Vision:

The Department of Biotechnology is committed to evolve as a world class science and technology centre by integrating quality and ethics in teaching and research

Mission:

The mission of the department is

- Empowering students with an unique multidisciplinary learning experience and fostering the young minds to develop as a researcher, entrepreneur, etc.
- Enhancing academic and industrial collaborative research initiatives for the development of biotechnological, food and therapeutic products.
- Emphasizing and equipping the students towards innovative industrial and research developments.
- Serving the society with utmost commitment, integrity, enthusiasm, and dedication.
PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)
The Food Technology curriculum is designed to prepare graduates having knowledge with high ethical values and industrial preparedness to
1. Understand the concepts of basic sciences, Engineering, and technology for their application in the area of Food Technology.
2. Identify and analyze to solve problems for the development of products, processes, techniques to meet the demands of the society.
3. Apply the learnt theory and practical skills in Food Technology for industry, R&D and entrepreneurship.

PROGRAMME OUTCOMES (POs)
After completion of four years of study, the Food Technology Graduates will be able to

<table>
<thead>
<tr>
<th>Graduate Attribute</th>
<th>Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1 Engineering Knowledge</td>
<td>Apply knowledge of mathematics, basic science and engineering.</td>
</tr>
<tr>
<td>PO2 Problem Analysis</td>
<td>Identify, formulate and solve problems in the area of Food Technology.</td>
</tr>
<tr>
<td>PO3 Design/ development of solutions</td>
<td>Design new processes/ modifying the existing system to improve the performance and to satisfy the constraints.</td>
</tr>
<tr>
<td>PO4 Conduct investigations of complex problems</td>
<td>Perform experiments, analyze and interpret the data.</td>
</tr>
<tr>
<td>PO5 Modern tool usage</td>
<td>Apply various food analytical tools and techniques to improve the efficiency of the process and product.</td>
</tr>
<tr>
<td>PO6 The Engineer and society</td>
<td>Conduct themselves to uphold the professional and social obligations.</td>
</tr>
<tr>
<td>PO7 Environment and sustainability</td>
<td>Design the system with environment consciousness and sustainable development.</td>
</tr>
<tr>
<td>PO8 Ethics</td>
<td>Interact with industry, business and society in a professional and ethical manner.</td>
</tr>
<tr>
<td>PO9 Individual and team work</td>
<td>Ability to work in a multidisciplinary team.</td>
</tr>
<tr>
<td>PO10 Communication</td>
<td>Proficiency in oral and written communication.</td>
</tr>
<tr>
<td>PO11 Project management and finance</td>
<td>Implementation of cost effective projects and improve system.</td>
</tr>
<tr>
<td>PO12 Life-long learning</td>
<td>Continue professional development and learning as a life-long activity.</td>
</tr>
</tbody>
</table>
PROGRAMME SPECIFIC OUTCOMES (PSOs)

By the completion of B. Tech Food Technology programme the student will be able to

1. Apply the knowledge of hurdle technology for the shelf life enhancement of food preservation and Engineering, knowledge for the scale-up of industrial nutritional food products.

2. Employ technology for product development by innovative food processing and preservation techniques for solving practical and real world problems.

3. Demonstrate professional and ethical competency with effective communication and managerial skills to emerge as a responsible leader or entrepreneur in the food sector.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVE WITH PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th>PEO</th>
<th>PROGRAMME OUTCOMES</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO1</td>
<td>PO2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
SEMESTER I

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS3151</td>
<td>English for Communication- I</td>
<td>HSMC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MA3151</td>
<td>Matrices and Calculus</td>
<td>BSC</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH3151</td>
<td>Engineering Physics</td>
<td>BSC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CY3151</td>
<td>Engineering Chemistry</td>
<td>BSC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EE3151</td>
<td>Basics of Electrical and Electronics Engineering</td>
<td>ESC</td>
<td>3 0 2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>GE3154</td>
<td>தமிழ் உரோழில்/Heritage of Tamils</td>
<td>HSMC</td>
<td>1 0 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CY3161</td>
<td>Chemistry Laboratory</td>
<td>BSC</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10.</td>
<td>GE3161</td>
<td>Engineering Practices Laboratory</td>
<td>ESC</td>
<td>0 0 4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>11.</td>
<td>GE3162</td>
<td>English Laboratory- I</td>
<td>EEC</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL 16 1 10 27 22

* Skill Based Course

SEMESTER II

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>PERIODS PER WEEK</th>
<th>TOTAL CONTACT PERIODS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS3251</td>
<td>English For Communication – II</td>
<td>HSMC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MA3251</td>
<td>Ordinary Differential Equations and Transform Techniques</td>
<td>BSC</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>IB3251</td>
<td>Bioorganic chemistry</td>
<td>BSC</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>GE3152</td>
<td>Problem Solving and Python Programming</td>
<td>ESC</td>
<td>2 0 4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>GE3155</td>
<td>Engineering Drawing</td>
<td>ESC</td>
<td>2 0 4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>GE3251</td>
<td>தமிழ் உரோழில் / Tamils and Technology</td>
<td>HSMC</td>
<td>1 0 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NCC Credit Course Level I*</td>
<td></td>
<td>2 0 0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>PH3161</td>
<td>Physics Laboratory</td>
<td>BSC</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10.</td>
<td>GE3261</td>
<td>English Laboratory- II*</td>
<td>EEC</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL 14 1 12 27 21

\# NCC Credit Course level 1 is offered for NCC students only. Other students may enroll for NSS/NSO/YRC activity.
The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

* Skill Based Course.
OBJECTIVE

- To build lexical competency and accuracy that will help learners to use language effectively.
- To comprehend the nuances of spoken and written communication in different contexts.
- To learn and use various language functions required for effective communication.
- To read and write different types of texts and comprehend their connotative and denotative meanings.
- To enhance students’ listening skills by using different types of audio materials and help them extract necessary information from those materials.

