VISION

To be recognized as a benchmark and trend setter in Electronics and Communication Engineering domain keeping in phase with rapidly changing technologies through effective partnership with reputed academic institutions, research organizations, industries and community.

MISSION

- Create highly motivated, technologically competent human resource by imparting high quality technical education through flexible student centric updated curricula suited to students with diverse backgrounds
- Adopt best teaching and learning practices and establish state-of-the-art facilities to provide quality academic ambience for innovativeness, research and developmental activities
- Enhance collaborative activities with academic institutions and industries for evolving indigenous technological solutions to meet societal needs and nurture leadership and entrepreneurship qualities with ethical means.
- Facilitate adequate exposure to the students, faculty and staff through training in the state-of-the-art technologies, efficient administration, global outreach and benchmarking against referential institutions

PROGRAM EDUCATIONAL OBJECTIVES (PEOS)

PEO 1: The graduated students will demonstrate sufficient theoretical, analytical, and initiative skills in Basic Sciences and Engineering necessary to assimilate, analyze, synthesize, and innovate solutions to meet societal needs.

PEO 2: The graduated students will have inculcated a thirst for lifelong learning and sustained research interest.

PEO 3: The graduated students will practice values and exhibit leadership qualities and team spirit to promote entrepreneurship and indigenization.
PROGRAM OUTCOMES (POs)

Twelve GAs given by NBA as per Washington Accord agreement should be considered for all the UG programmes without any change for POs.

1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3 Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4 Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10 Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11 Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: The Students will be capable of analyzing and developing complex Electronics Systems containing Hardware and Software components.

PSO2: The Students will be capable of analyzing and developing complex Communication Systems containing Hardware and Software components.

MAPPING OF PROGRAMME EDUCATIONAL OUTCOMES WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

<table>
<thead>
<tr>
<th>PEOs</th>
<th>PROGRAMME OUTCOMES</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
B. E. ELECTRONICS AND COMMUNICATION ENGINEERING

CHOICE BASED CREDIT SYSTEM

CURRICULA AND SYLLABI

SEMESTER I

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS3151</td>
<td>English for Communication – I</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>MA3151</td>
<td>Matrices and Calculus</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>PH3151</td>
<td>Engineering Physics</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>CY3151</td>
<td>Engineering Chemistry</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>GE3153</td>
<td>Programming in C</td>
<td>ESC</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>GE3155</td>
<td>Engineering Drawing</td>
<td>ESC</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>GE3154</td>
<td>தமிழரும் ததொழில்நுட்பமும்/Heritage of Tamils</td>
<td>HSMC</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>PH3161</td>
<td>Physics Laboratory</td>
<td>BSC</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>GE3162</td>
<td>English Laboratory – I§</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>

§ Skill Based Course

SEMESTER II

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Periods Per Week</th>
<th>Total Contact Periods</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS3251</td>
<td>English for Communication – II</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>MA3251</td>
<td>Ordinary Differential Equations and Transform Techniques</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>PH3204</td>
<td>Physics of Semiconductors and Devices</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>EC3201</td>
<td>Circuit Theory</td>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>EC3202</td>
<td>Data Structures and Programming in C++*</td>
<td>ESC</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>GE3251</td>
<td>தமிழரும் ததொழில்நுட்பமும்/Tamils and Technology</td>
<td>HSMC</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>NCC Credit Course Level 1</td>
<td>-</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>EC3211</td>
<td>Electronic Devices and Circuits Laboratory</td>
<td>PCC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>CY3161</td>
<td>Chemistry Laboratory</td>
<td>BSC</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>GE3261</td>
<td>English Laboratory - II§</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>

§ NCC Credit Course level 1 is offered for NCC students only. Other students may enroll for NSS/NSO/YRC activity. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

* Also to be offered for lateral entry students in their 4th semester.
UNIT I BASICS OF COMMUNICATION
Listening – Telephone conversation & Writing message, gap filling; Reading – Telephone message, bio-note; Writing – Personal profile; Grammar – Simple present tense, Present continuous tense, Asking questions (wh-questions); Vocabulary – One word substitution, Synonyms

UNIT II NARRATION
Listening – Travel podcast / Watching a travel documentary; Reading – An excerpt from a travelogue, Newspaper Report; Writing – Narrative (Event, personal experience etc.); Grammar – Subject – verb agreement, Simple past, Past continuous Tenses; Vocabulary – Antonyms, Word formation (Prefix and Suffix).

UNIT III DESCRIPTION
Listening – Conversation, Radio/TV advertisement; Reading – A tourist brochure and planning an itinerary, descriptive article / excerpt from literature; Writing – Definitions, Descriptive writing, Checklists; Grammar – Future tense, Perfect tenses, Preposition; Vocabulary – Adjectives and Adverbs

UNIT IV CLASSIFICATION
Listening – Announcements and filling a table; Reading – An article, social media posts and classifying (channel conversion – text to table); Writing – Note making, Note taking and Summarising, a classification paragraph; Grammar – Connectives, Transition words; Vocabulary – Contextual vocabulary, Words used both as noun and verb, Classification related words.

UNIT V EXPRESSION OF VIEWS
Listening – Debate / Discussion; Reading – Formal letters, Letters to Editor, Opinion articles / Blogs; Writing – Letter writing/ Email writing (Enquiry / Permission, Letter to Editor); Grammar – Question tags, Indirect questions, Yes / No questions; Vocabulary – Compound words, Phrasal verbs.

