 15
Planning, organization, staffing, coordination, directing, controlling, communicating, organization as a process and a structure; types of organizations Method study; work measurement techniques; basic procedure; motion study; motion economy; principles of time study; elements of production control; forecasting; planning; routing; scheduling; dispatching; costs and costs control, inventory and inventory control.

UNIT II \ ENGINEERING ECONOMICS FOR PROCESS ENGINEERS- INTEREST, INVESTMENT COSTS AND COST ESTIMATION \ 10
Time Value of money; capital costs and depreciation, estimation of capital cost, manufacturing costs and working capital, invested capital and profitability.

UNIT III \ PROFITABILITY, INVESTMENT REPLACEMENT \ 8
Estimation of project profitability, sensitivity analysis; investment alternatives; replacement policy; forecasting sales; inflation and its impact.

UNIT IV \ ANNUAL REPORTS AND ANALYSIS OF PERFORMANCE \ 4
Principles of accounting; balance sheet; income statement; financial ratios; analysis of performance and growth.

UNIT V \ ECONOMIC BALANCE AND QUALITY AND QUALITY CONTROL \ 8
Essentials of economic balance – Economic balance approach, economic balance for insulation, evaporation, heat transfer. Elements of quality control, role of control charts in production and quality control.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students will be able to

- CO 1 perform economic analysis for process to calculate equipment cost and profitability.
- CO 2 evaluate the economic feasibility analysis of an food industry.
- CO 3 perform various aspects behind management and organization that will enable the students to perform as efficient managers.

TEXT BOOKS:

REFERENCES:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcome (PO)</th>
<th>Program Specific Outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>CO1 perform economic analysis for process to calculate equipment cost and profitability</td>
<td>3 3 1 - 1 1 1 1 2 2 3 2</td>
<td>2 2 1 1</td>
</tr>
<tr>
<td>CO2 evaluate the economic feasibility analysis of a food industry.</td>
<td>3 3 1 - 1 1 1 1 2 2 3 2</td>
<td>2 2 1 1</td>
</tr>
<tr>
<td>CO3 perform various aspects behind management and organization that will enable the students to perform as efficient managers</td>
<td>1 1 2 - 1 1 1 2 2 2 3 2</td>
<td>2 2 1 1</td>
</tr>
<tr>
<td>Over all CO</td>
<td>2 2 1 - 1 1 1 2 2 2 3 2</td>
<td>2 2 1 1</td>
</tr>
</tbody>
</table>

1,2 and 3 are correlation levels with weightings on slight (low) moderate (medium) and substantial (high) respectively.

Attested

[Signature]

Director
OBJECTIVES

The course aims to

- introduce students to key aspects of supply chain (SC) management which are critical to improving the overall resilience of the global food supply network.
- make them aware of various global regulatory guidelines in food supply management.

UNIT I INTRODUCTION

UNIT II LOGISTICS, SUPPLY AND DISTRIBUTION

Principles of Logistics Production and sale of food products at global level, and the life cycle of the product is short. The right and wrong of logistics are influencing the success or failure of corporate management. Learning CSF (critical success factor) of Logistics through the study of successful food industry. Quantitative Management Analysis

Business logistics - The supply chain Importance of Logistics/Supply Chain (SC) Costs analysis Logistics customer service Supply and distribution lines lengthening with greater complexity Quick customized response Logistics, Food supply chain management from farm to fork, Elements of the supply chain, Transport and storage, Social and environmental concerns associated with the food supply chain

UNIT III MANAGEMENT CHALLENGES IN COLD CHAIN

Post-Harvest Food Management - Supply Chain Management, The major cold chain technologies Dry ice, Gel packs, Eutectic plates, Liquid nitrogen, Quilts, Reefers Refrigerated Containers, Managerial Economics - Fresh Food and Supply Chain Management Challenges, Life Cycle Assessment Studies of Food Product, Retail logistics changes and challenges Retail logistics and supply chain Transformation The Cold Chain and its Logistics, From a geographical perspective, the cold chain has the following impacts The major cold chain technologies, Value Chain, Global Value Chain

UNIT IV FOOD SAFETY MANAGEMENT

Food safety - The risk management, internationally agreed definition, framework and process of risk management. Risk analysis, risk assessment, risk management and risk communication. Food Safety and Standards - Agricultural Marketing - Production and Operations Management Commodity Markets and Futures Trading - Retail Management - Management Concepts - Business Communication, Traceability system In order to nurture a diverse viewpoint capable of understanding and analysing traceability, Recalls

UNIT V QUALITY CONTROL AND MANAGEMENT REGULATION

OUTCOMES:

At the end of the course the students will be able to

CO 1 assess the impact of different SC strategies on the competitive strategy in the Food and Drinks industry.

CO 2 design a successful collaborative initiative through the use of frameworks and tools.

CO 3 examine the challenges around managing sustainable supply chains.

REFERENCES:

4. Logistics Engineering and Management, Blanchard, pearson, 6th edition 2004
Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 assess the impact of different SC strategies on the competitive strategy in the Food and Drinks industry.</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CO2 design a successful collaborative initiative through the use of frameworks and tools.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3 examine the challenges around managing sustainable supply chains.</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO4 evaluate the risk inherent in the SC through the application of tools and techniques learnt.</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Over all CO</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES

The course aims to
- understand the engineering properties of different materials for the development of food plant equipment
- understand the design of different processing requirement for food industry.

