OUR VISION
To unveil the leadership qualities in students of mining engineering and impart knowledge of latest trends in mining and related industries to meet the present and future requirements of the industry embracing sustainability of the environment in order to produce well communicative, socially responsible and ethical mining engineers. To inculcate the habit of continuous learning, working in groups, safety at work, etc. for the overall development of the society in general, mining and related industries in particular adopting ethical means of profession.

OUR MISSION
- To improve the academic as well as co-curricular activities of the students.
- To organize activities for students in order to develop their soft skills which would aid them in their career prospects.
- To increase awareness of the students on the current state of affairs of the mining industry and to help them keep pace with the latest and emerging trends in the industry.
- To organize guest lectures by prominent personalities to update students constantly on the basic and latest terminologies related to mining and general issues.
- To promote active participation of students in sports activities for physical and mental fitness.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

I. The graduates acquire ability to create model, design, synthesize and analyze essential mining operational skills, mechanism and automation system.
II. The graduates use their talent, self-confidence, knowledge and engineering practice which facilitate them to presume position of scientific and/or managerial leadership in their career paths.
III. The graduates apply their consciousness of moral, professional responsibilities and motivation to practice life-long learning in a team work environment.
<table>
<thead>
<tr>
<th>PO#</th>
<th>Graduate Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.</td>
</tr>
<tr>
<td>2</td>
<td>Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.</td>
</tr>
<tr>
<td>3</td>
<td>Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.</td>
</tr>
<tr>
<td>4</td>
<td>Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.</td>
</tr>
<tr>
<td>5</td>
<td>Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.</td>
</tr>
<tr>
<td>6</td>
<td>The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.</td>
</tr>
<tr>
<td>7</td>
<td>Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.</td>
</tr>
<tr>
<td>8</td>
<td>Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.</td>
</tr>
<tr>
<td>9</td>
<td>Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.</td>
</tr>
<tr>
<td>10</td>
<td>Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.</td>
</tr>
<tr>
<td>11</td>
<td>Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.</td>
</tr>
<tr>
<td>12</td>
<td>Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.</td>
</tr>
</tbody>
</table>

PROGRAMME SPECIFIC OUTCOMES (PSOs)

I. Function ethically in a variety of professional roles such as mines manager, mine planner, production manager, mineral processing engineer, technical support representative and regulatory specialist and lead the organization competitively.

II. Find gainful employment and advance in their careers, in mining and related service sectors, consultant and provide mining solutions as well as pursue advanced degrees in mining-related.

III. Demonstrate an understanding of the critical role mining engineers play in society with respect to health, safety and the environment for ensuring sustainable development.
PEO's – PO's & PSO's MAPPING:

<table>
<thead>
<tr>
<th>PEO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
<td>PO2</td>
</tr>
<tr>
<td>I.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>II.</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>III.</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
SEMESTER I

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS3151</td>
<td>English for Communication – I</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>MA3151</td>
<td>Matrices and Calculus</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>PH3151</td>
<td>Engineering Physics</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>CY3151</td>
<td>Engineering Chemistry</td>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>GE3155</td>
<td>Engineering Drawing</td>
<td>ESC</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>GE3154</td>
<td>தமிழ் கல் / Heritage of Tamils</td>
<td>HSMC</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE3161</td>
<td>Engineering Practices Laboratory</td>
<td>ESC</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>CY3161</td>
<td>Chemistry Laboratory</td>
<td>BSC</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>GE3162</td>
<td>English Laboratory-1*</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

*Skill Based Course

SEMESTER II

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS3251</td>
<td>English for Communication – II</td>
<td>HSMC</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>MA3251</td>
<td>Ordinary Differential Equations and Transform Techniques</td>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>EE3151</td>
<td>Basics of Electrical and Electronics Engineering</td>
<td>ESC</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>GE3152</td>
<td>Problem Solving and Python Programming</td>
<td>ESC</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>GE3151</td>
<td>Engineering Mechanics</td>
<td>ESC</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>GE3251</td>
<td>தமிழ் கல் / Tamils and Technology</td>
<td>HSMC</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>NCC Credit Course Level 1*</td>
<td>-</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>PH3161</td>
<td>Physics Laboratory</td>
<td>BSC</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>GE3261</td>
<td>English Laboratory-II*</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

$ Skill Based Course

NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA
UNIT I BASICS OF COMMUNICATION
Listening – Telephone conversation & Writing message, gap filling; Reading – Telephone message, bio-note; Writing – Personal profile; Grammar – Simple present tense, Present continuous tense, Asking questions (wh-questions); Vocabulary – One word substitution, Synonyms

UNIT II NARRATION
Listening – Travel podcast / Watching a travel documentary; Reading – An excerpt from a travelogue, Newspaper Report; Writing – Narrative (Event, personal experience etc.); Grammar – Subject – verb agreement, Simple past, Past continuous Tenses; Vocabulary – Antonyms, Word formation (Prefix and Suffix).

UNIT III DESCRIPTION
Listening – Conversation, Radio/TV advertisement; Reading – A tourist brochure and planning an itinerary, descriptive article / excerpt from literature; Writing – Definitions, Descriptive writing, Checklists; Grammar – Future tense, Perfect tenses, Preposition; Vocabulary – Adjectives and Adverbs

UNIT IV CLASSIFICATION
Listening – Announcements and filling a table; Reading – An article, social media posts and classifying (channel conversion – text to table); Writing – Note making, Note taking and Summarising, a classification paragraph; Grammar – Connectives, Transition words; Vocabulary – Contextual vocabulary, Words used both as noun and verb, Classification related words.