Assessment
Two Written Assessments: 35% weightage each
Assignment: 30% weightage
Designing a tourist brochure / Writing an opinion article / Making a travel podcast

End Semester Exam: 3-hour written exam

TOTAL : 45 PERIODS

COURSE OUTCOMES
At the end of the course, students will be able to
CO1: Use grammar and vocabulary suitable for general context.
CO2: Comprehend the nuances of spoken and written communication.
CO3: Use descriptive and analytical words, phrases, and sentence structures in written communication.
CO4: Read different types of texts and comprehend their denotative and connotative meanings.
CO5: Write different types of texts using appropriate formats.

TEXT BOOKS:
1. “English for Engineers and Technologists” Volume I by Orient Blackswan, 2022
REFERENCES
4. www.uefap.com

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high

MA3151 MATRICES AND CALCULUS

UNIT I MATRICES
Eigen values and Eigen vectors of a real matrix – Properties of Eigen values - Cayley-Hamilton theorem (excluding proof) – Diagonalization of matrices - Reduction of Quadratic form to canonical form by using orthogonal transformation - Nature of a Quadratic form.

UNIT II FUNCTIONS OF SEVERAL VARIABLES

UNIT III INTEGRAL CALCULUS
Improper integrals of the first and second kind and their convergence – Differentiation under integrals - Evaluation of integrals involving a parameter by Leibnitz rule – Beta and Gamma functions-Properties – Evaluation of integrals by using Beta and Gamma functions – Error functions.

UNIT IV MULTIPLE INTEGRALS

UNIT V VECTOR CALCULUS
Gradient of a scalar field, directional derivative – Divergence and Curl – Solenoidal and Irrotational vector fields - Line integrals over a plane curve - Surface integrals – Area of a curved surface – Volume Integral - Green’s theorem, Stoke’s and Gauss divergence theorems – Verification and applications in evaluating line, surface and volume integrals.

TOTAL: 60 PERIODS
OURSE OUTCOMES:
At the end of the course, the students will be able to:

CO1: Use the matrix algebra methods for solving practical problems.
CO2: Use differential calculus ideas on several variable functions.
CO3: Apply different methods of integration in solving practical problems by using Beta and Gamma functions.
CO4: Apply multiple integral ideas in solving areas and volumes problems.
CO5: Apply the concept of vectors in solving practical problems.

TEXT BOOKS:

REFERENCES:

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

- 1’ = Low; ’2’ = Medium; ’3’ = High

PH3151 ENGINEERING PHYSICS

UNIT I MECHANICS OF MATERIALS
UNIT II OSCILLATIONS, SOUND AND THERMAL PHYSICS

UNIT III OPTICS AND LASERS

UNIT IV QUANTUM MECHANICS

UNIT V CRYSTAL PHYSICS

COURSE OUTCOMES:

After completion of this course, the students shall be

CO1: Understand the important mechanical properties of materials
CO2: Express the knowledge of oscillations, sound and applications of Thermal Physics
CO3: Know the basics of optics and lasers and its applications
CO4: Understand the basics and importance of quantum physics.
CO5: Understand the significance of crystal physics.

TEXT BOOKS:

REFERENCES:

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high

CY3151 ENGINEERING CHEMISTRY

UNIT I POLYMER CHEMISTRY

UNIT II NANO CHEMISTRY

UNIT III CORROSION SCIENCE

UNIT IV ENERGY SOURCES
Batteries - Characteristics - types of batteries – primary battery (dry cell), secondary battery (lead acid, lithium-ion-battery)- emerging batteries – nickel-metal hydride battery, aluminum air battery, batteries for automobiles and satellites - Fuel cells (Types) – H2-O2 fuel cell - Supercapacitors-Types and Applications, Renewable Energy: Solar- solar cells, DSSC
UNIT V WATER TECHNOLOGY

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: To recognize and apply basic knowledge on different types of polymeric materials, their general preparation methods and applications to futuristic material fabrication needs.

CO2: To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.

CO3: To recognize and apply basic knowledge on suitable corrosion protection technique for practical problems.

CO4: To recognize different storage devices and apply them for suitable applications in energy sectors.

CO5: To demonstrate the knowledge of water and their quality in using at different industries.

TEXT BOOKS:

REFERENCES:

CO - PO Mapping

<table>
<thead>
<tr>
<th>CO1</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high

GE3153 PROGRAMMING IN C

UNIT I BASICS OF C PROGRAMMING

Introduction to programming paradigms — Structure of C program - C programming: Data Types - Constants - Keywords - Operators: Precedence and Associativity - Expressions - Input/Output
statements, Assignment statements - Decision making statements - Switch statement.

PRACTICALS:

- Designing programs with algorithms/flowchart
- Programs for i/o operations with different data types
- Programs using various operators
- Programs using decision making and branching statements

UNIT II LOOP CONTROL STATEMENTS AND ARRAYS 6+12
Iteration statements: For, while, Do-while statements, nested loops, break & continue statements - Introduction to Arrays: Declaration, Initialization - One dimensional array - Two dimensional arrays – Searching and sorting in Arrays – Strings – string handling functions - array of strings

PRACTICALS:

- Programs using for, while, do-while loops and nested loops.
- Programs using arrays and operations on arrays.
- Programs implementing searching and sorting using arrays
- Programs implementing string operations on arrays

UNIT III FUNCTIONS AND POINTERS 6+12
Modular programming - Function prototype, function definition, function call, Built-in functions – Recursion – Recursive functions - Pointers - Pointer increment, Pointer arithmetic - Parameter passing: Pass by value, Pass by reference, pointer and arrays, dynamic memory allocation with malloc calloc

PRACTICALS:

- Programs using functions
- Programs using recursion
- Programs using pointers & strings with pointers
- Programs using Dynamic Memory Allocation

UNIT IV STRUCTURES AND UNION 6+12
Storage class, Structure and union, Features of structures, Declaration and initialization of structures, array of structures, Pointer to structure, structure and functions, typedef , bit fields , enumerated data types, Union.