UNIT I MATERIALS AND PROPERTIES
Materials for fabrication, mechanical properties, ductility, hardness, corrosion, protective coatings, corrosion prevention linings equipment, choice of materials, material codes

UNIT II DESIGN CONSIDERATIONS
Stresses created due to static and dynamic loads, combined stresses, design stresses and theories of failure, safety factor, temperature effects, radiation effects, effects of fabrication method, economic considerations

UNIT III DESIGN OF STORAGE VESSEL AND EXCHANGERS
Design of pressure and storage vessels Operating conditions, design conditions and stress; Design of shell and its component, stresses from local load and thermal gradient, mountings and accessories. Design of heat exchangers Design of shell and tube heat exchanger, plate heat exchanger, scraped surface heat exchanger, sterilizer and retort. Design of agitators and separators Design of agitators and baffles; Design of agitation system components and drive for agitation

UNIT IV DESIGN OF DRYER, FREEZER AND FERMENTERS
Design of freezing equipment Design of ice cream freezers and refrigerated display system Design of dryers Design of tray dryer, tunnel dryer, fluidized dryer, spray dryer, vacuum dryer, freeze dryer and microwave dryer Design of fermenters Design of fermenter vessel, design problems

UNIT V EXTRUDERS AND EQUIPMENT SAFETY
Extrusion cookers - cold extrusion, single and twin screw extrusion- Low pressure and high pressure extrusion - properties of Food materials and its significance in equipment design - processing and handling - Cold and hot extruder design, design of screw and barrel, design of twin screw extruder. Hazards in process industries, analysis of hazards, safety measures, safety measures in equipment design, pressure relief devices

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to
- CO1 understand principle and working of food processing equipment.
- CO2 familiarize with the design of advanced machinery available for food processing sectors
- CO3 apply their knowledge to design projects for setting up a food processing industry.
TEXTBOOKS:

REFERENCES:
<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understand principle and working of food processing equipment</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2 familiarize with the design of advanced machinery available for food processing sectors</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3 apply their knowledge to design projects for setting up a food processing industry</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Over all CO</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
OBJECTIVES
The course aims to
- understand the need of different food ingredients and additives in the development of valuable food products.
- understand the law, regulation and standards involved in use of food additives

UNIT I INTRODUCTION
Definition, role of food additives, classification of food additives based on their role, Risks and benefits of food additives, Legal and regulations- INS numbering system, General standards for food additives/Codex standards, safety requirements of food additives- role of JECFA in safety assessment of food additives, Principles of safety assessment- Food additive intake assessment methods, Procedures to fix ADI and maximum levels of food additives, ADI Calculation, Excessive food additive intakes and population risk groups, Case studies on risk assessment of food additives, Status of food additives with respect to Indian laws- GMP and permissible upper levels of food additives under Indian food laws.

UNIT II ACIDITY REGULATORS, ANTIOXIDANTS AND ANTIMICROBIAL AGENTS
Acidity Regulators – definition, chemical structure, role and importance, pH modulation and taste, acidity profile, permitted acidity regulators, levels of usage and food applications.
Antioxidants - Chemistry of oxidative deterioration of food and its constituents and its effect on the quality; defining antioxidant; water soluble and oil soluble antioxidants and their chemical structure, permitted antioxidants; mechanism of action, permitted levels and food application.
Preservatives of chemical and microbial origin; mode of action on spoilage organisms and pathogens, factors affecting the performance of preservatives, active forms of preservatives, necessity in a food and levels of usage; permitted preservatives and food applications. Case studies / illustrations.

UNIT III EMULSIFIERS, STABILIZERS AND THICKENERS
Emulsion, surface tension, oil in water and water in oil emulsion, Hydrophilic and Lipophilic balance (HLB), role of emulsifiers, different classes of emulsifiers and their chemical structure, their HLB values and role in emulsion stabilization; role of different stabilizers and other substances in emulsion stability; emulsion formation process and equipment; measurement of emulsion stability; permitted emulsifiers and stabilizers and food applications. Optimisation of emulsifiers and stabilizers – case study. Thickeners – definition, chemical structure, role in food processing and product end characteristics, list of permitted thickeners and food applications

UNIT IV COLORS, FLAVORS, FLAVOR ENHANCERS AND SWEETENERS
Color – Natural and synthetic food colors, their chemical structure, shades imparted, stability, permitted list of colors, usage levels and food application.
Flavouring agents- natural and synthetic flavourings, Flavours from vegetables, cocoa, chocolate, coffee, vanilla beans and Spices. Evaluation tests for flavours. Stability of flavours during food processing. Extraction techniques of flavours, Flavour emulsions; Essential oils and Oleoresins;Flavour enhancers- Chemical properties, Functions in foods, Glutamate in foods, Biochemicals & Toxicology
Sweeteners – list, structure, taste profile, permitted list, usage levels and food applications.

UNIT V OTHER FOOD ADDITIVES & FOOD INGREDIENTS
Anticaking agents, Antifoaming, Glazing agents, Bulking agents, Humectants, Firming agents, Softening agents, Crystal modifiers, Flour improvers, Flour treatment agents, Dough conditioners, and Enzymes – definition, role and mode of action, permitted list of agents and food application.
Proteins, starches and lipids as functional ingredient; isolation, modification, specifications, functional properties and applications in foods.
OUTCOMES:

At the end of the course the students will be able to

CO 1 understand the principles of chemical preservation of foods
CO 2 understand the role of different food additives in the processing of different foods and their specific functions in improving the shelf life, quality, texture and other physical and sensory characteristics of foods
CO 3 know the regulations and the monitoring agencies involved in controlling the safer use of additives in foods

TEXTBOOKS:

REFERENCES:

Course Articulation Matrix

<table>
<thead>
<tr>
<th>Course outcomes Statement</th>
<th>Programme outcomes (PO)</th>
<th>Programme specific outcomes (PSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO1 understand the principles of chemical preservation of foods</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO2 understand the role of different food additives in the processing of different foods and their specific functions in improving the shelf life, quality, texture and other physical and sensory characteristics of foods</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO3 know the regulations and the monitoring agencies involved in controlling the safer use of additives in foods</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Over all CO</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1, 2 and 3 are correlation levels with weightings on slight (low), moderate (medium) and substantial (high) respectively.
AUDIT COURSES (AC)

AD5091 CONSTITUTION OF INDIA L T P C
3 0 0 0

OBJECTIVES:
- Teach history and philosophy of Indian Constitution.
- Describe the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- Summarize powers and functions of Indian government.
- Explain emergency rule.
- Explain structure and functions of local administration.