UNIT V EXPRESSION OF VIEWS
Listening – Debate / Discussion; Reading – Formal letters, Letters to Editor, Opinion articles / Blogs; Writing – Letter writing/ Email writing (Enquiry / Permission, Letter to Editor); Grammar – Question tags, Indirect questions, Yes / No questions; Vocabulary – Compound words, Phrasal verbs.

Assessment
Two Written Assessments: 35% weightage each
Assignment: 30% weightage
Designing a tourist brochure / Writing an opinion article / Making a travel podcast
End Semester Exam: 3-hour written exam

TOTAL : 45 PERIODS

COURSE OUTCOMES
At the end of the course, students will be able to
CO1: Use grammar and vocabulary suitable for general context.
CO2: Comprehend the nuances of spoken and written communication.
CO3: Use descriptive and analytical words, phrases, and sentence structures in written communication.
CO4: Read different types of texts and comprehend their denotative and connotative meanings.
CO5: Write different types of texts using appropriate formats.

TEXT BOOKS:
1. "English for Engineers and Technologists" Volume I by Orient Blackswan, 2022
2. "English for Science & Technology - I" by Cambridge University Press, 2023
REFERENCES
4. www.ufap.com

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Av.</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

- 1-low, 2-medium, 3-high

MA3151 MATRICES AND CALCULUS

UNIT I MATRICES
Eigen values and Eigen vectors of a real matrix – Properties of Eigen values - Cayley-Hamilton theorem (excluding proof) – Diagonalization of matrices - Reduction of Quadratic form to canonical form by using orthogonal transformation - Nature of a Quadratic form.

UNIT II FUNCTIONS OF SEVERAL VARIABLES

UNIT III INTEGRAL CALCULUS
Improper integrals of the first and second kind and their convergence – Differentiation under integrals - Evaluation of integrals involving a parameter by Leibnitz rule – Beta and Gamma functions-Properties – Evaluation of integrals by using Beta and Gamma functions – Error functions.

UNIT IV MULTIPLE INTEGRALS

UNIT V VECTOR CALCULUS
Gradient of a scalar field, directional derivative – Divergence and Curl – Solenoidal and Irrotational vector fields - Line integrals over a plane curve - Surface integrals – Area of a curved surface – Volume Integral - Green's theorem, Stoke’s and Gauss divergence theorems – Verification and applications in evaluating line, surface and volume integrals.
COURSE OUTCOMES:
At the end of the course, the students will be able to:
CO1: Use the matrix algebra methods for solving practical problems.
CO2: Use differential calculus ideas on several variable functions.
CO3: Apply different methods of integration in solving practical problems by using Beta and Gamma functions.
CO4: Apply multiple integral ideas in solving areas and volumes problems.
CO5: Apply the concept of vectors in solving practical problems.

TEXT BOOKS:

REFERENCES:

CO-PO Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1’ = Low; ‘2’ = Medium; ’3’ = High
UNIT I MECHANICS OF MATERIALS 9

UNIT II OSCILLATIONS, SOUND AND THERMAL PHYSICS 9

UNIT III OPTICS AND LASERS 9

UNIT IV QUANTUM MECHANICS 9

UNIT V CRYSTAL PHYSICS 9

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completion of this course, the students shall be
CO1: Understand the important mechanical properties of materials
CO2: Express the knowledge of oscillations, sound and applications of Thermal Physics
CO3: Know the basics of optics and lasers and its applications
CO4: Understand the basics and importance of quantum physics.
CO5: Understand the significance of crystal physics.

TEXT BOOKS:
3. N. Garcia, A. Damask and S. Schwarz, Physics for Computer Science Students,
REFERENCES:

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* 1’ = Low; ‘2’ = Medium; ‘3’ = High

CY3151 ENGINEERING CHEMISTRY

UNIT I POLYMER CHEMISTRY

UNIT II NANOCHEMISTRY

UNIT III CORROSION SCIENCE
Electrochemical cell, redox reaction, electrode potential - oxidation and reduction potential. Measurement and its application Introduction to corrosion - chemical and electrochemical corrosions-mechanism of electrochemical and galvanic corruptions-concentration cell corrosion-passivity-soil, pitting, inter-granular, water line, stress and microbiological corruptions-galvanic series-factors influencing corrosion-measurement of corrosion rate. Corrosion control-material selection and design-electrochemical protection- sacrificial anodic protection and impressed current...

UNIT IV ENERGY SOURCES
Batteries - Characteristics - types of batteries – primary battery (dry cell), secondary battery (lead acid, lithium-ion-battery)- emerging batteries – nickel-metal hydride battery, aluminum air battery, batteries for automobiles and satellites - Fuel cells (Types) – H₂-O₂ fuel cell - Supercapacitors-Types and Applications, Renewable Energy: Solar- solar cells, DSSC

UNIT V WATER TECHNOLOGY

TOTAL: 45 PERIODS

COURSE OUTCOMES:
CO1: To recognize and apply basic knowledge on different types of polymeric materials, their general preparation methods and applications to futuristic material fabrication needs.
CO2: To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
CO3: To recognize and apply basic knowledge on suitable corrosion protection technique for practical problems.
CO4: To recognize different storage devices and apply them for suitable applications in energy sectors.
CO5: To demonstrate the knowledge of water and their quality in using at different industries.