PRACTICALS:

- Programs using Structures
- Programs using Unions
- Programs using pointers to structures and self-referential structures.

UNIT V MACROS AND FILE PROCESSING 6+12

PRACTICALS:

- Programs using pre-processor directives & macros
- Programs to handle file operations
- Programs to handle file with structure
COURSE OUTCOMES:
Upon completion of the course, the students will be able to

CO1: Write simple C programs using basic constructs.
CO2: Design searching and sorting algorithms using arrays and strings.
CO3: Implement modular applications using Functions and pointers.
CO4: Develop and execute applications using structures and Unions.
CO5: Solve real world problem using files.

TOTAL PERIODS: 90 (30+60)

TEXT BOOKS:

REFERENCE BOOKS:

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AVG</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high

GE3155 ENGINEERING DRAWING

CONCEPTS AND CONVENTIONS (NOT FOR EXAMINATION)
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES
Basic Geometrical constructions, Curves used in engineering practices: Conics — Construction of ellipse, parabola and hyperbola by eccentricity method — Construction of cycloid — construction of involutes of square and circle — Drawing of tangents and normal to the above curves.
UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE

Orthographic projection- Principal planes - First angle projection - projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS AND FREEHAND SKETCHING

Projection of simple solids like prisms, pyramids, cylinder, and cone when the axis is inclined to both the principal planes by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles — Representation of Three-Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination).

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of simple solids like prisms, pyramids, cylinder, and cone in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other — obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids — Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes. Practicing three dimensional modeling of simple truncated objects by CAD Software (Not for examination).

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS

Principles of isometric projection — isometric scale - Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids, cone and cylinders by visual ray method. Creating isometric model of simple objects from orthographic projections using CAD software (Not for examination).

COURSE OUTCOMES:
On successful completion of this course, the student will be able to
CO1. Draw conic curves, cycloids and involutes
CO2. Draw orthographic projections of points, lines and planes
CO3. Draw orthographic projections and free hand sketches of solids
CO4. Draw sectional views of the objects and development of surfaces.
CO5. Draw isometric and perspective views of simple solids

TEXTBOOKS:

REFERENCES:

Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Drawing:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets only in the size of A3.
4. The students will be permitted to use appropriate scale to fit the solution within A3 size.
5. The examination will be conducted in appropriate sessions on the same day.

<table>
<thead>
<tr>
<th>COs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>AVG</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high

GE3154 தமிழ் மரம்

அலகு I வரலாறு மற்றும் தற்கொலை ஓவியங்கள்: 3

L T P C 1 0 0 1
குட்டியார் சிமல – சுடுமண சிற்பங்கள் – தாவரசனிலக் கலை – பெண்கள் கல்லறை – வெள்ளியல், பிரும்பு, மாடலை – களிதக்கலைச் சுற்று ப் பாத்திரகால் பாடலிலக் களித்தானைப் பாடல்.

ஆலகு III தாவரசனிலக் கலைகள் மக்களுக்குச் சித்தமிழியல்: 3
அல்லது வரலையம், விலேசிப்புறத்தததய்வங்கள் – குமரியுமனயில் திருவள்ளுவர்
சிமல – இமெக்கருவிகள் – மிருதங்கம், பமற, வீமண, யொழ், வரம் – தமிழர்களின் எமூகதபொருளொதொரவொழ்வில் மகொவில்களின் பங்கு.

ஆலகு IV களிதக்கலைச் சுற்றுக் கறலகள்: 3
ஆலுக்கிகள் அறிவியல், விலேசிப்புறத்தகை – நொட்டுப்புறமும் மக்களுக்கு கண்காட்டி வரலையம் அறிவியல் – கரியலர்களின் துரவிச்சங்கள், வாழ்வும் – கந்தகத துரவிச்சங்களுக்கு வாழ்வும் மதகது – கல்விக் கந்தகதக் கந்தகத்திலின் விளைப்படுத்தி – கல்வியும் தமிழகத்திலில் விளைப்படுத்தி – இங்ககொலத் தமிழகத்திலில் எழுத்தறிவும், கல்வியும் – இங்ககொலத் தமிழர்களின் மபொற்றிய அறக்கமொட்டு – இங்ககொலத் தமிழகத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல்கடந்த நொடுகளில் மெொழர்களின் தவற்றி.

ஆலகு V இந்திய கதசிய இயக்கம் மற்றும் இந்தியபை பொட்டிற்குத்
தமிழர்களின் பங்களிப்பு: 3
இந்தியக் கட்டுமானகாலத்தில் தமிழர்களின் பங்கு – இந்தியசிய பிரிப்பியலில்
தமிழ் பண்பொட்டியில் காலம் – கந்தகத்தில் துரவிச்சங்கள் – கந்தகதுரவிச்சங்கள்,
சிறு மாடலைகளிலும் மக்கணக்கள், கொய்யல்கைவைகள், கல்வியும் துரவிச்சங்களில் அசை வாரமாக.