UNIT I BASICS OF COMMUNICATION
Listening – Telephone conversation & Writing message, gap filling;
Reading – Telephone message,
Writing – Personal profile;
Grammar – Simple present tense, Present continuous tense, Asking questions (wh-questions);
Vocabulary – One word substitution, Synonyms

UNIT II NARRATION
Listening – Travel podcast / Watching a travel documentary;
Reading – An excerpt from a travelogue, Newspaper Report;
Writing – Narrative (Event, personal experience etc.);
Grammar – Subject – verb agreement, Simple past, Past continuous Tenses;
Vocabulary – Antonyms, Word formation (Prefix and Suffix).

UNIT III DESCRIPTION
Listening – Conversation, Radio/TV advertisement;
Reading – A tourist brochure and planning an itinerary, descriptive article / excerpt from literature;
Writing – Definitions, Descriptive writing, Checklists;
Grammar – Future tense, Perfect tenses, Preposition;
Vocabulary – Adjectives and Adverbs

UNIT IV CLASSIFICATION
Listening – Announcements and filling a table;
Reading – An article, social media posts and classifying (channel conversion – text to table);
Writing – Note making, Note taking and Summarising, a classification paragraph;
Grammar – Connectives, Transition words;
Vocabulary – Contextual vocabulary, Words used both as noun and verb, Classification related words.

UNIT V EXPRESSION OF VIEWS
Listening – Debate / Discussion;
Reading – Formal letters, Letters to Editor, Opinion articles / Blogs;
Writing – Letter writing/ Email writing (Enquiry / Permission, Letter to Editor);
Grammar – Question tags, Indirect questions, Yes / No questions;
Vocabulary – Compound words, Phrasal verbs.

Assessment
Two Written Assessments: 35% weightage each
Assignment: 30% weightage
Designing a tourist brochure / Writing an opinion article / Making a travel podcast
End Semester Exam: 3-hour written exam

TOTAL : 45 PERIODS

OUTCOME
At the end of the course, students will be able to
CO1: Use grammar and vocabulary suitable for general context.
CO2: Comprehend the nuances of spoken and written communication.
CO3: Use descriptive and analytical words, phrases, and sentence structures in written communication.
CO4: Read different types of texts and comprehend their denotative and connotative meanings.
CO5: Write different types of texts using appropriate formats.
TEXT BOOKS:
1. “English for Engineers and Technologists” Volume I by Orient Blackswan, 2022

REFERENCES
4. www.uefap.com

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>2.2</td>
<td>2.4</td>
</tr>
</tbody>
</table>

- 1-low, 2-medium, 3-high, "-" - no correlation
- **Note:** The average value of this course to be used for program articulation matrix.

MA3151 MATRICES AND CALCULUS L T P C 3 1 0 4

OBJECTIVE
- To develop the use of matrix algebra techniques in solving practical problems.
- To familiarize the student with functions of several variables.
- To solving integrals by using Beta and Gamma functions.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals.
- To acquaint the students with the concepts of vector calculus which naturally arises in many engineering problems.

UNIT I MATRICES (9+3)
Eigen values and Eigen vectors of a real matrix – Properties of Eigen values - Cayley-Hamilton theorem (excluding proof) – Diagonalization of matrices - Reduction of Quadratic form to canonical form by using orthogonal transformation - Nature of a Quadratic form.

UNIT II FUNCTIONS OF SEVERAL VARIABLES (9+3)

UNIT III INTEGRAL CALCULUS (9+3)
Improper integrals of the first and second kind and their convergence – Differentiation under integrals - Evaluation of integrals involving a parameter by Leibnitz rule – Beta and Gamma functions-Properties – Evaluation of integrals by using Beta and Gamma functions – Error functions.

UNIT IV MULTIPLE INTEGRALS (9+3)
UNIT V VECTOR CALCULUS (9+3)
Gradient of a scalar field, directional derivative – Divergence and Curl – Solenoidal and Irrotational vector fields - Line integrals over a plane curve - Surface integrals – Area of a curved surface – Volume Integral - Green's theorem, Stoke's and Gauss divergence theorems – Verification and applications in evaluating line, surface and volume integrals.

TOTAL: 60 PERIODS

COURSE OUTCOMES:
At the end of the course, the students will be able to:
CO1: Use the matrix algebra methods for solving practical problems.
CO2: Use differential calculus ideas on several variable functions.
CO3: Apply different methods of integration in solving practical problems by using Beta and Gamma functions.
CO4: Apply multiple integral ideas in solving areas and volumes problems.
CO5: Apply the concept of vectors in solving practical problems.

TEXT BOOKS:

REFERENCES:

CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>AVg.</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

- 1' = Low; '2' = Medium; ‘3’ = High

PH3151 ENGINEERING PHYSICS L T P C 3 0 0 3

OBJECTIVE
- To impart knowledge on Mechanics of Materials.
- To impart knowledge of oscillations, sound and Thermal Physics
- To facilitate understanding of optics and its applications, different types of Laseand fiber
• To introduce the basics of Quantum Mechanics and its importance.
• To familiarize with crystal structure, bonding and crystal growth.

UNIT I - MECHANICS OF MATERIALS

UNIT II - OSCILLATIONS, SOUND AND THERMAL PHYSICS

UNIT III - OPTICS AND LASERS

UNIT IV - QUANTUM MECHANICS

UNIT V - CRYSTAL PHYSICS

TOTAL: 45 PERIODS

COURSE OUTCOMES:
After completion of this course, the students shall be
CO1: Understand the important mechanical properties of materials
CO2: Express the knowledge of oscillations, sound and applications of Thermal Physics
CO3: Know the basics of optics and lasers and its applications
CO4: Understand the basics and importance of quantum physics.
CO5: Understand the significance of crystal physics.