TEXT BOOKS:

REFERENCES:

CO - PO Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1’ = Low; ‘2’ = Medium; ‘3’ = High
GE3155 ENGINEERING DRAWING

COURSE OBJECTIVE:
The learning objectives of this course is to develop in students, the engineering graphic skills for communication of concepts, ideas and design of engineering products and expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (NOT FOR EXAMINATION) 2
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES 4 + 12
Basic Geometrical constructions, Curves used in engineering practices: Conics — Construction of ellipse, parabola and hyperbola by eccentricity method — Construction of cycloid — construction of involutes of square and circle — Drawing of tangents and normal to the above curves.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 + 12
Orthographic projection- Principal planes - First angle projection - projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS AND FREEHAND SKETCHING 6 + 12
Projection of simple solids like prisms, pyramids, cylinder, and cone when the axis is inclined to both the principal planes by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles — Representation of Three-Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination).

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 6 + 12
Sectioning of simple solids like prisms, pyramids, cylinder, and cone in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other — obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids — Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes. Practicing three dimensional modeling of simple truncated objects by CAD Software (Not for examination).

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6 + 12
Principles of isometric projection — isometric scale - Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids, cone and cylinders by visual ray method. Creating isometric model of simple objects from orthographic projections using CAD software (Not for examination).

TOTAL : 90 PERIODS

COURSE OUTCOMES:
On successful completion of this course, the student will be able to
CO1. Draw conic curves, cycloids and involutes
CO2. Draw orthographic projections of points, lines and planes
CO3. Draw orthographic projections and free hand sketches of solids
CO4. Draw sectional views of the objects and development of surfaces.
CO5. Draw isometric and perspective views of simple solids
TEXTBOOKS:

REFERENCES:

Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Drawing:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets only in the size of A3.
4. The students will be permitted to use appropriate scale to fit the solution within A3 size.
5. The examination will be conducted in appropriate sessions on the same day.

<table>
<thead>
<tr>
<th>COs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>POs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>PSOs</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVG</td>
<td>3</td>
<td>1.8</td>
<td>1.8</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TEXT-CUM-REFERENCE BOOKS
1. Social Life of Tamils (Dr.K.K. Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
2. (Name of book) (Author) (Publishers) (Publication year).
5. (Name of book) (Author) (Publishers) (Publication year).

TOTAL : 15 PERIODS
6. Social Life of the Tamils - The Classical Period (Dr.S. Singaravelu) (Published by: International Institute of Tamil Studies).
7. Historical Heritage of the Tamils (Dr.S.V. Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M. Valarmathi) (Published by: International Institute of Tamil Studies.)
9. Keeladi - ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K. Pillay) (Published by: The Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

GE3154 HERITAGE OF TAMILS L T P C 1 0 0 1

UNIT I LANGUAGE AND LITERATURE 3

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE 3

UNIT III FOLK AND MARTIAL ARTS 3
Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leatherpuppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV THINAI CONCEPT OF TAMILS 3
Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE 3
Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

TOTAL: 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

14
GE3161 ENGINEERING PRACTICES LABORATORY

COURSE OBJECTIVE:
To provide exposure to the students with hands on experience on various basic engineering practices in civil, mechanical, electrical and electronics engineering.

PART I CIVIL ENGINEERING PRACTICES 15

PLUMBING WORK:
a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in household.
b) Preparing plumbing line sketches.
c) Laying pipe connection to the suction side of a pump
d) Laying pipe connection to the delivery side of a pump.
e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK:
a) Sawing.
b) Planing and
c) Making joints like T-Joint, Mortise joint and Tenon joint and Dovetail joint.

Wood Work Study:
a) Studying joints in door panels and wooden furniture
b) Studying common industrial trusses using models.
PART II ELECTRICAL ENGINEERING PRACTICES 15

WIRING WORK:
a) Wiring Switches, Fuse, Indicator and Lamp etc. such as in basic household,
b) Wiring Stair case light.
c) Wiring tube – light.
d) Preparing wiring diagrams for a given situation.

Wiring Study:
a) Studying an Iron-Box wiring.
b) Studying a Fan Regulator wiring.
c) Studying an Emergency Lamp wiring.

GROUP – B (MECHANICAL AND ELECTRONICS)
PART III MECHANICAL ENGINEERING PRACTICES 15

WELDING WORK:
a) Welding of Butt Joints, Lap Joints, and Tee Joints using arc welding.
b) Demonstration of gas welding.

BASIC MACHINING WORK:
a) (simple)Turning.
b) (simple)Drilling.
c) (simple)Tapping.

ASSEMBLY WORK:
a) Assembling a centrifugal pump.
b) Assembling a household mixer.
c) Assembling an air conditioner.

SHEET METAL WORK:
a) Making of a square tray

FOUNDRY WORK:
a) Demonstrating basic foundry operations.

PART IV ELECTRONIC ENGINEERING PRACTICES 15

SOLDERING WORK:
a) Soldering simple electronic circuits and checking continuity.

ELECTRONIC ASSEMBLY AND TESTING WORK:
a) Assembling and testing electronic components on a small PCB.

ELECTRONIC EQUIPMENT STUDY:
a) Studying a FM radio.
b) Studying an electronic telephone.