TEXT-CUM-REFERENCE BOOKS
1. தமிழ் வரலையம் – மேலும் பண்பொட்டியில் – து.து. பிரித்தான் (சதிப்பிடி: தமிழ் வரலையம், முதலில் பண்பொட்டியில் குறிப்பிடிப்பு).
2. கொலகையில் முமன் – பொருளியல் விளக்கம். (சதிப்பிடி: பிரித்தான்).
3. முமன் – கல்வி சுரப்பியலில் காற்ற காற்றம் (சதிப்பிடி: கல்வி பிரித்தான்).
5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International
tstitute of Tamil Studies).
7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published
by: International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International
Institute of Tamil Studies.).
9. Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by:
Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil
Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby:
The Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book

TOTAL : 15 PERIODS

UNIT I LANGUAGE AND LITERATURE

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE

UNIT III FOLK AND MARTIAL ARTS
Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV THINAI CONCEPT OF TAMILS
Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE
Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

TOTAL : 15 PERIODS

TEXT-CUM-REFERENCE BOOKS
5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International
Institute of Tamil Studies.
7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
9. Keeladi - ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

PH3161 PHYSICS LABORATORY

Any SEVEN Experiments

1. Torsional Pendulum-Determination of rigidity modulus of wire and moment of inertia of the disc
2. Non-uniform bending - Determination of Young’s modulus of the material of the beam.
3. Uniform bending – Determination of Young’s modulus of the material of the beam.
4. Lee's Disc Experiment - Determination of thermal conductivity of bad conductors.
5. Viscosity of Liquids.
6. Acoustic grating-Determination of the velocity of ultrasonic waves in liquids.
7. Ultrasonic interferometer – determination of sound velocity and liquids compressibility
8. Laser-Determination of the wavelength of the laser using grating
 - Determination of the width of the groove of the compact disc using laser.
 - Estimation of laser parameters.
9. Air wedge - Determination of the thickness of a thin sheet/wire
10. a) Optical fibre - Determination of Numerical Aperture and acceptance angle
 b) - Determination of bending loss of fibre.
11. Spectrometer-Determination of the wavelength of light using grating
12. Michelson Interferometer - Determination of wavelength of the monochromatic source of light.
13. Photoelectric effect – Determination of Planck’s constant
14. Black body radiation (Demonstration)
15. Melde’s string experiment - Standing waves.
16. Forced and Damped Oscillations.
17. Thermistor sensor
18. Thermocouple sensor
20. Design LCR series and parallel circuit and estimation of the resonant frequency.
22. Four Probe Set up – determination of band gap/resistivity of a material.

TOTAL: 30 PERIODS
COURSE OUTCOMES:
Upon completion of the course, the students will be able

CO1: To determine various moduli of elasticity, thermal properties of materials and viscosity of liquids.
CO2: To determine the velocity of ultrasonic waves in Liquids.
CO3: To calculate and analyze various optical properties.
CO4: To build and analyze the characteristics of mechanical vibrations and logic operation.
CO5: To determine the desired electric and magnetic parameters of materials, semiconductors devices and sensors.

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high

GE3162 ENGLISH LABORATORY – I

UNIT I SELF-INTRODUCTION
Introducing oneself; Telephone conversation, Relaying telephone message – Role play

UNIT II NARRATION
Narrating one's personal experience in front of a group (formal and informal context)
Ex.: First day in college / vacation / first achievement etc.

UNIT III CONVERSATION
Making conversation – formal and informal – Turn taking and Turn giving – Small talk

UNIT IV SHORT SPEECH
Giving short speeches on topics like College Clubs and their activities in the college / Campus Facilities / native place and its major attractions.

UNIT V DISCUSSION
Taking part in a group discussion on general topics – Debating on topics of interest and relevance.

Assessment

Internals – 100%
Short Speeches
Group discussion

TOTAL : 30 PERIODS

COURSE OUTCOMES
At the end of the course, students will be able to

CO1. Communicate effectively in formal and informal contexts
CO2. Converse appropriately and confidently with different people
CO3. Express their opinions assertively in group discussions

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AVg.</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high

HS3251 ENGLISH FOR COMMUNICATION – II

UNIT I CAUSE AND EFFECT

Listening – Radio / TV / Podcast Interview (survivors tale) and framing a set of instructions/ Do’s and Don’ts; Reading – Excerpts of Literature (short stories), Journal articles on issues like Global warming;
Writing - Instructions; Official letter / email (Request for internship / Industrial visit); Grammar – If conditionals, Imperatives; Vocabulary – Cause and effect expressions, Idiom

UNIT II COMPARE AND CONTRAST

Listening – Product reviews and gap fill exercises, Short Talks (like TED Talks) for specific information;
Reading – Graphical content (table / chart / graph) and making inferences; Writing – Compare and Contrast Essay; Grammar – Degrees of Comparison; Mixed Tenses; Vocabulary – Order of Adjectives, Transition words.

UNIT III PROBLEM AND SOLUTION

Listening – Group discussion (case study); Reading – Visual content (Pictures on social issues / natural disasters) for comprehension; Editorial; Writing Picture description; Problem and Solution Essay;
Grammar – Modal verbs; Relative pronoun; Vocabulary – Negative prefixes, Signal words for problem and solution.