TEXT BOOKS:
4. Alan Giambattista, Betty McCarthy Richardson and Robert C. Richardson, College Physics,
REFERENCES:

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CY3151 ENGINEERING CHEMISTRY

OBJECTIVE
- To introduce the basic concepts of polymers, their properties and some of the important applications.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To facilitate the understanding of corrosion science and protecting coatings.
- To familiarize the operating principles and applications of energy conversion, its processes and storage devices.
- To inculcate sound understanding of water quality parameters and water treatment techniques.

UNIT I POLYMER CHEMISTRY

UNIT II NANO CHEMISTRY

UNIT III CORROSION SCIENCE
UNIT IV ENERGY SOURCES
Batteries - Characteristics - types of batteries – primary battery (dry cell), secondary battery (lead acid, lithium-ion-battery)- emerging batteries – nickel-metal hydride battery, aluminum air battery, batteries for automobiles and satellites - Fuel cells (Types) – H₂O₂ fuel cell - Supercapacitors-Types and Applications, Renewable Energy: Solar- solar cells, DSSC

UNIT V WATER TECHNOLOGY

COURSE OUTCOMES:
CO1: To recognize and apply basic knowledge on different types of polymeric materials, their general preparation methods and applications to futuristic material fabrication needs.
CO2: To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
CO3: To recognize and apply basic knowledge on suitable corrosion protection technique for practical problems.
CO4: To recognize different storage devices and apply them for suitable applications in energy sectors.
CO5: To demonstrate the knowledge of water and their quality in using at different industries.

TEXT BOOKS:

REFERENCES:

CO - PO Mapping

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- 1' = Low; '2' = Medium; '3' = High

EE3151 BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT – I ELECTRICAL CIRCUITS
DC Circuits: Ohm’s Law - Kirchhoff’s Laws – Independent and Dependent Sources – Nodal Analysis, Mesh analysis with Independent sources only (Steady state) – AC Fundamentals: Waveforms, Average value, RMS Value, Impedance, Instantaneous Power, Real Power, Reactive Power and Apparent Power, Power Factor – Steady State Analysis of RL and RC Circuits -
Introduction to Balanced 3-Phase Circuits and power measurement.

UNIT – II ELECTRICAL MACHINES 9

UNIT – III ANALOG AND DIGITAL ELECTRONICS 9
Operation and Characteristics of electronic devices: PN Junction Diodes, Zener Diode, BJT, JFET and MOSFET– Operational Amplifiers (OPAMPs) : Characteristics and basic application circuits-555 timer IC based astable and monostable multivibrator.
Basic switching circuits – Gates and Flip-Flops-Sample and hold circuit- R-2R ladder type DAC-Successive approximation based ADC.

UNIT – IV SENSORS AND TRANSDUCERS 9
Solenoids, electro-pneumatic systems, proximity sensors, limit switches, piezoelectric, hall effect, photo sensors, Strain gauge, LVDT, differential pressure transducer, optical and digital transducers, Smart sensors, Thermal Imagers.

UNIT – V MEASUREMENTS AND INSTRUMENTATION 9

TOTAL: 45 PERIODS

Laboratory Experiments:
LIST OF EXPERIMENTS:
ELECTRICAL
1. Verification of ohms and Kirchhoff’s Laws.
2. Load test on DC Shunt Motor.
3. Load test on Single Phase Transformer.
4. Load test on 3 Phase Induction Motor.

ELECTRONICS
1. Half wave and full wave Rectifiers.
2. Application of Zener diode as shunt regulator.
3. Inverting and non-inverting amplifier using operational amplifier.

TOTAL: 30 PERIODS

COURSE OUTCOMES
Upon successful completion of the course, students should be able to:
CO 1: Compute and demonstrate the electric circuit parameters for simple problems.
CO 2: Explain the working principles and characteristics of electrical machines, electronic devices and measuring instruments.
CO 3: Identify general applications of electrical machines, electronic devices and measuring instruments.
CO 4: Analyze and demonstrate the basic electrical and electronic circuits and characteristics of electrical machines.
CO 5: Explain the types and operating principles of sensors and transducers.

<table>
<thead>
<tr>
<th>COs/POs & PSOs</th>
<th>POs</th>
<th>PSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>1 2 3</td>
</tr>
<tr>
<td>CO1</td>
<td>3 3 2 2 3 - - - 2 1 1 - - -</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2 3 2 3 3 - - - 1 2 1 1 - - -</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3 2 1 1 3 - - - 1 2 1 1 - - -</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>1 2 2 2 3 - - - 1 2 - 1 - - -</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>1 1 2 2 2 - - - 1 2 - 2 - - -</td>
<td></td>
</tr>
</tbody>
</table>
CO/PO & PSO Average | 2 | 2.2 | 1.8 | 2 | - | - | - | 1 | 2 | 1 | 1.2 | - | - | -
|----------------------|---|-----|----|---|---|---|---|---|---|---|----|---|---|---|
| 1 – Slight, 2 – Moderate, 3 – Substantial

TEXT BOOKS:

REFERENCES:
இலக்கியத்தில் அகம் மற்றும் புறக் கொட்பொடுகள் – தமிழர்கள் பங்களிப்பில் அறக்மகொடு. – தமிழகத்தில் மற்றும் புறக் கொட்பொடுகள் – தமிழர்கள் பங்களிப்பில் அறக்மகொடு – தமிழகத்தில் எங்ககொலத்தில் கொட்பொடுகள். – தமிழர்கள் பங்களிப்பு:

அலகு V ஆண்டு தினம் மூன்றாம் மாதம் அகம் பாரம்பரியத்தின்
தமிழகத்தில் பங்களிப்பு:

இலக்கியத் திதியால்போன் தமிழகத்தில் பங்களிப்பு – தமிழகத்தில் பங்களிப்பு – தமிழர்கள் பங்களிப்பு, கிளிக் தமிழகத்தில் பங்களிப்பு – கல்வியும், பைத்துப்பொடுகளும் – எங்ககொலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல்கடந்த நொடுகளில் மெொழர்கள் தவற்றிருக்கும்.