TOTAL = 60 PERIODS

COURSE OUTCOMES: Upon completion of this course, the students will be able to:
CO1: Ability to make common joints in carpentry and pipe connections with fittings used in plumbing works.
2. Ability to weld steel the structures
3. Ability to do electrical wiring and to build electronics circuits.
LIST OF EXPERIMENTS:
1. Estimation of HCl using Na₂CO₃ as primary standard
2. Determination of alkalinity in water sample.
3. Determination of hardness of water by EDTA method.
4. Determination of DO content of water sample by Winkler’s method.
5. Determination of chloride content of water sample by Argentometric method.
6. Determination of copper content of the given solution by Iodometry.
7. Determination of strength of given hydrochloric acid using pH meter.
8. Determination of strength of acids in a mixture of acids using conductivity meter.
9. Determination of iron content of the given solution using potentiometer.
10. Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthroline/thiocyanate method).
11. Estimation of sodium and potassium present in water using flame photometer.
13. Determination of Glass transition temperature of a polymer
14. Phase change in a solid.
15. Corrosion experiment-weight loss method.

COURSE OUTCOMES:
After completion of the laboratory course, the student will be able to –
CO1: analyse the water quality parameters for domestic and industrial purposes.
CO2: determine the amount of metal ions by spectroscopic techniques
CO3: select a suitable polymer for industrial applications.
CO4: quantitatively analyse the impurities in solution by electroanalytical techniques.
CO5: predict the choice of metals for industrial purposes using corrosion studies.

TEXTBOOKS:
UNIT I
SELF-INTRODUCTION
Introducing oneself; Telephone conversation, Relaying telephone message – Role play

UNIT II
NARRATION
Narrating one’s personal experience in front of a group (formal and informal context)
Ex.: First day in college / vacation / first achievement etc.

UNIT III
CONVERSATION
Making conversation – formal and informal – Turn taking and Turn giving – Small talk

UNIT IV
SHORT SPEECH
Giving short speeches on topics like College Clubs and their activities in the college / Campus Facilities / native place and its major attractions.

UNIT V
DISCUSSION
Taking part in a group discussion on general topics – Debating on topics of interest and relevance.

Assessment
Internals – 100%
Short Speeches
Group discussion

TOTAL: 30 PERIODS

COURSE OUTCOMES
At the end of the course, students will be able to
CO1. Communicate effectively in formal and informal contexts
CO2. Converse appropriately and confidently with different people
CO3. Express their opinions assertively in group discussions

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AVg.</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

* 1' = Low; '2' = Medium; '3' = High
UNIT I CAUSE AND EFFECT
Listening – Radio / TV / Podcast Interview (survivors tale) and framing a set of instructions/ Do's and Don'ts; Reading – Excerpts of Literature (short stories), Journal articles on issues like Global warming; Writing - Instructions; Official letter / email (Request for internship / Industrial visit); Grammar – If conditionals, Imperatives; Vocabulary – Cause and effect expressions, Idiom

UNIT II COMPARE AND CONTRAST
Listening – Product reviews and gap fill exercises, Short Talks (like TED Talks) for specific information; Reading – Graphical content (table / chart / graph) and making inferences; Writing – Compare and Contrast Essay; Grammar – Degrees of Comparison; Mixed Tenses; Vocabulary – Order of Adjectives, Transition words.

UNIT III PROBLEM AND SOLUTION
Listening – Group discussion (case study); Reading – Visual content (Pictures on social issues / natural disasters) for comprehension; Editorial; Writing Picture description; Problem and Solution Essay; Grammar – Modal verbs; Relative pronoun; Vocabulary – Negative prefixes, Signal words for problem and solution.

UNIT IV REPORTING
Listening – Oral news report; Reading – Newspaper report on survey findings – Writing – Survey report, Making recommendations; Grammar – Active and passive voice, Direct and Indirect speech; Vocabulary – Reporting verbs, Numerical adjectives.

UNIT V PRESENTATION
Listening – Job interview, Telephone interview; Reading - Job advertisement and company profile and making inferences; Writing – Job application (cover letter and CV) Grammar – Prepositional phrases; Vocabulary – Fixed expressions, Collocations.

Assessment
Two Written Assessments : 35% weightage each
Assignment: 30% weightage
Conducting a survey on specific topic and write a final survey report.

End Semester Exam: 3-hour written exam

TOTAL : 45 PERIODS

COURSE OUTCOMES
On completion of the course, the students will be able to:

CO1. Listen effectively to various oral forms of conversation, lectures, discussion and understand the main gist of the content.
CO2. Communicate effectively in formal and informal context.
CO3. Read and comprehend technical texts effortlessly.
CO4. Write reports and job application for internship or placement.
CO5. Learn to use language effectively in a professional context.

TEXT BOOKS
1. “English for Engineers and Technologists” Volume 2 by Orient Blackswan, 2022
REFERENCES
4. www.uefap.com

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

- 1' = Low; '2' = Medium; '3' = High
- **Note:** The average value of this course to be used for program articulation matrix.

MA3251 ORDINARY DIFFERENTIAL EQUATIONS AND TRANSFORM TECHNIQUES

UNIT I ORDINARY DIFFERENTIAL EQUATIONS

UNIT II LAPLACE TRANSFORMS

UNIT III FOURIER SERIES
Dirichlet’s conditions – General Fourier series – Odd and even functions – Half-range Sine and Cosine series – Complex form of Fourier series – Parseval’s identity – Harmonic Analysis.