UNIT I INTRODUCTION 9
History of Making of the Indian Constitution-Drafting Committee- (Composition & Working) - Philosophy of the Indian Constitution-Preamble-Salient Features

UNIT II CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES 9

UNIT III ORGANS OF GOVERNANCE 9
Parliament-Composition-Qualifications and Disqualifications-Powers and Functions-Executive President-Governor-Council of Ministers-Judiciary, Appointment and Transfer of Judges, Qualifications Powers and Functions

UNIT IV EMERGENCY PROVISIONS 9

UNIT V LOCAL ADMINISTRATION 9
District’s Administration head- Role and Importance-Municipalities- Introduction- Mayor and role of Elected Representative-CEO of Municipal Corporation-Pachayati raj- Introduction- PRI- Zila Pachayat-Elected officials and their roles- CEO ZilaPachayat- Position and role-Block level- Organizational Hierarchy (Different departments)-Village level- Role of Elected and Appointed officials-Importance of grass root democracy

TOTAL: 45 PERIODS

OUTCOMES:
CO1: Able to understand history and philosophy of Indian Constitution.
CO2: Able to understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
CO3: Able to understand powers and functions of Indian government.
CO4: Able to understand emergency rule.
CO5: Able to understand structure and functions of local administration.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
</tr>
</tbody>
</table>
VALUE EDUCATION

OBJECTIVES:
- Develop knowledge of self-development
- Explain the importance of Human values
- Develop the overall personality through value education
- Overcome the self destructive habits with value education
- Interpret social empowerment with value education

UNIT I INTRODUCTION TO VALUE EDUCATION
Values and self-development – Social values and individual attitudes, Work ethics, Indian vision of humanism, Moral and non-moral valuation, Standards and principles, Value judgements

UNIT II IMPORTANCE OF VALUES
Importance of cultivation of values, Sense of duty, Devotion, Self-reliance, Confidence, Concentration, Truthfulness, Cleanliness. Honesty, Humanity, Power of faith, National Unity, Patriotism, Love for nature, Discipline

UNIT III INFLUENCE OF VALUE EDUCATION
Personality and Behaviour development - Soul and Scientific attitude. Positive Thinking, Integrity and discipline, Punctuality, Love and Kindness, Avoid fault Thinking, Free from anger, Dignity of labour, Universal brotherhood and religious tolerance, True friendship HAPPINESS Vs suffering, love for truth.

UNIT IV REINCARNATION THROUGH VALUE EDUCATION

UNIT V VALUE EDUCATION IN SOCIAL EMPOWERMENT
Equality, Non violence, Humility, Role of Women, All religions and same message, Mind your Mind, Self-control, Honesty, Studying effectively

TOTAL: 45 PERIODS

OUTCOMES:
CO1 – Gain knowledge of self-development
CO2 – Learn the importance of Human values
CO3 – Develop the overall personality through value education
CO4 – Overcome the self destructive habits with value education
CO5 – Interpret social empowerment with value education

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td></td>
<td></td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES:

AD5093 PEDAGOGY STUDIES

OBJECTIVES:
- Understand the methodology of pedagogy.
- Compare pedagogical practices used by teachers in formal and informal classrooms in developing countries.
- Infer how can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy.
- Illustrate the factors necessary for professional development.
- Identify the Research gaps in pedagogy.

UNIT I INTRODUCTION AND METHODOLOGY: 9
Aims and rationale, Policy background, Conceptual framework and terminology - Theories of learning, Curriculum, Teacher education - Conceptual framework, Research questions - Overview of methodology and Searching.

UNIT II THEMATIC OVERVIEW 9
Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries - Curriculum, Teacher education.

UNIT III EVIDENCE ON THE EFFECTIVENESS OF PEDAGOGICAL PRACTICES 9
Methodology for the in depth stage: quality assessment of included studies - How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? - Theory of change - Strength and nature of the body of evidence for effective pedagogical practices - Pedagogic theory and pedagogical approaches - Teachers’ attitudes and beliefs and Pedagogic strategies.

UNIT IV PROFESSIONAL DEVELOPMENT 9
Professional development: alignment with classroom practices and follow up support - Peer support - Support from the head teacher and the community - Curriculum and assessment - Barriers to learning: limited resources and large class sizes

UNIT V RESEARCH GAPS AND FUTURE DIRECTIONS 9
Research design – Contexts – Pedagogy - Teacher education - Curriculum and assessment - Dissemination and research impact.

TOTAL: 45 PERIODS

OUTCOMES:
☐ Understand the methodology of pedagogy.
☐ Understand Pedagogical practices used by teachers in formal and informal classrooms in developing countries.
☐ Find how can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy.
☐ Know the factors necessary for professional development.
☐ Identify the Research gaps in pedagogy.
<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES:
OBJECTIVES:
- Develop healthy mind in a healthy body thus improving social health also improve efficiency
- Invent Do’s and Don’t’s in life through Yam
- Categorize Do’s and Don’t’s in life through Niyam
- Develop a healthy mind and body through Yog Asans
- Invent breathing techniques through Pranayam

UNIT I INTRODUCTION TO YOGA
Definitions of Eight parts of yog.(Ashtanga)

UNIT II YAM
Do’s and Don’t’s in life.
Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

UNIT III NIYAM
Do’s and Don’t’s in life.
Ahinsa, satya, astheya, bramhacharya and aparigraha

UNIT IV ASAN
Various yog poses and their benefits for mind & body

UNIT V PRANAYAM
Regularization of breathing techniques and its effects-Types of pranayam

OUTCOMES:
CO1 – Develop healthy mind in a healthy body thus improving social health also improve efficiency
CO2 – Learn Do’s and Don’t’s in life through Yam
CO3 – Learn Do’s and Don’t’s in life through Niyam
CO4 – Develop a healthy mind and body through Yog Asans
CO5 – Learn breathing techniques through Pranayam

REFERENCES:
1. “Rajayoga or conquering the Internal Nature” by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata
2. “Yogic Asanas for Group Tarining-Part-I” : Janardan Swami Yogabhyasi Mandal, Nagpur
AD5095 PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