TEXT-CUM-REFERENCE BOOKS

1. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
2. Social Life of Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies).
3. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
4. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
5. Keeladi - ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
6. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
7. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

GE3154 HERITAGE OF TAMILS L T P C 1 0 0 1

UNIT I LANGUAGE AND LITERATURE 3

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE 3
UNIT III FOLK AND MARTIAL ARTS
Therukoothu, Karagattam, VilluPattu, KaniyanKoothu, Oyillattam, Leatherpuppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV THINAICONCEPTOF TAMILS
Flora and Fauna of Tamils&AhamandPuramConceptfromTholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import duringSangamAge -Overseas Conquestof Cholas.

UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE
Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India - Self-Respect Movement - RoleofSiddhaMedicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

TOTAL : 15 PERIODS

TEXT-CUM-REFERENCEBOOKS
1. சமுத்துற்சி அண்ணா பண்டையம் - மெருத்துற்சி பராமரிக்க - தேவதை பிரைன்னண (தேவாலயங்கள் படையற் மற்றும் செல்விப் பலனிகள் குறிப்பிட்டு).
2. கோயில்கள் குறிப்பிட்டு - மெருத்துற்சி விளை. குறிப்பிட்டு (மெருத்துற்சி விளை).
3. குர்குயம் – வேறெழுத்சிகளில் பல்கலைக்கழக நகர நூற்றாண்டு (தேவாலயங்கள் இணைய வாழ்கையில்).
4. போர்த்தகம் – வீரமாதிகம் நகரகைம (தேவாலயங்கள் இணைய வாழ்கையில்).
5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies).
7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
9. Keeladi - ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)

CY3161 CHEMISTRY LABORATORY
(Minimum of 8 experiments to be conducted)

OBJECTIVE
- To inculcate experimental skills to test basic understanding of water quality parameters, such as, alkalinity, hardness, DO, chloride and copper.
- To induce the students to familiarize with electroanalytical techniques such as, pH metry, potentiometry and conductometry in the determination of impurities in aqueous solutions.
- To estimate the corrosion resistance of metals by weight loss method and molecular weight of polymer by viscometry.
LIST OF EXPERIMENTS:
1. Estimation of HCl using Na$_2$CO$_3$ as primary standard
2. Determination of alkalinity in water sample.
3. Determination of hardness of water by EDTA method.
4. Determination of DO content of water sample by Winkler’s method.
5. Determination of chloride content of water sample by Argentometric method.
6. Estimation of copper content of the given solution by Iodometry.
7. Determination of strength of given hydrochloric acid using pH meter.
8. Determination of strength of acids in a mixture of acids using conductivity meter.
9. Estimation of iron content of the given solution using potentiometer.
10. Estimation of iron content of the water sample using spectrophotometer (1, 10-
Phenantherolime/thiocyanate method).
11. Estimation of sodium and potassium present in water using flame photometer.
13. Determination of Glass transition temperature of a polymer
14. Phase change in a solid.
15. Corrosion experiment-weight loss method.

TOTAL: 30 PERIODS

COURSE OUTCOMES:
After completion of the laboratory course, the student will be able to –
CO1: analyse the water quality parameters for domestic and industrial purposes.
CO2: determine the amount of metal ions by spectroscopic techniques
CO3: select a suitable polymer for industrial applications.
CO4: quantitatively analyse the impurities in solution by electroanalytical techniques.
CO5: predict the choice of metals for industrial purposes using corrosion studies.

TEXTBOOKS:

CO - PO Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1’ = Low; ‘2’ = Medium; ‘3’ = High

GE3161 ENGINEERING PRACTICES LABORATORY L T P C
GROUP – A (CIVIL & ELECTRICAL)

1. CIVIL ENGINEERING PRACTICES

PLUMBING:
Basic pipe connections involving the fittings like valves, taps, coupling, unions, reducers, elbows and other components used in household fittings. Preparation of plumbing line sketches.
 a) Laying pipe connection to the suction side of a pump
 b) Laying pipe connection to the delivery side of a pump.
 c) Practice in connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.
WOOD WORK:
Sawing, planing and making joints like T-Joint, Mortise and Tenon joint and Dovetail joint.

STUDY EXCERCISES
a) Study of joints in door panels and wooden furniture
b) Study of common industrial trusses using models.

2. ELECTRICAL ENGINEERING PRACTICES 15
a) Basic household wiring using Switches, Fuse, Indicator and Lamp etc.,
b) Stair case light wiring
c) Tube – light wiring
d) Preparation of wiring diagrams for a given situation.
e) Study of Iron-Box, Fan Regulator and Emergency Lamp

GROUP – B (MECHANICAL AND ELECTRONICS)

3. MECHANICAL ENGINEERING PRACTICES 15
WELDING
a) Arc welding of Butt Joints, Lap Joints, and Tee Joints
b) Gas welding demonstration.
c) Basic Machining - Simple turning, drilling and tapping operations.
d) Study and assembling of the following: Centrifugal pump, Mixer, Air-conditioner

SHEET METAL PRACTICE: Making of a square tray

DEMONSTRATION ON FOUNDRY OPERATIONS.

4. ELECTRONIC ENGINEERING PRACTICES 15
a) Soldering simple electronic circuits and checking continuity.
b) Assembling electronic components on a small PCB and Testing.
c) Study of Telephone, FM radio and Low Voltage Power supplies.