UNIT IV FOURIER TRANSFORMS
Fourier integral theorem – Fourier transform pair - Fourier sine and cosine transforms – Properties – Transform of elementary functions - Convolution theorem (without proof) – Parseval’s identity.

UNIT V Z – TRANSFORM AND DIFFERENCE EQUATIONS
Z-transform – Elementary properties – Inverse Z-transform – Convolution theorem – Initial and
final value theorems – Formation of difference equation – Solution of difference equation using Z -
transform.

TOTAL: 60 PERIODS

COURSE OUTCOMES:
At the end of the course, the students will be able to:
CO1: Solve higher order ordinary differential equations which arise in engineering applications.
CO2: Apply Laplace transform techniques in solving linear differential equations.
CO3: Apply Fourier series techniques in engineering applications.
CO4: Understand the Fourier transforms techniques in solving engineering problems.
CO5: Understand the Z-transforms techniques in solving difference equations.

TEXT BOOKS:

REFERENCES:

CO-PO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

• 1' = Low; '2' = Medium; '3' = High

EE3151 BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING L T P C
3 0 2 4

UNIT – I ELECTRICAL CIRCUITS
DC Circuits: Ohm’s Law - Kirchhoff’s Laws – Independent and Dependent Sources – Nodal
Analysis, Mesh analysis with Independent sources only (Steady state) – AC Fundamentals: Waveforms, Average value, RMS Value, Impedance, Instantaneous Power, Real Power, Reactive Power and Apparent Power, Power Factor – Steady State Analysis of RL and RC Circuits - Introduction to Balanced 3-Phase Circuits and power measurement.

UNIT – II ELECTRICAL MACHINES

UNIT – III ANALOG AND DIGITAL ELECTRONICS
Operation and Characteristics of electronic devices: PN Junction Diodes, Zener Diode, BJT, JFET and MOSFET– Operational Amplifiers (OPAMPs) : Characteristics and basic application circuits-555 timer IC based astable and monostable multivibrator. Basic switching circuits – Gates and Flip-Flops-Sample and hold circuit- R-2R ladder type DAC-Successive approximation based ADC.

UNIT – IV SENSORS AND TRANSDUCERS
Solenoids, electro-pneumatic systems, proximity sensors, limit switches, piezoelectric, hall effect, photo sensors, Strain gauge, LVDT, differential pressure transducer, optical and digital transducers, Smart sensors, Thermal Imagers.

UNIT – V MEASUREMENTS AND INSTRUMENTATION

TOTAL: 45 PERIODS

Laboratory Experiments: LIST OF EXPERIMENTS:

ELECTRICAL
1. Verification of ohms and Kirchhoff’s Laws.
2. Load test on DC Shunt Motor.
3. Load test on Single Phase Transformer.
4. Load test on 3 Phase Induction Motor.

ELECTRONICS
1. Half wave and full wave Rectifiers.
2. Application of Zener diode as shunt regulator.
3. Inverting and non-inverting amplifier using operational amplifier.

TOTAL: 30 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO 1: Compute and demonstrate the electric circuit parameters for simple problems.
CO 2: Explain the working principles and characteristics of electrical machines, electronic devices and measuring instruments.
CO 3: Identify general applications of electrical machines, electronic devices and measuring instruments.
CO 4: Analyze and demonstrate the basic electrical and electronic circuits and characteristics of electrical machines..
CO 5: Explain the types and operating principles of sensors and transducers.
Mapping of COs with POs and PSOs

<table>
<thead>
<tr>
<th>COs/POs & PSOs</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO/PO & PSO Average</td>
<td>2.2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

1 – Slight, 2 – Moderate, 3 – Substantial

TEXT BOOKS:

REFERENCES:
Objectives

- To understand basics of problem solving and design solutions for computational problems.
- To apply different control structures in Python programming and solve using functions.
- To apply different data structures in Python.
- To use built-in and user defined modules in Python.
- To develop applications for file manipulation with error and exception handling in Python.

Unit 1 PROGRAMMING BASICS

PRACTICALS:

- Design algorithms for simple computational problems
- Develop Pseudocode and Flow charts for simple computational problems
- Develop Python programs using Input / Output operations
- Develop Python programs using operators and expressions
- Executing simple programs using Python interactive mode

Unit 2 CONTROL STATEMENTS AND FUNCTIONS

- Functions - Defining functions – Argument types – Scope and namespaces - Recursive functions – Lambda functions – Functions as arguments

PRACTICALS:

- Write Python programs using simple and nested selective control statements
- Develop Python programs using simple and nested repetitive control statements
- Write Python programs to generate series and patterns using repetitive control statements
- Develop Python programs using simple functions and recursion
- Write Python programs using lambda functions

Unit 3 STRING, LIST, TUPLES

PRACTICALS:

- Write Python programs for operating on Strings
- Design Python programs using Lists, Nested Lists and Lists comprehensions
- Develop Python programs using Tuples, Nested Tuples, Tuple comprehensions, and Sets

Unit 4 SETS & DICTIONARIES, FUNCTIONAL PROGRAMMING

- Sets – Set iteration and operations - Dictionaries – Dictionary iteration and operations - Dictionary comprehensions - Nested Dictionary comprehensions. Functional programming tools (map, filter, reduce) – Modules – import and from statements- Executing modules as scripts – Standard modules & Packages, creation of module/package