L T P C
3 0 0 0

OBJECTIVES:
- Develop basic personality skills holistically
- Develop deep personality skills holistically to achieve happy goals
- Rewrite the responsibilities
- Reframe a person with stable mind, pleasing personality and determination
- Discover wisdom in students

UNIT I NEETISATAKAM-HOLISTIC DEVELOPMENT OF PERSONALITY - I 9
Verses- 19,20,21,22 (wisdom) - Verses- 29,31,32 (pride & heroism) – Verses- 26,28,63,65 (virtue)

UNIT II NEETISATAKAM-HOLISTIC DEVELOPMENT OF PERSONALITY - II 9
Verses- 52,53,59 (dont’s) - Verses- 71,73,75,78 (do’s)

UNIT III APPROACH TO DAY TO DAY WORK AND DUTIES 9
Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48 - Chapter 3-Verses 13, 21, 27, 35
Chapter 6-Verses 5,13,17,23, 35 - Chapter 18-Verses 45, 46, 48

UNIT IV STATEMENTS OF BASIC KNOWLEDGE – I 9
Statements of basic knowledge - Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
Chapter 12-Verses 13, 14, 15, 16,17, 18

UNIT V PERSONALITY OF ROLE MODEL - SHRIMAD BHAGWADGEETA 9
Chapter2-Verses 17, Chapter 3-Verses 36,37,42 - Chapter 4-Verses 18, 38,39 Chapter18 –
Verses 37,38,63

TOTAL: 45PERIODS

OUTCOMES:
CO1: To develop basic personality skills holistically
CO2: To develop deep personality skills holistically to achieve happy goals
CO3: To rewrite the responsibilities
CO4: To reframe a person with stable mind, pleasing personality and determination
CO5: To awaken wisdom in students

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES:
1. Gopinath,Rashtriya Sanskrit Sansthanam P, Bhartrihari’s ThreeSatakam , Nitisringar-vairagya, New Delhi,2010
2. Swami Swarupananda , Srimad Bhagavad Gita, Advaita Ashram,Publication Department, Kolkata,2016
COURSE OBJECTIVES
The course will introduce the students to
- get a knowledge about Indian Culture
- Know Indian Languages and Literature religion and philosophy and the fine arts in India
- Explore the Science and Scientists of Ancient, Medieval and Modern India
- Understand education systems in India

UNIT I INTRODUCTION TO CULTURE 9
Culture, civilization, culture and heritage, general characteristics of culture, importance of culture in human literature, Indian Culture, Ancient India, Medieval India, Modern India.

UNIT II INDIAN LANGUAGES AND LITERATURE 9
Indian Languages and Literature – I: Languages and Literature of South India, – Indian Languages and Literature – II: Northern Indian Languages & Literature

UNIT III RELIGION AND PHILOSOPHY 9
Major religions practiced in India and Understanding their Philosophy – religious movements in Modern India (Selected movements only)

UNIT IV FINE ARTS IN INDIA (ART, TECHNOLOGY & ENGINEERING) 9
Indian Painting, Indian handicrafts, Music, divisions of Indian classic music, modern Indian music, Dance and Drama, Indian Architecture (ancient, medieval and modern), Science and Technology in India, development of science in ancient, medieval and modern India

UNIT V EDUCATION SYSTEM IN INDIA 9
Education in ancient, medieval and modern India, aims of education, subjects, languages, Science and Scientists of Ancient India, Science and Scientists of Medieval India, Scientists of Modern India

TOTAL: 45 PERIODS

COURSE OUTCOMES
After successful completion of the course the students will be able to
- Understand philosophy of Indian culture.
- Distinguish the Indian languages and literature.
- Learn the philosophy of ancient, medieval and modern India.
- Acquire the information about the fine arts in India.
- Know the contribution of scientists of different eras.
- Understand education systems in India

REFERENCES:
5. Satya Prakash, “Founders of Sciences in Ancient India”, Vijay Kumar Publisher, 1989
Course Objectives: The main learning objective of this course is to make the students an appreciation for:

1. Introduction to Sanga Tamil Literature.
2. ‘Agathinai’ and ‘Purathinai’ in Sanga Tamil Literature.
3. ‘Attruppadai’ in Sanga Tamil Literature.
4. ‘Puranaanuru’ in Sanga Tamil Literature.
5. ‘Pathitrupaththu’ in Sanga Tamil Literature.

UNIT I SANGA TAMIL LITERATURE AN INTRODUCTION
Introduction to Tamil Sangam—History of Tamil Three Sangams—Introduction to Tamil Sangam Literature—Special Branches in Tamil Sangam Literature—Tamil Sangam Literature’s Grammar—Tamil Sangam Literature’s parables.

UNIT II ‘AGATHINAI AND ‘PURATHINAI’
Tholkappiyar’s Meaningful Verses—Three literature materials—Agathinai’s message—History of Culture from Agathinai—Purathinai—Classification—Message to Society from Purathinai.

UNIT III ‘ATTRUPPADAI’.

UNIT IV ‘PURANAANURU’
Puranaanuru on Good Administration, Ruler and Subjects—Emotion and its Effect in Puranaanuru.

UNIT V ‘PATHITRUPATHTHU’
Pathitrupaththu in ‘Ettuthogai’—Pathitrupaththu’s Parables—Tamil dynasty: Valor, Administration, Charity in Pathitrupaththu—Message to Society from Pathitrupaththu.

Total (L:45) = 45 PERIODS

COURSE OUTCOMES: Upon completion of this course, the students will be able to:

1. Appreciate and apply the messages in Sanga Tamil Literature in their life.
2. Differentiate ‘Agathinai’ and ‘Purathinai’ in their personal and societal life.
3. Appreciate and apply the messages in ‘Attruppadai’ in their personal and societal life.
4. Appreciate and apply the messages in ‘Puranaanuru’ in their personal and societal life.
5. Appreciate and apply the messages in ‘Pathitrupaththu’ in their personal and societal life.