TOTAL: 60 PERIODS

COURSE OUTCOMES:
CO1. Ability to make common joints in carpentry and pipe connections with fittings used in plumbing works.
CO2. Ability to do electrical wiring for household applications.
CO3. Ability to weld the steel the structures and soldering of electronical connections and testing of PCBs

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>COs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avg</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

1’ = Low; ‘2’ = Medium; ‘3’ = High
<table>
<thead>
<tr>
<th>UNIT I</th>
<th>SELF-INTRODUCTION</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introducing oneself; Telephone conversation, Relaying telephone message – Role play</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT II</th>
<th>NARRATION</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Narrating one’s personal experience in front of a group (formal and informal context) Ex.: First day in college / vacation / first achievement etc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT III</th>
<th>CONVERSATION</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Making conversation – formal and informal – Turn taking and Turn giving – Small talk</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT IV</th>
<th>SHORT SPEECH</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Giving short speeches on topics like College Clubs and their activities in the college / Campus Facilities / native place and its major attractions.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT V</th>
<th>DISCUSSION</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Taking part in a group discussion on general topics – Debating on topics of interest and relevance.</td>
<td></td>
</tr>
</tbody>
</table>

Assessment

- **Internals – 100%**
- **Short Speeches**
- **Group discussion**

TOTAL : 30 PERIODS

COURSE OUTCOMES

At the end of the course, students will be able to

- **CO1.** Communicate effectively in formal and informal contexts
- **CO2.** Converse appropriately and confidently with different people
- **CO3.** Express their opinions assertively in group discussions

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AVg.</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

- **1-low, 2-medium, 3-high, “-” no correlation**
- **Note:** The average value of this course to be used for program articulation matrix.

Semester II

<table>
<thead>
<tr>
<th>HS3251</th>
<th>ENGLISH FOR COMMUNICATION – II</th>
<th>L T P C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3 0 0 3</td>
</tr>
</tbody>
</table>

OBJECTIVE

- To actively listen and collect relevant data from various forms of oral content like presentations, lectures and videos.
- To develop study skills and communication skills in formal and informal situations.
- To comprehend various reading materials relevant to formal context and understand the main and supporting ideas of the reading materials.
- To explore definitions, essay and report writing techniques and practice them in order to develop associated skills.
- To write effective job applications along with detailed CV for internship or placements.
UNIT I CAUSE AND EFFECT
Listening – Radio / TV / Podcast Interview (survivors tale) and framing a set of instructions/Do’s and Don’ts; Reading – Excerpts of Literature (short stories), Journal articles on issues like Global warming; Writing - Instructions; Official letter / email (Request for internship / Industrial visit); Grammar – If conditionals, Imperatives; Vocabulary – Cause and effect expressions, Idiom

UNIT II COMPARE AND CONTRAST
Listening – Product reviews and gap fill exercises, Short Talks (like TED Talks) for specific information; Reading – Graphical content (table / chart / graph) and making inferences; Writing – Compare and Contrast Essay; Grammar – Degrees of Comparison; Mixed Tenses; Vocabulary – Order of Adjectives, Transition words.

UNIT III PROBLEM AND SOLUTION
Listening – Group discussion (case study); Reading – Visual content (Pictures on social issues / natural disasters) for comprehension; Editorial; Writing Picture description; Problem and Solution Essay; Grammar – Modal verbs; Relative pronoun; Vocabulary – Negative prefixes, Signal words for problem and solution.

UNIT IV REPORTING
Listening – Oral news report; Reading – Newspaper report on survey findings – Writing – Survey report, Making recommendations; Grammar – Active and passive voice, Direct and Indirect speech; Vocabulary – Reporting verbs, Numerical adjectives.

UNIT V PRESENTATION
Listening – Job interview, Telephone interview; Reading - Job advertisement and company profile and making inferences; Writing – Job application (cover letter and CV) Grammar – Prepositional phrases; Vocabulary – Fixed expressions, Collocations.

Assessment
Two Written Assessments : 35% weightage each
Assignment: 30% weightage
Conducting a survey on specific topic and write a final survey report. End Semester Exam: 3-hour written exam

TOTAL:45 PERIODS

OUTCOME
On completion of the course, the students will be able to:
CO1. Listen effectively to various oral forms of conversation, lectures, discussion and understand the main gist of the content.
CO2. Communicate effectively in formal and informal context.
CO3. Read and comprehend technical texts effortlessly.
CO4. Write reports and job application for internship or placement.
CO5. Learn to use language effectively in a professional context.

TEXTBOOK
2. “English for Engineers and Technologists” by Orient Blackswan, 2022

REFERENCE BOOKS
3. “Advanced Communication Skills” by Mathew Richardson, Charlie Creative Lab, 2020
CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
<td>1.8</td>
<td>2.4</td>
</tr>
</tbody>
</table>

- 1-low, 2-medium, 3-high, - - - no correlation
- **Note**: The average value of this course to be used for program articulation matrix.

MA3251 ORDINARY DIFFERENTIAL EQUATIONS AND TRANSFORM TECHNIQUES L T P C

OBJECTIVE
- To acquaint the students with Differential Equations which are significantly used in engineering problems.
- To make the students to understand the Laplace transforms techniques.
- To develop the analytic solutions for partial differential equations used in engineering by Fourier series.
- To acquaint the student with Fourier transform techniques used in wide variety of situations in which the functions used are not periodic.
- To develop Z- transform techniques in solving difference equations.

UNIT I ORDINARY DIFFERENTIAL EQUATIONS
Homogeneous linear ordinary differential equations of second order, linearity principle, general solution - Particular integral - Operator method - Solution by variation of parameters

UNIT II LAPLACE TRANSFORMS

UNIT III FOURIER SERIES
Dirichlet’s conditions – General Fourier series – Odd and even functions – Half-range Sine and Cosine series – Complex form of Fourier series – Parseval’s identity – Harmonic Analysis.

UNIT IV FOURIER TRANSFORMS
Fourier integral theorem – Fourier transform pair - Fourier sine and cosine transforms – Properties – Transform of elementary functions - Convolution theorem (without proof) – Parsevals’s identity.

UNIT V Z – TRANSFORM AND DIFFERENCE EQUATIONS

TOTAL: 45 PERIODS

OUTCOME
At the end of the course, the students will be able to:
CO1: Solve higher order ordinary differential equations which arise in engineering applications.
CO2: Apply Laplace transform techniques in solving linear differential equations.
CO3: Apply Fourier series techniques in engineering applications.
CO4: Understand the Fourier transforms techniques in solving engineering problems.
CO5: Understand the Z-transforms techniques in solving difference equations.