UNIT IV REPORTING

Listening – Oral news report; Reading – Newspaper report on survey findings – Writing – Survey report, Making recommendations; Grammar – Active and passive voice, Direct and Indirect speech; Vocabulary – Reporting verbs, Numerical adjectives.

UNIT V PRESENTATION

Listening – Job interview, Telephone interview; Reading - Job advertisement and company profile and making inferences; Writing – Job application (cover letter and CV) Grammar – Prepositional phrases; Vocabulary – Fixed expressions, Collocations.
Assessment
Two Written Assessments : 35% weightage each
Assignment: 30% weightage
Conducting a survey on specific topic and write a final survey report.

End Semester Exam: 3-hour written exam

TOTAL : 45 PERIODS

COURSE OUTCOMES
On completion of the course, the students will be able to:
CO1. Listen effectively to various oral forms of conversation, lectures, discussion and understand the main gist of the content.
CO2. Communicate effectively in formal and informal context.
CO3. Read and comprehend technical texts effortlessly.
CO4. Write reports and job application for internship or placement.
CO5. Learn to use language effectively in a professional context.

TEXT BOOKS
1. “English for Engineers and Technologists” Volume 2 by Orient Blackswan, 2022

REFERENCES
4. www.uefap.com

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AVg.</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high

MA3251 ORDINARY DIFFERENTIAL EQUATIONS AND TRANSFORM TECHNIQUES L T P C
3 1 0 4

UNIT I ORDINARY DIFFERENTIAL EQUATIONS (9+3)
Homogeneous linear ordinary differential equations of second order, linearity principle, general solution-
Particular integral - Operator method - Solution by variation of parameters - Method of undetermined

UNIT II LAPLACE TRANSFORMS (9+3)

UNIT III FOURIER SERIES (9+3)
Dirichlet’s conditions – General Fourier series – Odd and even functions – Half-range Sine and Cosine series – Complex form of Fourier series – Parseval’s identity – Harmonic Analysis.

UNIT IV FOURIER TRANSFORMS (9+3)
Fourier integral theorem – Fourier transform pair - Fourier sine and cosine transforms – Properties – Transform of elementary functions - Convolution theorem (without proof) – Parseval’s identity.

UNIT V Z–TRANSFORM AND DIFFERENCE EQUATIONS (9+3)

TOTAL: 60 PERIODS

COURSE OUTCOMES:
At the end of the course, the students will be able to:
CO1: Solve higher order ordinary differential equations which arise in engineering applications.
CO2: Apply Laplace transform techniques in solving linear differential equations.
CO3: Apply Fourier series techniques in engineering applications.
CO4: Understand the Fourier transforms techniques in solving engineering problems.
CO5: Understand the Z-transforms techniques in solving difference equations.

TEXT BOOKS:

REFERENCES:

CO-PO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>
PH3204 PHYSICS OF SEMICONDUCTORS AND DEVICES L T P C
3 0 0 3

UNIT I ELECTRONIC STATES 9

UNIT II CARRIERS AND DOPING 9

UNIT III PN DIODE AND BIPOLAR JUNCTION TRANSISTOR 9
PN junction diode, current equations, V-I characteristics, Bipolar Junction Transistor- bipolar transistor action, minority carrier, distribution, low frequency common base, current gain, non-ideal effects, equivalent circuits, Ebers Moll Model, Hybrid-pi model, frequency limitations, large signal switching characteristics, SiGe and hetero-junction.

UNIT IV FIELD EFFECT TRANSISTORS 9
Two terminal MOS structures, threshold voltage and charge distribution, capacitance-voltage characteristics, MOSFET structures, I-V relationships, transconductance and substrate effects, frequency limitations, non-ideal effects, MOSFET scaling, threshold voltage modification due to short and narrow channel effects, avalanche breakdown, drain induced barrier effects.

UNIT V SPECIAL SEMICONDUCTOR DEVICES 9
SCR, IGBT, LED, LCD, Photo transistor, Opto Coupler, Solar cell, MESFET, Schottky barrier diode-Zener diode-Varactor diode –Tunnel diode-Gallium Arsenide device, LASER diode, UJT, LDR

TOTAL : 45 PERIODS

COURSE OUTCOMES:
At the end of the course, students will be able to
CO1: Understand the basics of electronic states and energy band structure formation
CO2: Recognize the importance of carrier concentration and doping in semiconductors
CO3: Understand the operation and characteristics of PN junction and BJTs.
CO4: Comprehend the characteristics of the field effect transistors.
CO5: Realize the physics of special semiconductor devices.

TEXT BOOKS:

REFERENCE BOOKS:

<table>
<thead>
<tr>
<th>CO-PO MAPPING</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>2.2</td>
<td>1.6</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1’ = Low; ‘2’ = Medium; ‘3’ = High

EC3201

CIRCUIT THEORY

UNIT I DC CIRCUIT ANALYSIS

UNIT II NETWORK THEOREM AND DUALITY
Useful Circuit Analysis techniques using Independent and Dependent Sources- Linearity and superposition, Reciprocity Theorem, Thevenin and Norton Equivalent Circuits, Maximum Power Transfer, Delta-Wye Conversion. Duals, Dual circuits.

UNIT III SINUSOIDAL STEADY STATE ANALYSIS

UNIT IV TRANSIENTS AND RESONANCE IN RLC CIRCUITS
UNIT V — TOPOLOGY, COUPLED CIRCUITS & TWO PORT NETWORKS

Magnetically Coupled Circuits, mutual Inductance, the Linear Transformer, the Ideal Transformer, An introduction to Network Topology, Trees and General Nodal analysis, Links and Loop analysis, Two port Network Analysis- Z, Y, G and H parameters.