REFERENCES:

HSMC– ELECTIVES – HUMANITIES I (ODD SEMESTER)

HU5171 LANGUAGE AND COMMUNICATION LT P C

COURSE DESCRIPTION

This course offers an introduction to language and communication. The primary goal of this course is to familiarize students with key ideas related to communication using language as well as non verbal means. Ideas related to the use of language and the underlying power structures are also examined. The course also examines the role of media in communication and in the dissemination of ideas as well as opinions.

Objectives

- To familiarize students with the concept of communication using linguistic and non linguistic resources.
- To help students ask critical questions regarding facts and opinions.
- To provide students with the material to discuss issues such as language and power structures.
- To help students think critically about false propaganda and fake news.

Learning Outcomes

- Students will be able to use linguistic and non linguistic resources of language in an integrated manner for communication.
- Students will be able to analyse communication in terms of facts and opinions.
- Students will be able to discuss, analyse and argue about issues related to language and power.

UNIT I LINGUISTIC AND NON-LINGUISTIC RESOURCE OF COMMUNICATION: 9

a) Writing and Speech

b) Distinction between language structure and language use, form and function, acceptability and grammaticality

c) Gestures and Body language, pictures and symbols, cultural appropriacy
d) Communicative Competency, context and situation, combination of linguistic and non-linguistic elements of communication

UNIT II STRUCTURE OF WRITING/CONVERSATION: 9
a) Language skills and the communication cycle; speaking and listening, writing and reading
b) Initiating and closing conversations, intervention, turn taking
c) Writing for target reader, rhetorical devices and strategies
d) Coherence and Cohesion in speech and writing

UNIT III POWER STRUCTURE AND LANGUAGE USE: 9
a) Gender and language use
b) Politeness expressions and their use
c) Ethical dimensions of language use
d) Language rights as part of human rights

UNIT IV MEDIA COMMUNICATION: 9
a) Print media, electronic media, social media
b) Power of media
c) Manufacturing of opinion, fake news and hidden agendas

UNIT V PERSUASIVE COMMUNICATION AND MISCOMMUNICATION: 9
a) Fundamentals of persuasive communication
b) Persuasive strategies
c) Communication barriers

TOTAL: 45 PERIODS

TEXT BOOKS:

HU5172 VALUES AND ETHICS

L T P C
3 0 0 3

OBJECTIVES:

- Teach definition and classification of values.
- Explain Purusartha.
- Describe Sarvodaya idea.
- Summarize sustenance of life.
- Conclude views of hierarchy of values.

UNIT I DEFINITION AND CLASSIFICATION OF VALUES

Extrinsic values- Universal and Situational values- Physical- Environmental-Sensuous- Economic-Social-Aesthetic-Moral and Religious values

UNIT II CONCEPTS RELATED TO VALUES

Purusartha-Virtue- Right- duty- justice- Equality- Love and Good

UNIT III IDEOLOGY OF SARVODAYA

Egoism- Altruism and universalism- The Ideal of Sarvodaya and Vasudhaiva Kutumbakam

UNIT IV SUSTENANCE OF LIFE

The Problem of Sustenance of value in the process of Social, Political and Technological Changes

UNIT V VIEWS ON HIERARCHY OF VALUES

The Problem of hierarchy of values and their choice, The views of Pt. Madan Mohan Malviya and Mahatma Gandhi

TOTAL: 45 PERIODS

OUTCOMES:

CO1: Able to understand definition and classification of values.
CO2: Able to understand purusartha.
CO3: Able to understand sarvodaya idea.
CO4: Able to understand sustenance of life.

CO5: Able to understand views of hierarchy of values.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

TEXTBOOKS:

2. Little, William: An Introduction of Ethics (Allied Publisher, Indian Reprint 1955)

HU5173 HUMAN RELATIONS AT WORK L T P C

3 0 0 3

OBJECTIVES:

- Illustrate human relations at work its relationship with self.
- Explain the importance of interacting with people at work to develop teamwork.
- Infer the importance of physical health in maintaining human relations at work.
- Describe the importance of staying psychologically healthy.
- Identify the essential qualities for progressing in career.

UNIT I UNDERSTANDING AND MANAGING YOURSELF 9

Human Relations and You: Self-Esteem and Self-Confidence: Self-Motivation and Goal Setting; Emotional Intelligence, Attitudes, and Happiness; Values and Ethics and Problem Solving and Creativity.

UNIT II DEALING EFFECTIVELY WITH PEOPLE 9

Communication in the Workplace; Specialized Tactics for Getting Along with Others in the Workplace; Managing Conflict; Becoming an Effective Leader; Motivating Others and Developing Teamwork; Diversity and Cross-Cultural Competence.

UNIT III STAYING PHYSICALLY HEALTHY 9
Yoga, Pranayam and Exercise: Aerobic and anaerobic.

UNIT IV STAYING PSYCHOLOGICALLY HEALTHY
Managing Stress and Personal Problems, Meditation.

UNIT V DEVELOPING CAREER THRUST

TOTAL: 45 PERIODS

OUTCOMES:
Students will be able to
CO1: Understand the importance of self-management.
CO2: Know how to deal with people to develop teamwork.
CO3: Know the importance of staying healthy.
CO4: Know how to manage stress and personal problems.
CO5: Develop the personal qualities essential for career growth.

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
</tr>
</tbody>
</table>

TEXT BOOK:

REFERENCES:
COURSE DESCRIPTION

Psychological Processes course is designed for students to be aware of the basic principles of psychology for the better understanding of people’s psyche and behaviour around them. This course enables learners to use the optimal use of different forms of thinking skills and thereby results in effective communication in diverse situations. Every unit of the syllabus highlights the psychological process of people, the most powerful and constructive use of perceptions.

OBJECTIVES

The major objectives of this course is

➢ To develop students’ awareness – on psychology, learning behavior and usage of perception effectively.
➢ To learn to use the various kinds of thinking in a formal context.
➢ To critically evaluate content and comprehend the message on the bases of perception, personality and intelligence.