TEXTBOOK

REFERENCE BOOKS

CO-PO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Avg.</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

AVG. = Low; ‘2’ = Medium; ‘3’ = High

IB3251 BIOORGANIC CHEMISTRY L T P C

OBJECTIVE
The course aims to enable the students to understand the basics concepts of chemical reactions make students understand the kinetics and its reaction mechanism.

UNIT I BONDING AND STEREOCHEMISTRY
Atoms
Electrons and orbitals - Covalent Bonds - Octet rule - Polar covalent Bonds - Electronegativity
formal charge - Resonance Acids and Bases - Arrhenius and Bronsted Lowry Theories - Acid Base
equilibria - SP3 hybridization - Conformations analysis ethane, butane and cyclohexane - Cis- trans
isomerism. Stereochemical activity around the tetrahedral carbon – optical activity - Conformation of the peptide bond.

UNIT II MECHANISMS OF SUBSTITUTION AND ADDITION REACTIONS
SN1 and SN2 reactions on tetrahedral carbon- nucleophiles- mechanism steric effects – nucleophilic
addition on Acetals and ketals -Aldehyde and ketone groups – reactions of carbonyl group with amines- acid catalyzed ester hydrolysis – Saponification of an ester- hydrolysis of amides. Ester enolates - claisen .condensation – Michael condensation.
UNIT III KINETICS AND MECHANISM

UNIT IV CATALYSIS
Reactivity – Coenzymes – Proton transfer – metal ions – Intra molecular reactions – Covalent catalysis – Catalysis by organized aggregates and phases. Inclusion complexation

UNIT V BIOORGANIC REACTIONS
Timing of Bond formation and fission – Acyl group transfer – C-C bond formation and fission – Catalysis of proton transfer reactions – Transfer of hydride ion – Alkyl group. Transfer – Terpene biosynthesis – Merrifield state peptide synthesis – Sanger method for peptide and DNA sequencing

TOTAL:45 PERIODS

OUTCOME
At the end of the course, the students will be able to:
- CO1: define and appraise Bonding and stereochemistry
- CO2: classify and solve Mechanisms of substitution and addition reactions
- CO3: discuss and formulate the Thermodynamics, kinetics and mechanism
- CO4: describe and demonstrate Catalysis
- CO5: classify and analyze Bioorganic reactions & mechanisms

TEXTBOOKS

REFERENCES

<table>
<thead>
<tr>
<th>Course Articulation Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO's</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>Overall CO</td>
</tr>
</tbody>
</table>

GE3152 PROBLEM SOLVING AND PYTHON PROGRAMMING L T P C
2044

Objectives
- To understand basics of problem solving and design solutions for computational problems.
- To apply different control structures in Python programming and solve using functions.
- To apply different data structures in Python.
- To use built-in and user defined modules in Python.
- To develop applications for file manipulation with error and exception handling in Python.

UNIT I PROGRAMMING BASICS 6+12
Architecture of Computer – Program design: Algorithm - Pseudocode and flow chart– Interpreter –
Introduction to Python Specification - Data Representation: Simple statements: Variables and Identifiers – Object Types - Operators - Expressions and its evaluation

PRACTICALS:
- Design algorithms for simple computational problems
- Develop Pseudocode and Flow charts for simple computational problems
- Develop Python programs using Input / Output operations
- Develop Python programs using operators and expressions
- Executing simple programs using Python interactive mode

UNIT II CONTROL STATEMENTS AND FUNCTIONS 6+12

PRACTICALS:
- Write Python programs using simple and nested selective control statements
- Develop Python programs using simple and nested repetitive control statements
- Write Python programs to generate series and patterns using repetitive control statements
- Develop Python programs using simple functions and recursion
- Write Python programs using lambda functions

UNIT III STRING, LIST, TUPLES 6+12

PRACTICALS:
- Write Python programs for operating on Strings
- Design Python programs using Lists, Nested Lists and Lists comprehensions
- Develop Python programs using Tuples, Nested Tuples, Tuple comprehensions, and Sets

UNIT IV SETS & DICTIONARIES, FUNCTIONAL PROGRAMMING 6+12

PRACTICALS:
- Write Python programs creating sets and performing set operations
- Develop Python programs using Dictionary, Nested Dictionary and comprehensions
- Write Python programs by applying functional programming concepts
- Create, import, and use user-defined modules
- Organize python code using Packages

UNIT V EXCEPTIONS AND FILE HANDLING 6+12

PRACTICALS:
- Design Python programs to handle errors and exceptions
- Write Python programs with multiple handlers for exceptions
- Write Python programs to perform various operations on files
- Write Python programs to read and update text and data files

TOTAL : 90 (30+60) PERIODS
COURSE OUTCOMES
1. Understand algorithmic solutions to simple computational problems.
2. Develop Python programs using conditional statements to solve computational problems.
3. Ability to apply suitable Python data structure(s) for a given problem.
4. Design modular Python programs.
5. Develop Python programs over files and handle exceptions.

TEXT BOOKS

REFERENCE BOOKS
4. Python official documentation and tutorial, https://docs.python.org/3/

CO’s-PO’s & PSO’s MAPPING

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Avg</td>
<td>1.5</td>
<td>2.6</td>
<td>2.4</td>
<td>2</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>0.4</td>
<td>1</td>
</tr>
</tbody>
</table>

1 : low, 2 : medium, 3 : high, '-' : no correlation

GE3155 ENGINEERING DRAWING L T P C 2 0 4 4

OBJECTIVES:
The learning objectives of this course is to develop in students, the engineering graphics skills for communication of concepts, ideas and design of engineering products and expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (NOT FOR EXAMINATION)
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES 4+12
Basic Geometrical constructions, Curves used in engineering practices: Conics — Construction of ellipse, parabola and hyperbola by eccentricity method — Construction of cycloid — construction of involutes of square and circle — Drawing of tangents and normal to the above curves.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6+12
Orthographic projection- Principal planes - First angle projection - projection of points. Projection
of straight lines (only First angle projections) inclined to both the principal planes
- Determination of true lengths and true inclinations by rotating line method and traces.
Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by
rotating object method.