COURSE OUTCOMES:
At the end of the course, students will have

CO1: Ability to apply the basic laws for DC and AC circuits Analysis.
CO2: Ability to apply Network Theorems in DC and AC circuits.
CO3: Ability to analyse AC circuits for phase relationship and power calculation.
CO4: Ability to design and analyse first and second order AC circuits
CO5: Ability to analyse inductively coupled circuits and two port networks

TEXT BOOKS:

REFERENCE BOOKS:

CO-PO MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Average</td>
<td>3</td>
<td>2.8</td>
<td>2.4</td>
<td>2.2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1’ = Low; ‘2’ = Medium; ‘3’ = High

EC3202 — DATA STRUCTURES AND PROGRAMMING IN C++

UNIT I — DATA ABSTRACTION & OVERLOADING

Overview of C++ — Structures — Class Scope and Accessing Class Members — Reference Variables — Initialization — Constructors — Deststructors — Member Functions and Classes — Friend

UNIT II INHERITANCE & POLYMORPHISM
Base Classes and Derived Classes – Protected Members – Casting Class pointers and Member Functions – Overriding – Public, Protected and Private Inheritance – Constructors and Destructors in derived Classes – Implicit Derived – Class Object To Base – Class Object Conversion – Composition Vs. Inheritance – Virtual functions – This Pointer – Abstract Base Classes and Concrete Classes – Virtual Destructors – Dynamic Binding.

UNIT III LINEAR DATA STRUCTURES
Asymptotic Notations: Big-Oh, Omega and Theta – Best, Worst and Average case Analysis: Definition and an example – Arrays and its representations – Stacks and Queues – Linked lists – Linked list based implementation of Stacks and Queues – Evaluation of Expressions – Linked list based polynomial addition.

UNIT IV NON-LINEAR DATA STRUCTURES

UNIT V SORTING & SEARCHING
Insertion sort – Merge sort – Quick sort – Heap sort – Linear Search – Binary Search.

List of Experiments:
1. C++ Program to Implement Constructors and Destructors.
2. C++ Program to implement Member Functions, Classes and Friend Functions.
3. C++ Program to Implement Dynamic Memory Allocation and Overloading.
4. C++ Program to Implement Various Inheritances.
5. C++ Program to Implement Virtual Functions and Dynamic Binding.
7. C++ Program to Implement Various Operations on Stacks and Queues using Array and Linked List.
8. C++ Program to Evaluate the Infix Expressions by converting into Prefix and Postfix Expressions.
9. C++ Program to Implement Binary Tree Traversal and Graph Traversal Algorithm.
10. C++ Program to Implement the Single Source Shortest Path Algorithm and All Pair Shortest Path Algorithm.
11. C++ Program to find the Minimal Spanning Tree for a Graph.
12. C++ Program to Implement Linear Search and Binary Search Algorithms.
13. C++ Program to Implement Insertion Sort, Merge Sort, Quick Sort and Heap Sort Algorithms.

COURSE OUTCOMES:
At the end of the course, students will be able to
CO1: Comprehend and appreciate the significance and role of this course in the present contemporary world

CO2: Select and realize suitable data structure for specific Application.

CO3: Compare and realize Linear and nonlinear data structures for different application.

CO4: Implement different searching and sorting techniques.

CO5: Identify and realize connected components in trees.

CO6: Analyze and realize asymptotic notations.

TEXT BOOKS:

REFERENCE BOOKS:

CO-PO MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1' = Low; '2' = Medium; '3' = High

GE3251 தமிழ்தம் மதொழில்நுட்பம்

டல்லறு மோதிது பண்படுத்து வடிவமைப்பம்: 3
- காலத்திலில் வெளியுறு வடிவை - பாலிட்டு வடிவமைப்பம் - கைப்படு வரிசைப்படைகளில் - பாலிட்டு வடிவமைப்பம் சிலுக்குகள்.

வடிவறம் மற்றும் கட்டிடமைப்பு வடிவமைப்பம்: 3
- காலத்திலில் சிலப்பதிகொரத்திலில் வரிசைப்படைகள் மற்றும் பொறைநுட்பம் - காலத்திலில் வரிசையறிகை விளக்குகள் - வைக்குப்பது விளக்குகள், வாசிக்குறும் - மேலும் காலத்தில் பொழுத்பராகுகள் மேற்புறம் பின் வரிசைப்படைகள்
- பாலிட்டு வடிவமைப்பில் - மேலும் காலத்திலில் பொழுத்பராகுகள், பிற வழிபொட்டு தலங்கள் - நொயக்கர் கொலக் கட்டமைப்புகள், மற்றும் பொண்டங்கள்
மதுமர மீனொட்சி அம்மன் மற்றும் திருமமல நொயக்கர் மஹொல் – பிரிட்டிஷ் கொலத்தில் கட்டிடக் கமலங்கள்.

அலகு III மொழிப் பொருள் பாடல்:
3 கமல் பொருள் பாடல் - தமிழ்நூல் பாடல் - தமிழ் சிந்து பாடல் - தமிழ் பதிப்பு பொருள். மதுமர மீனொட்சி அம்மன் ஆலயம் - திருமமல நொயக்கர் மஹொல் – தெட்டிநொட்டு கட்டிடக் கமலங்கள் - பிரிட்டிஷ் கொலத்தில் இந்மதொ மொமொதெனிக் கட்டிடக் கமல.