UNIT 1: INTRODUCTION

UNIT 2: SENSORY & PERCEPTUAL PROCESSES

Some general properties of Senses: Visual system – the eye, colour vision – Auditory system – Hearing, listening, Sounds - Other senses - Selective attention; physiological correlates of attention; Internal influences on perception learning – set - motivation & emotion - cognitive styles; External influences on perception figure and ground separation – movement – organization – illusion; Internal- external interactions: Constancy - Depth Perception- Binocular & Monocular Perception; Perceptual defense & Perceptual vigilance; Sensory deprivation -Sensory bombardment; ESP - Social Perception.

UNIT 3: COGNITION & AFFECT

UNIT 4: THINKING, PROBLEM-SOLVING & DECISION MAKING

UNIT 5: PERSONALITY & INTELLIGENCE

Psychological phenomena & Attributes of humans - cognition, motivation, and behavior - thoughts, feelings, perceptions, and actions – personality dimensions, traits, patterns - Specialized knowledge, performance accomplishments, automaticity or ease of functioning, skilled performance under challenge - generative flexibility, and speed of learning or behavior change.

References

HU5175 EDUCATION, TECHNOLOGY AND SOCIETY L T P C
 3 0 0 3

COURSE DESCRIPTION

This course introduces students to multidisciplinary studies in Education, Technology and Society. Students will get an understanding of the relationship between education, technology and society.
They will also learn about the long lasting impact of good education in a technologically advanced society.

COURSE OBJECTIVES:

The course aims

- To help learners understand the basics of different types of technology utilised in the field of education
- To make them realize the impact of education in society
- To make them evolve as responsible citizen in a technologically advanced society

LEARNING OUTCOMES

By the end of the course, learners will be able to

- Understand the various apps of technology apps and use them to access, generate and present information effectively.
- Apply technology based resources and other media formats equitably, ethically and legally.
- Integrate their technical education for betterment of society as well as their personal life.

UNIT I INDIAN EDUCATION SYSTEM

Gurukul to ICT education – Teacher as facilitator – Macaulay’s Minutes – English medium vs Regional medium – Importance of Education in Modern India - Challenges in Education

UNIT II LEARNING THEORIES

UNIT III TECHNOLOGICAL ADVANCEMENTS

Web tools – Social media in education – elearning – MOOCs – Mobile assisted learning – Learning Apps – Blended learning - Self-directed learning

UNIT IV EDUCATIONAL TECHNOLOGY

Technological implications on Education – Teaching, Learning & Testing with Technology - Advantages and drawbacks – Critical analysis on the use of technology

UNIT V ETHICAL IMPLICATIONS

Plagiarism – Online Copyright issues – Ethical and value implications of education and technology on individual and society.

TOTAL: 45 PERIODS

TEACHING METHODS
Teaching modes include guest lectures, discussion groups, presentations, visual media, and a practicum style of learning.

[

EVALUATION

As this course is not a content-based course, it focuses more on the ethical use of technology in education and society, and so, evaluation can be based on assignments and discussions. So there is no need for an end-semester examination. Internals marks can be taken for the total marks.

INTERNAL (100 % WEIGHTAGE)

(a) Written Test (40 marks)
(b) Assignment: Write a real-time report of the technology use in any school/college (15 marks)
(c) Presentation: Students choose any one of the technological tools and present its relevance to education and society (15 marks)
(d) Group discussion: Students discuss in groups on case studies relating to various challenges in education and technology use in society (20 marks)
(e) Blog entry: Making weekly blog posts in Class Blog on the topics related to the course posted by the instructor and commenting on others' posts. (10 marks)

REFERENCES

1) Education and Social order by Bertrand Russel
2) Theories of learning by Bower and Hilgard
3) Technology and Society by Jan L Harrington

HU5176 PHILOSOPHY

OBJECTIVES

- To create a new understanding by teaching philosophy through a comparison of Indian and Western traditions.
- To foster critical thinking and imagination by dealing with inter-related concepts in literature and science.
- To bridge the gap between the sciences and humanities through retrospective analyses.
- To nurture an understanding of the self and elucidates ways to progress towards a higher understanding of one's self and others.

[Signature]

DIRECTOR
UNIT I KNOWLEDGE

UNIT II ORIGIN

UNIT III WORD

UNIT IV KNOWLEDGE AS POWER/OPPRESSION

UNIT V SELF KNOWLEDGE/BRAHMAN

TOTAL : 45 PERIODS

OUTCOMES:

On completion of the course, the students will be able to:

1. Think sceptically, ask questions and to arrive at deductions.
2. Connect and relate different branches of thought.
3. Comprehends the relation between language, thought and action.
4. Arrive at a better understanding of self and others and forms a new outlook.
REFERENCES:

HU5177 APPLICATIONS OF PSYCHOLOGY IN EVERYDAY LIFE L T P C

UNIT I INTRODUCTION
Nature and fields.

UNIT II PSYCHOLOGY IN INDUSTRIES AND ORGANIZATIONS
Job analysis; fatigue and accidents; consumer behavior.

UNIT III PSYCHOLOGY AND MENTAL HEALTH
Abnormality, symptoms and causes psychological disorders.

UNIT IV PSYCHOLOGY AND COUNSELING
Need of Counseling, Counselor and the Counselee, Counseling Process, Areas of Counseling.

UNIT V PSYCHOLOGY AND SOCIAL BEHAVIOUR
Group, group dynamics, teambuilding, Prejudice and stereotypes; Effective Communication, conflict and negotiation.

TOTAL: 45 PERIODS

TEXTBOOKS

COURSE DESCRIPTION

This course offers an introduction to Gender Studies that asks critical questions about the meanings of sex and gender in Indian society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary drawing from Indian literature and media studies, to examine cultural assumptions about sex, gender, and sexuality. This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with class, caste and other social identities. This course also seeks to build an understanding of the concepts of gender, gender-based violence, sexuality, and rights and their impact on development through a number of discussions, exercises and reflective activities.

Objectives

✓ To familiarize students with the concepts of sex and gender through literary and media texts.
✓ To help students ask critical questions regarding gender roles in society.
✓ To provide students with the material to discuss gender issues such as gender based discrimination, violence and development.
✓ To help students think critically about gender based problems and solutions.