PRACTICALS:

- Write Python programs creating sets and performing set operations
- Develop Python programs using Dictionary, Nested Dictionary and comprehensions
- Write Python programs by applying functional programming concepts
- Create, import, and use user-defined modules
- Organize python code using Packages

Unit 5 EXCEPTIONS AND FILE HANDLING

PRACTICALS:
- Design Python programs to handle errors and exceptions
- Write Python programs with multiple handlers for exceptions
- Write Python programs to perform various operations on files
- Write Python programs to read and update text and data files

Total Hours: 90 (30+60)

Course Outcomes
1. Understand algorithmic solutions to simple computational problems.
2. Develop Python programs using conditional statements to solve computational problems.
3. Ability to apply suitable Python data structure(s) for a given problem
4. Design modular Python programs
5. Develop Python programs over files and handle exceptions

TEXT BOOKS

REFERENCE BOOKS
4. Python official documentation and tutorial, https://docs.python.org/3/

CO's-PO's & PSO's MAPPING

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1 : low, 2 : medium, 3 : high, '-' : no correlation
COURSE OBJECTIVES:
The main learning objective of this course is to prepare the students for:
1. determining the resultant forces acting on a particle in 2D and 3D and for applying methods of equilibrium on a particle in 2D and 3D.
2. evaluating the reaction forces for bodies under equilibrium, for determining the moment of a force, moment of a couple, for resolving force into a force-couple system and for analyzing trusses
3. assessing the centroids of 2D sections / center of gravity of volumes and for calculating area moments of inertia for the sections and mass moment of inertia of solids.
4. evaluating the frictional forces acting at the contact surfaces of various engineering systems and for applying the work-energy principles on a particle.
5. determining kinetic and kinematic parameters of the rigid bodies subjected to concurrent coplanar forces.

UNIT I
STATICS OF PARTICLES 9+3

UNIT II
EQUILIBRIUM OF RIGID BODIES AND TRUSSES 9+3

UNIT III
DISTRIBUTED FORCES 9+3
Centroids of lines and areas – symmetrical and unsymmetrical shapes, Determination of Centroids by Integration, Theorems of Pappus-Guldinus, Distributed Loads on Beams, Centre of Gravity of a Three-Dimensional Body, Centroid of a Volume, Composite Bodies, Determination of Centroids of Volumes by Integration. Moments of Inertia of Areas and Mass - Determination of the Moment of Inertia of an Area by Integration, Polar Moment of Inertia, Radius of Gyration of an Area, Parallel-Axis Theorem, Moments of Inertia of Composite Areas, Moments of Inertia of a Mass - Moments of Inertia of Thin Plates, Determination of the Moment of Inertia of a Three-Dimensional Body by Integration.

UNIT IV
FRICTION AND WORK PRINCIPLES 9+3

UNIT V
DYNAMICS OF PARTICLES AND RIGID BODIES 9+3

TOTAL : 60 PERIODS
COURSE OUTCOMES: Upon completion of this course, the students will be able to:

- **CO1** to determine the resultant forces acting on a particle in 2D and 3D and to apply methods of equilibrium on a particle in 2D and 3D.
- **CO2** evaluate the reaction forces for bodies under equilibrium, to determine moment of a force, moment of a couple, to resolve force into a force-couple system and to analyze trusses.
- **CO3** assess the centroids of 2D sections / center of gravity of volumes and to calculate area moments of inertia for the sections and mass moment of inertia of solids.
- **CO4** evaluate the frictional forces acting at the contact surfaces of various engineering systems and apply the work-energy principles on a particle. evaluate the kinetic and kinematic parameters of a particle.
- **CO5** determine kinetic and kinematic parameters of the rigid bodies subjected to concurrent coplanar forces.

TEXT BOOKS:

REFERENCES:
GE3251 நிதியுண்மை வணிலீற்றுப் பள்ளியாளர்

நிதியுண்மை வணிலீற்றுப் பள்ளியாளர்: 3
தர்க்க கால்களில்: நிதியுண்மை - பாதுகாப்பு வணிலீற்றுப் பள்ளியாளர் - கட்டுப்படுத்த பாதுகாப்பு வணிலீற்றுப் பள்ளியாளர் - பல்லவாலைகளில் சிற்று துறவிகள்.

நிதியுண்மை வணிலீற்றுப் பள்ளியாளர்: 3
தர்க்க கால்களில்: முடிவுகாப்பு வணிலீற்றுப் பள்ளியாளர் & கணக்கு தர்க்கங்கள் மூலம் பல்லவானாக முடிவுகாப்பு வணிலீற்றுப் பள்ளியாளர் - சிற்று துறவிகள் - முடிவுகாப்பு வணிலீற்றுப் பள்ளியாளர் - கூரு கால்களில் பல்லவானாக முடிவுகாப்பு வணிலீற்றுப் பள்ளியாளர் - சிற்று துறவிகள் - முடிவுகாப்பு வணிலீற்றுப் பள்ளியாளர் - பல்லவானாக முடிவுகாப்பு வணிலீற்றுப் பள்ளியாளர்

TEXT-CUM-REFERENCE BOOKS
1. நிதியுண்மை வணிலீற்றுப் பள்ளியாளர் (கட்டுப்படுத்த பாதுகாப்பு வணிலீற்றுப் பள்ளியாளர்).
2. நிதியுண்மை வணிலீற்றுப் பள்ளியாளர் (பல்லவாலைகளில் சிற்று துறவிகள்).
3. நிதியுண்மை வணிலீற்றுப் பள்ளியாளர் (சிற்று துறவிகள்).
4. நிதியுண்மை வணிலீற்றுப் பள்ளியாளர் (சிற்று துறவிகள்).
5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies).
7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
9. Keeladi - ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

GE3251 TAMILS AND TECHNOLOGY

UNIT I WEAVING AND CERAMIC TECHNOLOGY
Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY

UNIT III MANUFACTURING TECHNOLOGY

UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY
Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society.

UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING

TOTAL: 15 PERIODS

TEXT-CUM-REFERENCE BOOKS
1. சிறையில் மறைக்கல் - மாகாணம் பல்லவப் பல்லவக் (சிறையில்: சிறையில் மறைக்கல் மாகாணம் பல்லவப் பல்லவக்)
2. கல்லூரிக் கல்லறை - புல்லக்கர் புடக்கார். (சிறையில் புடக்கார்)
3. சிறையில் - சிறையில் விளக்கக்கறை சிறையில் தமிழ் நூல்கள் (சிறையில் விளக்கக்கறை
4. Social Life of Tamils (Dr. K. K. Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
5. Social Life of the Tamils - The Classical Period (Dr. S. Singaravelu) (Published by: International Institute of Tamil Studies).
6. Historical Heritage of the Tamils (Dr. S. V. Subatamanian, Dr. K. D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
7. The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Published by: International Institute of Tamil Studies.)
8. Keeladi - ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
9. Studies in the History of India with Special Reference to Tamil Nadu (Dr. K. K. Pillay) (Published by: The Author)
10. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

NCC Credit Course Level 1*

NX3251
(ARMY WING) NCC Credit Course Level - I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC GENERAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>NCC 1</td>
<td>Aims, Objectives & Organization of NCC</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCC 2</td>
<td>Incentives</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCC 3</td>
<td>Duties of NCC Cadet</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCC 4</td>
<td>NCC Camps: Types & Conduct</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NATIONAL INTEGRATION AND AWARENESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>NI 1</td>
<td>National Integration: Importance & Necessity</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI 2</td>
<td>Factors Affecting National Integration</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI 3</td>
<td>Unity in Diversity & Role of NCC in Nation Building</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI 4</td>
<td>Threats to National Security</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERSONALITY DEVELOPMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>PD 1</td>
<td>Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD 2</td>
<td>Communication Skills</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD 3</td>
<td>Group Discussion: Stress & Emotions</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEADERSHIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>L 1</td>
<td>Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour ‘Code</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 2</td>
<td>Case Studies: Shivaji, Jhasi Ki Rani</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCIAL SERVICE AND COMMUNITY DEVELOPMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>SS 1</td>
<td>Basics, Rural Development Programmes, NGOs, Contribution of Youth</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 4</td>
<td>Protection of Children and Women Safety</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 5</td>
<td>Road / Rail Travel Safety</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 6</td>
<td>New Initiatives</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 7</td>
<td>Cyber and Mobile Security Awareness</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL : 30 PERIODS
NCC Credit Course Level 1*

NX3252 (NAVAL WING) NCC Credit Course Level - I

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC GENERAL</td>
<td>6</td>
</tr>
<tr>
<td>NCC 1 Aims, Objectives & Organization of NCC</td>
<td>1</td>
</tr>
<tr>
<td>NCC 2 Incentives</td>
<td>2</td>
</tr>
<tr>
<td>NCC 3 Duties of NCC Cadet</td>
<td>1</td>
</tr>
<tr>
<td>NCC 4 NCC Camps: Types & Conduct</td>
<td>2</td>
</tr>
<tr>
<td>NATIONAL INTEGRATION AND AWARENESS</td>
<td>4</td>
</tr>
<tr>
<td>NI 1 National Integration: Importance & Necessity</td>
<td>1</td>
</tr>
<tr>
<td>NI 2 Factors Affecting National Integration</td>
<td>1</td>
</tr>
<tr>
<td>NI 3 Unity in Diversity & Role of NCC in Nation Building</td>
<td>1</td>
</tr>
<tr>
<td>NI 4 Threats to National Security</td>
<td>1</td>
</tr>
<tr>
<td>PERSONALITY DEVELOPMENT</td>
<td>7</td>
</tr>
<tr>
<td>PD 1 Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving</td>
<td>2</td>
</tr>
<tr>
<td>PD 2 Communication Skills</td>
<td>3</td>
</tr>
<tr>
<td>PD 3 Group Discussion: Stress & Emotions</td>
<td>2</td>
</tr>
<tr>
<td>LEADERSHIP</td>
<td>5</td>
</tr>
<tr>
<td>L 1 Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code</td>
<td>3</td>
</tr>
<tr>
<td>L 2 Case Studies: Shivaji, Jhasi Ki Rani</td>
<td>2</td>
</tr>
<tr>
<td>SOCIAL SERVICE AND COMMUNITY DEVELOPMENT</td>
<td>8</td>
</tr>
<tr>
<td>SS 1 Basics, Rural Development Programmes, NGOs, Contribution of Youth</td>
<td>3</td>
</tr>
<tr>
<td>SS 2 Protection of Children and Women Safety</td>
<td>1</td>
</tr>
<tr>
<td>SS 3 Road / Rail Travel Safety</td>
<td>1</td>
</tr>
<tr>
<td>SS 4 New Initiatives</td>
<td>2</td>
</tr>
<tr>
<td>SS 5 Cyber and Mobile Security Awareness</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL : 30 PERIODS</td>
<td></td>
</tr>
</tbody>
</table>