அலகு IV இல்லாநாமனன் மொழி விளக்கன பொருள் பாடல்:
3 மதுமர மீனொட்சி அம்மன் பாடல் - தமிழ் சியாத்தூண் - தமிழ் பதிப்பு பொருள். மதுமர மீனொட்சி அம்மன் ஆலயம் - திருமமல நொயக்கர் மஹொல் – தெட்டிநொட்டு கட்டிடக் கமல.

அலகு V அறிவியல் மொழி பொருள் பாடல்:
3 ஆகாச தமிழ் - கணித்தமிழ் - முமனவர் - இலக்கியாக தமிழ் பொருள். மதுமர மீனொட்சி அம்மன் ஆலயம் - திருமமல நொயக்கர் மஹொல் – தெட்டிநொட்டு கட்டிடக் கமல.

TEXT-CUM-REFERENCE BOOKS
1. தமிழக வரலைமுறை - மக்கள் படைப்பட்டை - தொ Myth. பிள்ளை (தமிழின்: மக்கள் படைப்பட்டை – மக்கள் படைப்பட்டை.
2. கணினித் தமிழ் - முமனவர் (சுந்தரம்).
3. கிளைகள் - கணித்தமிழ் பக்தூண் குிகண்டை (தமிழின்: கிளைகள்).
4. போருநாயக்க கட்டிடக் கமலம் (தமிழின்: போருநாயக்க கட்டிடக் கமலம்)
5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies).
7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
9. Keeladi - ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by The Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

GE3251 TAMILS AND TECHNOLOGY L T P C 1 0 0 1

UNIT I WEAVING AND CERAMIC TECHNOLOGY 3
Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY 3
Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)- Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III MANUFACTURING TECHNOLOGY 3

UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY 3
Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society.

UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING 3

TOTAL : 15 PERIODS

TEXT-CUM-REFERENCE BOOKS
1. தமிழகவரலைச்—மக்களும் பண்பொடும்—மக..மக..பிள்மள (தவளியீடு:தமிழ்நொடுபொடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
2. கணினித் தமிழ்—முமனவர் இல..சுந்தரம் (விகடன் பிரசுரம்).
3. கீழடி—மவமகநதிக்கமரயில் எங்ககொல நகரிகம் (ததொல்லியல் துமறதவளியீடு).
4. தபொருமந—ஆற்றங்கமர் நகரிகம். (ததொல்லியல் துமறதவளியீடு)
5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies).
7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
9. Keeladi - ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

NX3251 (ARMY WING) NCC Credit Course Level - I L T P C
2 0 0 2

NCC GENERAL
NCC 1 Aims, Objectives & Organization of NCC 1
NCC 2 Incentives 2
NCC 3 Duties of NCC Cadet 1
NCC 4 NCC Camps: Types & Conduct 2

NATIONAL INTEGRATION AND AWARENESS
NI 1 National Integration: Importance & Necessity 1
NI 2 Factors Affecting National Integration 1
NI 3 Unity in Diversity & Role of NCC in Nation Building 1
NI 4 Threats to National Security 1

PERSONALITY DEVELOPMENT
PD 1 Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving 2
PD 2 Communication Skills 3
PD 3 Group Discussion: Stress & Emotions 2

LEADERSHIP
L 1 Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour ‘Code 3
L 2 Case Studies: Shivaji, Jhasi Ki Rani 2

SOCIAL SERVICE AND COMMUNITY DEVELOPMENT
SS 1 Basics, Rural Development Programmes, NGOs, Contribution of Youth 3
SS 4 Protection of Children and Women Safety 1
SS 5 Road / Rail Travel Safety 1
SS 6 New Initiatives 2
SS 7 Cyber and Mobile Security Awareness 1

TOTAL : 30 PERIODS
NCC Credit Course Level 1*
NX3252 (NAVAL WING) NCC Credit Course Level - I
L T P C
2 0 0 2

NCC GENERAL 6
NCC 1 Aims, Objectives & Organization of NCC 1
NCC 2 Incentives 2
NCC 3 Duties of NCC Cadet 1
NCC 4 NCC Camps: Types & Conduct 2

NATIONAL INTEGRATION AND AWARENESS 4
NI 1 National Integration: Importance & Necessity 1
NI 2 Factors Affecting National Integration 1
NI 3 Unity in Diversity & Role of NCC in Nation Building 1
NI 4 Threats to National Security 1

PERSONALITY DEVELOPMENT 7
PD 1 Self-Awareness, Empathy, Creative & Critical Thinking, Decision Making and Problem Solving 2
PD 2 Communication Skills 3
PD 3 Group Discussion: Stress & Emotions 2

LEADERSHIP 5
L 1 Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code 3
L 2 Case Studies: Shivaji, Jhansi Ki Rani 2

SOCIAL SERVICE AND COMMUNITY DEVELOPMENT 8
SS 1 Basics, Rural Development Programmes, NGOs, Contribution of Youth 3
SS 2 Protection of Children and Women Safety 1
SS 3 Road / Rail Travel Safety 1
SS 4 New Initiatives 2
SS 5 Cyber and Mobile Security Awareness 1

TOTAL: 30 PERIODS

NCC Credit Course Level 1*
NX3253 (AIR FORCE WING) NCC Credit Course Level - I
L T P C
2 0 0 2