Learning Outcomes

➢ Students will be able to critically read literary and media texts and understand the underlying gender perspectives in them.
➢ Students will be able to analyse current social events in the light of gender perspectives.
➢ Students will be able to discuss, analyse and argue about issues related to gender and their impact on society, culture and development.

UNIT I: Introduction to Gender

- Definition of Gender
- Basic Gender Concepts and Terminology
- Exploring Attitudes towards Gender
- Social Construction of Gender

Texts:

1. Sukhu and Dukhu (Amar Chitra Katha)
2. The Cat who Became a Queen (Folk tale, J. Hinton Knowles, Folk-Tales of Kashmir. London: Kegan Paul, Trench, Trübner, and Company, 1893, pp. 8-10.)

UNIT II: Gender Roles and Relations

- Types of Gender Roles
- Gender Roles and Relationships Matrix
- Gender-based Division and Valuation of Labour
Texts:

1. Muniyakka (Short Story, Lakshmi Kannan, Nandanvan and Other Stories, Hyderabad: Orient Blackswan, 2011)

UNIT III: Gender Development Issues

- Identifying Gender Issues
- Gender Sensitive Language
- Gender, Governance and Sustainable Development
- Gender and Human Rights
- Gender and Mainstreaming

Texts:
2. Tell Us Marx (Poem, Mallika Sengupta, Translated by Sanjukta Dasgupta)

UNIT IV: Gender-based Violence

- The concept of violence
- Types of Gender-based violence
- The relationship between gender, development and violence
- Gender-based violence from a human rights perspective

Texts:
1. Lights Out (Play, Manjula Padmanabhan)
2. Lights Out (Video of play enacted)

UNIT V: Gender and Culture

- Gender and Film
- Gender, Media and Advertisement

Texts:
1. Mahanagar (Movie: Satyajit Ray)
2. Beti Bachao Beti Padhao Advertisements

READINGS: Relevant additional texts for readings will be announced in the class. Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments.

ASSESSMENT AND GRADING:

Discussion & Classroom Participation: 20%

Project/Assignment: 30%

End Term Exam: 50%
OBJECTIVES:

- To emphasize the meaning and nature of ethics, human values, and holistic life for leading a good, successful and happy life through continuous examination of thoughts and conduct in day to day life.
- To understand the status and responsible role of individual in abatement of value crisis in contemporary world in order to develop a civilized and human society. Understanding the process of ethical decision making through critical assessment of incidents/cases of ethical dilemmas in personal, professional and social life.
- To view the place of Ethics and Human Values in the development of individual and society through identification and cross examination of life values and world view of his/her role models in society.

UNIT I HUMAN LIFE, ITS AIM AND SIGNIFICANCE

The concept of a successful life, happy life and a meaningful life, Ethical and decision making capability and its development: Meaning of Ethical dilemma, sharing real life experiences.

UNIT II CREATIVE AND LEADERSHIP ABILITY AND THEIR DEVELOPMENT

Intellectual, Emotional, Creative, Ethico-spiritual development, Aesthetic sense, Self-dependency, Activeness, Development of positive attitude.

UNIT III HARMONY IN PERSONAL AND SOCIAL LIFE:

Concept of personal and group Ethics; Balance between - rights and duties-welfare of self and welfare of all, Creating a value based work culture in hostel, classroom and other places in the campus and society.

UNIT IV CHARACTER, RIGHTEOUSNESS AND VIRTUES FOR A MEANINGFUL LIFE

Egolessness, Humility, Righteousness, Purity, Truthfulness, Integrity, Self-restraint, Self-control, Sense of responsibility, Empathy, Love, Compassion, Maitri / Comradeship, Cooperation, Tolerance.

UNIT V DILEMMA BETWEEN MATERIALISTIC DEVELOPMENT AND
HUMAN WELFARE

TOTAL: 45 PERIODS

OUTCOMES:
On completion of the course, the students will be able to:

1. Enable students to understand the concept of contemporary ethics at different levels: Individual, local and Global and enable them to cross examine the ethical and social consequences of the decisions of their life-view and world view.
2. Develop the ability of students to create a balance between their individual freedom and social responsibilities and enable them to identify the personal, professional and social values and integrate them in their personality after cross examination.
3. Enable students to cross examine their earlier decisions taken in life and understand the meaning of ethical dilemma to overcome the ethical dilemmas and engage in critical reflection.
4. Develop positive habits of thought and conduct and work cohesively with fellow beings who have variety of strengths, experiences, shortcomings and challenges, hence to enable them to handle diverse type of personalities.
5. Enable students to develop a method for making ethically sound decisions for themselves, within hostels, classrooms, university campus and society.

HU5273 LAW AND ENGINEERING

UNIT I THE LEGAL SYSTEM: SOURCES OF LAW AND THE COURT STRUCTURE
Enacted law - Acts of Parliament are of primary legislation, Common Law or Case law- Principles taken from decisions of judges constitute binding legal rules. The Court System in India and Foreign Courtiers. (District Court, District Consumer Forum, Tribunals, High Courts, Supreme Court) Arbitration: As an alternative to resolving disputes in the normal courts, parties who are in dispute can agree that this will instead be referred to arbitration.

UNIT II LAWS
Basic principles of contract law, sale of goods law, laws relating to industrial pollution, accident, environmental protection, health and safety at work, patent law, constitutional law: the supreme law of the land, Information technology law and cyber crimes.

UNIT III BUSINESS ORGANISATIONS
Sole traders (Business has no separate identity from you, all business property belongs to you).

Partnerships: Types of Partnerships - Limited Liability Partnership, General Partnership, Limited
Partnerships. Companies: The nature of companies, Classification of companies, Formation of companies, Features of a public company, Carrying on business, Directors– Their Powers and Responsibilities/Liabilities.

UNIT IV LAW AND SOCIETY
Interdisciplinary nature of law, legal ideologies/philosophy/ schools of jurisprudence.