NCC Credit Course Level 1*

NX3253 (AIR FORCE WING) NCC Credit Course Level - I

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC GENERAL</td>
<td>6</td>
</tr>
<tr>
<td>NCC 1 Aims, Objectives & Organization of NCC</td>
<td>1</td>
</tr>
<tr>
<td>NCC 2 Incentives</td>
<td>2</td>
</tr>
<tr>
<td>NCC 3 Duties of NCC Cadet</td>
<td>1</td>
</tr>
<tr>
<td>NCC 4 NCC Camps: Types & Conduct</td>
<td>2</td>
</tr>
<tr>
<td>NATIONAL INTEGRATION AND AWARENESS</td>
<td>4</td>
</tr>
<tr>
<td>NI 1 National Integration: Importance & Necessity</td>
<td>1</td>
</tr>
<tr>
<td>NI 2 Factors Affecting National Integration</td>
<td>1</td>
</tr>
<tr>
<td>NI 3 Unity in Diversity & Role of NCC in Nation Building</td>
<td>1</td>
</tr>
<tr>
<td>NI 4 Threats to National Security</td>
<td>1</td>
</tr>
</tbody>
</table>
PERSONALITY DEVELOPMENT
PD 1 Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving 2
PD 2 Communication Skills 3
PD 3 Group Discussion: Stress & Emotions 2

LEADERSHIP
L 1 Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code 3
L 2 Case Studies: Shivaji, Jhansi Ki Rani 2

SOCIAL SERVICE AND COMMUNITY DEVELOPMENT
SS 1 Basics, Rural Development Programmes, NGOs, Contribution of Youth 3
SS 4 Protection of Children and Women Safety 1
SS 5 Road / Rail Travel Safety 1
SS 6 New Initiatives 2
SS 7 Cyber and Mobile Security Awareness 1

TOTAL : 30 PERIODS

PH3161 PHYSICS LABORATORY
(Common to all branches of B.E. /B.Tech Programmes) 0 0 2 1

Any SEVEN Experiments

1. Torsional Pendulum-Determination of rigidity modulus of wire and moment of inertia of the disc
2. Non-uniform bending - Determination of Young’s modulus of the material of the beam.
3. Uniform bending – Determination of Young’s modulus of the material of the beam.
4. Lee’s Disc Experiment - Determination of thermal conductivity of bad conductors.
5. Viscosity of Liquids.
6. Acoustic grating-Determination of the velocity of ultrasonic waves in liquids.
7. Ultrasonic interferometer – determination of sound velocity and liquids compressibility
8. Laser-Determination of the wavelength of the laser using grating
 - Determination of the width of the groove of the compact disc using laser.
 - Estimation of laser parameters.
9. Air wedge - Determination of the thickness of a thin sheet/wire
10. a) Optical fibre - Determination of Numerical Aperture and acceptance angle
 b) - Determination of bending loss of fibre.
11. Spectrometer-Determination of the wavelength of light using grating
12. Michelson Interferometer - Determination of wavelength of the monochromatic source of light.
13. Photoelectric effect – Determination of Planck’s constant
14. Black body radiation (Demonstration)
15. Melde’s string experiment - Standing waves.
16. Forced and Damped Oscillations.
17. Thermistor sensor
18. Thermocouple sensor
20. Design LCR series and parallel circuit and estimation of the resonant frequency.
22. Four Probe Set up – determination of band gap/resistivity of a material.

TOTAL: 30 PERIODS

COURSE OUTCOMES:
Upon completion of the course, the students will be able

CO1: To determine various moduli of elasticity, thermal properties of materials and viscosity of liquids

CO2: To determine the velocity of ultrasonic waves in Liquids.

CO3: To calculate and analyze various optical properties.

CO4: To build and analyze the characteristics of mechanical vibrations and logic operation.

CO5: To determine the desired electric and magnetic parameters of materials, semiconductors devices and sensors.

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GE3261 ENGLISH LABORATORY – II

UNIT I INTERVIEW IN SOCIAL CONTEXT
Asking questions and answering - Conducting an interview (of an achiever / survivor) – Role play activity.

UNIT II PERSUASIVE SKILLS
Speaking about specifications of a product (Eg. Home appliances) – Persuasive Talk – Role play activity.

UNIT III CASE STUDY
Discussions on Case Study to find solutions for problems in professional contexts – Analytical discussion on various aspects of a given problem.

UNIT IV VISUAL INTERPRETATION
Describing visual content (Pictures/Table/Chart) using appropriate descriptive language and making appropriate inferences and giving recommendations.

UNIT V PRESENTATION
Making presentation with visual component (PPT slides) (job interview / project / innovative product presentation)

Assessment
Internals – 100%
Picture / Graphical description and Interpretation
Formal Presentation with visual tool (like PPT)

TOTAL : 30 PERIODS

COURSE OUTCOMES
At the end of the course, students will be able to

CO1: Comprehend and transcode visual content appropriately.
CO2: Participate effectively in formal group discussions.
CO3: Make presentation on a given topic in a formal context.

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1' = Low; '2' = Medium; '3' = High