UNIT III PROJECTION OF SOLIDS AND FREEHAND SKETCHING 6 + 12
Projection of simple solids like prisms, pyramids, cylinder, and cone when the axis is inclined to
both the principal planes by rotating object method. Visualization concepts and Free Hand
sketching: Visualization principles — Representation of Three-Dimensional objects — Layout of
views- Freehand sketching of multiple views from pictorial views of objects. Practicing three
dimensional modeling of simple objects by CAD Software (Not for examination).

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 6 + 12
Sectioning of simple solids like prisms, pyramids, cylinder, and cone in simple vertical position when
the cutting plane is inclined to the one of the principal planes and perpendicular to the other —
 obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids —
Prisms, pyramids cylinders and cones.
Development of lateral surfaces of solids with cut-outs and holes. Practicing three dimensional
modeling of simple truncated objects by CAD Software (Not for examination).

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6 + 12
Principles of isometric projection — isometric scale - Isometric projections of simple solids and
truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple
vertical positions - Perspective projection of simple solids-Prisms, pyramids, cone and cylinders by
visual ray method. Creating isometric model of simple objects from orthographic projections using CAD software (Not for examination).

TOTAL: 90 PERIODS

COURSE OUTCOMES:
On successful completion of this course, the student will be able to
CO1. Draw conic curves, cycloids and involutes
CO2. Draw orthographic projections of points, lines and planes
CO3. Draw orthographic projections and free hand sketches of solids
CO4. Draw sectional views of the objects and development of surfaces.
CO5. Draw isometric and perspective views of simple solids

TEXTBOOKS:

REFERENCES:
2019.
an introduction to Interactive Computer Graphics for Design and Production,
4. Parthasarathy N. S. and Vela Murali, “Engineering Graphics”, Oxford University,
Press, New Delhi, 2015.
Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Drawing:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets only in the size of A3.
4. The students will be permitted to use appropriate scale to fit the solution within A3 size.
5. The examination will be conducted in appropriate sessions on the same day.

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>COs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AVG</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1' = Low; '2' = Medium; '3' = High

GE3251

I:

II:

III:
TEXT-CUM-REFERENCE BOOKS
1. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
2. Social Life of the Tamils – The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies).
3. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
4. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
5. Keeladi – ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
6. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
7. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)

GE3251 TAMILS AND TECHNOLOGY L T P C
1 0 0 1

UNIT I WEAVING AND CERAMIC TECHNOLOGY 3
Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY 3
Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)- Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.
UNIT III MANUFACTURING TECHNOLOGY 3

UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY 3
Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries - Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society.

UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING 3
Development of Scientific Tamil - Tamil computing - Digitalization of Tamil Books - Development of Tamil Software - Tamil Virtual Academy - Tamil Digital Library - Online Tamil Dictionaries - Sorkuvai Project.

TOTAL 15 HOURS

TEXT-CUM-REFERENCE BOOKS
1. கலை மக்கள் வாழ்காட்டி - மக்கள் பலிவர்க்கம் - தொல்லியல். (மதசம்பாதிக் கலை நிகழ்வு பலிவர்க்கம்)
2. கலை மக்கள் வாழ்காட்டி - மக்கள் பலிவர்க்கம். (மதசம்பாதிக் கலை நிகழ்வு)
3. கலை மக்கள் வாழ்காட்டி - மக்கள் பலிவர்க்கம் - தொல்லியல். (மதசம்பாதிக் கலை நிகழ்வு)
4. கலை மக்கள் வாழ்காட்டி - மக்கள் பலிவர்க்கம். (மதசம்பாதிக் கலை நிகழ்வு)
5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6. Social Life of the Tamil – The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies).
7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies).
9. Keeladi – ‘Sangam City Civilization on the banks of river Vaigai’ (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

NCC Credit Course Level 1*
NX3251 (ARMY WING) NCC Credit Course Level - I

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

NCC GENERAL
NCC 1 Aims, Objectives & Organization of NCC 1
NCC 2 Incentives 2
NCC 3 Duties of NCC Cadet 1
NCC 4 NCC Camps: Types & Conduct 2

NATIONAL INTEGRATION AND AWARENESS
NI 1 National Integration: Importance & Necessity 1
NI 2 Factors Affecting National Integration 1
NI 3 Unity in Diversity & Role of NCC in Nation Building 1
NI 4 Threats to National Security 1

PERSONALITY DEVELOPMENT 7
PD 1 Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving 2
PD 2 Communication Skills 3
PD 3 Group Discussion: Stress & Emotions 2

LEADERSHIP 5
L 1 Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour ‘Code 3
L 2 Case Studies: Shivaji, Jhasi Ki Rani 2

SOCIAL SERVICE AND COMMUNITY DEVELOPMENT 8
SS 1 Basics, Rural Development Programmes, NGOs, Contribution of Youth 3
SS 4 Protection of Children and Women Safety 1
SS 5 Road / Rail Travel Safety 1
SS 6 New Initiatives 2
SS 7 Cyber and Mobile Security Awareness 1

TOTAL : 30 PERIODS

NCC Credit Course Level 1*

NX3252 (NAVAL WING) NCC Credit Course Level - I L T P C
2 0 0 2

NCC GENERAL 6
NCC 1 Aims, Objectives & Organization of NCC 1
NCC 2 Incentives 2
NCC 3 Duties of NCC Cadet 1
NCC 4 NCC Camps: Types & Conduct 2

NATIONAL INTEGRATION AND AWARENESS 4
NI 1 National Integration: Importance & Necessity 1
NI 2 Factors Affecting National Integration 1
NI 3 Unity in Diversity & Role of NCC in Nation Building 1
NI 4 Threats to National Security 1