UNIT V CASE STUDIES
Important legal disputes and judicial litigations

TOTAL: 45 PERIODS

HU5274 FILM APPRECIATION

COURSE DESCRIPTION
This is an intensive course designed to promote comprehensive understanding and insights into the nature of cinema and other related forms and practices. Movies, though at times are used more as escapism, they are also a true art form and expressive tool used by writers, directors and actors. This course will explore the aesthetics of cinema, the concepts behind storytelling and various other elements of a film. It will also explore the impact of movies in our society and in our lives. It also encourages students to use films as a medium to analyse visual texts and read underlying messages.

OBJECTIVES:
- To help learners understand the various movie genres and its types.
- To understand various elements that contributes to film making.
- To make them realize the impact of film in society.
- To analyse the visual media and interpret the underlying messages.

UNIT I THE COMPONENTS OF FILMS
Story, Screenplay & Script – Actors – Director – Crew Members – Mis En Scene – Structure of A Film – Narrative Elements – Linear & Non-Linear – Types of Movie Genres: Mysteries, Romantic Comedies, Horror Etc.

UNIT II EVOLUTION OF FILM

UNIT III FILMS ACROSS THE WORLD
UNIT IV INDIAN FILMS

UNIT V INTERPRETING FILMS

Film Criticism & Appreciation – Censorship in Movies – Cultural Representation in Movies – Television – New Media & Online Media – Films Beyond Entertainment.

TOTAL: 45 PERIODS

OUTCOMES
On completion of the course, the students will be able to:

- Recognize types of films, their impact on society and their roles in our lives.
- Have an understanding of the concepts of storytelling, Mise en Scene, and other elements of film making.
- Interpret the underlying messages in the movies.

Teaching Methods

- Each unit consists of reading materials, learning activities videos, websites. Students are expected to watch movies sometimes in class and at times at home and discuss in class.

Evaluation

- As this is course is critical appreciation course on films, there is no written end semester examination. The course is more on learning how to critically analyse a movie and appreciate its finer elements. Therefore evaluation can be based on assignments and discussions. Internals marks can be taken for the total marks.

Internal (100 % weightage)

- Assignment 1: Write a movie review with critical analysis (20 marks).
- Assignment2 : Write a script for a scene taken from a short story / novella (20 marks).
- Presentation: Students choose any one topic related to films and present it to the audience. (25 marks)
- Group discussion : Students discuss in groups on the various aspects of movies and its impact on society. (25 marks)
- Blog entry: Making weekly blog posts in Class Blog on the topics related to the course posted by the instructor and commenting on others’ posts. (10 marks)

REFERENCES

1. A Biographical Dictionary of Film by David Thomson, Secker & Warburg, 1975
2. Signs and Meaning in the Cinema by Peter Wollen, Secker & Warburg, 1969
3. The World Viewed by Stanley Cavell 1971
4. Film Style and Technology: History and Analysis by Barry Salt, Starword, 1983
OBJECTIVES

- To broadly introduce students to the formal and theoretical aspects of linguistics.
- To enable learners to understand the various practical applications of language and recent findings in the field of applied linguistics.

CONTENTS:

UNIT I LANGUAGE AND LINGUISTICS: AN OVERVIEW 9

UNIT II MORPHOLOGY - WORDS OF LANGUAGE 9

UNIT III SYNTAX- THE SENTENCE PATTERNS OF LANGUAGE AND SEMANTICS-THE MEANING OF LANGUAGE 9

UNIT IV PHONETICS – THE SOUNDS OF LANGUAGE 9

UNIT V APPLIED LINGUISTICS - THE PRACTICAL APPLICATIONS OF LANGUAGE 9
Language learning and teaching (ELT)- lexicography-translation studies-computational linguistics-neurolinguistics (speech pathology and language disorders)- forensic linguistics – sociolinguistics.

TOTAL : 45 PERIODS
Teaching Methods:
Lectures, discussion.

Evaluation Internal and External:
Internal: 2 written tests + assignments, seminars, project (50+15+15+20).
External: A 3 hour written exam (50 marks)

REFERENCES:

HU5276 UNDERSTANDING SOCIETY AND CULTURE THROUGH LITERATURE L T P C
3 0 0 3

OBJECTIVES

- To internalize the importance of language by understanding its role in the transformation of man.
- To look at language, literature and culture as locus of identity and change.
- To extract meaning from existing literatures and cultures.
- To identify meanings in modern life by reconnecting with lost cultures.

Unit 1 Introduction
Why study literature? Tracing the origin – pictures. Tokens as precursors of writing. Movement from three dimensions to two dimensions- Pictography. From visual to oral - Logography. Reading out literature to young children- Edmund J Farrell.

Unit 2. Reading Culture
Reading culture through language, signs and consumables- Roland Barthes. Culture through poems- Nissim Ezekiel’s ‘The night of the Scorpion’. ‘Nothing’s Changed’- Tatamkhulu Afrika-Apartheid. Ruskin Bond- ‘Night train at Deoli’- How real life is different from movies.

Unit 3. Identifying Meaning
Searching and locating meaning through literature. Looking for order in a chaotic world. The Myth of Sisyphus (Albert Camus) and Adi Shankar’s ‘Jagat Mithya’- the world as an illusion. The Indian version as ‘meaningless meaning’.
Unit 4. Post Modernism

‘If on a winter’s night a traveler’- Italo Calvino. The book about the reader- the experience of reading as reading. Metafiction. Selfie Culture. Visual Culture as purpose of modern life.

Unit 5. Returning to Pictures

Reading list
1. Bond, Ruskin: ‘Night train at Deoli’
2. Ezekiel, Nissim: ‘The Night of the Scorpion’
3. Afrika,Tatamkhulu: ‘Nothing’s Changed’
4. Barthes, Roland: Mythologies
5. Shankaracharya: Viveka Chudamani
6. Camus, Albert- The Myth of Sisyphus
7. Calvino, Italo: If on a winter’s night a traveler

Outcome
- Can identify the connections among language, literature and culture.
- Is able to relate between seemingly different aspects of life.
- Understands the fractions in modern life and can assimilate meanings.