NCC GENERAL 6
NCC 1 Aims, Objectives & Organization of NCC 1
NCC 2 Incentives 2
NCC 3 Duties of NCC Cadet 1
NCC 4 NCC Camps: Types & Conduct 2

NATIONAL INTEGRATION AND AWARENESS 4
NI 1 National Integration: Importance & Necessity 1
NI 2 Factors Affecting National Integration 1
NI 3 Unity in Diversity & Role of NCC in Nation Building 1
NI 4 Threats to National Security 1

PERSONALITY DEVELOPMENT 7
PD 1 Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving 2
PD 2 Communication Skills 3
PD 3 Group Discussion: Stress & Emotions 2

LEADERSHIP 5
L 1 Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code 3
L 2 Case Studies: Shivaji, Jhasi Ki Rani 2

SOCIAL SERVICE AND COMMUNITY DEVELOPMENT 8
SS 1 Basics, Rural Development Programmes, NGOs, Contribution of Youth 3
SS 4 Protection of Children and Women Safety 1
SS 5 Road / Rail Travel Safety 1
SS 6 New Initiatives 2
SS 7 Cyber and Mobile Security Awareness 1

TOTAL : 30 PERIODS

EC3211 ELECTRONIC DEVICES AND CIRCUITS LABORATORY L T P C
0 0 4 2

LIST OF EXPERIMENTS:
1. Characteristics of PN Junction Diode
2. Zener diode Characteristics & Regulator using Zener diode
3. Common Emitter input-output Characteristics
4. Common Base input-output Characteristics
5. FET Characteristics
6. SCR Characteristics
7. Clipper and Clamper & FWR Characteristics
8. Verification of Thevenin & Norton theorems
9. Verification of KVL & KCL
10. Verification of Super Position Theorem
11. Verification of Maximum Power Transfer & Reciprocity Theorem
12. Determination of Resonant Frequency of Series & Parallel RLC Circuits
13. Transient analysis of RL and RC circuits

TOTAL : 60 PERIODS

LABORATORY REQUIREMENTS:
BC 107, BC 148,2N2646, BFW10 - 25 each
1N4007, Zener diodes - 25 each
Resistors, Capacitors, Inductors - sufficient quantities
COURSE OUTCOMES:
At the end of the course, students will have

- **CO1**: Ability to apply the circuit laws and theorems
- **CO2**: Ability to understand the functionality of electrical/electronic devices
- **CO3**: Ability to measure and record the characteristics of electronic devices
- **CO4**: Ability to validate the measured parameters with design
- **CO5**: Ability to analyze RL, RC circuits

CO-PO MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average: 2.8, 2.4, 1.4

1’ = Low; ‘2’ = Medium; ‘3’ = High

CY3161 CHEMISTRY LABORATORY

L T P C
0 0 2 1

LIST OF EXPERIMENTS:
(Minimum of 8 experiments to be conducted)

1. Estimation of HCl using Na₂CO₃ as primary standard
2. Determination of alkalinity in water sample.
3. Determination of hardness of water by EDTA method.
4. Determination of DO content of water sample by Winkler’s method.
5. Determination of chloride content of water sample by Argentometric method.
6. Estimation of copper content of the given solution by Iodometry.
7. Determination of strength of given hydrochloric acid using pH meter.
8. Determination of strength of acids in a mixture of acids using conductivity meter.
9. Estimation of iron content of the given solution using potentiometer.
10. Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthroline/thiocyanate method).
11. Estimation of sodium and potassium present in water using flame photometer.
13. Determination of Glass transition temperature of a polymer
14. Phase change in a solid.
15. Corrosion experiment-weight loss method.

TOTAL: 30 PERIODS
COURSE OUTCOMES:
After completion of the laboratory course, the student will be able to –
CO1: analyse the water quality parameters for domestic and industrial purposes.
CO2: determine the amount of metal ions by spectroscopic techniques.
CO3: select a suitable polymer for industrial applications.
CO4: quantitatively analyse the impurities in solution by electroanalytical techniques.
CO5: predict the choice of metals for industrial purposes using corrosion studies.

TEXTBOOKS:

CO - PO Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - low, 2 - medium, 3 - high

GE3261 ENGLISH LABORATORY – II L T P C

UNIT I INTERVIEW IN SOCIAL CONTEXT 6
Asking questions and answering - Conducting an interview (of an achiever / survivor) – Role play

UNIT II PERSUASIVE SKILLS 6
Speaking about specifications of a product (Eg. Home appliances) – Persuasive Talk – Role play activity.

UNIT III CASE STUDY 6
Discussions on Case Study to find solutions for problems in professional contexts – Analytical discussion on various aspects of a given problem.

UNIT IV VISUAL INTERPRETATION 6
Describing visual content (Pictures/Table/Chart) using appropriate descriptive language and making appropriate inferences and giving recommendations.

UNIT V PRESENTATION 6
Making presentation with visual component (PPT slides) (job interview / project / innovative product presentation)

Assessment
Internals – 100%
Picture / Graphical description and Interpretation
Formal Presentation with visual tool (like PPT)

COURSE OUTCOMES
At the end of the course, students will be able to
CO1: Comprehend and transcode visual content appropriately.
CO2: Participate effectively in formal group discussions.
CO3: Make presentation on a given topic in a formal context.

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.</td>
<td>2</td>
</tr>
</tbody>
</table>

1-low, 2-medium, 3-high

TOTAL : 30 PERIODS