PERSONALITY DEVELOPMENT 7
PD 1 Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving 2
PD 2 Communication Skills 3
PD 3 Group Discussion: Stress & Emotions 2

LEADERSHIP 5
L 1 Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code 3
L 2 Case Studies: Shivaji, Jhasi Ki Rani 2

SOCIAL SERVICE AND COMMUNITY DEVELOPMENT 8
SS 1 Basics, Rural Development Programmes, NGOs, Contribution of Youth 3
SS 4 Protection of Children and Women Safety 1
SS 5 Road / Rail Travel Safety 1
SS 6 New Initiatives 2
SS 7 Cyber and Mobile Security Awareness 1

TOTAL : 30 PERIODS
NCC Credit Course Level 1*
NX3253 (AIR FORCE WING) NCC Credit Course Level - I

L T P C
2 0 0 2

NCC GENERAL
NCC 1 Aims, Objectives & Organization of NCC 1
NCC 2 Incentives 2
NCC 3 Duties of NCC Cadet 1
NCC 4 NCC Camps: Types & Conduct 2

NATIONAL INTEGRATION AND AWARENESS
NI 1 National Integration: Importance & Necessity 1
NI 2 Factors Affecting National Integration 1
NI 3 Unity in Diversity & Role of NCC in Nation Building 1
NI 4 Threats to National Security 1

PERSONALITY DEVELOPMENT
PD 1 Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving 2
PD 2 Communication Skills 3
PD 3 Group Discussion: Stress & Emotions 2

LEADERSHIP
L 1 Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code 3
L 2 Case Studies: Shivaji, Jhasi Ki Rani 2

SOCIAL SERVICE AND COMMUNITY DEVELOPMENT
SS 1 Basics, Rural Development Programmes, NGOs, Contribution of Youth 3
SS 4 Protection of Children and Women Safety 1
SS 5 Road / Rail Travel Safety 1
SS 6 New Initiatives 2
SS 7 Cyber and Mobile Security Awareness 1

TOTAL : 30 PERIODS

PH3161 PHYSICS LABORATORY
L T P C
0 0 2 1

OBJECTIVES:

- To inculcate experimental skills to test basic materials’ properties including materials mechanical, thermal and optical properties.
- To induce the students to familiarize themselves with the properties of sound waves and ultrasonic waves.
- To impart practical skills and to understand the characteristics of mechanical vibrations and logic operation.
- To elucidate to understand the electric and magnetic parameters of materials and semiconductors devices and sensors

Any SEVEN Experiments
1. Torsional Pendulum-Determination of rigidity modulus of wire and moment of inertia of the disc
2. Non-uniform bending -Determination of Young’s modulus of the material of the beam.
3. Uniform bending–Determination of Young’s modulus of the material of the beam.
4. Lee’s Disc Experiment - Determination of thermal conductivity of bad conductors.
5. Viscosity of Liquids.
6. Acoustic grating-Determination of the velocity of ultrasonic waves in liquids.
7. Ultrasonic interferometer – determination of sound velocity and liquids compressibility
8. Laser-Determination of the wavelength of the laser using grating
 • Determination of the width of the groove of the compact disc using laser.
 • Estimation of laser parameters.
9. Air wedge -Determination of the thickness of a thin sheet/wire
10. a) Optical fibre -Determination of Numerical Aperture and acceptance angle
 c) Determination of bending loss of fibre.
11. Spectrometer-Determination of the wavelength of light using grating
12. Michelson Interferometer -Determination of wavelength of the monochromatic source of light.
13. Photoelectric effect – Determination of Planck’s constant
14. Black body radiation (Demonstration)
15. Melde’s string experiment - Standing waves.
16. Forced and Damped Oscillations.
17. Thermostat sensor
18. Thermostat sensor
20. Design LCR series and parallel circuit and estimation of the resonant frequency.
22. Four Probe Set up – determination of band gap/resistivity of a material.

TOTAL: 30 HOURS

COURSE OUTCOMES:
Upon completion of the course, the students will be able
CO1: To determine various moduli of elasticity, thermal properties of materials and viscosity of liquids
CO2: To determine the velocity of ultrasonic waves in Liquids.
CO3: To calculate and analyze various optical properties.
CO4: To build and analyze the characteristics of mechanical vibrations and logic operation.
CO5: To determine the desired electric and magnetic parameters of materials, semiconductors devices and sensors.

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• 1-low, 2-medium, 3-high, ‘-’- no correlation

GE3261 ENGLISH LABORATORY - II

OBJECTIVES:
• To comprehend visual material and transcode it into verbal content using appropriate register.
• To identify varied group discussion skills and apply them to take part in effective discussions in professional context.
• To use language effectively in a formal presentation.
UNIT I: INTERVIEW IN SOCIAL CONTEXT 6
Asking questions and answering - Conducting an interview (of an achiever / survivor) – Roleplay

UNIT II: PERSUASIVE SKILLS 6
Speaking about specifications of a product (Eg. Home appliances) – Persuasive Talk – Role play activity.

UNIT III: CASE STUDY 6
Discussions on Case Study to find solutions for problems in professional contexts – Analytical discussion on various aspects of a given problem.

UNIT IV: VISUAL INTERPRETATION 6
Describing visual content (Pictures/Table/Chart) using appropriate descriptive language and making appropriate inferences and giving recommendations.

UNIT V: PRESENTATION 6
Making presentation with visual component (PPT slides) (job interview / project / innovative product presentation)

Assessment
Internals – 100%
Picture / Graphical description and Interpretation
Formal Presentation with visual tool (like PPT)

TOTAL 30 HOURS

OUTCOMES:
At the end of the course, students will be able to
• Comprehend and transcode visual content appropriately.
• Participate effectively in formal group discussions.
• Make presentation on a given topic in a formal context.

CO-PO & PSO MAPPING

<table>
<thead>
<tr>
<th>CO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1.3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1.6</td>
<td>3</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

• 1-low, 2-medium, 3-high, "-"- no correlation
• Note: The average value of this course to be used for program articulation matrix.